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 A B S T R A C T

Pulse-echo ultrasonic techniques play a crucial role in assessing wall thickness deterioration in safety-critical 
industries. Current approaches face limitations with low signal-to-noise ratios, weak echoes, or vague echo 
patterns typical of heavily corroded profiles. This study proposes a novel combination of Convolution Neural 
Networks (CNN) and Transformer Neural Networks (TNN) to improve thickness gauging accuracy for complex 
geometries and echo patterns. Recognizing the strength of TNN in language processing and speech recognition, 
the proposed network comprises three modules: 1. pre-processing CNN, 2. a Transformer model and 3. a post-
processing CNN. Two datasets, one being simulation-generated, and the other, experimentally gathered from a 
corroded carbon steel staircase specimen, support the training and testing processes. Results indicate that the 
proposed model outperforms other AI architectures and traditional methods, providing a 5.45% improvement 
over CNN architectures from NDE literature, a 1.81% improvement over ResNet-50, and a 17.5% improvement 
compared to conventional thresholding techniques in accurately detecting depths with a precision under 0.5𝜆.
1. Introduction

Pulse-echo ultrasonic approaches have been widely adopted for the 
monitoring of wall thickness deterioration due to aging and corrosion 
in various sectors, such as the oil and gas [1,2], offshore [3], and en-
ergy industries [4]. Accurate and reliable wall thickness measurements 
facilitate informed decisions for the safe operation of critical assets. 
For thickness evaluation, an emitted ultrasonic pulse is transmitted 
by an ultrasonic transducer, and propagates through the material. The 
wave reflects on the backwall or any other sudden acoustic impedance 
changes along the propagation path. The reflected waves are then 
captured by the transducer. Often referred to as an A-scan, the recorded 
signal informs users of pertinent features within the inspected mate-
rial. Meanwhile, computing the time difference between emission and 
reception – commonly known as the Time-of-Flight (ToF) – allows 
to calculate the wall thickness [5] if the speed of sound is known. 
Therefore, accurately determining the ToF in order to properly assess 
the safety of pipeline thickness, for instance, is crucial. However, 
corrosion profiles may produce complex backwall geometries, leading 
to variable echo amplitudes and patterns resulting from overlapping 
reflections coming from different depths. Constructive and destructive 
interferences add a layer of complication by obscuring true distances 
within unwanted information. These highly complex geometries thus 
introduce challenges, such as unknown echo patterns or overlapping 
echoes, as shown in Fig.  1. Accurately identifying the correct ToF to 
calculate the minimal distance to the probe remains a critical unsolved 
problem in nondestructive evaluation (NDE).
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Overlapping echoes have been extensively scrutinized in NDE. A 
first approach used to tackle them consists in increasing the frequency 
of the transducer [6] to increase the resolution, but attenuation follows 
the same trend, leading to a reduced amplitude for a given sample 
thickness [7,8]. Increasing the amplitude is hardly a solution because 
coherent noise will maintain the overall signal-to-noise ratio (SNR) [8].

Over the years, cross-correlation [9], threshold-crossing [10] or 
sparse and blind deconvolution [11,12] algorithms, among others, 
have been proposed to improve the resolution of ultrasonic thickness 
measurements. While those methods are effective in most cases, they 
become limited with low SNR, attenuated echoes or unknown echo 
signatures.

Sparse signal representation methods, also known as dictionary-
based methods, such as matching-pursuit [13], orthogonal matching-
pursuit [14], and most recently, support matching pursuit [15], are 
other possible approaches for tackling the problem. Matching echo 
patterns to decompose the signals effectively separates the echoes and 
allows a global understanding of the A-scan’s composition. However, 
as stated before, irregular corrosion profiles lead to highly variable 
echo patterns. There is therefore the need for a large dictionary of such 
patterns, which reduces efficiency and performance.

Advances in computational capabilities – specifically, boosts in 
GPU and CPU capacities and speeds – have rendered deep learning a 
feasible industrial solution for complicated tasks such as image classi-
fication [16], face recognition [17] and image-to-text generation [18]. 
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Consequently, deep learning, particularly through convolutional neural 
network (CNN), has successfully made its way into NDE for defect 
detection and characterization [19,20]. Indeed, CNN allows to reduce 
high-dimensional problems and capture local features with its filters us-
ing shared weights. Its ability to detect complex patterns have thus been 
proven through the years in ultrasonic NDE image classification [21].

The ability of CNN to perform inverse operations through its pri-
mary convolution blocks is at the root of recent advances in ultrasonic 
NDE, including signal deconvolution and thickness measurement. For 
instance, Chapon et al. [22] used a simple CNN architecture consisting 
of two convolutive layers to effectively deconvolve two overlapping 
echoes, distinguishing flat-bottom holes up to a depth of 0.5 𝜆. How-
ever, their database lacks diversity, and only allows the signal signature 
of a single probe to be recognized, with one frequency and a relatively 
high SNR. Furthermore, an individual A-scan can be composed of an 
unknown number of superposed echoes, whereas their CNN was solely 
trained to identify two. Shpigler et al. [23] refined the model by adding 
distinction layers and augmenting the database with highly variable 
signals, varying SNRs, and an unknown number of overlapping echoes. 
The architecture was evaluated and compared on two phantoms with 
matching pursuit algorithms and was proven to have a higher detection 
accuracy in high overlap conditions, where the layer thickness can 
reach 0.25 𝜆. Yet, the tests were realized on flat geometries and the 
architecture was not proven to be effective on corroded profiles, where 
signal signatures can be modified from echo to echo within the same 
A-scan. As such, Cantero-Chinchilla et al. [24] proposed an improved 
database with simulated A-scans on randomly generated corroded pro-
files. An optimal CNN model was developed to capture the minimal and 
mean wall thicknesses under the transducer, and was proven to provide 
a four-fold root mean square error improvement relative to the peak 
of the envelope technique. Nonetheless, the lack of real data hindered 
efficient and precise wall thickness determination on experimental data 
acquired on equally difficult geometries.

Due to the limited scope of kernels, CNNs require the superpo-
sition of multiple convolutional layers to capture a global context 
and physical meaning. Unfortunately, this multiplication hampers their 
initial computational advantage [25]. To tackle this drawback, the 
Transformer Neural Network (TNN), based on the attention mech-
anism, was devised, initially for machine translation and language 
processing [26]. Subsequently, TNNs were broadened to cover signal 
processing with speech recognition [25,27,28], electrocardiogram sig-
nal classification [29,30] and noise reduction [31,32]. This innovative 
approach outperforms previous architectures in the mentioned disci-
plines by offering affordable long-range dimensions and interactions to 
AI models.

