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Abstract: This study presents a novel Semantic-Attention Enhanced Dynamic Swin Con-
volutional Block Attention Module(CBAM) Transformer (DSC-Transformer) for lymph
node ultrasound image classification. The model integrates semantic feature extraction
and multi-scale attention mechanisms with the Swin Transformer architecture, enabling
efficient processing of diagnostically significant regions while suppressing noise. Key
innovations include semantic-driven preprocessing for localized diagnostic focus, adaptive
compression for bandwidth-limited scenarios, and multi-scale attention modules for cap-
turing both global anatomical context and local texture details. The model’s effectiveness
is validated through comprehensive experiments on diverse datasets and Grad-Channel
Attention Module (CAM) visualizations, demonstrating superior classification performance
while maintaining high efficiency in remote diagnostic settings. This semantic-attention en-
hancement makes the DSC-Transformer particularly effective for telemedicine applications,
representing a significant advancement in AI-driven medical image analysis with broad
implications for telehealth deployment.

Keywords: deep learning; medical image analysis; ultrasound imaging; lymph node
classification; semantic-attention enhanced DSC-transformer

1. Introduction
Remote healthcare continues to evolve rapidly, driven by technological advances

and increasing demand for accessible medical services. Digital technologies, including
mobile health applications, wearable devices, and telemedicine platforms, have proven to
be indispensable, particularly for patients in rural or underserved areas. This evolution
brings unprecedented opportunities for expanding healthcare access while simultaneously
presenting complex technical challenges. Traditional remote healthcare systems struggle
with bandwidth limitations that affect the transmission of critical medical data, particu-
larly high-resolution imaging studies essential for accurate diagnosis. These constraints
become especially pronounced in regions lacking advanced infrastructure, where limited
bandwidth can result in slow data transmission, poor quality, or data loss, all of which
negatively affect the quality of care and patient outcomes.
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Within this context, conventional communication approaches based on Shannon’s
information theory increasingly show their limitations. While these traditional methods
have served as the foundation for digital communication, they focus primarily on error-
free transmission of raw data, leading to inefficiencies in medical data transmission. As
healthcare systems increasingly rely on real-time data, there is a growing need for faster
transmission speeds to support real-time diagnosis and decision-making. The large volume
of medical data, often generated by diagnostic imaging devices and monitoring equipment,
poses a significant burden on network resources.

Semantic communication emerges as a transformative solution by focusing on the
meaning of the data being transmitted, ensuring that only the most relevant and critical
information is sent. By focusing on the meaning and clinical significance of medical
data rather than raw binary transmission, semantic communication systems can achieve
substantially higher efficiency. A key principle is semantic feature extraction, which
involves identifying the most important features within the data that are crucial for accurate
diagnosis. These features are then compressed and transmitted, reducing data volume
while preserving diagnostic value.

The application of semantic communication in lymph node ultrasound classification
serves as a compelling case study for this technology’s potential. Lymph nodes, essential
elements of the lymphatic system, play a vital role in immune response, acting as filters for
harmful substances and providing early indicators of diseases such as cancer, infections,
and autoimmune disorders. The accurate distinction between benign and malignant lymph
nodes is critical in clinical settings, particularly for conditions like breast cancer, where
early detection of metastasis can significantly impact prognosis and treatment outcomes.
Existing classification systems have been developed to differentiate various lymph node
abnormalities, such as necrotic changes, cystic formations, and calcifications. These features
are indicative of non-malignant conditions, like infections or chronic inflammation, and
must be carefully distinguished from malignancy. Such distinctions are essential for proper
management and treatment decisions, as certain imaging features may overlap between
benign and malignant nodes [1,2]. Traditional diagnostic methods, while effective, often
rely heavily on clinician expertise, introducing subjectivity and potential errors [3,4].

Lymph node evaluation is not limited to ultrasound imaging; several other imaging
modalities, such as computed tomography (CT) [5], magnetic resonance imaging (MRI) [6],
positron emission tomography (PET) [7], and single-photon emission computed tomog-
raphy (SPECT) [8], are commonly used in clinical practice. These modalities play critical
roles in staging, treatment planning, and cases where ultrasound results are inconclu-
sive. Additionally, elastography techniques, both ultrasound-based and MRI-based, are
emerging tools for assessing tissue stiffness, which can help differentiate benign from ma-
lignant lymph nodes. Furthermore, lymphotropic contrast agents, which enhance lymph
node visualization in ultrasound and MRI, have shown promise in improving diagnostic
accuracy. While our study primarily focuses on ultrasound due to its accessibility and
cost-effectiveness, the deep learning model proposed here can be adapted for use with other
imaging modalities, provided that appropriate labeled data is available. An important
factor in lymph node evaluation is size, as changes in size can indicate the effectiveness
of therapy. Different anatomical sites may require distinct size thresholds and staging
criteria, such as those outlined in the RECIST criteria for measuring target lesions, to assess
treatment response accurately. Although our study primarily focuses on ultrasound due
to its accessibility and cost-effectiveness, the deep learning model proposed here can be
adapted to work with other imaging modalities, provided that appropriate labeled data
is available.
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Lymph node evaluation is crucial not only for assessing malignant tumors, including
breast, pelvic, and head-and-neck cancers, but also for monitoring treatment response
across various cancer types [9]. The role of lymph nodes extends beyond malignancies;
they are also involved in non-malignant pathologies, such as sarcoidosis, tuberculosis, and
Castleman disease. These non-malignant conditions can lead to changes in the appearance
of lymph nodes, such as calcifications, cystic formations, or necrosis, which can sometimes
be confused with malignancy. Differentiating these conditions is essential for accurate
diagnosis and treatment planning. While the size of the lymph node is traditionally used in
initial staging, it becomes especially important for tracking changes in response to treatment.
For example, in pelvic-derived neoplasms, the size of the Lymph node is a key marker,
with distinct criteria used compared to head and neck cancers. Different tumor sites may
require unique size thresholds, such as those outlined by RECIST (Response Evaluation
Criteria in Solid Tumors) for measuring target lesions during treatment assessment.

Recent advances in deep learning have revolutionized medical image analysis, offering
automated and precise diagnostic tools. Zhang et al. provided a comprehensive review
of deep learning applications in medical image analysis, emphasizing its crucial role in
improving diagnostic accuracy and efficiency [10]. Liu et al. demonstrated that Convo-
lutional Neural Networks (CNNs) established the initial benchmark for deep learning
in medical imaging [11]. Wang et al. later introduced Vision Transformers (ViTs), show-
ing superior performance in capturing global dependencies within medical images [12].
Hybrid CNN–Transformer models emerged, combining local feature extraction with long-
range dependency modeling [13], while the integration of attention mechanisms enhanced
classification performance [14]. However, challenges persist, particularly regarding lim-
ited labeled data and achieving consistent accuracy across different datasets and clinical
settings [15,16].

The integration of Semantic Communications with deep learning-based lymph node
classification methods opens new possibilities in telemedicine and IoT domains, particu-
larly through enhanced semantic feature extraction and attention mechanisms. Through
intelligent data transmission and semantic-aware information processing, this integration
enhances the practicality and reliability of diagnostic systems, establishing a foundation
for broader application scenarios. Addressing these opportunities and challenges, our
study introduces the Semantic-Attention Enhanced Dynamic Swin–CBAM Transformer
(DSC-Transformer) model, a novel approach that combines semantic feature extraction with
advanced attention mechanisms. The proposed model builds upon the hierarchical struc-
ture of the Swin Transformer, incorporating semantic-driven preprocessing and multi-scale
attention modules to prioritize diagnostically significant regions while suppressing noise in
ultrasound images. The model’s architecture integrates the Convolutional Block Attention
Module (CBAM) with dynamic convolution, enabling adaptive feature extraction and
semantic compression for efficient data transmission in resource-constrained environments.
This semantic-attention enhancement allows the model to adjust its operations based on
specific input image characteristics, improving its ability to handle diverse features and
patterns without significantly increasing model size, while maintaining high efficiency in
data transmission and processing for remote healthcare applications.

The remainder of this paper is organized as follows. Section 2 discusses the principles
of semantic communication and its applications in remote healthcare. Section 3 presents
a detailed case study of lymph node ultrasound classification and remote diagnostics.
Section 4 introduces our proposed Semantic-Attention Enhanced DSC-Transformer model,
including its core architecture components and implementation details. Section 5 describes
the implementation details and training methodology, covering dataset preparation, data
augmentation, training strategies, and validation approaches. Section 6 presents compre-
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hensive experimental results and analysis, comparing our model’s performance against
state-of-the-art classification models and conducting ablation studies. Section 7 discusses
the strengths, limitations, and future directions of our approach. Finally, Section 8 concludes
this paper.

