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ABSTRACT

Magnetoencephalography (MEG) is widely used for studying resting-state brain connectivity.
However, MEG source imaging is ill posed and has limited spatial resolution. This introduces
source-leakage issues, making it challenging to interpret MEG-derived connectivity in resting
states. To address this, we validated MEG-derived connectivity from 45 healthy participants using a
normative intracranial EEG ((EEG) atlas. The MEG inverse problem was solved using the wavelet-
maximum entropy on the mean method. We computed four connectivity metrics: amplitude
envelope correlation (AEC), orthogonalized AEC (OAEC), phase locking value (PLV), and
weighted-phase lag index (wPLI). We compared spatial correlation between MEG and iEEG
connectomes across standard canonical frequency bands. We found moderate spatial correlations
between MEG and iEEG connectomes for AEC and PLV. However, when considering metrics that
correct/remove zero-lag connectivity (OAEC/wPLI), the spatial correlation between MEG and iEEG
connectomes decreased. MEG exhibited higher zero-lag connectivity compared with iEEG. The
correlations between MEG and iEEG connectomes suggest that relevant connectivity patterns can
be recovered from MEG. However, since these correlations are moderate/low, MEG connectivity
results should be interpreted with caution. Metrics that correct for zero-lag connectivity show
decreased correlations, highlighting a trade-off; while MEG may capture more connectivity due to
source-leakage, removing zero-lag connectivity can eliminate true connections.

AUTHOR SUMMARY

The ill-posed nature and low spatial resolution of EEG/magnetoencephalography (MEG)
source imaging affects functional connectivity estimates, which become more complicated in
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Validating MEG estimated resting-state connectome with iEEG

Resting-state brain:

Brain activity at rest (awake; not
engaged in a specific task or external
stimuli).

Functional connectivity:

Temporal relationship (e.g.,
correlation) between distinct brain
regions measured using EEG/MEG,
fMRI, or intracranial EEG.

Source leakage:

The smearing of estimated brain
generators around the true generators
due to the volume conduction (EEG)
or field spread (MEG).

Source imaging:

The inverse problem allowing to
estimate brain generators from sensor
recordings (EEG/MEQ).

Network Neuroscience

the resting state due to the low signal-to-noise ratio. Several connectivity metrics have been
proposed to address source leakage by removing zero-lag connectivity, although this can
eliminate true neuronal zero-lag connections. Intracranial EEG (iEEG) is the gold standard for
validating noninvasive measurements. In this study, we validated MEG-estimated connectivity
for healthy subjects using the iEEG atlas of normal brain activity ( ) as
ground truth at a group level. We employed two amplitude-based metrics and two phase-
based metrics. Our findings highlight how MEG connectivity compares with the iEEG atlas and
provide valuable insights for resting-state EEG/MEG connectomic studies, particularly in the
choice of connectivity metrics.

INTRODUCTION

The study of brain connectomes is a rapidly growing field in neuroscience, which explores
both the structural and functional patterns of resting-state brain connectivity, whereas electro-
physiology plays a key role in disentangling static versus dynamic aspects of resting-state func-
tional connectivity ( ). Historically, MRI has been widely employed to
investigate brain connectomes, encompassing structural connectivity assessed through diffu-
sion MRI and functional connectome evaluated using functional MRI (fMRI). In contrast, the
utilization of electrophysiological methods, such as noninvasive EEG/magnetoencephalography
(MEG), in connectome research has experienced a notable surge in recent years. Due to their
high temporal resolution and accessibility, EEG/MEG-based connectome studies have been
undertaken to address a broad spectrum of questions in physiological and pathological con-
ditions ( ; ). However, the main limitation of EEG/MEG-based
connectome studies is that, as they involve scalp recordings and source localization, they
require solving an ill-posed inverse problem ( ) and are therefore susceptible
to source leakage. Source leakage, defined as the influence of a source on the estimation of
the generators within its neighborhood ( ; ), is a signif-
icant concern, particularly for resting-state activity due to its low signal-to-noise ratio (SNR)
condition. This affects the spatial accuracy of EEG/MEG estimated sources and introduces
false positives in connectivity measures. Additionally, the use of connectivity measures
that are insensitive to true near-zero-lag synchronization leads to false negatives (

; ). Validation is thus essential for noninvasive EEG/MEG
resting-state source imaging techniques to ensure appropriate interpretation of connec-
tome results.