More recent research has explored the combination of CNNs with 
TNNs, yielding significant performance improvements over traditional 
Transformer architectures. Wu et al. successfully enhanced vision
Transformer models by embedding convolutional tokens before the 
Transformer blocks and incorporating convolutional projections within 
the Transformer framework [33]. Similarly, Wang et al. took inspira-
tion from encoder–decoder frameworks to propose a CNN encoder–
decoder architecture combined with a Transformer block. This ap-
proach achieved superior results for monaural speech enhancement in 
the time domain by effectively extracting both local and global con-
textual information [32]. Gulati et al. further demonstrated the effec-
tiveness of integrating CNNs with TNNs by incorporating a CNN block 
within the TNN framework and adding a convolutional subsampling 
layer prior to the modified Transformer architecture. This approach 
achieved state-of-the-art accuracy in speech recognition tasks [25]. 
These successes highlight the benefits of CNN-augmented Transformer 
architectures, where locality guidance and the added distance limita-
tion to the self-attention mechanism effectively improve convergence 
and performance with smaller datasets [34].

In this paper, the integration of a TNN for wall thickness mea-
surements was investigated. Inspired by previous research, it was hy-
pothesized that bringing together global and local interactions through 
2

a hybrid CNN-TNN architecture will enable accurate and robust wall 
thickness estimation, regardless of the complexity of the underlying 
geometry. The proposed architecture was trained with a unique dataset 
comprising simulations and experimentally measured A-scans on a 
corroded carbon steel sample. This unique dataset was used to gain 
valuable insights on the performance of the proposed architecture.

The paper begins with an overview of the materials and methods, 
and provides details on the generation of the related datasets and 
architecture. The results are then presented and compared with other 
architectures and conventional methods available in the literature. 
Finally, the results are discussed and conclusions are drawn.

2. Materials and methods

2.1. Problem formulation

The fundamental nature of the deconvolution predicament is gen-
erally outlined as follows. Given the received signal 𝑦(𝑛) as an A-scan, 
it can be modeled as the mathematical product of ℎ(𝑛), the impulse 
response, convoluted with 𝑥(𝑛), representing the ultrasonic waveform, 
and contaminated by a zero-mean additive band-limited Gaussian noise 
𝑒(𝑛): 𝑦(𝑛) = ℎ(𝑛) ∗ 𝑥(𝑛) + 𝑒(𝑛), where ∗ denotes the linear convolution 
operation [35].

To grasp the form of the impulse response, one can represent it 
mathematically by a series of Dirac delta functions 𝛿(𝑛) having diverse 
amplitudes ℎ𝑖 at distinct moments 𝜏𝑖, hence forming a ‘‘sparse spike 
train’’ [36]. 

ℎ(𝑛) =
∞
∑

𝑖=1
(ℎ𝑖 ⋅ 𝛿(𝑛 − 𝜏𝑖)) (1)

Thus, locating any pair of consecutive 𝜏𝑖 values would allow to 
measure the ToF accurately. While effective on flat surfaces, it be-
comes nonviable on rough surfaces where thickness variations follow a 
continuous function.

In typical NDE inspections, the goal is to establish the minimum 
thickness under the transducer. To achieve this, the machine learning 
(ML) architecture will be designed to identify the ultrasonic waveform 
corresponding to this minimum thickness (Fig.  1). This simplifies the 
problem to locating the 𝜏𝑖 pairs associated with the ultrasound re-
flections from the minimal thickness beneath the probe. The resulting 
subset of the deconvolved signal will be denoted as ℎ′.

This paper’s approach, therefore, focuses on approximating the 
function 𝑓 (𝑦) = ℎ′ by training a CNN-TNN architecture using a learning 
database of deconvolved A-scans on minimum thicknesses.

2.2. Database generation

At the core of machine learning lies the quality of the database. 
Having a qualitative and abundant dataset is paramount to successfully 
train the different AI models. In this paper, simulated and experimental 
datasets were generated.

2.2.1. Simulation database
Finite element simulations using GPU-accelerated Pogo FEA [37] 

were performed to obtain a large amount of training data. A 2D plane 
strain corroded steel block was modeled with a depth 𝐿𝑧 ∈ [|3; 20|] mm
and a width 𝐿𝑥 = 45 mm, using 20 linear square elements per the 
shortest wavelength 𝜆𝑠ℎ𝑒𝑎𝑟, as shown in Fig.  2. The isotropic and ho-
mogeneous steel material properties were 𝐸 = 205 GPa, 𝜈 = 0.29 and 
𝜌 = 7870 kg∕m3, implying a longitudinal velocity 𝑉𝑙 = 5842.5 m∕s. To 
ensure time marching stability, a time step 𝑑𝑡 = 𝜆𝑠ℎ𝑒𝑎𝑟

2⋅20⋅𝑉𝑙
 was used.

For a given signal and block generated, Pogo FEA simulates the 
emission including the beam spread, the propagation, and the reflec-
tions of ultrasonic waves throughout the block . However, attenuation 
and dispersion were not considered, as the experiments were conducted 
on an isotropic steel bar of a relatively small thickness. The simulation 
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Fig. 1. Example of the labeling methodology for minimal distance under the probe with: (a) the result coming from probe on the generated block (b).
Fig. 2. Schematic of the block generated for simulation with its mesh.
of a probe was performed by selecting the nodes over a width of 
6.35 mm. The same input signal was applied to all nodes, as illustrated 
in Fig.  2.

To accurately simulate real-world applications, emitted waveforms 
must be representative of typical transducer emission patterns. Li 
et al. [38] showed that the Nakagami distribution model had the 
best proximity to echo patterns. While signal generation in the time 
domain is the standard approach, signal generation in the frequency 
domain was not discussed. The frequency spectrums of real transducer 
emissions were acquired on a steel sample, and to match real echo 
patterns, the spectrums were approximated with Laplace’s distributions 
in the frequency domain. Then, an inverse Fourier Transform was per-
formed to obtain the waveform. The advantages of this method are its 
flexibility and the ability to easily obtain variables from experimental 
data, such as 𝜇, the central frequency desired during the emission and 
𝛽, the bandwidth: 

𝑊 (𝑓𝑛) =
exp

(

− |𝑓𝑛−𝜇|
𝛽

)

2𝛽
(2)

Finally, a phase-shifted Hann’s window was applied to add an 
asymmetry to the signal: 

𝑥(𝑛) = 1
𝐿𝑒𝑛

⋅ cos2
(

𝜋(𝑛 − 𝑑)
𝐿𝑒𝑛

)

⋅ 𝐼𝐹𝐹𝑇 (𝑊 (𝑓𝑛)) (3)

where 𝐿𝑒𝑛 = ⌊

(𝑛𝑐𝑦𝑐𝑙𝑒𝑠⋅𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 )
𝜇 ⌋ is the signal’s length – with ⌊.⌋ being the 

integer part operator – determined by the sample rate 𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 62.5
MHz, number of cycles 𝑛  and frequency 𝜇, and 𝑑 the phase-shift.
3

𝑐𝑦𝑐𝑙𝑒𝑠
To conclude, four variables dictate the generated signal’s variation 
and randomness: (1) the central frequency 𝜇 ∈ [2; 2.5] ∪ [4.75; 5.25]
MHz; (2) the bandwidth 𝛽 ∈ 1.7 ⋅ [0.63; 1.37]; (3) the number of cycles 
𝑛𝑐𝑦𝑐𝑙𝑒𝑠 ∈ {3, 5} and (4) the phase-shift 𝑑 ∈ [|−𝐿𝑒𝑛

3 ; 𝐿𝑒𝑛
3 |]. The selected 

variables were adapted according to the Verasonics Vantage 64 LE and 
Evident single and multi-element transducer properties, which were 
used experimentally: V125-RM and 5L64-32X10-A32-P-2.5-OM.