2. Semantic Communication in Remote Healthcare
2.1. Principles of Semantic Communication

Semantic communication is a paradigm shift from traditional communication systems,
focusing not just on transmitting raw data but on delivering meaningful, context-aware
information. This approach is particularly advantageous in healthcare, where the goal is
not just to send large volumes of data but to transmit information that is crucial for timely
diagnosis and decision-making. In bandwidth-limited scenarios of remote telemedicine
consultations or mobile networks, semantic communication systems can automatically
adjust data transmission based on network conditions. The system prioritizes critical
diagnostic data when bandwidth is low. This includes information about tumors, abnormal
growths, or suspicious organ changes. Meanwhile, less important data like background
noise or non-diagnostic regions undergo compression or omission. This ensures that
the most urgent and clinically relevant information reaches the healthcare provider with
minimal delay, improving the timeliness and effectiveness of the diagnosis.

Moreover, the ability of semantic communication to adapt based on clinical priorities
introduces a level of personalization to the transmission process. For instance, a system can
prioritize certain types of data based on the urgency of the clinical context. In emergency
situations, where time is of the essence, the system can prioritize high-risk information,
such as the presence of cancerous lesions, or clinical signs of acute conditions, like heart
attacks or strokes, over routine or non-urgent data. This ensures that clinicians receive
the most relevant information first, allowing for faster decision-making, which can be
life-saving in critical care scenarios. Once critical features have been identified, semantic
compression plays a pivotal role in reducing the volume of data that needs to be transmitted
without compromising the essential diagnostic content. The image displayed in Figure 1
illustrates how a medical image can be compressed by focusing on the clinically relevant
regions, leaving out areas that do not contribute to the diagnosis. This method significantly
reduces the amount of data required for transmission, ensuring faster delivery without
losing important diagnostic details.
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the proposed SemCom system model.

The first step in semantic communication is extracting meaningful information from
raw data. In the context of medical imaging, for instance, this could involve identifying key
features in ultrasound or CT scans that are indicative of a particular condition. Instead of
transmitting the entire image, semantic communication identifies and focuses on the most
diagnostically relevant features, such as tumors or lesions in the case of cancer detection.
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Once critical features have been identified, semantic compression reduces the volume
of the data needed to be transmitted without losing essential diagnostic content. By
focusing only on relevant aspects of the data, this method significantly reduces the amount
of bandwidth required. For example, a detailed medical image may be compressed by
discarding unnecessary regions of the image while preserving the parts that contribute to
clinical decision-making. In a semantic communication system, we can define the Semantic
Extraction (SE) efficiency ηs as

ηs = Sm/St (1)

where Sm is the amount of meaningful semantic information extracted, and St is the total
amount of original data.

Moreover, the transmission strategy can be dynamically adapted based on network
conditions. Figure 2 provides an example of how this adaptation works, showing the
process of prioritizing critical diagnostic data when bandwidth is limited. During low-
bandwidth periods, regions of the image that are most relevant for the diagnosis, such
as the central area showing a potential malignancy, are transmitted first, ensuring that
clinicians have access to the most urgent information as soon as possible. One of the core
features of semantic communication is its ability to adapt the transmission strategy based
on network conditions and clinical priorities. In a bandwidth-constrained environment, the
system can dynamically adjust the amount of data being transmitted. For example, during
periods of low bandwidth, the system could prioritize critical diagnostic data, ensuring
that the most urgent information reaches the clinician in real-time. For medical image
compression, the compression ratio R can be expressed as

R = Do/Dc (2)

where Do is the original data size, and Dc is the compressed data size.
In remote healthcare scenarios, the end-to-end delay T of semantic communication

can be represented as
T = Tse + Tt + Tsd (3)

where Tse is semantic encoding time, Tt is transmission time, and Tsd is semantic decod-
ing time.

Looking ahead, the integration of semantic communication with machine learning
(ML) technologies could further enhance its capabilities. AI algorithms could be used to
automatically identify and classify relevant features in medical images, enabling even more
precise compression and data prioritization. Machine learning models could also be used
to predict the most critical data that need to be transmitted based on the patient’s history,
the current clinical context, and the urgency of the diagnosis. This level of automation
would allow healthcare providers to focus more on patient care, while the system handles
the complexity of managing data transmission efficiently and effectively.

In conclusion, semantic compression and communication represent a significant leap
forward in medical image transmission, offering the potential to enhance diagnostic ac-
curacy, reduce bandwidth consumption, and ensure that critical information is delivered
to healthcare professionals in real-time. By adapting to network conditions and clinical
priorities, this approach ensures that the most relevant diagnostic content reaches clinicians
promptly, improving patient outcomes and the overall efficiency of healthcare delivery. As
the field of medical imaging continues to evolve, the integration of semantic communica-
tion will play a crucial role in overcoming the challenges posed by bandwidth limitations,
ensuring that remote healthcare and telemedicine can continue to thrive.
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2.2. Advantages for Remote Healthcare

Semantic communication presents numerous advantages for remote healthcare sys-
tems, where the efficient transmission of medical data is vital for timely decision-making
and intervention.

In remote healthcare environments, where network resources may be limited, semantic
communication ensures that only essential data is transmitted. By focusing on diagnosti-
cally critical information, it significantly reduces the volume of data being sent without
compromising the quality or accuracy of the diagnosis. This is particularly important in
telemedicine, where bandwidth constraints are common in rural or underdeveloped areas.

With semantic communication, healthcare professionals can receive faster data trans-
mission and processing, which is crucial for real-time diagnosis and treatment decisions.
The reduced data volume allows for quicker analysis, enabling healthcare providers to
act swiftly and improve patient outcomes. For instance, when diagnosing a critical condi-
tion, such as stroke or sepsis, the ability to rapidly transmit key medical data can make a
significant difference in treatment success.

Semantic communication improves the explainability of transmitted data. By focusing
on the most relevant diagnostic content, the system presents clinicians with clearer, more
interpretable information. This can foster greater trust and confidence in the system,
especially when clinicians rely on machine-learning models for decision support. The
ability to explain why certain information was prioritized helps clinicians understand the
reasoning behind automated suggestions, ensuring they can make informed decisions.

2.3. Integration with IoT and Telemedicine

The integration of semantic communication with IoT-enabled medical devices opens
up new possibilities for continuous monitoring and diagnostics in remote healthcare.

Many healthcare devices, such as wearable sensors, are now capable of continuously
collecting patient data. In remote healthcare, where patients may not be physically present
in a clinic or hospital, these devices allow for constant monitoring of vital signs, like heart
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rate, blood pressure, and oxygen levels. Semantic communication helps by efficiently
transmitting only the most relevant data, such as critical changes in a patient’s condition,
rather than sending large volumes of routine measurements. This ensures that healthcare
professionals receive timely updates while minimizing bandwidth use.

In telemedicine, where remote consultations between patients and healthcare
providers are becoming more common, semantic communication enables real-time ex-
changes of essential clinical data. Even in bandwidth-limited environments, semantic
communication ensures that clinicians can share meaningful data, such as images, test
results, and diagnostic information, with experts remotely. This makes it possible for
healthcare providers to receive support from specialists without requiring high-bandwidth
connections. Whether in an emergency situation requiring immediate consultation or a rou-
tine check-up, semantic communication ensures that vital information is shared effectively.

By leveraging semantic communication, IoT-enabled devices, and telemedicine, remote
healthcare systems can offer enhanced patient care, particularly in underserved regions
with limited resources. The intelligent transmission of relevant data enables faster diagnosis,
better decision-making, and more efficient resource utilization.

3. Lymph Node Ultrasound Classification and Remote Diagnostics: A
Case Study
3.1. Clinical Importance of Lymph Node Classification

Lymph nodes are critical immune system structures that serve as filtration points for
harmful substances, including pathogens, cancer cells, and other potential threats. Their
role extends far beyond just immune defense; they are also key indicators in diagnosing a
wide range of conditions, including infections, autoimmune diseases and, most notably,
cancers. Lymph node classification, particularly in imaging, is an essential part of clinical
decision-making. It allows healthcare providers to identify whether a lymph node is benign
or malignant, which has profound implications for diagnosis and treatment planning.

The clinical importance of lymph node classification is particularly pronounced in
the context of oncology. Lymph node metastasis often represents a critical stage in cancer
progression, as it indicates the spread of cancer cells from the primary tumor site to distant
regions of the body. In cancers such as breast cancer, cervical cancer, lung cancer, and
melanoma, the involvement of regional lymph nodes significantly affects the staging of the
disease, which, in turn, guides therapeutic strategies. For instance, breast cancer staging
relies heavily on lymph node involvement to determine the extent of the disease and
whether the cancer has spread beyond the breast tissue.