Researchers have investigated EEG/MEG connectivity for resting-state activity, using simu-
lations to study source leakage ( ) or to assess the effect of source imaging
parameters or the choice of regions of interest (ROls) extraction on connectivity (

; ; ), or when comparing networks derived from
EEG/MEG sources with those from fMRI ( , ; ).
Recently, a few studies have compared whole-brain EEG connectomes with fMRI-derived ones
and found moderate spatial correlations between the two modalities in canonical frequency
bands ( , , ). However, because these modalities capture different
brain mechanisms, electrophysiology in EEG versus hemodynamic activity in fMRI, direct
comparisons are limited, particularly for specific frequency bands.

Compared with EEG/MEG, intracranial EEG (iEEG), commonly used in epilepsy presurgical
evaluation, offers highly accurate estimation of brain activity with excellent spatial and
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Amplitude envelope correlation
(AEQC):

A functional connectivity metric
measuring the correlation between
amplitude envelopes of two signals
from different brain regions.

Orthogonalized amplitude envelope
correlation (OAEC):

Modified AEC that addresses source
leakage by orthogonalizing signals
before calculating correlation.

Phase locking value (PLV):

A functional connectivity metric
calculating the stability of phase
difference between two signals over
time (or trials).

Weighted phase lag index (wWPLI):

A metric assessing the consistency of
phase lags between two signals,
weighted by signals’” amplitudes and
removing zero-lag connectivity.
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temporal resolution, including good SNR from deep structures. iEEG measurements are also

negligibly affected by volume conduction ( ; ).
However, it requires an invasive implantation procedure and has intrinsically limited spatial
coverage, targeting only suspected regions of abnormal epileptic activity ( ).

Simultaneously recording EEG/MEG and iEEG provides probably the most reliable validation
for noninvasive measurements ( ; ), as both modalities
capture the same brain activity at the same temporal scale. However, validating whole-brain
connectome estimates from EEG/MEG with iEEG is not feasible, as iEEG implantation covers
the brain only partially. Therefore, validation is limited to the implanted brain regions only (

).

In this context, the iEEG atlas of resting-state human activity developed by
at the Montreal Neurological Institute (MNI;

) offers a unique opportunity for validating whole-brain connectome
estimates from noninvasive EEG/MEG at the group level. This atlas pools data from many
patients with epilepsy monitored during presurgical evaluation, retaining only iEEG elec-
trodes implanted in healthy regions, that is, regions not exhibiting any epileptic discharges.
We have successfully used this atlas to validate how the power spectra of resting-state
oscillations could accurately be localized using MEG ( ). In this study,
we propose a similar methodology to validate the resting-state connectome estimated from
MEG within a group of healthy participants against the resting-state iEEG connectome
derived from the MNI iEEG atlas. To our knowledge, this is the first study to compare
cross-modal correlations between MEG and iEEG at a group level to validate MEG-derived
connectivity in widespread brain regions. Even though MEG and iEEG data were not
recorded simultaneously, they both represent connectivity of the healthy adult brain and
should ideally be strongly correlated.

MATERIALS AND METHODS
Experimental Design

The iEEG connectome was constructed from the MNI iEEG atlas (110 subjects) of resting-state
data ( ). For MEG, resting-state data were obtained from 45 healthy
subjects ( ). Wavelet-based maximum entropy on the mean (WMEM) was
applied to solve the MEG inverse problem ( ;

; ). MEG was reconstructed on subject-specific cortical surfaces and then
projected to the positions of iEEG electrodes specified in the MNI iEEG atlas, using a method
proposed by ; ).
Projecting the MEG source maps to the intracranial space facilitated a quantitative comparison
between MEG and iEEG ( ). MEG
connectomes were constructed using a bootstrapping approach described in