Using this algorithm to approximate the signal emitted by the 
probes on flat surfaces, an average proximity of 94.86% was achieved 
using the Normalized Cross-Correlation (NCC) indicator, as described 
in [38].

To simulate the corrosion on Pogo FEA [37], corrosion profiles 
were randomly generated with an algorithm adapted from [24] and 
subtracted to the backwall of the generated 2D block, as illustrated Fig. 
2. Firstly, the corrosion profile of the corroded step block used exper-
imentally and described in the next subsection was acquired from its 
laser scan as shown in Fig.  3a. The properties of that profile, including 
the amplitudes 𝜎𝑖 at each length frequency 𝜆𝑖, were calculated and used 
to generate similar profiles following the algorithm schematized in Fig. 
3c. In this paper, the maximum corrosion amplitude 𝜎𝑡𝑜𝑡, as specified 
Fig.  3c, was taken within the set {0, 0.2, 0.4, 0.6, 0.8, 1} mm, which is in 
accordance with the corrosion profiles obtained on the experimental 
sample (Fig.  4).

The FE simulated results were filtered with a second-order band-
pass between 2 and 10 MHz. The data were then normalized by the 
maximum amplitude to rescale the values within the interval [−1, 1]: 

𝑦′(𝑛) =
𝑦(𝑛) (4)
max(|𝑦(𝑛)|)
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Fig. 3. Schematic of the corrosion profile generation with: (a) a corrosion profile of the corroded block, (b) the FFT of (a), (c) the algorithm used to randomly generate a corrosion 
profile with similar properties to the experimental profile, and (d) a typical simulated profile.
Fig. 4. Pictures of the experimental setup: (a) laser scan of the corroded staircase specimen, (b) example of an acquisition with the multi-element probe mounted on the robot, 
and (c) the probe’s absolute position on the specimen to determine the minimal distances beneath it.
Then, a similarly filtered white Gaussian noise was added, with a 
SNR varying from 0 to 40 dB.

Finally, a time window and a tapered cosine window, calculated 
based on the echo size and the maximum thickness beneath the probe, 
were applied to the simulated data to isolate the first two echoes (Fig. 
1). This approach excludes the emitted signal, which, in our case, was 
not experimentally accessible.

Labeling was performed using the minimum distance from the 
simulated corrosion profile directly beneath the probe (Fig.  1). Due to 
experimental constraints, where the emitted signal was inaccessible, the 
ultrasonic waveform 𝑥(𝑛) used as a reference was taken from the first 
echo. To ensure a consistent position of the first peak across the datasets 
used for ML training and to provide a clear visual output, the first peak 
was identified as the maximum of the Hilbert transform of the first 
echo. The second peak, corresponding to 𝑥(𝑛) crossing 2 ⋅𝑑 , was then 
4

𝑚𝑖𝑛
calculated based on the first peak using the longitudinal wave velocity 
𝑉𝑙 in the material and the sampling frequency 𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (Eq. (6)).

From these calculations, the labeled deconvolution signal, repre-
senting ℎ′ as described in Section 2.1, was obtained, with an offset 
introduced by the position of the first reference point. 

ℎ′(𝑛) =

{

1 if 𝑛 = 𝑝𝑒𝑎𝑘1 or 𝑛 = 𝑝𝑒𝑎𝑘2
0 else

(5)

with: 
⎧

⎪

⎨

⎪

𝑝𝑒𝑎𝑘1 = 𝑖𝑛𝑑𝑒𝑥{max[|𝐻𝑖𝑙𝑏𝑒𝑟𝑡{𝑦(𝑛)}|]}

𝑝𝑒𝑎𝑘2 = 𝑝𝑒𝑎𝑘1 + ⌊

2𝑑𝑚𝑖𝑛⋅𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
𝑉𝑙

⌋

(6)
⎩
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Table 1
Tabular summary of the datasets distribution.
 Datasets 2.25 MHz A-scans 5 MHz A-scans Total A-scans 
 Exp. total 162 1728 1890  
 Exp. train 103 1097 1200  
 Exp. validation 59 631 690  
 Sim. total 1377 1623 3000  
 Sim. train 931 1069 2000  
 Sim. testing 446 554 1000  

Thus, the proposed TNN and CNN models in this paper will have 
as input the processed signal 𝑦(𝑛), and will compare their prediction to 
the labeled deconvolution ℎ′(𝑛) for training.

2.2.2. Experimental database
In order to test the proposed architecture with experimental data 

and to verify the need to use experimental data in the training, an 
experimental database was acquired. An AISI 1018 carbon steel stair 
block was machined, and its longitudinal speed of sound was measured 
at 𝑉𝑙 = 5932.1 m∕s. To induce corrosion, the flat face of the block 
was immersed in saline water to accelerate the corrosion process with 
electrolysis. A laser scan was subsequently performed, capturing the 
surface profile with a resolution of 40 μm (Fig.  4a), providing the 
corrosion parameters required for the simulations (Fig.  3a).

A and B-scans were acquired throughout the block using a 2.25 MHz 
single element longitudinal probe (Olympus V125-RM) and a 5 MHz 
64-element longitudinal probe (Olympus 5L64-32X10-A32-P-2.5-OM). 
Data acquisition was done using a high-frequency Verasonics Vantage 
64 LE system with a sampling rate of 62.5 MHz.

A robotic arm was used to position the mono and multi-element 
probes on various predefined targets on the staircase sample, with 
a positioning accuracy of approximately 1 mm thanks to RoboDK 
software (Fig.  4b). As a result, 162 A-scans and 27 B-scans composed 
of 64 A-scans each were acquired, uniformly distributed across 9 steps 
with depths ranging from 5 mm to 25 mm, and a step size increment 
of 2.5 mm, as illustrated in Fig.  4.

Owning the absolute position of each A and B-scan, alongside the 
scan of the staircase sample, minimum distances were extracted for 
labeling purposes (Fig.  4c). labeling adhered to the same criteria as the 
simulation (Eqs.  (5) and (6)). Altogether, a total of 1890 experimental 
labeled A-scans were acquired (162 from the single element probe and 
1728 from the 64-element probe).

