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A B S T R A C T

Water resources management relies heavily on hydrological forecasting, and continuous improvements are made to better manage hydropower reservoirs and 
improve their profitability. The significance of hydrological forecasting has been extensively studied in the literature, but the relative value of the various elements 
composing a forecasting system has been less investigated to date, making it hard to pinpoint which element to focus research on to improve the overall profitability 
of hydropower systems. This paper investigates if one or more of the following four elements of the hydrological forecasting chain has more impact on the variance in 
profit generation in an operational context, namely 1) the hydrological model, 2) the hydrometeorological dataset, 3) the objective function used for calibration, and 
4) the bias/dispersion in the ensemble streamflow prediction (ESP) system. The value of these elements is assessed by making a full factorial design experiment. The 
elements are changed in various combinations to generate various ESPs, feeding a test bench which simulates a single hydropower generating reservoir. A linear 
programming algorithm is then used to optimize water management decisions. The value of the analyzed elements in the forecasting chain is evaluated by comparing 
the variance in the average profit generated by each of the ESPs, grouped by combination for each element. The impacts of other constraints such as energy purchase 
price and minimum load constraints are also evaluated. For the studied system, results show that the elements taken independently have little impact on the average 
profit variance, while higher-order interactions between the elements lead to a larger impact on profitability. However, bias/dispersion and its interactions with 
other elements show no significant impact on the profit variance under the operational conditions in this study. Results show that multiple elements need to be 
simultaneously improved to achieve this goal.

1. Introduction

Hydropower is a major source of energy worldwide and its contri
bution to the global energy portfolio could grow in the coming years as 
energy production is transitioning towards renewable sources. Hydro
logical forecasting is relied upon to manage water resources although it 
is inherently uncertain (Georgakakos et al., 1998). To address forecast 
uncertainty, hydrological ensemble forecasting systems and approaches 
have been developed with the aim of increasing confidence in the hy
drological forecasts, specifically for their operational use in water 
management (Troin et al., 2021). One of the commonly used forecasting 
techniques is the Ensemble Streamflow Prediction (ESP) system, which 
is a stochastic approach in which each year of the historical meteoro
logical dataset is used as input into a hydrological model over the 
watershed of interest, providing the user with a range of probable 
streamflows.

In the operational context of hydropower reservoir management, the 
ESPs are then used as inputs to an optimization algorithm which opti
mizes the profit from energy production based on the probable inflows. 

There are various types of optimization algorithms, and Cassagnole et al. 
(2021) identify three main classes: non-linear and linear programming 
(LP), dynamic programming and stochastic variants, and heuristic pro
gramming. The best optimization algorithm for a given task depends on 
many factors, such as the computing power and available time to 
converge to a solution, the nature and size of the problem, and the type 
and quality of available information. In a hydropower reservoir man
agement context, the optimization is based on various constraints such 
as reservoir levels, expected long-term value of the water stock, and 
minimum load constraints (MLC). The MLC is the minimal amount of 
energy that the system must provide at each time step to meet its obli
gations, either through generation or purchase of energy.

Assessing forecast quality involves examining three aspects (or at
tributes) of the forecasts, as per Murphy (1993): consistency (the cor
respondence between the forecasters’ judgments and their forecasts), 
accuracy (the correspondence between the forecasts and the matching 
observations), and value (the incremental economic and/or other ben
efits realized by decision makers through the use of the forecasts). The 
quality of a hydrological forecast is affected by the different elements 
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composing the forecasting chain, such as the hydrological model 
structure (Butts et al., 2004), the hydrometeorological input dataset 
(Guo et al., 2018; Schreiner-McGraw and Ajami, 2020), the objective 
function for model calibration (Meng-Xuan et al., 2016), and the bias/ 
dispersion in the forecasting ensembles (Zalachori et al., 2012). No study 
has demonstrated that, given an adequate hydrological model and 
calibration, a better model calibration score leads to more valuable 
hydrological forecasts, even if this practice is widely accepted in the 
forecasting community.

Only a few studies have analyzed the issue of the value of each 
element composing the hydrological forecasting chain in an operational 
context. For instance, the value of post-processing is assessed by Boucher 
et al. (2011) who compared post-processed ESPs generated from low- 
resolution meteorological forecasts to a high-resolution deterministic 
forecast in a case study of a flood that caused management difficulties of 
the Baskatong Reservoir in Quebec, Canada. They showed that, even 
with a basic post-processing method, the ESPs perform better than the 
high-resolution deterministic forecast. Cassagnole et al. (2021) evalu
ated the influence of bias, a property of generated forecasts, on the value 
of hydrological forecasting in an operational context by using a LP al
gorithm. They generated synthetic 7-day ESPs from the observed out
flows of ten watersheds in France by adding various degrees of bias 
before feeding them in a test bench to simulate their corresponding 
reservoirs and energy generation. When compared to the perfect fore
cast (i.e., the observed outflow), they found that biases diminish the 
generated profits by 1 % to 3 %, whereas positive biases (overestimating 
the outflows) diminished profits the most. Arsenault and Côté (2019)
also evaluated the influence of bias on energy production for the 
Saguenay-Lac-Saint-Jean hydropower system in Quebec, Canada. They 
generated 120-day ESPs by feeding historical hydrometeorological data 
to a hydrological model. Introduction of biases was done by multiplying 
the outflows by a ratio, thus generating an ensemble of systematically 
biased ESPs. The forecasts were then passed to a test bench to simulate 

the system and optimize decisions through three LP algorithms. They 
showed that a 5 % positive bias (overestimating the outflows) led to a 
more profitable forecasting system.

However, no study to date has evaluated the operational value of the 
set of the elements composing the forecasting chain, as well as the in
teractions between elements, making it hard to pinpoint which element 
would provide the largest improvement in profitability of the hydro
power system.

This study aims at assessing which element of the forecasting chain 
has the most impact on the optimization of hydropower production and 
profit. More specifically, hydrological ensemble forecasts are generated 
by using an ESP system and the test bench is conducted over the Lac- 
Saint-Jean watershed in Quebec, Canada. This watershed is exploited 
for hydropower generation, which highlights some implications 
regarding the elements of the system that could be improved to increase 
the profitability of the operational forecasting system.