. Finally, we quantified the cross-
modal spatial correlations between these two connectomes for six frequency bands: delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), low gamma (30-55 Hz), and
high gamma (55-80 Hz). For each frequency band, the connectomes were constructed for four
connectivity metrics: amplitude envelope correlation (AEC), AEC after pairwise orthogonal-
ization (orthogonalized AEC [OAEC]; ), phase locking value (PLV), and a
modified version of weighted phase lag index (wPLI; ), keeping only phase
information ( ). We will denote the “MNI iEEG atlas” as the
“iIEEG atlas” for the remainder of the article.
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Ground Truth: iEEG Atlas

The iEEG atlas ( ) was developed from 110 patients (age: 31 + 10 years,
range: 13-62 years, male [M]: 54) with refractory epilepsy who underwent iEEG implantation
for presurgical epilepsy evaluation. The number of patients in the original paper was 106.
However, by the time we started our project, additional patient data had been added. The atlas
included electrodes in confirmed healthy brain regions, that is, channels that did not exhibit
any epileptic discharges. It comprises 1,712 channels in a bipolar configuration. Each of the
1,712 channels has 60 s of resting-state data, recorded with eyes closed (sampling rate:
200 Hz). Preprocessing of iEEG data included filtering within the 0.5- to 80-Hz band and
applying a notch filter at 50 Hz and 60 Hz to remove the line noise considering in which
center (North America or Europe) the data were acquired. iEEG data were downsampled to
200 Hz if the original sampling rate was higher (original sampling rates were 200, 256,
512, 1,000, 1,024, and 2,000 Hz). The 60-s data were selected visually (either continuous
or consecutive discontinuous >5-s segments after artifact exclusion; ).
The iEEG channels were grouped into 76 ROls based on the Medical Image Computing
and Computer-Assisted Intervention (MICCALI) atlas (38 ROls in each hemisphere;
). More details can be found in

Construction of iEEG connectome. To compute connectivity between two ROls in the iEEG atlas,
it is necessary to have at least one pair of channels connecting them in the same subject (con-
nectivity cannot be computed for pairs of ROIs recorded in different subjects). We identified all
pairs of ROIs that exhibited at least one pair of channels between them. All local connections
within the same ROI were discarded from further analysis. The number of channels between the
ROI pairs and the number of subjects contributing to each ROI pair varied. For instance, some
ROI pairs featured one or more pairs of channels from a single subject, while others could be
contributed by up to 10 subjects, each providing one or more pairs of channels. Therefore, the
average number of channels in all ROI pairs was 14 ranging from 1 to 217 channel pairs. For
each pair of channels (between ROlIs), connectivity was calculated using the four connectivity
metrics described in . The connectivity values for each ROI
pair were then averaged, irrespective of whether they belonged to the same or different subjects,
resulting in a single connectivity value per ROI pair. This process resulted in a connectome cov-
ering 44% of the whole connectome, consisting of 1,278 pairs of ROIs, involving 100% of the
MICCAL atlas (i.e., all 76 ROIs). Most connections were intrahemispheric, covering 62% of the
left hemispheric connectome, 59% of the right hemispheric connectome, and 28% of interhemi-
spheric connectome (see for more details).

MEG

This study included 57 healthy participants who underwent MEG acquisition (resting state,
with eyes closed), collected at the MEGLab of the Istituto di Ricovero e Cura a Carattere Scien-
tifico San Camillo Hospital in Venice, ltaly ( ). MEG was acquired using a
CTF-MEG system (VSM MedTech Systems Inc., Coquitlam, BC, Canada) with 275 axial gra-
diometers with a sampling rate of 1,200 Hz. MEG preprocessing was performed with Brain-
storm software ( ). Preprocessing of MEG data included (a) filtering within the
0.5- to 80-Hz band, (b) applying a notch filter at 50 Hz, (c) downsampling to 200 Hz, (d)
applying third-order spatial gradient noise correction, and (e) removing cardiac and eye move-
ment artifacts using the Signal Space Projection ( ) routine available
in Brainstorm. A 60-s segment was extracted for each subject, continuous or concatenated
(minimum length of the continuous segment: 10 s), where no artifact was visibly present,
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ensuring with an EEG expert that the subject was awake during this segment. Following data
preprocessing and sleep scoring, a total of 45 participants were ultimately included in the
analysis (age: 29 % 4 years, range: 20-38 years, M: 10). Notably, one participant was
excluded due to sleeping during the acquisition, while 11 were excluded for coregistration,
segmentation issues, or exceptionally noisy data.