2.2.3. Training datasets
To train the architecture in Sections 3.1.1 to 3.1.3, two databases 

were used. The first consisted of 2000 simulated A-scans, with depths 
randomly distributed between 2 mm and 20 mm thanks to the corro-
sion algorithm (Fig.  3). This range allows for varying thicknesses to 
address cases where traditional methods struggle to detect the minimal 
thickness. The second one was made out of 1200 A-scans randomly 
picked from the pool of 1890 experimental tagged A-scans. The 690 
unused experimental A-scans were used as validation while testing was 
done separately using the methodology outlined in Section 2.6 with 
1000 simulations. The datasets distribution for training, validation and 
testing are described in Table  1.

Finally, the dataset composition is analyzed in Section 3.1.4 and the 
optimal configuration is employed in Section 3.2.

2.3. Deep neural network architecture

The proposed network architecture 𝑓 ∗ (𝑦) ∶ R𝑇 → R𝑇 , illustrated in 
Fig.  5, consists of three primary components: a pre-processing module, 
a transformer module, and a post-processing module. This network 
takes an A-scan 𝑦 (𝑡) of length 𝑇  as input and produces a deconvoluted 
signal ℎ′ (𝑡) of equal duration 𝑇 . In this part, details of each of these 
modules are given.
5

2.3.1. Pre-processing module
Inspired by the architectures of Chapon and Shpigler [22,23], the 

pre-processing module follows a similar approach, initially employing 
a convolutional layer with 32 filters of kernel size 𝑘 = 157. This 
configuration covers the Region of Interest (ROI) given by the product 
of the number of cycles 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 and the sampling frequency 𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 , all 
divided by the signal frequency 𝐹𝑠𝑖𝑔𝑛𝑎𝑙. Keeping in mind the variability 
in signal frequency and the number of cycles, the maximal ROI was set 
to be 156.25: 

𝑅𝑂𝐼 =
𝑛𝑐𝑦𝑐𝑙𝑒 × 𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝐹𝑠𝑖𝑔𝑛𝑎𝑙
(7)

This kernel size is fixed for Sections 3.1.2 to 3.1.4. However, the 
significance of the ROI in determining the first kernel size will be 
examined in Section 3.1.1.

Multiple filters gather different types of information and interpret 
various echo signatures, effectively increasing the model’s dimension-
ality. In contrast to the original architectures, the model was enhanced 
by introducing batch normalization after the convolutional layer to 
accelerate training and improve generalization [39,40].

To introduce non-linearity to the model, the batch normalization is 
followed by a Rectified Linear Unit (ReLU) activation function [41]. In 
addition, to avoid overfitting, a dropout layer is applied [42]. Through 
testing, an optimal drop rate of 𝑝 = 0.3 was found and used for 
optimization and comparative analysis. Since the drop rate is a subject 
that has already been covered in other articles [43], it will not be 
studied in depth in the present paper.

2.3.2. Transformer encoding module
The transformer module receives processed local features from the 

pre-processing module and passes them through the Multi-Head Self-
Attention (MHSA) block. Shpigler et al. [23] proposed to use 3 con-
volutional layers of kernel size 5, stride 1 and dilatation 2 to confront 
each filter’s data on the proposed detected echoes. While this method 
may work locally, the limitation of the kernel size prevents it from 
effectively contrasting the final deconvolution peaks, making it un-
able to reliably select the two correct ones [44]. Thus, this paper 
proposes a transformer architecture similar to the one introduced by 
Vaswani et al. in 2017 [26]. This setup encourages relating long-range 
dependencies without resorting to Recurrent Neural Networks (RNN) 
or serial convolutional layers, conserving computational effort and 
enhancing global understanding. Since a convolutional layer containing 
the positional information precedes the transformer, position encoding 
is not required [33,45].

Inspired by the architectures of [25,26,31], the input goes through 
the MHSA block, comprised of multiple self-attention units operating 
together. Each self-attention block projects queries 𝑄𝑖, keys 𝐾𝑖 and 
values 𝑉𝑖 using learned matrix weights 𝑊 𝑄

𝑖 ,𝑊 𝐾
𝑖 ,𝑊 𝑉

𝑖 ∈ R1200×𝑑𝑘 . In 
self-attention, the matrices Q, K and V correspond to the output of the 
previous layer: 
𝐻𝑒𝑎𝑑𝑖 = 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

(

𝑄𝑖, 𝐾𝑖, 𝑉𝑖
)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝑖𝐾𝑇
𝑖

√

𝑑𝑘

)

𝑉𝑖
(8)

where 𝑄𝑖, 𝐾𝑖, 𝑉𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘  and 𝑑𝑘 = 𝑑𝑚𝑜𝑑𝑒𝑙
𝑛ℎ𝑒𝑎𝑑

 using 𝑑𝑚𝑜𝑑𝑒𝑙 = 32 from the 
reference Fig.  5.

𝐻𝑒𝑎𝑑𝑖 represents the self-attention computed outputs, which are 
ultimately concatenated and passed through another projection matrix 
𝑊 𝑂 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×1200 to yield the final MHSA output: 

𝑀𝐻𝑆𝐴 (𝑄,𝐾, 𝑉 ) = 𝑐𝑜𝑛𝑐𝑎𝑡
(

𝐻𝑒𝑎𝑑1,… ,𝐻𝑒𝑎𝑑𝑛ℎ𝑒𝑎𝑑
)

𝑊 𝑂 (9)

Using multiple heads allows to focus on details across various sub-
space and positions. To capture distinct information within the model, 
using multiple heads may be useful [26]. For instance, having two 
heads could help in distinguishing longitudinal waves from transversal 
ones within an A-scan. Since deconvolution simplicity does not warrant 
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Fig. 5. Proposed CNN-TNN architecture with reference sizes.
Fig. 6. Convolution Block details.
Fig. 7. Feed Forward Block details.
multiple heads, and only longitudinal waves are addressed, a single 
head 𝑛ℎ𝑒𝑎𝑑 = 1 is deployed to minimize the complexity of the architec-
ture. Finally, a dropout layer with a drop rate of 𝑝 = 0.3 accompanies 
the MHSA. The same drop rate is used over the transformer module.

Inspired by [25], a convolution-augmented transformer consolidates 
global information locally, connecting the global and local information 
processing stages. Wrapping up the transformer module, a Feed For-
ward Network (FFN) lets parameters within each A-scan interact both 
locally and globally. The Convolution Block and Feed Forward Block 
are detailed in Figs.  6 and 7, respectively.