2. Methods

2.1. Overview

This study uses a test bench that simulates the Lac Saint-Jean (LSJ) 
reservoir, in Quebec, Canada, and its snowmelt-dominated unregulated 
watershed and inflows. The land use on the watershed is predominantly 
boreal forest (virgin or logged), with some agriculture and urban areas 
around the reservoir. Fig. 1 presents the watershed and reservoir, while 
Tables 1 and 2 depict the properties of the watershed and the reservoir, 
respectively. The complex, cascading hydrological system of the Lac 
Saint-Jean is simplified to reduce the amount of computational power 
required for the study. As such, only a single, unregulated watershed and 
the most downstream reservoir is modeled. This was done for two rea
sons. First, the actual operational software is extremely precise and 
detailed and takes multiple hours to run each day on a high-performance 

Fig. 1. The Lac-Saint-Jean (LSJ) watershed used in the test bench.
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cluster. For research purposes, the problem needs to be simplified to be 
solvable in a reasonable timeframe. However, impacts are limited to 
linearization of splines and other curves, and as such the underlying 
mechanics are decently well approximated. Also, limiting the number of 
reservoirs to one ensures that the results can be more easily interpreted.

The test bench, provided by the project’s industrial partner Rio 
Tinto, manages the virtual reservoir by operating a hydropower station 
and its spillway. The management rules are as close as possible to the 
ones used to manage the real-world reservoir, and the LP algorithm 
optimizes the production and spills according to ESPs. The decisions are 
based on horizons ranging from short-term (next time steps; three days 
in the current study to save on computing power) to long-term (15 
months ahead in the current study). As in real-world operations, the test 
bench balances energy production, optimal operating head, and spilled 
water from floods (either planned or not). To manage the reservoir, the 
test bench uses ESPs to evaluate the probabilities of inflows into the 
reservoir and generates power or spills water accordingly. Since Rio 
Tinto’s aluminum smelters are powered by the hydropower station, it is 
constrained by a MLC which is considered as the default setting of the 
test bench; the algorithm evaluates if it is more profitable to generate 
power or buy some on the markets to compensate insufficient produc
tion. There are four inputs to the test bench: (1) the ESPs, (2) the weight 
of each member of the ESP, which are all considered equiprobable in this 
study, (3) the observed inflows into the reservoir, and (4) the length of 
each time step. The test bench itself has nine hyperparameters: (1) 
selling price of excess energy, (2) buyout price of energy (purchase 
price), (3) cost of not meeting the MLC (penalty), (4) the MLC power to 
maintain (in MW), (5) penalties for operating above the maximum 
operating level of the reservoir (MOL), (6) penalties for buying more 
energy than agreed by contract, (7) maximum reservoir outflow (in m3/ 
s), 8) maximum quantity of energy available for buyout at each time step 
(in MW), and (9) initial (and maximum) capacity of the reservoir. In this 
study, changes will be made to the hyperparameters number (2), (4) and 
(9) to assess their potential impact on the system’s behaviour. To protect 
strategic business information from the industrial partner, all prices and 
penalties are a multiplier of the unitary sales prices and are therefore 
unitless.

2.2. Hydrological forecasting chain variations

Fig. 2 shows the considered elements of the hydrological forecasting 
chain used to create the total of 225 sets of ESPs. The considered ele
ments are the following: the hydrometeorological input dataset (Fig. 2, 

box a) the hydrological model (box b), the objective function for model 
calibration (box c) and the bias/dispersion in the ESP (box d). Changes 
are made to each of these elements in a discrete and combinatorially 
complete manner to generate new ESPs, which are then provided as 
input into the test bench. Each element of the hydrological forecasting 
chain as well as the process to generate the ESPs are described hereafter.

2.2.1. Hydrological models
Three lumped hydrological models are used to generate inflows to 

the reservoir and are part of the Hydrological Prediction Laboratory 
(HOOPLA) framework (Thiboult et al., 2019). This framework regroups 
different tools for hydrological modelling and forecasting such as 
models, calibration algorithms, data assimilation modules and ESP 
generation capabilities and has been used in previous studies on this 
catchment (e.g. Dion et al. 2021). Each hydrological model in the 

Table 1 
The Lac-Saint-Jean watershed properties.

Watershed name Lac-Saint-Jean (LSJ)

Drainage area [km2] 45,362
Centroid coordinates (Latitude/Longitude) [◦] 49.504◦N, 72.696◦W
Average streamflow [m3/s] 865
Average maximum annual streamflow [m3/s] 4010
Average elevation [m above average sea level] 200
Average total annual precipitation [mm] 930
Average total annual snowfall (water equivalent) [mm] 240
Average annual temperature [◦C] 1.6

Table 2 
Reservoir properties.

Reservoir name Lac-Saint-Jean (LSJ)

Surface area [km2] 1041
Storage capacity [hm3] 4550
Water level range [m] 7.9
Maximum flow rate before spillage [m3/s] 1600
Hydropower station name Isle-Maligne
Installed capacity [MW] 454

Fig. 2. Hydropower modelling flowchart. The letter in the bottom-right corner 
of each box refers to each of the four elements that are modified in this study as 
defined above. Boxes in colored background represent the elements that 
correspond to the generation of the ESP forecasts (i.e. the hydrological fore
casting chain).
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HOOPLA framework was adapted in such a way that they only use 
minimum, maximum and mean daily temperature, and total precipita
tion as inputs. They can be run at the daily or 3-hour time step, but the 
daily time step was used in this study to accommodate the available 
meteorological input temporal resolution. In this framework, snow ac
counting (SA) and potential evapotranspiration (PET) routines are pro
cessed outside of the hydrological model, allowing the use of the same 
routine for all hydrological models. This allows to control for con
founding factors by standardizing the processes. The SA and PET rou
tines are not changed to reduce computation time (each change 
doubling the number of ESPs generated). The SA and PET routines used 
are CemaNeige (Valéry et al., 2014) and Oudin (Oudin et al., 2005), 
respectively. This selection is supported by the fact that these two rou
tines provide good objective function values for large-sample studies of 
uncertainty (Troin et al., 2022).