Source space and forward model estimation. For each participant, a T1-weighted, 3D turbo field-
echo anatomical MRI was performed with a 3 T Ingenia CX Philips scanner (Philips Medical
Systems, Best, The Netherlands). FreeSurfer ( ) was used for subsequent brain
segmentation and reconstruction of the cortical surfaces. The coregistration of MEG sensors
with anatomical MRI and analysis for creating the source model and forward model were per-
formed in Brainstorm ( ). The cortical mesh of the middle layer (white/gray
matter interface), equidistant between the white matter and pial surfaces and comprising
approximately 300,000 vertices, was considered as the source space. Additionally, the two
hippocampi from the subcortical structures were included, each hippocampus consisting of
around 3,000-4,000 vertices depending on the subject’s anatomy. For the cortex and hippo-
campus, sources were placed on the surface of the structures with a fixed orientation orthog-
onal to the surface at each point. The cortical and hippocampal surfaces were then combined
as the source space and was downsampled to approximately 8,000 vertices. The forward
model was computed using OpenMEEG software ( ; )
implemented in Brainstorm. We used a three-layer Boundary Element model (BEM) consisting
of brain, skull, and scalp surfaces with conductivity values of 0.33, 0.0165, and 0.33 Sm™"' (
).

MEG source imaging using wWMEM. The MEG inverse problem was solved using the maximum
entropy on the mean (MEM) framework ( ), a Bayesian approach validated
in the context of EEG/MEG source imaging ( ). The key feature of MEM
is a spatial prior model, assuming that brain activity is organized within cortical parcels, where
the activity of every parcel is tuned by the probability of activation of a hidden state variable.
When the parcel is active, a Gaussian prior is assumed to model a priori the activity within
the parcel. Starting from such a prior “reference” distribution, inference is then obtained by
maximizing the relative entropy to the prior. MEM can either switch off or switch on the
corresponding parcels during the localization process while allowing local contrast along
the cortical surface within the active parcels. wMEM is a variant of the MEM method specif-
ically designed to localize brain oscillatory patterns ( ; ;

). WMEM applies a discrete wavelet transformation (Daubechies wavelets) to
characterize the oscillatory patterns in the data before applying the MEM solver for source

imaging ( ). WMEM was validated for localizing oscillatory patterns at seizure
onset ( ), interictal bursts of high-frequency oscillations (

; ), and MEG resting-state fluctuations ( ). We
proposed and implemented several changes in standard wMEM to localize specifically oscil-
latory patterns in the resting state (details in ), and evaluated the accuracy of
reconstructions with the MNI iEEG atlas. In the current study, we used the wMEM version
proposed by , adding the depth weighting parameter proposed and vali-
dated in to localize deep brain activity more accurately.

To estimate a noise-covariance model from resting-state data, we created a quasisynthetic
baseline from the signal of interest to compute the noise covariance by randomly shuffling the
Fourier phase at each frequency ( ). We employed a sliding window
approach (window length: 1 s) to generate the baseline, ensuring a more precise estimation of
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the noise covariance matrix for each wavelet sample across the time scales (
). WMEM implementation is available within the BEst plugin of Brainstorm software

( ).

Estimation of virtual iEEG data from the MEG source map. MEG measures current densities (in
nanoampere-meters) after source imaging, while iEEG records electrical potentials in micro-
volts. For a quantitative comparison, we converted MEG-reconstructed source maps into iEEG
channel space by estimating corresponding electrical potentials for each electrode channel on
the iEEG atlas ( ; ). This involved localizing iEEG chan-
nels in the native MRI of MEG healthy subjects, by co-registering each subject MRI with the
ICBM152 template using Minctracc ( ), and applying a linear and nonlinear
transformation to align electrode coordinates from the iEEG atlas to each subject’s anatomy.
More details about this projection can be found in the . For each
source map acquired from all 45 participants, we obtained MEG data converted into micro-
volts to the corresponding locations of 1,712 channels available in the iEEG atlas. This resulted
in a larger number of MEG channels compared with the iEEG atlas (1,712 channels in the iEEG
atlas vs. 1,712 x 45 channels in MEG). We used a bipolar montage for both iEEG and
MEG-converted virtual iEEG. In our comparison of MEG-estimated oscillations with the
iEEG atlas in , we used a common average montage and found similar
results for a bipolar montage. However, we used a bipolar montage for the connectivity
analysis as a common average montage can introduce spurious connections between
channels ( ; ).