2.3.3. Post-processing module
To conclude, the final module consists of two convolutional layers 

aimed at deconvolving the signal, condensing all earlier information 
into a vector. The first layer ends with a hyperbolic tangent (tanh) 
activation used to capture both positive and negative data, avoiding 
sigmoids and thereby hastening convergence [46]. Since only positive 
information is to be seized, the last layer captures the final data to 
convolve it into a positive vector with a ReLU activation.

Unlike the architectures of Chapon [22] and Shpigler [23], which 
conclude with a convolutional layer of kernel size 𝑘 = 1 and a ReLU 
activation, this model introduces an innovative approach. The output is 
first encoded using the tanh activation, transforming all values into the 
interval [−1, 1]. Subsequently, a final convolutional layer with a kernel 
size 𝑘 = 31 and ReLU activation refines the information. This larger 
kernel size enhances the model’s capacity to consolidate features over a 
broader context and accurately construct the final deconvolution peaks.

Finally, the 𝐿2−𝑙𝑜𝑠𝑠 function compares the output with the expected 
result, emphasizing errors between estimated and real deconvolution, 
quickening convergence and lifting the model accuracy [47]. To pre-
vent the occurrence of vanishing gradients and dead neurons linked 
to the terminal ReLU activation, labeled data got amplified by 1000, 
yielding two deconvolution peaks of magnitude 1000.
6

2.4. Training

2.4.1. Training and batching
Using TensorFlow and Keras [48], the architectures were generated 

and trained for 80 epochs with a training batch size of 32 and a valida-
tion batch size of 690, utilizing the datasets from Table  1. Checkpoint 
callbacks were employed to save each trained model at the point of 
its highest validation loss, based on the metric defined in Eqs.  (13) 
and (14), throughout the 80 epochs. This approach ensures that, for 
each trained architecture, the best-performing model is selected for 
comparison.

2.4.2. Optimizer
The models were trained using the Adam optimizer [49], with 𝛽1 =

0.9, 𝛽2 = 0.999 and 𝜖 = 10−7. The learning rate varied from epoch to 
epoch according to the formula: 
{

𝑙𝑠𝑡𝑎𝑟𝑡 + 𝑙𝑠𝑡𝑒𝑝 ⋅ 𝑒𝑝𝑜𝑐ℎ if 𝑒𝑝𝑜𝑐ℎ < 𝑤𝑎𝑟𝑚𝑢𝑝
𝑙𝑠𝑡𝑎𝑟𝑡+𝑙𝑠𝑡𝑒𝑝⋅𝑤𝑎𝑟𝑚𝑢𝑝

1+0.1⋅(𝑒𝑝𝑜𝑐ℎ−𝑤𝑎𝑟𝑚𝑢𝑝) if 𝑒𝑝𝑜𝑐ℎ ≥ 𝑤𝑎𝑟𝑚𝑢𝑝
(10)

The learning rate rose linearly to hit a ceiling before descending 
inversely proportional to the epoch number. For this article, the values 
used were 𝑙𝑠𝑡𝑎𝑟𝑡 = 0.0001, 𝑙𝑠𝑡𝑒𝑝 = 0.0001 and 𝑤𝑎𝑟𝑚𝑢𝑝 = 10.

2.5. Comparison to other architectures and methods

The proposed architecture was compared with those outlined in 
NDE-focused publications by Chapon, Shpigler and Cantero-Chinchilla
[22–24], ensuring a fair comparison by employing identical databases 
and conditions. Each architecture was evaluated using the parameters 
and optimized setups outlined in their respective studies.

To further evaluate the capabilities of the proposed TNN archi-
tecture against traditional CNN models, popular architectures such as 
ResNet-50 [50] and EfficientNet-B0 and B4 [51] were also included in 
the comparison. Input signals were resized to 224 × 224 images using 
bilinear interpolation, then converted from grayscale to RGB to match 
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the standard input dimensions of 224 × 224 × 3. The models were 
implemented as described in their respective papers, with 1200 output 
classes and a linear activation function to perform the deconvolution, 
effectively identifying two classes among the 1200 possible ones. Train-
ing was conducted using the L2-loss function over 100 epochs with an 
initial learning rate of 0.001, which was halved if no improvement in 
loss was observed after 10 epochs.

Additionally, the industry-standard threshold algorithm was used 
for comparisons with AI techniques, as done in [24]. Using the Hilbert 
transform as the envelop of the signal, the two rising points crossing 
the threshold were taken to calculate the ToF [52]. Adaptive thresholds 
were used according to the signal’s frequency for better results :

1. 19% for 2.25 MHz and 38% for 5 MHz for experimental testing
2. 58% for 2.25 MHz and 87% for 5 MHz for simulation testing

2.6. Evaluation methodology

The trained CNN and TNN models, and the threshold algorithm 
were tested on both experimental and simulation datasets to ensure 
their adaptability and performance in broad case scenarios. The
datasets were separated into 690 unused labeled A-scans from the 
experimental dataset and 1000 unseen simulated A-scans.

The distance was calculated with the time-of-flight (ToF) metric, 
provided by the top two AI-derived deconvolution peaks separated by 
a minimum of 3 mm, 𝑝𝑒𝑎𝑘1 and 𝑝𝑒𝑎𝑘2. Knowing the longitudinal speed 
𝑉𝑙 and sampling frequency of the machine 𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 , we got: 

𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =
|

|

𝑝𝑒𝑎𝑘1 − 𝑝𝑒𝑎𝑘2||
2 ⋅ 𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

⋅ 𝑉𝑙 (11)

Given the true distance 𝑑𝑒𝑥𝑝 for each A-scan, 𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 was compared 
to 𝑑𝑒𝑥𝑝. A success was recorded if the difference was lower than a 
predetermined precision 𝑝. Success percentages were acquired based 
on the cumulative success count across the experimental or simulated 
datasets. 
|

|

|

𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑑𝑒𝑥𝑝
|

|

|

≤ 𝑝 (12)

The success criterion allows to calculate the success percentage (SP) 
of each trained model (𝐴𝐼𝑖) as follows: 

SP(𝐴𝐼𝑖) =

∑𝑁
𝑘=1

{

1 if ||
|

𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑘 − 𝑑𝑒𝑥𝑝𝑘
|

|

|

≤ 0.5𝜆

0 else
𝑁

(13)

To comprehensively evaluate every solution, a precision criterion 
of 𝑝 = 0.5𝜆 was imposed (1.32 mm for 2.25 MHz and 0.59 mm for 5 
MHz), as per the minimal axial resolution described in [53], serving 
as a benchmark for assessing the performance in both simulations and 
real-world scenarios. For each configuration or architecture tested, five 
AI models were trained under the same conditions. The success rate for 
each configuration was then computed as the average of the success 
percentages of the five trained models: 

Success Rate =
∑5

𝑖=1(SP(𝐴𝐼𝑖))
5

(14)

To provide a more robust representation of the results, error bars 
were added to each success rate, representing the Margin of Error of the 
success percentages across the five evaluated models, with a confidence 
level of 95%: 

Margin of Error = 1.96 ⋅
𝜎
(

{SP(𝐴𝐼𝑖)}𝑖∈[|1,5|]
)

√
(15)
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3. Results

3.1. Transformer study

An efficient utilization and maximum exploitation of the Trans-
former architecture require a thorough investigation of its key parame-
ters such as the kernel size, the overall size, and layer implementations, 
on unseen simulation and real-world datasets. This strategic approach 
seeks to underline the correlations between the model’s inner workings 
and external performances. Parallel to this study, a comprehensive 
survey of the database size and composition will be presented. This 
critical appraisal provides essential insights into the data requirements 
for training a proficient deconvolution CNN-TNN model, ensuring an 
efficient training with available resources.