The timely detection of malignancy in lymph nodes can directly influence patient
outcomes. In breast cancer, for example, identifying metastatic lymph nodes early can
enable more accurate staging and treatment decisions. If detected early, the patient can
undergo less invasive procedures, such as targeted surgery or localized radiation therapy.
On the other hand, if lymph node metastasis is not identified in a timely manner, patients
may undergo aggressive treatments that could have been avoided, or the cancer may spread
to other parts of the body, making treatment less effective.

Early detection of lymph node abnormalities also extends beyond cancer diagnosis.
In the case of infections and autoimmune diseases, lymph node enlargement or abnormal
morphology can be indicative of an ongoing pathological process. For instance, in diseases
like tuberculosis, and even systemic lupus erythematosus (SLE), the lymph nodes may
present with characteristic changes that help clinicians distinguish between these conditions
and other causes of lymphadenopathy. Timely diagnosis in these cases can significantly
alter the treatment plan and reduce the risk of complications associated with misdiagnosis.
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Thus, the ability to classify lymph nodes accurately in imaging is essential not only
for identifying cancers but also for detecting infections and autoimmune diseases early,
ultimately contributing to better patient care, more efficient use of healthcare resources,
and improved prognosis.

3.2. Challenges in Remote Diagnostics for Lymph Nodes

While lymph node classification is vital for effective clinical decision-making, several
challenges complicate accurate diagnosis, particularly in remote diagnostic settings. One of
the foremost challenges is the limited availability of labeled datasets for training machine
learning and deep learning models. Medical imaging datasets, especially those with
expert annotations, are scarce and difficult to obtain. Expert radiologists, oncologists, or
pathologists must manually annotate the images, which is a time-consuming and costly
process. Moreover, the scarcity of labeled data is particularly problematic when dealing
with rare conditions, variations in disease progression, or atypical cases. This lack of
sufficient training data makes it difficult to build robust deep learning models that can
generalize across various types of patients, conditions, and imaging devices.

Another significant challenge in remote diagnostics for lymph node classification is
the variability and noise present in ultrasound images. Ultrasound imaging, while non-
invasive and widely accessible, is highly susceptible to image artifacts and noise due to
factors like operator experience, patient movement, and body composition. For example,
in lymph node ultrasound imaging, distinguishing benign from malignant nodes can be
challenging when the images are distorted by artifacts such as speckle noise, shadowing, or
motion blurring. Additionally, the appearance of lymph nodes can vary greatly depending
on their location, size, shape, and surrounding tissue. This variability adds another layer of
complexity to the task of classifying these nodes accurately.

The high bandwidth requirements for transmitting high-resolution ultrasound images
in real-time also present a significant challenge. In remote or rural healthcare settings,
where internet bandwidth may be limited or unreliable, transmitting large medical images
in real-time can be problematic. Ultrasound images, particularly those with high resolution
necessary for detailed classification, often contain a large amount of data. Transmitting this
data over low-bandwidth networks can result in delays, poor-quality images, or incomplete
transmissions, all of which hinder the ability of clinicians to make timely and accurate
decisions. These transmission issues are especially critical in emergency situations, where
every minute counts in diagnosing and treating conditions like cancer or infections.

Lastly, ensuring that the data received by clinicians is both accurate and up-to-date
presents additional challenges. Remote diagnostics rely heavily on timely communication
but delays in data transmission can lead to discrepancies between the actual clinical
situation and what the clinician is reviewing. These delays can affect decision-making,
especially if the transmitted images do not accurately reflect the current state of the patient.

3.3. Semantic Communication as a Solution

Semantic communication offers a promising solution to these challenges by optimiz-
ing the way data is transmitted and processed in medical imaging, particularly in remote
diagnostics for lymph node classification. This advanced communication model focuses
on transmitting only the most diagnostically relevant information while suppressing un-
necessary or redundant data. By doing so, semantic communication significantly reduces
the amount of data required for transmission, alleviating the bandwidth burden typically
associated with high-resolution medical images.

The key advantage of semantic communication lies in its ability to enhance the effi-
ciency of data transmission. In the context of lymph node ultrasound images, the system
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can be designed to prioritize the most clinically significant regions of the image—those that
show potential abnormalities such as enlarged nodes, irregular shapes, or unusual tissue
patterns. For instance, if a particular area of the lymph node shows signs of malignancy,
semantic communication would transmit high-resolution data from this region while com-
pressing or discarding other less critical areas of the image, such as the surrounding healthy
tissue. This process reduces the total volume of data transmitted, making it possible to
share real-time images even in bandwidth-limited environments.

Furthermore, semantic communication leverages intelligent data transmission that
adapts to network conditions in real time. When bandwidth is constrained, the system
can dynamically adjust the amount of data transmitted, ensuring that critical diagnostic
information reaches clinicians with minimal delay. For example, in an emergency situation
where a clinician needs immediate information about a potentially cancerous lymph node,
the system can prioritize the transmission of the region most likely indicating malignancy,
ensuring that the clinician receives the most relevant data first. Once the critical information
has been transmitted, the system can send additional data if needed, allowing clinicians to
access more detailed images when the network permits.

In addition to improving the speed and efficiency of data transmission, semantic
communication can support clinician decision-making by highlighting critical features in
the image through advanced feature extraction techniques. These techniques use machine
learning algorithms to identify and emphasize key regions within the image that may
require immediate clinical attention. By focusing on areas that are most relevant to the
diagnosis, semantic communication not only enhances the efficiency of data transmission
but also supports more accurate and timely decision-making. This is particularly important
in remote settings, where clinicians may have limited access to resources and need to rely
on technology to assist in making quick and accurate diagnoses.

Ultimately, the integration of semantic communication into remote diagnostics can
revolutionize the way healthcare providers diagnose and treat conditions involving lymph
node abnormalities. By improving the speed and efficiency of data transmission, reducing
bandwidth usage, and enhancing feature extraction, semantic communication ensures that
clinicians have access to the most relevant diagnostic information when and where it is
most needed. This can significantly improve outcomes for patients, particularly in remote
or underserved areas where timely access to specialized care is often limited.

4. Proposed Model: Semantic-Attention Enhanced DSC-Transformer
4.1. Overview of the DSC-Transformer

The Dynamic DSC-Transformer advances medical image analysis through two key
innovations: semantic-driven preprocessing and multi-scale attention mechanisms built
upon the Swin Transformer architecture. At its core, the model integrates the CBAM for
enhanced feature extraction and dynamic convolution for adaptive processing.

The channel attention mechanism focuses on the inter-channel dependencies of the
feature maps. It can be described as

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (4)

where F ∈ RH×W×C is the input feature map, AvgPool and MaxPool are global average
and max pooling operations applied along the spatial dimensions, and σ is the sigmoid
activation function.

The output is a set of attention weights applied to each channel:

F′ = Mc(F) · F (5)
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where Mc(F) ∈ R1×1×C contains the attention weights, and · represents element-wise
multiplication.

This dual-layer attention allows the model to prioritize the most important feature
channels and focus on the spatial regions that are most relevant, such as subtle differences
in lymph node textures that may indicate malignancy. This improves the model’s ability to
highlight diagnostically critical areas effectively.

In parallel, dynamic convolution operates by generating kernel weights based on the
input characteristics, which can be mathematically expressed as

Wdyn(x) = g(x; θ) (6)

where Wdyn represents the dynamically generated kernel weights, x is the input, and g(x; θ)

is a learnable function (typically a small neural network) that generates the weights. Unlike
static convolutions, where the same weights are used for all inputs, dynamic convolution
adapts to each image.

The output of dynamic convolution can be formulated as

y = Wdyn(x) ∗ x (7)

where ∗ represents the convolution operation. This adaptability allows the model to capture
varying patterns in lymph node images more effectively.

Unlike static convolutions that apply the same filter to all images, dynamic convolution
tailors its operations to the specific visual patterns of each ultrasound image, capturing both
fine-grained local details and broader global structures [17]. This adaptability is particularly
beneficial in medical imaging, where subtle variances between benign and malignant tissue
must be discerned without adding unnecessary computational complexity.

The Swin Transformer is known for its hierarchical design and efficient feature ex-
traction capabilities. The addition of CBAM enhances the model’s ability to focus on
relevant features, while dynamic convolution allows the model to adaptively adjust its
operations based on input characteristics [18]. This integration significantly improves the
model’s accuracy and adaptability in lymph node ultrasound image classification, making
the Dynamic DSC-Transformer particularly well-suited for this complex medical image
analysis task.