Construction of reliable MEG connectomes using bootstrap resampling. We constructed 45 MEG
connectomes, retaining only the connections present in the iEEG connectome (see

). The key contrast between the iEEG connectome and MEG connec-
tomes is that the iEEG connectome can reflect contributions from multiple subjects, while each
MEG connectome represents contributions solely from one subject. To address this, we
employed a bootstrapping approach to develop an MEG connectome contributed by a group
of participants, similar to the one considered when using the iEEG atlas. The iEEG connectome
consists of connectivity metrics between channel pairs, obtained by pooling the contribution
from 110 patients. For example, consider two ROIs—the hippocampus and angular gyrus,
including four iEEG pairs of electrodes: The first and fourth connection pairs were obtained
from one subject (iIEEG_subject-1), while the second was obtained from iEEG_subject-2 and
the third one from iEEG_subject-3. On the other hand, in each of 45 MEG connectomes, all
connections would originate from a single subject. To create an MEG connectome mimicking
the one obtained when using the iEEG atlas, we randomly select MEG subjects to contribute
connection pairs between these two ROIs (hippocampus and angular gyrus). For instance, the
first and fourth connection pairs came from one randomly selected MEG subject (e.g., MEG_
subject-40), while the second and third connections were sampled from two other randomly
selected MEG subjects (e.g., MEG_subject-8 and MEG_subject-1). As illustrated in ,
this process was repeated for all ROI pairs to generate a bootstrap resampled MEG connec-
tome, mimicking the same subject group distribution as our original iEEG connectome. This
overall process was repeated 5,000 times and resulted in 5,000 bootstrap resampled MEG
connectomes ( ).

Cross-Modal Correlation

We computed the spatial Pearson correlation between the original iEEG connectome and the
5,000 bootstrap resampled MEG connectomes. As a result, we obtained 5,000 Pearson
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Figure 1. The iEEG connectome consists of connectivity metrics between pairs of channels, obtained from a total of 110 patients. In each of
45 MEG connectomes, all connections originated from a single subject. To generate a new MEG connectome comparable with the original
iEEG connectome, MEG subjects were randomly chosen to contribute connections between ROIs while preserving spatial information. This
process was repeated for all ROI pairs, resulting in a bootstrap-resampled MEG connectome, mimicking the same subjects’ group distribution
as our original iEEG connectome. The spatial Pearson correlation between the original iEEG connectome and the bootstrap-resampled MEG
connectome was computed. This overall process was iterated 5,000 times, yielding 5,000 correlation values.

Zero-lag connectivity:
Synchronization between brain
regions without any time delay,
caused by true neuronal activity or
source leakage.

Network Neuroscience

correlation values, representing the spatial cross-modal correlation between iEEG and MEG
data. To statistically assess the significance of cross-modal correlations, we also generated
5,000 cross-modal correlation values to build an empirical null distribution. To do so, for each
iteration, we permuted randomly the anatomical labels of the channel pairs in the boot-
strapped MEG connectomes, therefore effectively destroying the underlying spatial correlation
structure. Then, we calculated the Pearson correlation between the iEEG connectome and the
spatially permuted MEG connectomes, creating an empirical null distribution from those
5,000 correlation values. We defined a range for the null distribution, known as the region
of practical equivalence, which included 95% of the distribution centered around the median
of the null. A cross-modal (MEG connectome-iEEG connectome) correlation was considered
significant if less than 2.5% of the actual distribution lay inside the null range (equivalent to a
5% two-tailed threshold, with 2.5% in each tail).

Estimation of Connectivity Metrics

For analyzing electrophysiological data, various connectivity metrics are available, mainly
classified into two categories: amplitude-based and phase-based metrics. In this study, we
employed a widely used amplitude-based metric—the AEC (Brookes et al., 2011b) and a
phase-based metric, the PLV (Mormann et al., 2000). Additionally, we utilized two metrics that
correct/remove zero-lag connectivity: OAEC (Hipp et al., 2012) and a modified version of the
wPLI (Vinck et al., 2011), which was modified to consider only the phase information.