3.1.1. Convolution kernel size
To investigate the significance of the pre-processing module in 

capturing the local context through echo signatures, the kernel size 
of the conv 1 layer from Fig.  5 was studied, as shown in Fig.  8a. Its 
influence on the overall structure is examined by varying it from 1 to 
301.

Similarly, the conv 3 layer in the post-processing module being the 
core of the deconvolution process, its understanding is necessary for a 
complete survey of the architecture. By keeping the architecture shown 
in Fig.  5, a kernel size scan from 15 to 157 was performed, with results 
presented in Fig.  8b.

3.1.2. Architecture size
For computational efficiency, an optimized model size is desirable. 

To fully understand the connection between the architecture scale and 
task performance, the impact of the parameter count on the overall AI 
results was studied and illustrated in Fig.  9. Accordingly, the number 
of filters in the pre-processing module, corresponding to 𝑑𝑚𝑜𝑑𝑒𝑙, was 
adjusted to values ranging from 8 to 128. This trial was run twice: once 
with a solitary Transformer, and again with two Transformers in series.

3.1.3. Ablation studies
To study the internal dynamics of the proposed architecture and 

isolate the effects of each module – namely the Transformer, Pre-
processing, and Post-processing modules – selected components were 
strategically disabled, and the results are presented in Fig.  10. This 
approach allows for a focused evaluation of each module’s contribu-
tion, helping to gauge the significance and impact of each constituent 
element on the overall performance of the architecture.

The entire Transformer module was first disabled to highlight its 
pivotal role within the overall structure. Next, the Transformer module 
was modified by omitting the local interaction achieved through the 
convolution block, granting insights on its effects. The impact of the 
echo detection and projection modules were then independently eval-
uated by analyzing the individual performance of the Pre-processing 
and Post-processing modules in conjunction with the Transformer mod-
ule. Finally, the Transformer was assessed in isolation, without the 
Pre/Post-processing modules or the convolution block, to evaluate its 
standalone performance.

3.1.4. Database composition
Since running simulations is more convenient and budget-friendly 

than acquiring experimental data, training an AI model exclusively 
using simulation data with satisfactory real-world performance is de-
sirable. Thus, the impact of the composition of the training dataset was 
investigated, as shown in Fig.  11. Additionally, a TNN model trained 
solely on experimental data was tested to: (1) evaluate the realism 
of the simulations and (2) establish a benchmark comparison for the 
simulation-supplemented database.
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Fig. 8. Success rate according to the kernel size of: (a) the conv 1 and (b) the conv 3 layer on the simulation and the experimental test datasets.
Fig. 9. Success rate with respect to the dimension of the model 𝑑𝑚𝑜𝑑𝑒𝑙 with one or two 
transformers in series on the simulation and the experimental test datasets.

3.2. Comparative results

The fine-tuned Transformer architecture was compared with those 
presented in [22–24,50,51] and with the thresholding method, with the 
results summarized in Fig.  12 and Table  2. The refined TNN employs 
16 filters with a conv 1 layer kernel size of 31 and a conv 3 layer kernel 
size of 31. All dropout rates were standardized to 0.3, while the single 
Transformer remained untouched. Lastly, to ensure a balanced training, 
10,000 simulations were augmented with the experimental dataset 
comprising 1200 measurements to compose the training dataset.

To further analyze and compare models with similar success rates, 
another perspective using the MAE is presented in Fig.  12b. Further-
more, using keras-flops to measure the number of parameters and 
calculations (FLOPS) performed by each architecture, additional visu-
alizations of the models’ performances are shown in Fig.  13.

4. Discussion

4.1. Convolution kernel size

The initial assumption regarding the role of the Conv 1 layer in 
capturing potential echoes is challenged by the results presented in 
Fig.  8a. Surprisingly, using a kernel size of 1 does not negatively 
impact the architecture, yielding satisfactory results. Moreover, the best 
performance is achieved when the kernel size of the Conv 1 layer 
matches that of the Conv 3 layer. While the Conv 1 layer is involved in 
echo detection, as demonstrated in Shpigler’s work [23] and in Fig.  8a 
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(with the average line), its primary function is to encode the A-scans 
for better interpretation by the Transformer [33]. The Conv 3 layer, 
responsible for decoding the encoded signal to perform deconvolution, 
is more effective when its kernel size matches that of the encoding 
layer, as illustrated in Fig.  8a with 𝑘 = 31 and Fig.  8b with 𝑘 = 157. 
Integrating a TNN between a CNN encoder and decoder with matching 
kernel sizes has been explored previously for speech enhancement [32]. 
In this study, the best feature extraction was achieved with a kernel size 
of 31. Further investigation would be required to fine-tune the ideal 
kernel sizes for both convolution layers, but this lies beyond the scope 
of the present work.

4.2. Size

Increasing 𝑑𝑚𝑜𝑑𝑒𝑙 causes the model to grow exponentially. However, 
this does not lead to a proportional improvement in performance. As 
seen in Fig.  9, the proposed architecture’s success rate reaches an 
upper bound in both simulation and experimental testing, and even 
declines when 𝑑𝑚𝑜𝑑𝑒𝑙 ≥ 64 during simulation testing. This trend may 
be attributed to the growing complexity of the Transformer Mod-
ule as 𝑑𝑚𝑜𝑑𝑒𝑙 increases, combined with the low-size training dataset, 
as demonstrated in [54]. Indeed, as the model size grows, so does 
the demand for a larger training dataset to fully exploit the model’s 
capacity. Without sufficient data, the model struggles to generalize, 
leading to diminished performance despite its increased complexity. 
Therefore, increasing the size of the architecture beyond a certain point 
offers diminishing returns, resulting in a decelerated processing speed 
and increased resource consumption without noticeable improvements. 
Adapting the architecture’s dimensions to match the task’s intricacy and 
training dataset size thus ensures a balance between the success rate 
and computational efficiency.