The multi-scale attention mechanism is realized through the hierarchical design of
the Swin Transformer, enhanced by dynamic convolution capabilities. Unlike traditional
approaches, this combination enables adaptive processing across different spatial scales,
crucial for analyzing medical images where features of interest may appear at various reso-
lutions [19,20]. The dynamic convolution component automatically adjusts its operations
based on input characteristics, allowing for precise capture of both local details and global
structures without increasing computational complexity.

The integration of these components—semantic preprocessing, CBAM attention, and
multi-scale feature extraction—creates a robust framework specifically optimized for medi-
cal image analysis tasks, such as lymph node classification.

4.2. Core Architecture Components

(a). Patch Segmentation Module
The initial phase of our architecture is the Patch Segmentation [21] Module, depicted in

Figure 3a. This module divides the input ultrasound image into smaller, non-overlapping
patches through a patch extraction process, represented mathematically by the follow-
ing equation:

I = UN
i−1Pi (8)
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Pi ∩ Pj = ∅∀i ̸= j (9)

where I denotes the input image, and Pi are the non-overlapping patches, such that their
union reconstitutes the original image with no overlap. Each patch captures a localized
region of the image, enabling the model to process and analyze granular details essential
for high-resolution medical imaging.
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Transformer blocks, integrating CBAM.

Post-segmentation, each patch Pi is transformed into a high-dimensional feature space
through a linear embedding layer E, followed by a normalization process to stabilize the
training dynamics:

z0
i = LayerNorm(E · vec(Pi)) (10)

where vec(•) denotes the operation of flattening the patch pixels into a vector, and E is
a trainable embedding matrix. Layer normalization is applied to each embedded patch
vector to ensure consistent scale across different features.

Following patch segmentation and embedding, the Downsampling Module aggregates
the information from multiple embedded patches. This module performs a dimensionality
reduction operation through learned transformations, which merge adjacent embedded
patches into a single, lower-resolution but higher-dimensional representation:

x′k = Reduce
(
⊕z0

j
j∈5i

)
(11)

where ⊕ denotes a concatenation operation over the set Sk of indices of the patches being
merged, and Reduce(•) is a transformation that combines these concatenated features
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into a single vector with reduced spatial dimensions but expanded feature dimensions,
typically implemented through a convolution or a dense layer with non-linearity. Here is
the updated section with the specific changes applied to the formulas:

ul+1= TransformerBlock(ul
)

(12)

T
(

ul
)
= MSA(LN(u)) + u(14) = MLP(LN(u)) + u (13)

The Swin Transformer model integrates multi-head self-attention (MSA), multilayer
perceptrons (MLP), and layer normalization (LN) to process and analyze complex image
data effectively. The core component, MSA, dynamically assigns importance to different
parts of an image, refining the features extracted from each patch and focusing on relevant
patterns while reducing noise. In medical imaging, such as lymph node ultrasound analysis,
this dynamic weighting is crucial for prioritizing regions of interest that may indicate
disease, allowing the model to focus on areas that are most clinically significant while
disregarding irrelevant regions.

The hierarchical feature extraction process begins by dividing the input image into
smaller patches, applying the self-attention mechanism to capture both local details and
broader global patterns. This is particularly important in medical contexts, where small
anomalies can be embedded within larger structures. By processing the image in patches,
the model can maintain a high degree of precision when identifying subtle differences in
tissue morphology, such as irregularities in lymph nodes that might indicate malignancy,
enabling a more accurate diagnostic outcome.

In addition to MSA, the model incorporates MLPs to further refine features and
improve the ability to differentiate between benign and malignant characteristics. LN
stabilizes the training process by normalizing inputs, preventing issues like vanishing
or exploding gradients, ensuring the model’s robustness across a wide range of medical
images. The Swin Transformer strikes a balance between computational efficiency and
performance, making it well-suited for medical imaging tasks that require both local
detail processing and contextual integration for accurate diagnosis, as demonstrated in the
analysis of lymph node ultrasound images.

(b). Swin Transformer Block
The core advantage of the Swin Transformer in our study is reflected in its unique

self-attention computational method, as shown in Figure 3b. Combined with Dynamic
Convolution, this structure further enhances the model’s accuracy in classifying lymph node
ultrasound images [22]. The Swin Transformer’s hierarchical design implements semantic-
aware processing through its unique self-attention computation and moving window
strategy. Operating across four stages with progressively reduced spatial resolution but
expanded feature dimensions, it efficiently captures both local details and global patterns
in lymph node images.

This architecture aligns with semantic communication goals by optimizing compu-
tational efficiency through non-overlapping windows while maintaining cross-window
connections, enabling effective processing of high-resolution medical images. The window-
based attention mechanism, governed by Equations (11)–(22), strategically balances local
feature preservation with global context understanding, making it particularly effective for
detecting subtle diagnostic patterns while maintaining computational efficiency through
its multi-head attention design and shifting window approach.

In each Swin Transformer block, the self-attention computation is performed
as follows:

Attention(Q, K, V) = So f tMax
(

QKT
√

d
+ B

)
V (14)
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where Q, K, V ∈ R(M2×d) represent the query, key, and value matrices respectively, d is
the dimensionality, M2 is the number of blocks in the window, and B ∈ R(M2×M2) is the
relative positional bias, which is crucial for model performance.

The Swin Transformer adopts a moving window partition strategy, alternating between
different window configurations between consecutive self-attention layers.

In multi-head self-attention, the attention mechanism is applied multiple times in
parallel, using different learned linear projections for each head. For a single head, the
attention mechanism is computed as:

Attention(Q, K, V) = So f tMax

(
QK⊤
√

dk

)
V (15)

In multi-head attention, this process is repeated h times (the number of heads), each
with its own learned projections Wi

Q, Wi
K, Wi

V . The output of each head is concatenated and
linearly transformed:

Multihead(Q, K, V) = Concat(head1, . . . , headh)WO (16)

where each headi = Attention
(

QWi
Q, KWi

K, VWi
V

)
, and WO is a learned weight matrix used

to combine the outputs of all heads.
This strategy allows for cross-window connections while maintaining the compu-

tational efficiency of nonoverlapping windows. The specific computational process is
as follows:

ul = W − MSA
(

LN
(

ul−1
))

+ ul−1 (17)

ul = MLP
(

LN
(

ul
))

+ ul (18)

ul+1 = SW − MSA
(

LN
(

ul
))

+ ul (19)

ul+1 = MLP
(

LN
(

ul+1
))

+ ul+1 (20)

where W − MSA and SW − MSA, respectively, represent the regular and shifting window
MSA modules, and LN denotes layer normalization.

The Swin Transformer features a hierarchical structure, which gradually reduces the
resolution of feature maps by merging features from adjacent spatial blocks. For an input
image of size H × W, the resolutions of the feature maps at different stages are as follows:

Stage 1:
H
4
× W

4
(21)

Stage 2:
H
8
× W

8
(22)

Stage 3:
H
16

× W
16

(23)

Stage 4:
H
32 × W

32 (24)

This hierarchical design enables the Swin Transformer to efficiently process visual
features at different scales, similar to traditional CNNs, while maintaining efficient compu-
tation for high-resolution images. The complexity of the self-attention computation in Swin
Transformer is

Ω(MSA) = 4hwC2 + 2M2hwC (25)
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where h and w are the height and width of the feature map, C is the number of channels,
and M is the window size.

(c). Dynamic Convolution
A key addition to our architecture is the Dynamic Convolution module. Unlike stan-

dard convolutions where kernel weights remain fixed after training, dynamic convolution
generates kernel weights on-the-fly based on the input. The dynamic convolution operation
can be formulated as

y = f (x, W(x)) (26)

where x is the input, W(x) is the dynamically generated weight, and f (•) is the convolution
operation. The weight generation function W(x) is typically implemented as a small neural
network:

W(x) = g(x, θ) (27)

where g(•) is the weight generation network with parameter θ. The output of this weight
generation network is then used to parameterize the main convolution operation. In
practice, we can express the dynamic convolution as a sum of basis convolutions:

y = ∑K
k=1 πk(x) ∗ (Wk ∗ x) (28)

where πk(x) are input-dependent mixing coefficients, Wk are learnable basis filters, and
∗ denotes the convolution operation. The mixing coefficients are computed by the weight
generation network:

π(x) = so f tmax(h(x)) (29)

where h(x) is another small neural network. This formulation allows the model to adap-
tively combine different convolution kernels based on the input, enhancing its flexibility
and expressiveness.

The computational complexity of dynamic convolution can be expressed as

Ω(DynConv) = hwC(K + Cin) (30)

where h and w are the height and width of the feature map, C is the number of output
channels, K is the number of basis filters, and Cin is the number of input channels.