Let us consider two signals X and Y. To obtain their corresponding amplitude envelope and
instantaneous phases, we computed the Hilbert transform for the entire 60-s signals. The
Hilbert transform was initially calculated for each 0.5-Hz frequency band and then averaged
to obtain one transform for six canonical frequency bands (delta [0.5-4 Hz], theta [4-8 Hz],
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alpha [8-13 Hz], beta [13-30 Hz], low gamma [30-55 Hz], and high gamma [55-80 Hz];
).

Xgpr and Ygppy (BP stands for bandpass and H stands for Hilbert) are the Hilbert analytical
signals of each narrow frequency band for signals X and Y, described as Xgpi(t) = | Xgp (8]
O = Ax(DE®X () and Ygp(t) = | Yap(D1€®(H) = A (1), respectively. Here, Ax() and
AW1) denote the instantaneous amplitude of Xgp(f) and Ygp (D), @x(t) and ¢y(f) denote the
instantaneous phase of Xgp(t) and Ygp (1), respectively. We considered the whole 60-s dataset
to estimate AEC and OAEC. For PLV and wPLI, we used 6-s epochs and averaged the connec-
tivity over the epochs.

AEC. AEC between two signals, X and Y, is obtained by computing the Pearson correlation
between the envelopes of Xgpy and Ygep. ( ).

S (Ax(t) = Ax) (Ay(t) — Av)

AEC = — =
VL (A — A0 SL, (Av() - AY)

. M

where T is the length of the signal (we considered 60-s at 200-Hz sampling, T = 12,000

samples) and Axand Ay are the mean values of Ax(D) and A1), respectively.

OAEC. OAEC was proposed by following a pairwise orthogonalization
between two signals.

. Xep.H™

YLX = Imag(YBP‘H |)(BP’H‘> (2)
BP,H
. Yep.H*

XLy = imag (XBP.H %) 3)
BP,H

Here, * means complex conjugate and imag means the imaginary part of the complex
number.

We calculated the Pearson correlation between the envelopes of Xgpy and Y, x. Similarly,
the correlation between the envelopes of Yge and X, yis calculated and then the average of
these two correlation values is considered as the final OAEC value.

PLV. PLV was originally proposed in in the context of evoked activity
considering a stable phase difference along trials. We calculated PLV for each epoch of 6 s
using an extended definition of PLV (Equation 3), a version proposed by

in the context of resting-state data, by assessing phase locking as a stable phase differ-
ence over time:

PLVxy :lT‘Z; exp(j(ex(t) = ey(1)))], @

where T is the length of the signal (we considered 6-s epochs at 200-Hz sampling, T= 1,200
samples); j denotes the imaginary unit; and @x(f) and (1) are, respectively, the corresponding
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instantaneous phases of signals X and Y at time point t. We implemented PLV following the
derivation proposed by as:

*

1 . .
PLVyy = T ‘Z; XspH(t) - (Yern(t))

; (5)

; — Xepu(t) y _ Yepu(t)
where XBP,H(t) = |XBP,H(t>| and YBP,H(t) = —| YBPH({)|.

Finally, we averaged the PLV values across all the epochs.

Modified Weighted Phase Locking Index (wPLI*). The original formula of wPLI is proposed by

wt1 = IS AOAYDSin(ex (D) = oy (D) o

i1 [AX (DAY (1) sin(ex (1) = @y (1))

If we consider that the amplitudes of the channels in a particular frequency band are stable

in time and not involved in the coupling of the channels, the coupling will be strictly described

by the phase synchronization and driven by the constant phase shift. Under this assumption,
the modified version of wPLI becomes:

wir = | Sk sinfex(®) = ev(0)
Dot Isin(ex(t) = @y (1))]

) )

where T is the length of the signal (we considered 6-s epochs at 200-Hz sampling, T = 1,200
samples). We averaged the wPL/* values across all the epochs.