4.3. Ablation

Considering the best obtainable success rate with a 95% confidence 
level, removing the Transformer Module results in a 4.92% reduc-
tion in success rate on experimental data and a 2.61% reduction on 
simulation data, as shown in Fig.  10. This highlights the importance 
of the global context provided by the Transformer in improving the 
overall understanding of the A-scan for its final deconvolution. In-
terestingly, removing the Convolution Block within the Transformer 
Module slightly increases the success rate by 0.10% on experimental 
data but decreases it by 1.19% on simulation data. However, the local 
interactions provided by the convolution block contribute to increased 
model stability, reducing the margin of error between each trained 
model. This can be attributed to the better generalization capabilities 
of CNNs when trained with smaller dataset sizes [34,54].



Ultrasonics 152 (2025) 107639T. Sendra and P. Belanger
Fig. 10. Success rate depending on the removed blocks or modules on the simulation and the experimental test datasets with: (a) unzoomed and (b) zoomed view.
Table 2
Number of parameters, number of FLOPS, Success Rate (SR) and MAE between actual and predicted distances shown in Fig.  12 of the different methods on the simulation and 
the experimental test datasets.
 Architecture #Parameters #FLOPS SR exp (%) SR sim (%) MAE exp (mm) MAE sim (mm) 
 TNN (this article) 11,613,233 373.8M 98.92 ± 0.25 98.70 ± 0.29 0.147 ± 0.024 0.171 ± 0.010  
 ResNet-50 [50] 26,046,512 7756M 96.32 ± 1.04 96.84 ± 0.40 0.235 ± 0.028 0.284 ± 0.004  
 EfficientNet-B0 [51] 5,586,771 804M 94.26 ± 0.67 97.12 ± 0.41 0.289 ± 0.012 0.273 ± 0.014  
 EfficientNet-B4 [51] 19,825,423 3089M 94.09 ± 0.77 96.54 ± 0.30 0.321 ± 0.012 0.270 ± 0.009  
 CNN Chapon et al. [22] 30,913 74.1M 91.68 ± 0.17 90.36 ± 1.10 0.361 ± 0.045 0.536 ± 0.048  
 CNN Shpigler et al. [23] 15,451 36.9M 91.54 ± 0.40 93.20 ± 0.59 0.388 ± 0.019 0.451 ± 0.032  
 CNN Cantero-Chinchilla et al. [24] 650,497 1203M 93.22 ± 0.50 92.70 ± 0.94 0.265 ± 0.013 0.311 ± 0.026  
 Threshold // // 81.58 78.20 1.14 1.76  
MAE = Mean Absolute Error, SR = Success Rate.
Fig. 11. Success rate following the quantity of simulations within the training dataset 
on the simulation and the experimental test datasets.

Similarly, while removing the pre-processing module has little effect 
on experimental data, it leads to a significant drop in success rate on 
simulation data and is associated with high variability across the five 
trained models (±5.08%). These results suggest that the pre-processing 
module plays a key role in position encoding [33] and facilitates 
learning, particularly with small datasets, enhancing the model’s com-
prehension, learnability, and stability. However, its primary role in 
echo detection is questioned, given the relatively high success rates 
achieved without it.

In contrast, removing the post-processing module drastically lowers 
the success rate, dropping it below 70% on experimental data and 
30% on simulation data. The Transformer Module alone does not 
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provide adequate signal processing capabilities, leading to poor signal 
regression and deconvolution performances. This is further emphasized 
by the low success rates observed when the Transformer Module is used 
without other components (50.54% on experimental data and 26.71% 
on simulation data). This decline can be attributed to the absence of 
key elements such as adequate number of training samples, position 
encoding, and the ability to capture local features, as described in [33].

Thus, while the Transformer is less effective for regression tasks, it 
excels at capturing the global context of the A-scans. This contextual 
information supplements the CNN modules, providing key insights 
that are essential for the model’s overall performance, especially in 
tasks like signal deconvolution and echo detection. By combining the 
strengths of both the Transformer and CNN, the architecture achieves 
improved precision and stability.

4.4. Database composition

The Transformer’s poor generalization capabilities in the context of 
small datasets have been well-documented in the AI community [33,
54,55], and this limitation is evident in Fig.  11 for dataset sizes 
under 10k. While Vision Transformers (ViT) and other Transformer 
architectures require datasets in the millions to outperform traditional 
CNN architectures, such as ResNet [50] or EfficientNet [51], in tasks 
like image classification, the Transformer architecture proposed in 
this paper achieves high performance with much smaller datasets as 
shown in Fig.  11. Specifically, the performance of the CNN-TNN model 
converges after 10k training samples, with minimal improvement when 
the dataset size is doubled. This phenomenon can be attributed to two 
key factors.

Firstly, the task addressed in this study is simpler compared to 
those tackled by larger models. Here, the model deconvolve a 1D 
signal of size 1200 × 1, whereas image classification tasks typically 
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Fig. 12. Comparative bar chart of (a) the success rates and (b) the MAE of different AI architectures and industrial algorithm on the simulation and the experimental test datasets.
Fig. 13. Comparative analysis of various AI architectures on the experimental test dataset: (a) success rates versus the number of parameters, (b) MAE versus the number of 
parameters, (c) success rates versus the number of FLOPS, and (d) MAE versus the number of FLOPS.
involve processing input of size 224 × 224 × 3 across 1k, 18k or 21k 
classes [54]. Supporting this observation, Pu et al. successfully trained 
a Transformer model to denoise EEG signals of size 512 × 1 with a 
training dataset size of 13,512 (approximately 45k after augmentation), 
surpassing CNN performance in their application [31]. While their 
model predicted 512 values, the model in this study needs to identify 2 
values within the 1200 possible classes, significantly reducing the task 
complexity and the required dataset size.
10
Secondly, the proposed architecture incorporates convolutional lay-
ers for encoding and decoding. These layers effectively introduce local 
information, facilitating learning during backpropagation [25,34]. This 
hybrid design leverages the strengths of both CNNs and Transformers, 
enabling efficient training even on smaller datasets. Additionally, the 
design could be further enhanced by incorporating the convolutional 
block in parallel with the MHSA layer, as demonstrated in [56].
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Fig. 14. Distance and deconvolution prediction of the experimental sample 106 with: (a) TNN, (b) Chapon’s CNN, (c) Shpigler’s CNN, (d) Thresholding technique, (e) ResNet-50, 
and (f) EfficientNet-B0.
With limited access to experimental data but abundant simulation 
samples, finding the optimal balance between these resources is critical 
for effective learning. At a 95% confidence level, when no experi-
mental data are included, increasing the size of the simulation-based 
training dataset from 1000 to 10,000 data improves the success rate 
on both experimental and simulation testing datasets by 18.19% and 
4.36% respectively. However, the Transformer struggles to generalize 
to experimental data when trained exclusively on simulation samples. 
Adding 1200 experimental samples to the 10,000 simulation samples 
boosts the success rate on experimental data from 89.02% to 99%. 
This result underscores the model’s limited generalization ability and 
highlights the necessity of including experimental data in the training 
process.