The integration of dynamic convolution into our Swin Transformer model enables
adaptive feature extraction based on each lymph node image’s unique characteristics. Un-
like static convolutions, dynamic convolution generates filter weights on-the-fly, handling
diverse inputs efficiently without increasing model complexity. By combining the Swin
Transformer’s hierarchical structure for multi-scale feature capture with dynamic con-
volution’s adaptive capabilities, our model effectively distinguishes between benign and
malignant lymph nodes through analysis of both fine details and larger structures. This inte-
gration improves classification accuracy and adaptability while maintaining computational
efficiency, making it a valuable tool for clinical diagnosis and improving patient outcomes.

4.3. Semantic Feature Extraction and Compression

To enhance the efficiency of remote diagnostic systems, our model incorporates se-
mantic compression and feature extraction techniques that play a vital role in optimizing
network communications, particularly crucial for IoT and telemedicine applications where
bandwidth resources are often constrained. These techniques enable the model to minimize
data transmission volume while preserving essential diagnostic information from lymph
node ultrasound images.

The semantic feature extraction and compression in our model is implemented through
a hierarchical structure, as illustrated in Figure 3. The process begins with multi-scale
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segmentation (Figure 3a), where ultrasound images are divided into patches at different
scales, enabling the model to capture semantic information at various granularities.

In the overall network architecture (Figure 3b), semantic feature extraction and com-
pression progress through a hierarchical structure that systematically reduces spatial di-
mensions while enriching feature representations. Starting from Stage 1 (H × W × 48)
with initial feature extraction through patch partitioning and linear embedding, the ar-
chitecture progresses through Stage 2 (H/2 × W/2 × C) for first-level compression and
feature refinement. It then advances to Stage 3 (H/4 × W/4 × 2C) for further feature
consolidation and concludes at Stage 4 (H/8 × W/8 × 2C) with final compression and
high-level feature extraction. This progressive strategy ensures the preservation of crucial
semantic information while reducing data dimensionality.

Each stage integrates Swin Transformer blocks with CBAM (Figure 3c), where the
attention mechanisms help identify and prioritize diagnostically relevant features. The
gradual reduction in spatial dimensions (H × W → H/8 × W/8) coupled with the increase
in feature channels (48 → 2C) represents our semantic compression strategy, ensuring that
essential diagnostic information is preserved while reducing data dimensionality.

The semantic feature extraction process focuses on identifying diagnostically signifi-
cant regions within lymph node ultrasound images. This can be mathematically expressed
through the feature extraction function:

f (x) = Φ(Wx + b) (31)

where x represents the input ultrasound image data, W and b are the weight and bias
parameters of the feature extraction network, and Φ(•) is the activation function (typically
ReLU or Sigmoid). This function processes the input data to extract key features that are
most relevant for lymph node classification.

For data compression, we employ the Variational Information Bottleneck (VIB) method,
which effectively balances information preservation with data reduction. The VIB objective
function is formulated as

LVIB = Eq(z|x) [logp(y
∣∣∣z)]− β · KL(q(z

∣∣∣x) ∥ p(z)) (32)

where q(z|x) represents the posterior distribution of compressed features, p(z) is the prior
distribution, and p(y|z) denotes the probability distribution of the classification target
given the compressed features. The hyperparameter β balances reconstruction accuracy
with compression rate, while KL represents the Kullback–Leibler divergence, measuring
the difference between posterior and prior distributions.

The first term Eq(z|x) [logp(y
∣∣∣z)] ensures that the compressed representation maintains

high classification accuracy, while the second term KL(q(z|x) ∥ p(z)) promotes efficient
compression by reducing redundant information. This approach allows our model to
achieve significant data reduction while preserving the critical features necessary for
accurate lymph node classification.

The synergy between semantic feature extraction and compression enhances the over-
all diagnostic process. The feature extraction mechanism identifies and highlights regions
that are most indicative of lymph node abnormalities, while the compression algorithm
efficiently condenses this information for transmission. This combination optimizes band-
width usage while maintaining diagnostic accuracy, enabling real-time or near-real-time
classification in bandwidth-constrained environments. The approach is particularly valu-
able in remote healthcare settings, where efficient data transmission is essential for timely
diagnosis and treatment decisions.
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4.4. Integration of CBAM and Dynamic Convolution

The model architecture of the Dynamic DSC-Transformer significantly enhances the
Swin Transformer by integrating two key innovations: the CBAM and dynamic convo-
lution, both of which play crucial roles in improving the classification of lymph node
ultrasound images. These additions bolster the model’s ability to focus on the most rel-
evant features of medical images while adapting to the varying characteristics of each
input. Figure 3c provides a visual depiction of these enhancements to the Swin Transformer
Block, showcasing how the incorporation of CBAM and dynamic convolution refines the
model’s performance by focusing attention on critical areas and dynamically adjusting its
convolution operations [23].

The Dynamic DSC-Transformer’s architecture begins with the Patch Segmentation
Module, a key component that divides the input ultrasound image into smaller, non-
overlapping patches. This patch-based approach allows the model to focus on capturing
intricate local details that are essential for high-resolution medical image analysis. Each
patch contains a localized section of the image, enabling the model to process smaller
portions of the image independently, which is especially useful in medical contexts where
subtle variations in tissue or structure can signal important diagnostic information.

Following the patch segmentation process, the model utilizes a Downsampling Mod-
ule, which aggregates and merges these patches to reduce computational complexity
without losing critical information about the overall structure of the image. This hierar-
chical approach allows the model to maintain a balance between focusing on fine-grained
details at the local level and preserving the broader context of the entire image. The down-
sampling process reduces the spatial resolution of the image while expanding the feature
space, enabling the model to retain essential features even as it simplifies the data for
further processing.

By integrating the strengths of CBAM and dynamic convolution, the Dynamic DSC-
Transformer not only captures and emphasizes clinically significant regions within the
image but also adapts its operations based on the unique properties of each image. This
adaptability and attention-driven focus make it particularly well-suited for the complex
task of classifying lymph node ultrasound images, where both fine local details and broader
structural patterns must be analyzed to differentiate between benign and malignant nodes.
Ultimately, the enhanced architecture of the Dynamic DSC-Transformer leads to superior
classification performance and greater clinical utility.

At the core of the model, the Enhanced Swin Transformer Block utilizes self-attention
mechanisms and feed-forward neural networks to process the downsampled patches,
effectively capturing both local and global features. The integration of dynamic convolution
allows the model to adaptively adjust its operations based on input-specific characteristics,
enhancing its ability to handle diverse features and patterns without significantly increasing
model size.

CBAM significantly enhances the feature extraction capabilities of the Dynamic DSC-
Transformer by introducing dual attention mechanisms—channel attention and spatial
attention. These attention mechanisms play a vital role in guiding the model to focus on
the most diagnostically relevant features of lymph node ultrasound images, which in turn
improves the model’s classification accuracy. The CBAM module operates by sequentially
applying these two types of attention, ensuring that both the feature channels and the
spatial regions within the image that are most likely to contain critical information receive
the most emphasis.

Channel attention refines the model’s focus by weighing the importance of different
feature channels. In medical images, like those of lymph nodes, certain feature channels
may capture textures, edges, or patterns that are more indicative of malignancy or other
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pathological conditions. By emphasizing these important channels, the model becomes
more sensitive to the features that contribute most significantly to accurate diagnoses. The
channel attention mechanism effectively filters out less important features and concentrates
computational resources on the channels that provide the most diagnostic value, thereby
enhancing the model’s ability to detect subtle signs of disease.

Spatial attention, on the other hand, directs the model’s focus to critical areas within
the image itself. In ultrasound images, where abnormalities in lymph node morphology can
be small or difficult to detect, spatial attention helps the model prioritize regions of interest,
such as irregular tissue structures or unusual shapes that might indicate malignancy. This
mechanism ensures that the model does not waste attention on irrelevant background areas,
instead honing in on the portions of the image that are most likely to contain meaningful
clinical information. Spatial attention is especially useful in ensuring that the model’s
classification decisions are based on clinically significant areas, which leads to more reliable
diagnostic outcomes.

Together, these attention mechanisms within the CBAM create a synergistic effect,
allowing the model to be highly focused both in terms of the features it extracts and the
regions it analyzes. This integrated approach—combining the hierarchical structure of the
Swin Transformer, the adaptive processing power of dynamic convolution, and the precise
focus provided by CBAM—ensures that the model efficiently processes and accurately
classifies lymph node ultrasound images. By concentrating on the most relevant aspects
of the image data, the model is able to deliver superior classification results, making it a
valuable tool in clinical settings where accurate and timely diagnosis is crucial. Ultimately,
the incorporation of CBAM not only boosts the overall performance of the model but
also contributes to its ability to assist clinicians in making more informed and accurate
diagnostic decisions.