The three hydrological models used in the present study are adapted 
from (a) CEQUEAU (Girard et al., 1972), (b) GR4H (Mathevet, 2005), 
and (c) TOPMODEL (Beven et al., 1984) as examples of models with 
varying degrees of complexity. To ensure all models can run as lumped 
models at the daily timestep and use the same input data, CEQUEAU and 
GR4H were slightly modified from their original versions (with GR4H 
becoming essentially the daily variant GR4J, with some small differ
ences in parameterization; Perrin et al. 2003), while TOPMODEL was 
substantially modified (Thiboult et al., 2019). Changes that were made 
in HOOPLA pertain to three aspects: models were changed from 
distributed to lumped when applicable, some parameters with low 
sensitivities were set to fixed values, and models share the same po
tential evapotranspiration and snow module to preserve the same inputs 
to all models. The versions of the models used herein can be summarized 
as follows. Note that parameters exclude those in the CEMANEIGE snow 
module: 

• CEQUEAU has 9 calibration parameters and was transformed from 
its original distributed form to a lumped model such that the routing 
is performed through a lag function with calibrated parameters for 
shape and duration. It has two internal states (surface reservoir and 
ground reservoir) and simulates percolation as well as flow parti
tioning between the two water storage states.

• GR4H has 4 calibration parameters and uses calibrated triangular 
unit hydrographs for runoff routing. It has two internal states (pro
duction store and routing store). There is a soil moisture accounting 
routine which controls percolation rates. Water is then partitioned 
into the water storage reservoirs and flows are convoluted through 
the unit hydrographs to obtain the final outflow.

• TOPMODEL has 7 calibration parameters and three water storage 
states (Interception reservoir, ground reservoir and quadratic rout
ing reservoir). It models interception and percolation into the various 
water stores, before routing runoff from the lower two stores using a 
similar calibrated lag function to that of CEQUEAU.

2.2.2. Hydrometeorological data
The meteorological input data required for the three hydrological 

models are the minimum (tasmin), mean (tas) and maximum (tasmax) 
daily air temperature, and the total daily precipitation (pr). The data 
come from three different sources: meteorological stations provided by 
the industrial partner Rio Tinto, which are averaged at the catchment 
scale using Thiessen polygons, the NRCan gridded and interpolated 
observational database (Hutchinson et al., 2009; Hopkinson et al., 2011; 
McKenney et al., 2011) and the ERA5 reanalysis database from the 
Copernicus Data Store (Hersbach et al. 2018), which was shown to 
perform well for hydrological modelling in North America (Tarek et al. 
2020). The uncertainty associated to the three datasets introduces 
variability as complexity varies between products: observational sta
tions include reading errors, missing data, and the averaging is done in a 
specific manner, gridded observational data interpolate data from sta
tions using complex algorithms and terrain data, and reanalysis data are 

simulations of the best estimate of the atmosphere state but do not rely 
on ground-based instruments for many variables, including precipita
tion. One dataset of each type of product is retained to limit the required 
computing time. Other data sources (such as the Ensemble Meteoro
logical Dataset for North America (Tang et al. 2021) could also be 
considered, although due to the combinatorial nature of this study, it 
was preferred to keep only these “raw” data sources rather than com
bined products.

The timeseries of observed inflows to the reservoir are obtained by 
mass balance and provided by the industrial partner. The data are used 
for the calibration of the three hydrological models and provided to the 
test bench as the observed reservoir inflows to update its internal states. 
All the data are available over a 31-year period (from 1980 to 01-01 to 
2010–12-31) which is used as the study period.

2.2.3. Objective functions used in model calibration
Meng-Xuan et al. (2016) show that no single objective function 

performs best in all conditions. The objective function must be chosen 
according to the phenomenon to be modelled, such as spring floods or 
summer low flows, which can affect the overall performance of the 
hydrological model and resulting forecasts. To ensure that the entirety of 
the hydrograph components is considered during calibration for this 
study, five objective functions were used to calibrate the hydrological 
models. They are: (1) the Nash-Sutcliffe Efficiency (NSE; Nash and 
Sutcliffe, 1970), (2) the Kling-Gupta Efficiency (KGE; Gupta et al., 
2009), (3) the root mean squared error (RMSE), and both the NSE and 
the RMSE applied to the natural-logarithmic transformation (ln) of the 
observed and simulated outflows, (4) lnNSE, and (5) lnRMSE. As 
explained by Gupta et al. (2009), the widely used NSE (and RMSE to 
some extent) objective function tends to poorly model the low flow 
periods in watersheds with a large range of flows. The KGE addresses 
this issue by balancing the variance, bias, and correlation aspects into 
the calculations to make it more versatile. By applying a logarithmic 
transformation to the outflows, the range between low and high flows is 
reduced. The lnNSE and lnRMSE thus tend to have better results at 
modelling low flow periods (Santos et al., 2018). NSE, RMSE as well as 
their log-transformed variants are all monotonic functions of MSE and 
should theoretically all return the same optimal parameter set (i.e. the 
parameter set that optimizes NSE should also optimize the others). 
However, in practice, the transformations change how the calibration 
algorithms establish gradients and converge, leading to a wider variety 
of “optimal” parameter sets depending on the local minimum attained 
(Gupta and Kling, 2011). Calibration was performed using all data from 
1980 to 2010 inclusively at the daily time step, as recommended in 
Arsenault et al. (2018) and Shen et al. (2022). The hydrological models 
were all calibrated using a budget of 10,000 evaluations using the 
CMAES optimization algorithm (Hansen and Ostermeier 2001), as rec
ommended in Arsenault et al. (2014).

2.2.4. Data assimilation
Data assimilation consists in updating the state variables of the hy

drological model at each time step, providing initial conditions consis
tent with the last generated output and the current inputs, thus 
improving hydrological forecasts. In an operational setting, these up
dates are either done manually or using algorithms (Mai et al., 2020). A 
data assimilation scheme is implemented to keep the models from going 
astray and to be more representative of operational conditions. This 
allows the generation of ESPs with lower initial error between the 
observed and simulated flows at the time that the forecast is issued. 
While this masks the imperfections of hydrological models during 
simulation, it is a standard practice in operational settings to ensure 
forecasts begin at reasonable initial states. Ensuing forecasts are still 
therefore affected by model structure and parameterization.