Incorporating experimental data also enhances the success rate on 
the simulation testing set and improves the model’s learning stability. 
This improvement is likely due to the increased overall dataset size, 
as adding experimental data augments the total number of training 
samples.

However, training the model exclusively on experimental data leads 
to overfitting, as demonstrated by the success rate of under 55% on 
the simulation testing when no simulation data is included (Fig.  11). 
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Therefore, adding simulation data with high variability helps the model 
generalize and prevents overfitting.

For this application, the optimal ratio of training data was found to 
be approximately 90% simulation and 10% experimental data (10,000 
simulations for 1200 experimental samples), offering the most effective 
balance between training efficiency and generalizability across differ-
ent datasets. This ratio ensures that the model can leverage the abun-
dance of simulation data while still incorporating enough experimental 
data to generalize well in real-world scenarios.

4.5. Comparative results

At a 95% confidence level, following the training of each architec-
ture as described in Section 2.5, the top-performing TNN demonstrated 
a 5.20% higher success rate compared to the best CNN result in simula-
tion testing (CNN Shpigler) and a 5.45% improvement in experimental 
testing (CNN Cantero-Chinchilla). These CNN architectures, described 
in NDE-focused studies [22–24], were specifically designed for tasks 
in this domain. For deeper and more general models like ResNet and 
EfficientNet, the TNN exhibited a 1.46% improvement in simulation 
testing and a 1.81% improvement in experimental testing, as shown in 
Fig.  12a and summarized in Table  2.



Ultrasonics 152 (2025) 107639T. Sendra and P. Belanger
Fig. 15. Failure cases of the TNN’s deconvolution predictions on experimental sample: (a) 622, (b) 6, (c) 489, and (d) 600.
Additionally, according to Fig.  12b and Table  2, the Transformer ar-
chitecture emerged as the most accurate option for predicting distances 
based on 2.25 MHz and 5 MHz experimental data. Specifically, the TNN 
was 1.7 times more precise in terms of total MAE compared to the best 
CNN alternative (ResNet-50). Similarly, the best CNN model was 5.5 
times more precise than traditional thresholding methods, while the 
TNN variant achieved an even greater improvement, reducing MAE by 
a factor of 9.3. This highlights the superiority of AI-based methods over 
conventional techniques.

Finally, despite its relatively high parameter count, the optimized 
TNN model remains competitive in terms of FLOPS. It is 3.2 times less 
computationally demanding than the best CNN architecture described 
in NDE papers (CNN Cantero-Chinchilla), and approximately 21 times 
less demanding than the top overall CNN model (ResNet-50). Coupled 
with this efficiency, the TNN consistently outperforms all CNN alterna-
tives for deconvolution tasks in experimental testing, achieving notable 
improvements in both MAE and success rate, as shown in Fig.  13.

To better illustrate individual model behavior on complex experi-
mental samples, Fig.  14 presents a typical indistinct A-scan for CNN 
models. Limited by their regional focus, CNNs decomposed each local 
echo, thereby misinterpreting the dominant one. A secondary echo orig-
inating from lateral reflections in the corroded sample was identified by 
all CNN architectures, introducing interpretive complications. Thanks 
to the addition of long-range dependencies with the MHSA module, 
the TNN model successfully identified the correct echo to deconvolve 
within the main echo packet (Fig.  14a). Finally, although the thresh-
olding method struggles to distinguish the minimum separation within 
echo packets, it grasps the average distance reasonably well if the 
threshold is appropriately selected (Fig.  14d), as outlined by Cantero-
Chinchilla et al. [24]. In this specific example, however, it first selects 
the wrong echo, resulting in failure.
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4.6. Error analysis

Using the 5 optimal TNNs referenced in Table  2, 12 unique exper-
imental A-scans were identified as failure cases, with four examples 
shown in Fig.  15 for analysis.

Firstly, while the maximum of the Hilbert transform generally pro-
vides a reliable reference, it can mislabel data and mislead the ML 
during training, as observed in Fig.  15a and c. In these cases, the 
deconvolutions failed because the first peak corresponded to an edge 
reflection rather than the intended reference echo.

Secondly, destructive interference and high surface roughness
caused low-amplitude echoes to be reflected back to the probe, as 
seen in Fig.  15b. The lack of sufficient 2.25 MHz data with low echo 
amplitudes in the training set caused the model to misinterpret these 
signals as artifacts rather than valid echo packets.

Finally, mode conversion effects were observed in several A-scans 
due to angled reflections, producing both longitudinal and transverse 
waves. These waves, originating from the backwall or edges of the 
block, can lead to misleading peak amplitudes. As seen in Fig.  15a 
and c., the largest peak did not always correspond to the backwall 
echo. Additionally, Fig.  15d highlights how an unwanted reflection 
can mimic the first echo waveform, causing the model to incorrectly 
identify it as the second peak.

5. Conclusion

In this paper, a novel CNN-TNN architecture was developed to 
partially deconvolve A-scans of severely corroded profiles on the mini-
mal thickness and was compared against multiple CNN architectures 
sourced from the literature. Utilizing a simulation-based dataset – 
developed with [24] as a foundation – alongside experimental data 
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acquired from a corroded carbon steel step specimen, the study demon-
strated TNN’s superior deconvolution capabilities. The CNN-TNN archi-
tecture achieved a notable 1.81% success rate improvement over the 
best-performing CNN and a 17.5% advantage over established thresh-
olding methods in detecting minimal depths on experimental data, with 
a resolution under 0.5 𝜆 (1.32 mm for 2.25 MHz and 0.59 mm for 5 
MHz).

Furthermore, the TNN demonstrated exceptional precision and ac-
curacy, achieving an overall MAE that was 1.7 times lower that the 
widely recognized ResNet-50. Its ability to enhance signal decompo-
sition alongside CNN models further underscores its superior perfor-
mance in complex signal processing tasks.

Although TNN emerged successful in this study, it is important to 
bear in mind that demonstrated learning capabilities shown in this 
paper are confined to specified emission frequencies (around 2.25 MHz 
and 5 MHz) and sampling rates (62.5 MHz). Moreover, the proposed 
method focuses on two echoes to identify minimal distances within 
fixed-length A-scans. This approach requires a pre-processing step to 
isolate echo pairs and padding to standardize the input length.

Additionally, the limitations of the simulation were highlighted and 
could be improved through enhanced signal generation or the use of 
GAN-based synthetic data generation.

Finally, the deconvolved output allows the model to be adapted for 
various applications. Beyond distance measurement, it can precisely 
estimate echo arrival times for multimodal TFM, unlocking new possi-
bilities in advanced imaging and diagnostics. Given its focus on signal 
processing, the model could also be extended for signal denoising or 
reconstructing FMC amplitudes from binary FMC data.
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