The CBAM module plays a pivotal role in our model by introducing a dual attention
mechanism that enhances feature extraction [24]. In Figure 4, it comprises two sub-modules:
the Channel Attention Module (CAM) and the Spatial Attention Module (SAM).
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CAM: This sub-module focuses on the inter-channel relationships of the feature maps.
It applies a squeeze-and-excitation operation to emphasize important channels, thereby
improving the model’s ability to recognize relevant features across different channels:

Nc(V) = δ(MP(AνgPool(V))) + δ(MP(MaxPool(V))) (33)

where V is the input feature map, MP denotes the multilayer perceptron, and δ is the
sigmoid activation function that ensures a non-linear transformation suitable for learning
complex feature interdependencies.
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SAM: This sub-module, on the other hand, captures the spatial relationships within
the feature maps. By applying a convolutional operation across the spatial dimensions, it
highlights critical areas of the image, ensuring that the model attends to significant regions,
such as those indicating potential abnormalities in the lymph nodes:

Ns(V) = δ
(

g7×7[AvgPool(V); Max(Pool(V))]
)

(34)

where g7×7 is a convolution operation with a 7 × 7 kernel, focusing the model’s attention
on spatial features that are clinically relevant. The CBAM module enhances the overall
feature representation by sequentially applying CAM and SAM, resulting in more precise
and informative feature maps. This attention-driven enhancement is crucial for accurately
classifying lymph node ultrasound images, as it allows the model to focus on clinically
relevant regions and ignore irrelevant background noise.

5. Implementation Details and Training Methodology
5.1. Dataset

To develop and validate our proposed deep learning model, we collected a comprehen-
sive dataset of lymph node ultrasound images. A total of 1738 images were obtained from
1147 patients (age range: 20–60 years) at the Department of Ultrasound, Peking University
Third Hospital, ensuring a balanced representation of both benign and malignant cases.
Expert clinicians annotated the images, guaranteeing the high accuracy and reliability of
the classification labels.

The dataset was preprocessed to enhance image quality and consistency, including
cropping to remove irrelevant information, normalizing pixel values, and applying noise
reduction techniques. The preprocessed dataset was then randomly split into training (70%,
n = 1217), validation (15%, n = 260), and testing (15%, n = 261) sets, maintaining a similar
distribution of benign and malignant cases across all sets.

5.2. Data Augmentation

One of the central challenges in developing deep learning models for medical imaging,
particularly for rare or specialized conditions, is the scarcity of labeled data. This limitation
can significantly hinder model training, as neural networks generally require large, diverse
datasets to generalize well to new, unseen data. To mitigate this, we employed an extensive
data augmentation strategy designed to artificially expand the available dataset while
maintaining clinical relevance.

In addition to standard techniques such as affine transformations, rotation, and flip-
ping, we introduced more advanced augmentation methods, including image mixing
and noise simulation. Image mixing involves the combination of two ultrasound images,
which allows the model to be exposed to novel feature combinations without losing critical
diagnostic information. Gaussian noise was introduced to simulate ultrasound speckle,
further enhancing the model’s ability to deal with real-world imaging variability. These
augmentation techniques ensured that the model developed a robust understanding of both
benign and malignant patterns in lymph nodes, allowing it to perform well across diverse
imaging conditions. This involves carefully combining regions from different ultrasound
images while preserving clinically relevant features. The image mixing technique can be
described as

x̃ = M ⊙ xA + (1 − M)⊙ xB (35)

where x̃ is the augmented image, xA and xB are two different ultrasound images, M is a
binary mask, and ⊙ denotes element-wise multiplication. To simulate realistic imaging
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variations, we introduced noise and artifact simulation by adding Gaussian noise to mimic
the ultrasound speckle pattern:

xnoisy = x + α · N
(
0, σ2) (36)

where xnoisy is the noisy image, x is the original image, α controls the noise intensity and
N
(
0, σ2) represents Gaussian noise.

Inspired by the regional dropout strategy, we implemented local modifications, includ-
ing selective masking and block replacement, to encourage the model to focus on multiple
discriminative regions rather than relying on a single prominent feature. The masks for
these regional modifications are generated as follows:

rx ∼ Uni f (0, W), rw = W
√

1 − λ (37)

ry ∼ Uni f (0, H), rh = H
√

1 − λ (38)

where
(
rx, ry

)
define the top-left corner of the modification region, and (rw, rh) define its

width and height.
Additionally, we employed position jittering, introducing small random shifts in

image position to enhance the model’s spatial invariance. Hybrid deep learning models for
improving medical image classification accuracy have been presented. These augmentation
methods are dynamically applied during training, creating a virtually expanded dataset that
improves the model’s generalization ability and robustness to various imaging conditions.

All augmentations are meticulously calibrated to ensure that the images gener-
ated maintain clinical relevance and authenticity. For label mixing, we used the
following formula:

ỹ = λyA + (1 − λ)yB (39)

where ỹ is the new label, yA and yB are the original labels, and λ is the mixing ratio.
Figure 5 provides a visual comparison between the original ultrasound images and

their augmented counterparts, demonstrating how these techniques introduce variability
while preserving the essential diagnostic features.
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5.3. Training Strategy

The proposed model is primarily trained and validated on solid lymph nodes that
display typical morphological features, such as shape, echogenicity, and margins, which are
suggestive of benign or malignant processes. It is important to note that the model was not
explicitly trained on other types of lymph nodes, such as cystic, calcified, or conglomerated
lymph nodes. The scope of the current dataset is therefore limited to solid lymph nodes, and
future work will expand to include additional lymph node types for broader applicability
in clinical settings.
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For model training, we adopted the AdamW optimizer. The application of attention
mechanisms in lymph node image analysis to enhance diagnostic precision has been
investigated, known for its adaptive learning rate capabilities. The initial learning rate was
set to 5 × 10−4 and adjusted downward as training progressed. The update rule for the
AdamW optimizer can be expressed as

θt+1 = θt − η · m̂t√
v̂t+ϵ

− η · λ · θt (40)

where θt is the parameter at time step t, η is the learning rate, m̂t and v̂t are the bias-
corrected first and second moment estimates, ϵ is a small constant for numerical stability,
and λ is the weight decay parameter.

The loss function used was a combination of cross-entropy loss and an L2 regulariza-
tion. Few-shot learning approaches and their potential in the field of medical imaging have
been explored [25] to prevent overfitting. The total loss can be formulated as

Ltotal = LCE + λL2 (41)

where LCE is the cross-entropy loss and L2 is the L2 regularization term. The cross-entropy
loss for binary classification is defined as

LCE = − 1
N

N
∑

i=1
[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (42)

where N is the number of samples, yi is the true label, and ŷi is the predicted probability.
The L2 regularization term is calculated as

L2 = 1
2 ∑

w
w2 (43)

where w represents the model parameters.
The experiments were conducted in a controlled computational environment. The

hardware setup included an NVIDIA GTX 1080 Ti GPU (NVIDIA Corporation, Santa Clara,
CA, USA) with 8 GB of memory, which facilitated efficient training of the deep learning
model. The software environment comprised the Windows 10 operating system, PyCharm
IDE (2024.4), and the PyTorch deep learning framework (version 1.11.0), with Python 3.6 as
the programming language.

We trained the model in batches of 32 images over the course of 500 epochs, balancing
the need for sufficient iterations to allow the model to learn complex patterns while
preventing overfitting. The batch size of 32 was selected to achieve a trade-off between
computational efficiency and convergence stability, ensuring that each batch provided
diverse data for the model to learn from while keeping memory usage within the limits of
our hardware. Each epoch involved a full pass through the training dataset, progressively
refining the model’s parameters through backpropagation. To ensure optimal learning, we
monitored the model’s performance on a validation set after each epoch, which provided
an unbiased assessment of its generalization capabilities. Key performance metrics, such as
validation accuracy, loss, and accuracy, were closely observed, allowing us to make dynamic
adjustments to the learning rate and apply regularization techniques to mitigate the risk
of overfitting. Overfitting, a common issue in deep learning, where the model memorizes
the training data rather than learning general patterns, was countered by using techniques
such as early stopping and learning rate decay. These strategies ensured that the model
did not train for too long or with a learning rate that could lead to poor generalization. At
the end of the training process, we employed model checkpointing, retaining the model
parameters that demonstrated the best performance on the validation set. This approach
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ensured that the final model was not only highly accurate on the training data but also
able to generalize effectively to new, unseen data, making it well-suited for real-world
applications, where variability in ultrasound images is expected.