The Ensemble Kalman Filter (EnKF) scheme (Evensen, 2003) is used 
as a data assimilation method in this study as it was shown to perform 
well on this catchment and with the hydrological models (Dion et al. 
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2021, Sabzipour et al. 2023). EnKF generates ensembles of probable 
state variables considering the uncertainty inherent to the observed 
streamflow and hydrometeorological inputs of the model. The set of 
probable initial conditions generated for each time step by the data 
assimilation algorithm are averaged to generate the most realistic single 
initial state used to initialize the model’s internal state variables. The 
best estimate of the actual initial state is therefore obtained without 
adding a layer of complexity linked to the initial state uncertainty. This 
averaging approach is the same as successfully implemented in Dion 
et al. (2021).

2.2.5. ESP generation
ESPs are generated for each day of the study period with a horizon of 

15 months, covering the period 1980–01-01 to 2010–12-31. The fore
casting horizon is chosen to deal with the terminal water value issue 
(Côté and Leconte, 2016), which forces the optimization algorithm to 
maximize the profit over a long period rather than emptying the reser
voir to generate a larger profit at the first occasion if left unchecked.

To reduce the computational time required to run the test bench, the 
daily timestep of both the ESPs and the observed outflows are aggre
gated at coarser temporal resolutions. The ESPs are aggregated in two 
steps. First, the first three months are aggregated at the 3-day scale to 
serve as the short- to medium-term forecasts. Then, the remaining 
twelve months are aggregated at the monthly scale to provide the 
optimization algorithm with a long-term trend of water availability. 
Observed inflows are aggregated at the 3-day scale only. The selection of 
the periods is based on the fact that the hydrometeorological informa
tion in the short- and medium-terms have more impact in decision- 
making compared to the long-term information. For instance, consid
ering that the hydropower reservoir is filled during the spring flood and 
before winter, all subsequent information will have a low impact on 
decision-making. This information is added uniquely to deal with the 
issue of terminal water value and to stop the optimizer from aiming to 
empty the reservoir at the end of the forecasting horizon.

The hydrological models and data assimilation scheme are first run 
over the entire study period to generate state variables for each day. 
Then, to generate the ESPs, 15-month simulations using each of the 
assimilated days are conducted for each of the three hydrometeorolog
ical datasets. Even though the state variables are processed with the data 
assimilation scheme, there is still a spin-up time to ensure that the data 
assimilation method converges. Thus, the first year of data is considered 
as a spin-up period which does not contribute to the ESPs generation or 
profit evaluation.

When working in hindcast with ESPs generated from historical hy
drometeorological data, the hydrometeorological data for the current 
year cannot be considered as a member, because it would represent a 
forecast for which the actual weather to come is perfectly known (i.e. not 
a forecast but a simulation). The last 2 years of available data are also 
not available as forecast members since the 15-month forecast period 
would extend beyond the range of available data. Thus, each ESP has a 
total of 28 possible members (corresponding to the remaining years, i.e. 
1981 to 2008 inclusively).

2.2.6. Bias and dispersion
Bias and dispersion are applied to the ESPs by removing members 

from the original ESP ensemble to create new ensembles as follows:
(1) a negative bias (dry bias with an underestimation of outflows) by 

removing the four members with the largest total water volume.
(2) a positive bias (wet bias with an overestimation of outflows) by 

removing the four members with the smallest total volume.
(3) an overdispersion by removing the four members closer to the 

median total volume (OD bias; two members on both sides).
(4) an underdispersion by removing the four members furthest from 

the median volume (UD; two members on both sides).
(5) the original ESPs that are not modified in any way from the 

original set.

The choice of removing four members is made to keep a balance 
between creating a bias and dispersion and not losing information 
compared to the original ESPs. Each new ESP is composed of 24 mem
bers, while the unbiased ESP is composed of 28 members. This step is 
performed independently for each forecast issue date, meaning that 
selected members differ from one forecast to the next.

2.3. Test bench

The test bench used in this study simulates a hydropower station 
running from a single reservoir. It runs a simplified one-reservoir version 
of the LP optimization algorithm, which is used by the industrial partner 
for the Lac-Saint-Jean reservoir management. The test bench simulates a 
real system by utilizing ensemble forecasts as inputs for each day, then 
determining the best decision (i.e. water drawdown, spilling and stor
age) to make to maximize profit (or minimize cost). The decision is 
made, and then the real observations are used to compute the real power 
generation and reservoir states at the end of each day. Therefore, the 
model never has access to the upcoming inflows when making a deci
sion, but energy generation, profits, costs and reservoir states are 
updated using the observed inflows for each day, simulating a real-world 
scenario. The test bench uses inflows and their probabilities of occur
rence (based on the ensemble distribution) to manage risk using a linear 
programming approach. The equation that describes the variable to 
optimize, in this case the profit, is detailed in Eq. (1): 

Pi =

∑n
t=1

(
Gi

t • SP −
(
Bi

t • BC + Oi
t • OP + BP

) )

n
(1) 

where P is the average profit generated; G is the energy generated; B is 
the energy purchased; SP is the selling price (which has a unitary value 
of 1); BC is the buyout cost of energy; O is the number of overtopping 
events; OP is the overtopping penalty; BP is the buying penalty when 
buying more energy than available by contract; the subscripts t and i are 
the time step and the combination index, respectively; and n is the total 
number of time steps. All energy production, sales and buyouts are in 
MW, the buyout cost (BC) is a unitless multiplier of the sale price per 
MW, while the penalties are a unitless multiplier of the sale price. Recall 
that to protect strategic information for the industrial partner, prices and 
penalties are a multiplier of the unitary sales price and are therefore 
unitless.

The testbed optimizes profits, which are easy to calculate in terms of 
energy buyouts and sales, as well as contract violation costs. However, in 
some cases, there is no direct monetary value to attribute to constraint 
violations, such as when the reservoir levels exceed the maximum limit 
(i.e. flooding or dam safety risk). In these cases, penalties are applied 
using a factor that represents the risk profile that is acceptable to the 
water resources managers. For example, in the case of maximum 
reservoir storage violation (overtopping penalty; OP), a very high pen
alty value (e.g. 10 000 units of the energy sale price) would exert 
pressure on the optimizer to minimize this occurrence as it would be 
costly if the risk materializes. Oppositely, if the penalty is low (e.g. 1 unit 
of the energy sale price), the optimizer might be more aggressive and 
preserve higher levels to maximize energy generation due to the low cost 
of violations. In this study, the overtopping penalty was set to 100 units 
of energy sale price, which was found to be a good compromise in-line 
with expected overtopping rates.