The NVIDIA GTX 1080 Ti GPU provided the necessary computational power to handle
the large dataset and complex model architecture. PyTorch was chosen for its flexibility and
ease of use in implementing deep learning models. The AdamW optimizer was selected due
to its ability to adaptively adjust learning rates, which helps in achieving faster convergence
and better performance. The use of cross-entropy loss with L2 regularization ensured that
the model could effectively handle the classification task while avoiding overfitting, which
is a common issue in deep learning. The training process required approximately 3 min per
image with a batch size of 32 and a resolution of 256 × 256 on the NVIDIA GTX 1080 Ti
GPU. This training time represents a balance between computational efficiency and model
performance, ensuring practical feasibility for clinical implementation.

5.4. Validation Strategy

We employed a comparative experimental approach using 10-fold cross-validation to
evaluate model performance across various dataset configurations. These configurations
included the original dataset, an augmented dataset (using techniques like rotation, scaling,
and flipping), and an externally expanded lymph node [26] dataset. The expanded dataset
was tested with three expansion ratios: the baseline boundary (10%), one-level expansion
(20%), and maximum expansion (30%), as illustrated in Figure 6, where red arrows indicate
the progression between each expansion stage. For each configuration, the dataset was
randomly divided into 10 equal subsets, with 9 used for training and 1 for validation in
each fold. This process was repeated 10 times, with performance metrics averaged across
all folds. This comprehensive approach allowed us to compare model performances under
different conditions and data modifications, ultimately aiding in identifying the optimal
model and dataset combination for lymph node classification.
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6. Experimental Results and Analysis
There are three targets taken to evaluate the performance of the lymph node clas-

sification model used in this article. They are True Negative Rate (TNR) for specificity,
True Positive Rate (TPR) for sensitivity, and Accuracy (ACC) indicators, which are defined
as follows:

TNR = TN
TN+FP , TPR = TP

TP+FN (44)

FPR = FP
FP+TN , ACC = TP+TN

TP+TN+FP+FN (45)

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives,
and false negatives, respectively. Generally speaking, high specificity means low misdiag-
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nosis rate, and high sensitivity means low missed diagnosis rate. The higher the accuracy,
the better the classification effect.

6.1. Classification Results on Different Datasets

To evaluate the performance of our proposed DSC-Transformer model, we conducted
extensive experiments on three types of datasets: original, augmented, and externally
expanded datasets [27–29].

The currently used common classification models are ResNet34, MobileNet, DenseNet,
Vision Transformer, Swin Transformer, ConvNext, etc. [30,31]. Table 1 presents the ex-
perimental results for each classification model obtained using the original dataset. The
experimental results for each classification model of the dataset after data enhancement are
depicted in Table 2.

Table 1. Each Classification Model Using the Original Dataset.

Network Size
(MB)

Speed
(ms/im) Acc (%) Sensitivity

(%)
Specificity

(%) F1 AUC

EfficientNet-B0 [23] 20 15 94.5 94.0 94.8 0.94 0.97
ResNeXt-50 [24] 98 25 94.8 94.3 95.1 0.95 0.98

Vision Transformer [26] 86 30 95.2 94.7 95.5 0.96 0.98
EfficientNetV2 [27] 24 18 95.4 94.9 95.7 0.95 0.98

ConvNeXt [32] 89 22 95.6 95.1 95.9 0.96 0.99
Swin Transformer [33] 88 28 96.0 95.5 96.3 0.96 0.99

CoAtNet [34] 96 26 96.2 95.7 96.5 0.96 0.98
MobileViT [35] 5.7 12 96.4 95.9 96.7 0.96 0.97

Masked Autoencoder [36] 86 32 96.6 96.1 96.9 0.97 0.99
DSC-Transformer 43.6 20 96.75 96.60 98.06 0.97 0.99

Table 2. Experimental Results After Enhancement of Each Classification Model for the Dataset.

Network Acc (%) Sensitivity (%) Specificity (%) F1 AUC

EfficientNet-B0 [23] 96.0 95.5 96.3 0.95 0.93
ResNeXt-50 [24] 96.5 96.0 96.8 0.96 0.94

Vision Transformer [26] 97.0 96.5 97.3 0.93 0.95
EfficientNetV2 [27] 97.2 96.7 97.5 0.95 0.96

ConvNeXt [32] 97.4 96.9 97.7 0.97 0.98
Swin Transformer [33] 97.8 97.3 98.1 0.97 0.99

CoAtNet [34] 98.0 97.5 98.3 0.96 0.98
MobileViT [35] 98.1 97.6 98.4 0.96 0.96

Masked Autoencoder [36] 98.2 97.7 96.5 0.97 0.98
DSC-Transformer 98.25 98.05 98.17 0.98 0.99

The Receiver Operating Characteristics ROC curves of the different models in the
task of classifying ultrasound images of lymph nodes are illustrated in Figure 7. The
curve of SC-Transformer is closest to the upper left corner, with an AUC value of 0.97,
which is significantly better than the other models. MobileViT performs next best with
an AUC of 0.86, while the ResNet has an AUC of 0.69. These results clearly demonstrate
the superiority of DSC-Transformer in terms of classification performance, in particular
the significant reduction in the false positive rate while maintaining a high true positive
rate. This performance enhancement can be attributed to the fact that SC-Transformer
combines the hierarchical structure of Swin Transformer with the attention mechanism of
CBAM, which enhances the ability to extract and focus on clinically relevant features [37].
To further validate the performance of the model on different datasets, we conducted
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a series of data enhancement and extension experiments. A single lymph node dataset
is expanded typically by using two methods. One approach is to expand based on the
minimum bounding rectangle, whereas the other approach is to expand based on the
image contour. The dataset can be expanded based on the minimum bounding rectangle
by using the OpenCV library. By obtaining the coordinates of the bounding rectangle, the
individual lymph node can be segmented and extracted. This method provides a precise
and rectangular region for each lymph node.
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When expanding the dataset based on the image contour, the process involves treating
the image as a polygon, which captures the precise outline of the lymph node or other
anatomical structures. This method, though effective in preserving the exact shape of the
object, can occasionally result in slightly less smooth boundaries with some curvature
after the expansion. However, these minor shape irregularities have a negligible impact
on the overall experiment and can largely be disregarded in terms of their influence on
model performance [38]. In Figure 8a, we present the experimental results of dataset
expansion using the lymph nodes’ minimum bounding rectangle contours, which serve
to simplify the contour representation by enclosing the lymph node within the smallest
possible rectangle [39]. This approach ensures that no critical image information is lost,
while providing a standardized way to expand the dataset.

The classification results across different datasets—both augmented and non-augmented
—highlight the clear effectiveness of our data augmentation strategies. The most significant
improvements in model performance were observed on the augmented dataset, demon-
strating the critical role that data augmentation plays in enhancing the model’s learning
capabilities [40]. By exposing the model to a broader and more diverse set of training
examples, we enable it to learn more robust and generalizable features. This process helps
the model better capture the variations in lymph node images, such as subtle differences
in shape, texture, and size, which are essential for distinguishing between benign and
malignant cases.

The improvements in classification accuracy on the augmented dataset clearly under-
score the importance of introducing variability during the training phase. These augmented
images serve to simulate real-world variations, effectively preventing overfitting and al-
lowing the model to generalize more effectively to unseen data. Figure 8b illustrates the
experimental results of dataset expansion based on the original image contours, which pro-
vide a more detailed representation of the lymph node’s shape compared to the rectangular
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bounding approach. Despite the increased complexity in contour representation, the exper-
imental results consistently show that both expansion methods contribute significantly to
enhancing the model’s overall classification performance, reinforcing the value of diverse
data augmentation techniques in medical image analysis.
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The dataset with data enhancement exhibited the best effect. The Grad-CAM visual-
ization tool (version 1.4.6) was used to visualize the feature map and generate heatmaps
to further explore the effectiveness of the classification network. In terms of real-time
performance, the model achieves a processing speed of 25 frames per second (FPS) on the
NVIDIA GTX 1080 Ti GPU, meeting the requirements for real-time clinical applications.
This frame rate ensures smooth and efficient processing of ultrasound images during live
examinations, enabling immediate feedback for healthcare providers while maintaining the
model’s high classification accuracy. As shown in Figure 9, our model processes the ultra-
sound images through four key stages: patch embedding, Swin Transformer block, CBAM
module, and dynamic convolution. The generated heat maps (right panel) demonstrate
the model’s attention regions, where warmer colors (red) indicate areas of higher attention
while cooler colors (blue) represent areas of lower attention. The model accurately focuses
on the internal structures of lymph nodes, as evidenced by the concentrated red regions
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in the heat maps. This attention pattern aligns well with clinical diagnostic requirements,
confirming that our model has developed precise feature identification capabilities for
lymph node classification.
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6.2. Ablation Studies

To elucidate the individual and combined contributions of key components within
the DSC-Transformer model, we conducted comprehensive ablation studies [35,36]. These
studies systematically evaluated four configurations: the full model, the model without
dynamic convolution, the model without CBAM, and the model with both components
removed. The results of these experiments are summarized in Table 3.