Furthermore, MLC constraints are imposed to ensure sufficient en
ergy is provided to the smelters. If the generated energy is sufficient for a 
given day, there is no penalty, and any excess energy can be sold at the 
energy sale price. Oppositely, if the energy generation is insufficient, the 
difference must be purchased on the market at a fixed price (buyout cost; 
BC). These costs are negotiated by contract up to a certain limit. Any 
excess energy must be purchased at a much higher cost which is 
penalized using the buying penalty (BP). To ensure that the model does 
not rely on energy purchases too much, the BC is adjusted such that it is 
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higher than the energy sale price. In this study, multiple BCs are tested to 
assess the model’s adaptability to progressively more constraining costs. 
In essence, the higher the buyout cost, the less the model will attempt to 
generate excess energy to sell as it will prefer preserving any excess 
water to turbine on days with lower inflows, thus minimizing energy 
purchases.

All of these constraints were programmed and provided to the 
optimizer, which was optimized using the CPLEX linear programming 
solver (CPLEX User Manual, 1987). The testbed then provides values of 
energy generation, sales and purchases, constraint violations, profits, 
and other details to assess how the model would have fared on the 
historical period given the various ensemble inflow forecasts provided 
as inputs.

As mentioned previously, to further assess the impacts on profits of 
changes in the hydrological forecasting chain, the following test bench 
parameters are modified: (1) activating or deactivating the MLC, which 
imposes a minimal production or buyout of energy for each time step on 
the optimization algorithm, thus reducing the decision possibilities due 
to extra constraints, (2) raising the cost of energy buyout to various 
values (from 1.01 to 1.4 times the energy purchase price), and (3) the 
volume of the reservoir (+50 % and − 50 %), both with and without 
MLC.

Each ESP generated by the various combinations of the forecasting 
chain’s elements (see Fig. 2) is provided as an input to the test bench. A 
total of 225 sets of ESPs are generated over a 15-month forecasting 
horizon (3 hydrometeorological datasets X 3 hydrological models X 5 
objective functions X 5 bias/dispersion variants = 225 ESPs).

The observed inflows to the reservoir is considered as an input to the 
test bench. This allows the test bench to update both the water volume of 
the reservoir and the hydraulic head at which the hydropower station 
operates, while computing the electricity generation for any given day.

2.4. Analyzed metrics

Various metrics are used to assess the impacts of the changes in the 
hydrological forecasting chain on the profit generated by the hydro
power station. The main metrics are the energy generation as well as the 
profit, which can be evaluated and compared directly.

To assess the impacts of the various components of the forecasting 
chain, the sum of squares (SS) of the average profit of the various 
combinations Pi (of equation (1), presented as a percentage of the total 
SS (the relative SS), was used as the main metric. An analysis of variance 
(ANOVA) was performed to evaluate the variance contribution of each 
element to the simulated profits in the test bench. An ANOVA allows to 
analyze the impact of various elements on the variations in results. The 
following terms are defined here to ensure clarity in the results 
discussion: 

• Factor: elements of the hydrological forecasting chain being 
changed.

• Source: the factor or combination of factors being analyzed for its 
contribution to the variance.

• Order: the order of the source represents the number of factors 
contained in the source.

For instance, the combination of the hydrological model and hy
drometeorological dataset is a second order source which combines two 
factors, and the hydrological model factor is composed of three elements 
(CEQUEAU, GR4H, and TOPMODEL).

To evaluate the overall contribution of a factor to the variability in 
the generated profits, the relative SS of the profit from each source 
containing the factor is summed up. The ranked-based nonparametric 
Kruskall-Wallis test is performed (at a significance level of α = 0.05) to 
determine if the average profit attributed to a particular element within 
a factor (i.e., a particular model against others) is statistically different 
from the others.

3. Results and discussion

3.1. Model calibration results

The hydrological model calibration results are presented in Table 3, 
for each of the model/dataset combinations and for each objective 
function.

It can be seen that the models are generally well calibrated, following 
guidance of Moriasi et al. (2017), whereby the NSE values are found to 
be good above values of 0.65 and very good above 0.75. Other metrics 
are also satisfactory when compared to operational results and to results 
of previous studies. The NRCan dataset displayed the worst calibration 
score in almost all cases and ERA5 provided the best results for most 
cases as well. This shows that the importance of selecting high-quality 
datasets for model calibration and simulation. However, it remains to 
be seen how this impacts the hydropower generation in an operational 
forecasting context, as will be seen below.

3.2. Average profit by source of variance

Average profit by factor is presented in Fig. 3. The boxplots for the 
bias/dispersion (X4) show marginal variability between the five ele
ments when comparing the size of the interquartile range. Slightly more 
impactful is the hydrological model (X1), however, the choice of dataset 
and objective function (X2 and X3 respectively) show the most vari
ability. This seems to correlate with the calibration results shown in 
Table 3. One particular element is that of the NRCan dataset. While it 
showed generally lower performance in calibration in table 3, it also 
seems to provide more profits on average than the station dataset. It is 
possible that the RMSE metric (for which NRCan is the best dataset) 
allowed generating more profits for this dataset, which would also 
explain the larger spread than the other models. Indeed, NRCAN is the 
best dataset for some metrics and the worst for other metrics. Ultimately, 
the combination of dataset and metric seems to affect the average profits 
in this case.

A Kruskal-Wallis statistical test was then performed to evaluate the 
contribution of each element of the forecasting chain to the average 
profit. Results are shown in Fig. 4. For the elements composing the hy
drological model factor (Fig. 4a), average profits are not significantly 
different from each other, although it can be seen that the top and 
bottom quartiles of the GR4J average profits are slightly higher than 
those of the other two models.. The ERA5 reanalysis dataset generates a 
slightly higher median average profit with a smaller spread than the 
other two datasets (Fig. 3). The ERA5 dataset is also significantly 
different than the others according to Fig. 4b, suggesting that more 
profit can be generated if the optimization algorithm is fed the ESPs 
generated from the ERA5 dataset. Most results are not significantly 

Table 3 
Calibration scores for all model-metric-dataset combinations. Bold values indi
cate the best value in each row.

CEQUEAU GR4H TOPMODEL

​ Stn 0.7091 0.7230 0.6916
NSE NRCan 0.6861 0.5252 0.5999
​ ERA5 0.7649 0.7325 0.7392
​ Stn 0.7897 0.8502 0.8002
KGE NRCan 0.8039 0.7631 0.7747
​ ERA5 0.8509 0.8630 0.8531
​ Stn 0.8327 0.7982 0.8423
RMSE (mm) NRCan 0.8497 1.0451 0.9593
​ ERA5 0.7304 0.7845 0.7746
​ Stn 0.8243 0.8066 0.7678
lnNSE NRCan 0.7368 0.6998 0.7171
​ ERA5 0.8152 0.7945 0.7694
​ Stn 0.3308 0.3519 0.3855
lnRMSE NRCan 0.4049 0.4384 0.4255
​ ERA5 0.3429 0.3627 0.4030
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different from the others regarding the elements composing the objec
tive function factor (Fig. 4c), except for the KGE, which is also the one 
displaying the higher profits. The KGE was devised to solve inherent 

problems in the interactions between elements composing the NSE 
(Gupta et al., 2009), which might explain why it stands out from the 
other objective functions. It is also the only one that is not a trans
formation of the Mean Square Error (MSE). Then, the elements 
composing the bias/dispersion factor are not significantly different be
tween themselves (Fig. 4e), which supports the results of Figs. 3 and 5
(below), and will be discussed in more detail in section 3.6. With respect 
to the model calibration score in Table 3, it is expected that the higher 
the score, the more generated profits. However, it was previously 
demonstrated that the calibration score is not necessarily a good indi
cator of the model performance in simulation mode, as shown in 
Arsenault et al. (2018) and Shen et al. (2022), and few (if any) studies 
have looked at model calibration score impacts on forecasting skill. 
Furthermore, the fact that data assimilation is performed before each 
forecast means that cumulative model errors (in simulation) are cor
rected before each forecast, and only the forecasts themselves are 
affected by the calibration score. This thus changes the dynamics of the 
forecasting process, and poorer models in calibration can still outper
form others when used for forecasting, although it can be seen that the 
top and bottom quartiles of the GR4J average profits are slightly higher 
than those of the other two models. For example, a model that has a 
lower calibration score overall but has a very accurate rainfall-runoff 
component during summer could still outperform a generally better 
model in these conditions. Furthermore, a model that is less constrained 
could accumulate more error over time (and thus perform worse in 
calibration), but once the initial states are corrected, the model could 
still generate better forecasts than other models. In the current study, 
NRCan-calibrated models outperform those calibrated with station data 
even though they were the worst in calibration/simulation mode. 
Likewise, CEQUEAU was the model with the best calibration perfor
mance in most combinations, but average profits are essentially iden
tical to those generated from the GR4H model.

Fig. 3. Comparison of average profit when maintaining one element constant in each factor: the hydrological model (first from left, X1), the hydrometeorological 
dataset (second from left, X2), the objective function (middle, X3), and the bias/dispersion (second from right, X4). The results of the entire 225-member ensemble 
are presented in the rightmost boxplot (ALL). For example, the first model boxplot, CEQUEAU, shows the average profit of the 75 combinations (1 hydrological 
model x 3 hydrometeorological datasets x 5 objective functions x 5 bias/dispersion levels).

Fig. 4. Results of the Kruskal-Wallis tests comparing the average profit 
generated by the elements composing the factors: (a) the hydrological model, 
(b) the hydrometeorological dataset, (c) the objective function, and (d) the 
bias/dispersion factor. Failure to reject the the null hypothesis indicating that 
there is no significant difference (at a 5% level) is shown in green. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)
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3.3. Variance in the average profit

The relative variance of the average profit, as defined by equation 
(1), is presented in Fig. 5 in the form of heatmaps for each source and for 
different energy buyout costs (BC). Fig. 5a) and 5b) show that, when 
taken individually, each factor has a relatively small contribution to the 
total variance in the average generated profit (under 4.5 %). The bias/ 
dispersion is the factor with the smallest impact (maximum of 0.4 %), 
and any source that has the bias/dispersion involved as an interaction 
term leads to a negligible impact (under 0.2 %). This is possible because 
lower-order interactions already explain the variance of their in
teractions, and adding X4 to them does not help explain more variance 
on average profits. These results do not corroborate the previous find
ings of Arsenault and Côté (2019) and Cassagnole et al. (2021); this is 
further discussed in Section 3.5.

Results indicate that the BC of energy has little influence on the 
relative SS in the average profit of each individual source (Fig. 5a and 
5b). Also, the higher order sources and the summation remain stable as it 
changes (Fig. 5a and 5c). The first order sources with the most change in 
variance as BC changes are the hydrolometeorological dataset (X2) and 
the objective function (X3); they vary from 2.6 % to 4.5 % and from 3.2 
% to 4.4 %, respectively. Changes of similar amplitudes are observed for 
some higher order sources. The third order source which excludes bias/ 
dispersion varies from 36.3 % to 39.6 % at most. As the BC goes from 
1.01 to 1.40, the variance of average generated profit remains relatively 
steady (the changes are below 3.4 %). This shows that the findings of this 
study could be generalized to the fluctuating BC of energy.

Fig. 5a) indicates that, except for those combinations containing X4 
(bias/dispersion), a higher order (the more interactions there are among 
the factors) leads to a larger percentage of relative variance of average 
profit. On average, first order terms contribute 10 % of the total vari
ance, while second, third and fourth order terms include respectively 50 
% and 40 % of the total variance, even though there are 6 2nd order 
terms and only 4 3rd order terms. Overall, interactions between the 
hydrological model, the hydrometeorological dataset, and the objective 

function explain a large part (89.4 %) of the total variance in the average 
profit. Considering that the sources of the first order have little impact 
(10.2 %), leaving [ 89.4 % − 10.2 % = 79.2 % ] to the interaction terms 
of X1, X2 and X3, this suggests that these three elements of the hydro
logical forecasting chain are intricately intertwined and that the im
provements of the forecasting chain cannot target a single element.