Table 3. Results of The Ablation Study.

Model
Configuration Accuracy (%) Sensitivity (%) Specificity (%)

Without Both 95.60 95.35 95.51
Without CBAM 96.81 96.45 96.32

Without Dynamic
Conv 97.37 97.26 97.39

DSC-Transformer 98.25 98.05 98.17

The full DSC-Transformer model, incorporating both dynamic convolution and CBAM,
achieved the highest performance across all metrics. Removing the dynamic convolution
module resulted in a moderate performance decrease, with accuracy reducing to 97.37%.
Exclusion of the CBAM module led to performance degradation, with accuracy decreasing
to 96.81%. Removing both components resulted in the most significant performance decline,
with accuracy falling to 95.60%.

The ablation study revealed progressive improvements with each component addi-
tion. The full DSC-Transformer achieved gains of 2.65%, 2.70%, and 2.66% in accuracy,
sensitivity, and specificity respectively compared to the base model, demonstrating the
synergistic effect of combining both components. Figure 10 shows these performance gains
through a heat map visualization, where darker colors indicate higher gains achieved by
the full model.

Beyond raw accuracy, the DSC-Transformer excelled in sensitivity (98.05%) and speci-
ficity (98.17%), which are crucial metrics for lymph node classification where both false
negatives and false positives can have serious clinical implications. The high performance
across all metrics demonstrates its potential as a robust tool for automated lymph node
classification in clinical settings.
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The methodology has significant promise in the timely identification and categoriza-
tion of lymph node irregularities. The high precision, sensitivity, and specificity of this
technology can aid physicians in identifying illnesses such as cancer and infections with
greater efficiency and accuracy. The model’s capacity to differentiate between benign and
malignant lymph nodes might minimize the likelihood of misdiagnosis, guaranteeing
prompt and suitable treatment. This model has the capability to automate the diagnostic
process, which can reduce the burden of healthcare personnel, simplify clinical procedures,
and ultimately enhance patient outcomes.

6.3. Impact of Semantic Communication

The effectiveness of semantic communication in our proposed model was evalu-
ated through extensive experiments focusing on the relationship between compression
ratios and classification performance. Figure 11 illustrates the model’s performance un-
der different compression scenarios, revealing several key insights into the impact of
semantic communication.
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The experimental results demonstrate that, as the compression ratio increases from
1:1 to 16:1, all models show a decline in classification accuracy, but with notably different
degradation patterns. The Semantic-Attention DSC model maintains superior performance
across all compression ratios, achieving 98.25% accuracy at 1:1 compression and maintain-
ing high performance (96.90%) even at 4:1 compression. At moderate compression ratios
(2:1 to 6:1), as shown in the zoomed view, while DSC + Dynamic Conv and DSC + CBAM
show similar performance patterns with intersecting accuracies, the Semantic-Attention
DSC consistently maintains higher accuracy, demonstrating the effectiveness of integrated
semantic communication. This advantage becomes more pronounced at higher compres-
sion ratios (8:1 to 16:1), where the model maintains accuracy above 88.40% while the basic
DSC model drops to 84.00%. This robustness can be attributed to the model’s semantic
feature extraction and attention mechanisms, which effectively preserve diagnostically
relevant information while reducing data volume.

The superior performance of the Semantic-Attention Enhanced DSC-Transformer,
especially under high compression scenarios, demonstrates the effectiveness of combining
semantic communication with attention mechanisms for remote medical image analysis.
This approach not only reduces transmission bandwidth requirements but also ensures the
preservation of critical diagnostic information, making it a promising solution for practical
telemedicine applications.

7. Discussion and Future Directions
7.1. Strengths of the Proposed Approach

The Semantic-Attention Enhanced DSC-Transformer demonstrates several significant
advantages in addressing the challenges of remote lymph node ultrasound diagnostics.
Firstly, the integration of semantic communication significantly reduces bandwidth re-
quirements while maintaining diagnostic accuracy, achieving 96.90% accuracy even at
4:1 compression ratios. This capability is particularly valuable in resource-constrained
healthcare settings where bandwidth limitations often impede remote diagnostics.

The model’s dual-attention mechanism combined with dynamic convolution provides
superior feature extraction capabilities, enabling precise identification of diagnostically
relevant regions within ultrasound images. This is evidenced by the model’s high classifi-
cation accuracy (98.25%), sensitivity (98.05%), and specificity (98.17%) on the augmented
dataset, surpassing traditional approaches. The effectiveness of this approach is particularly
apparent in the Grad-CAM visualizations, which demonstrate the model’s ability to focus
on clinically significant regions of lymph nodes.

Although the focus of our current experiments is on classifying a specific group of
lymph nodes, in particular tumor types, such as those associated with breast and pelvic
cancers, we acknowledge that the proposed method can be extended to broader malignant
lymph node evaluations. Additionally, while our model currently classifies lymph nodes
into benign and malignant categories, future work could explore multi-class classification,
such as distinguishing benign, malignant, and inflammatory conditions, assuming sufficient
labeled datasets are available. This expansion would allow our approach to handle a
broader spectrum of lymph node pathologies, including non-malignant granulomatous or
inflammatory conditions like tuberculosis or sarcoidosis, which sometimes share imaging
features with malignant lymph nodes. The methodology is not inherently limited to just a
few tumor categories and can be adapted for various clinical settings where lymph node
assessment is critical [40].

Furthermore, the semantic preprocessing pipeline enhances the model’s adaptability
to varying image qualities and conditions, making it particularly suitable for real-world
clinical applications. The hierarchical feature extraction process, combined with semantic
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compression, ensures that critical diagnostic information is preserved even under challeng-
ing transmission conditions, addressing a key concern in telemedicine applications.

7.2. Limitations and Challenges

Despite its impressive performance, the proposed approach faces several notable
limitations and challenges. The primary challenge lies in the complexity of semantic
feature extraction, which requires significant computational resources during the initial
processing phase. While this is offset by reduced transmission requirements, it may pose
implementation challenges in resource-limited clinical settings.

The current model’s performance, though strong, relies heavily on high-quality train-
ing data. The availability of diverse, well-annotated lymph node ultrasound images
remains limited, potentially affecting the model’s generalization capabilities across differ-
ent patient populations and imaging conditions. Additionally, the model’s performance
under extreme compression ratios (beyond 8:1) shows some degradation, indicating room
for improvement in semantic preservation at higher compression levels.

Another significant challenge is the need for real-time processing capabilities in clinical
settings. While the model achieves excellent accuracy, optimizing its inference speed
for real-time applications while maintaining high precision remains an important area
for improvement.

One additional limitation of the current model is its handling of conglomerated
or packeted lymph nodes. In cases where multiple lymph nodes are grouped together,
distinguishing individual boundaries can be challenging, potentially leading to reduced
accuracy in classification. This issue has not been addressed explicitly in the model’s current
training, which primarily focuses on solid lymph nodes. Expanding the model to handle
such cases, along with other types of lymph nodes like cystic or calcified forms, will require
the acquisition of annotated datasets specific to these categories. Future research will focus
on collecting these datasets and extending the model’s capabilities to cover a broader range
of lymph node types, ensuring better accuracy across diverse clinical scenarios.

While the model’s computational complexity presents challenges for local implemen-
tation, these limitations can be effectively addressed through cloud-based deployment.
A hybrid edge-cloud architecture enables the semantic preprocessing to run on edge de-
vices while leveraging cloud resources for computationally intensive operations. This
approach not only resolves hardware constraints but also provides scalability and accessi-
bility benefits for healthcare providers. Cloud deployment allows for dynamic resource
allocation based on demand, making the system more cost-effective and practical for
clinical implementation.

8. Conclusions
This study introduces a novel Semantic-Attention Enhanced DSC-Transformer for

lymph node ultrasound image classification, integrating the Swin Transformer architec-
ture with dynamic convolution and CBAM. Through comprehensive experimentation
and ablation studies, our model demonstrates superior performance in classification ac-
curacy, sensitivity, and specificity compared to existing approaches. The integration of
semantic communication with attention mechanisms enables efficient data transmission
while preserving diagnostic accuracy, making it particularly valuable for remote healthcare
applications. The model’s ability to focus on clinically relevant regions, validated through
Grad-CAM visualizations, enhances its practical utility in clinical settings. This advance-
ment in medical image analysis contributes significantly to improving early detection and
diagnosis of lymph node abnormalities, particularly in resource-constrained environments
where efficient remote diagnostics are crucial.
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