The previous results can be further investigated by looking at the 
sum of the relative variance for each factor (i.e., each combination with 
the same element). As shown in Fig. 5c), when summing up the variance 
from each source in which the individual factors are involved, bias/ 
dispersion has a marginal influence (0.4 %), while the objective function 
plays a more important role (90.4 %) than the hydrological model (76.6 
%) and hydrometeorological dataset (61.3 %). This supports the findings 
from Fig. 5a) and 5b). It is to be noted that the sum is larger than 100 % 
because the interaction terms count multiple times in the various 
combinations.

3.4. Impacts of varying the reservoir storage capacity and MLC

To investigate if other characteristics of the hydropower system have 
an impact on the value of the elements of the hydrological forecasting 
chain, the volume of the reservoir was modified by +/- 50 % and results 
are shown in Fig. 6. It can be seen that the average profit increases with 
larger reservoir size, which is a trivial and expected result. However, it 
can also be seen that the relative performance of the different elements 
in each panel are similar, with the KGE-calibrated models performing 
better, and with the ERA5 dataset being more profitable. It is also 
interesting to note that as the reservoir size increases, the differences 
between boxplots of the same category (e.g. dataset, or objective func
tion) seem to become larger, as if the optimization model has more 
freedom to maximize performance and leverage better forecasts. It can 
also be seen that for the 50 % larger reservoir (Fig. 6c), the forecasts with 
the dry bias seem to generate fewer profits than the others, while it is the 
opposite for the smaller reservoir (Fig. 6a). The “original” reservoir 
shows no such impacts. This could explain the lack of importance of the 

Fig. 5. Relative sum of squares on average profit generated by each source at multiple energy buyout cost for: (a) the individual sources; (b) the first order sources 
(factors); and (c) for every source in which the factor is included. Each factor is named from X1 to X4: hydrological model (X1), hydrometeorological dataset (X2), 
objective function for calibration (X3), and bias/dispersion (X4).
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bias and dispersion on the variability of results. It is possible that the 
sizing of the reservoir makes the optimization robust to this metric.

Next, the impact of an MLC on generated profit was assessed by 

removing that constraint from the test bed. Fig. 7 presents the results for 
the two cases, with MLC activated (Fig. 7a) and deactivated (Fig. 7b). 
Results show that, as expected, the deactivation of MLC clearly increases 

Fig. 6. Relative profit obtained from the various combinations of forecasting chain factors according to reservoir storage capacity. The standard (original) volume is 
presented in the center (b) panel, whereas the reservoirs with 50% less and 50% more storage are presented in panels (a) and (c) respectively.

Fig. 7. Average profits from the hydropower system when Minimum Load Constraints (MLC) are activated (panel a) or deactivated (panel b).
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average profits as the system can easily optimize for hydropower gen
eration over long timespans instead of sacrificing long-term gains for 
short-term needs. There is also no penalty cost for missing the MLC 
constraints. These results must therefore be considered separately, 
looking at differences in behaviour between the two cases but without 
comparing them directly. It can be seen that the dry bias is slightly 
penalized without the MLC. This is expected since the MLC will still 
generate power given low forecasts to attain its goals, and then be 
“surprised” with extra water than anticipated during operation. The 
model without MLC will tubine less when drier forecasts are expected, 
thus leading to lower generation. It can also be seen that there is a larger 
spread in results within groups when MLC is deactivated. Again, this can 
be attributed to the fewer constraints that force the system to turbine 
given suboptimal circumstances when MLC is active. Without MLC, the 
optimization algorithm can make better use of the various forecast 
properties, which is reflected in the larger variance in average profits. 
This suggests that the degree of freedom of the algorithm is a factor in 
the value of the elements of the hydrological modelling chain.

3.5. Further investigations into the value of the bias and dispersion factor

The previous results suggest that the bias/dispersion factor has a 
marginal impact on the average profit with the standard (original) 
volume. This is not in agreement with Cassagnole et al. (2021) and 
Arsenault and Côté (2019), although the effects of bias were shown to be 
affected by reservoir storage capacity. It is plausible that these previous 
studies saw different results due to different ratios between inflows and 
reservoir sizes. However, for the catchment in this study, the low vari
ance of the bias/dispersion factor could be explained by the watershed’s 
properties and the optimization algorithm decision-making process. The 
LSJ is a large and relatively flat watershed characterized by a multi-day 
concentration time. Because of the lag between precipitation/snowmelt 
and the observed outflows, the ESPs generated for a watershed with a 
concentration time longer than the modelling time step tend to be 
composed of similar inflow members for the first few time steps (most 
generated ESP members have similar flows for the first two or three time 
steps). This makes the bias/dispersion irrelevant if the decisions are 
made on those time steps. To generate biased ESPs, Cassagnole et al. 
(2021) added noise to the observed inflow data at every time step, thus 
creating ESPs with diverging members on the first time step. Arsenault 
and Côté (2019) used the whole LSJ hydropower system, which includes 
four smaller size watersheds (1297 km2 to 11528 km2). In this case, the 
effect of bias on energy generation comes from the upstream power 
stations (not modelled and flows not considered in the present study) 
which are fed by watersheds with shorter concentration time. Further 
investigations are required to validate if the lack of spread between the 
ESP members in the first few time steps is responsible for the low impact 
of the bias/dispersion factor on variance. One possible pathway to 
explore is the optimization algorithms’ information weighting strategy 
in a context of reservoir management.

3.6. Results analysis with respect to the test bed conditions

The results in this study display certain characteristics that can be 
explained by the test bed conditions and could be used to better un
derstand the generalizability of the study results. First, the MLC condi
tions impose a strong constraint on the system, which must carefully 
balance energy generation for the current time step and the ability to 
generate energy at future time steps, knowing that purchasing energy is 
more costly than the sale of excess energy. This leads the optimization 
algorithm to generate just enough energy each day and preserving the 
rest for the future, unless large inflows are forecasted in the near future. 
This means that even though the forecasts are biased or over/under- 
dispersed, the overall trend in the forecasts is still dominated by all 
remaining ensemble members and these need to align with more 
extreme inflow conditions. The removal of the most extreme members 

from the ESP ensembles was also performed on a 28-member ensemble, 
meaning that removing a few members was probably not sufficient to 
alter the optimization algorithm’s decision under these circumstances. It 
is likely that removing a larger number of members would have modi
fied the results more significantly. However, without MLC, the model is 
more flexible and has more degrees of freedom to attempt to generate 
more profits, and is more aggressive (depending on the buyout cost), as 
described previously.

The fact that relative results (i.e. the order of importance of indi
vidual factors) were relatively stable when halving or doubling the 
reservoir size indicates that the results are likely generalizable to similar 
systems with similar hydroclimatological conditions, and under the 
same constraints. For hydropower systems with a single reservoir, as is 
the case in this study, it would seem that the optimization problem is 
relatively straightforward given the number of constraints and results 
would depend heavily on the interactions between the elements gener
ating the hydrological forecasts (i.e. all except the dispersion/bias 
levels).

3.7. Limitations

The main limitation of the study is the fact that only the hydrological 
forecasting chain is examined. Since the optimization algorithm can 
have a large impact on the profit-generating capacity of a hydropower 
system, future studies should encompass the whole hydropower reser
voir management chain including the decision-making algorithm.

Other limitations come from the test bench which is based on a 
simplified single watershed and a hydropower station system. Having a 
simplified system makes it difficult to generalize the findings to more 
complex, interdependent systems where the value of the various ele
ments of the forecasting chain could be different.

In this study, data assimilation is used to prevent the hydrological 
model’s state variables from going astray. This is not representative of 
real-world operations since typically hydrologists manually update 
model states using their expertise and knowledge of the watershed flow 
characteristics. The value of data assimilation into the modelling chain 
might be evaluated by using different data assimilation schemes.

Model calibration equifinality is a well-known problem in hydro
logical modelling that is partly addressed in the present work using 
calibration score degradation. To better assess the value of the calibra
tion score by taking the equifinality principle into account, multiple 
calibration parameter sets could be generated as well. However, this 
would have multiplied the required computing power linearly and 
would have required more than a few variants to fully explore the 
associated variability.

The computing power required to run distributed models has limited 
the framework of this study to lumped hydrological models. The vari
ance of distributed models could be investigated if computing power is 
available. Also, sub-daily time steps are not investigated, which could 
have an impact on hydropower systems fed by small and highly reactive 
watersheds. Different SA and PET routines are expected to have similar 
influence on the variance of generated profit; nevertheless, this can also 
be investigated in future studies. Finally, the findings of this study relate 
to a large-size watershed with a multi-day concentration time. The ESP 
members take multiple time steps to diverge, making the bias/dispersion 
irrelevant if the algorithm puts too much weight on the first time step 
when decision-making. Further investigations are necessary to validate 
if our findings can be generalized to smaller watersheds.

4. Conclusion

This study assessed the value of different elements of the hydrolog
ical forecasting chain through an analysis of the variance of the elements 
in profit generation. To do so, ESPs were generated by modifying four 
elements of the forecasting chain: the hydrological model, the hydro
meteorological dataset, the objective function for model calibration, and 
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the bias/dispersion. The ESPs were then used as inputs to a test bench 
simulating the Lac-Saint-Jean Reservoir, a single energy generation 
system optimizing decisions with a linear programming algorithm.

The variance between the average profit generated by the 225 sets of 
ESPs from the various combinations was analyzed to identify which 
potential element allows the overall profit to be maximized. Contrary to 
the findings of Cassagnole et al. (2021) and Arsenault and Côté (2019), 
there is little variance in average profit caused by the changes in bias and 
dispersion, both at the individual level and higher orders of interactions. 
It is hypothesized that this is due to the long-term climatological fore
casts that do not provide sufficient discrimination between members, as 
compared to short-term forecasts from climate models. It is also shown 
that the size of the reservoir can affect the impact of biases in forecasts. 
The variance of every source containing the bias and dispersion is low, 
including the highest order (four interactions). The bias and dispersion, 
at least for this climatology-based ESP forecasting system, do not lead to 
a significant improvement or degradation of the overall value of the 
hydrological modelling chain.

We show that the average profit generated by the combinations 
containing ERA5 as the hydrometeorological dataset yield better per
formance in terms of average profit compared to the other datasets; the 
combinations containing the KGE objective function also performed the 
best. This leads to the recommendation that water resources managers 
should test multiple datasets, models and objective functions for cali
bration for their operations, as there can be value in identifying the best 
options even for highly constrained optimization problems.

The modification of the reservoir capacity by ± 50 % gives similar 
results in terms of relative variance from the diverse sources; the same 
findings are obtained when comparing results with and without a min
imum load constraint. This suggests that the results can be generalized 
to systems with different reservoir sizes and energy production obliga
tions. However, only one type of optimization algorithm is analyzed and 
the lack of variance of the bias and dispersion on the average profit 
partly depends on the watershed size. Therefore, the results cannot be 
generalized to all optimization algorithms or sizes of watershed.

We recommend further investigations into the various elements 
composing the hydrological forecasting chain to determine, to which 
extent, the present results can be generalized. From the findings of this 
study, most elements of the hydrological forecasting chain need to be 
improved to increase the overall profits as no single element can achieve 
this on its own.
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J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D. & 
Thépaut, J-N., 2018. ERA5 hourly data on single levels from 1979 to present. 
Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 15 
Nov 2020), doi: 10.24381/cds.adbb2d47.

Hopkinson, R.F., et al., 2011. Impact of aligning climatological day on gridding daily 
maximum-minimum temperature and precipitation over Canada. J. Appl. Meteorol. 
Climatol. 50, 1654–1665. https://doi.org/10.1175/2011JAMC2684.1.

Hutchinson, M.F., et al., 2009. Development and testing of Canada-Wide Interpolated 
Spatial Models of Daily Minimum-Maximum Temperature and Precipitation for 
1961-2003. J. Appl. Meteorol. Climatol. 48, 725–741. https://doi.org/10.1175/ 
2008JAMC1979.1.

Mai, J., Arsenault, R., Tolson, B.A., Latraverse, M., Demeester, K., 2020. Application of 
parameter screening to derive optimal initial state adjustments for streamflow 
forecasting. Water Resources Research 56, e2020WR027960. https://doi.org/ 
10.1029/2020WR027960.
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