The results obtained when considering the original wPLI formula are also provided in the

RESULTS
Connectivity Estimated by MEG Versus iEEG

shows the distribution of connectivity values estimated by MEG and iEEG for four
connectivity metrics over the whole available iEEG connectome. Here, we used all the original
MEG connectomes estimated from 45 subjects, not the resampled MEG connectome as
described in . In this
figure, iEEG connectivities were averaged across six frequency bands and MEG connectivities
were averaged across 45 subjects and six frequency bands. Each boxplot shows 1,278 con-
nectivity values (from 1,278 ROI pairs) for iEEG and MEG.

This figure provides a general overview of the scale of connectivity values one could expect
from MEG versus iEEG connectomes. We found large differences in AEC and PLV connectivity
values estimated from MEG when compared with iEEG, given that those two metrics are sen-
sitive to volume conduction leakage. For OAEC and wPLI*, which removed zero-lag connec-
tivity, MEG and iEEG connectivity values were found within a more similar range, but both
were very low. We will investigate those connectivity values as a function of the distance
between two ROlIs in
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Figure 2. Connectivity averaged across frequency bands estimated by MEG and iEEG calculated
using (A) AEC, (B) OAEC, (C) PLV, and (D) wPLI*. For iEEG, we considered all 1,278 iEEG ROI pairs
available from all patients of the iEEG atlas and showed the averaged connectivity across six fre-
quency bands. For MEG, we considered 1,278 virtual iEEG ROI pairs from each of the 45 subjects
and showed the averaged connectivity across 45 subjects and six frequency bands. The median
value of each distribution is displayed.

Cross-Modal Spatial Correlation: AEC and OAEC

After considering 5,000 bootstrap resampled MEG connectomes mimicking the same
spatial/population distribution as our original iEEG connectome, presents the results
of cross-modal spatial correlations between MEG and iEEG connectomes for six frequency
bands calculated from AEC and OAEC, when compared with null distributions obtained by
spatial permutation of the ROI pairs. The differences between the cross-modal correlations
and the null distributions were as follows: For AEC: §: 0.29 + 0.03, 6: 0.30 + 0.03, a:
0.29 = 0.03, B: 0.38 £ 0.02, low y: 0.27 + 0.02, and high y: 0.29 = 0.02 (values reported as
median + median absolute deviation). For OAEC: §: 0.06 = 0.03, 6: 0.11 £ 0.03, a: 0.15 = 0.03,
B:0.26 = 0.03, low y: 0.07 = 0.03, and high y: 0.11 + 0.03.

displays the median value of the distribution for each cross-modal correlation and
highlights correlations that were significantly larger than null. Unless specified otherwise, the
correlation was considered significant if its overlap with the null range was less than 2.5%
(equivalent to a 5% two-tailed threshold, with 2.5% in each tail). When considering the AEC
metric, MEG-estimated connectomes were moderately correlated with iEEG connectomes across
all frequency bands (~0.25-0.37), with the highest correlation observed in the beta band (0.37).
When considering the OAEC metric, the median of the cross-modal correlations decreased com-
pared with AEC, but they remained significantly higher than the null distribution in the alpha,
beta, and high gamma bands, with the highest correlation still observed in the beta band (0.26).

further presents intrahemispheric and interhemispheric connections, alongside all
available connections. Similarly to , intrahemispheric connectomes estimated from MEG
using AEC were moderately correlated to those from iEEG across all frequency bands (significantly
higher than the null distribution). Interhemispheric cross-modal correlations were significantly
higher than the null distribution in all bands except alpha. For OAEC, inter- and intrahemispheric
correlations decreased compared with AEC in all frequency bands ( ). Intrahemispheric
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Figure 3. (A) Distribution of cross-modal correlations as well as the null distribution (red) between MEG and iEEG for six frequency bands
calculated for AEC (blue) and OAEC (green). (B) The medians of the distribution of cross-modal correlations are shown in the bar plot. The
correlation was considered significant if its overlap with the null range was less than 2.5% (equivalent to a 5% two-tailed threshold, with 2.5%
in each tail). The frequency bands that showed significantly higher correlations than the null distribution are marked with an asterisk (*).

MEG-IEEG cross-modal correlation

Figure 4. The median of the distribution of cross-modal correlations is depicted, considering all connections, intrahemispheric connections,
and interhemispheric connections for (A) AEC and (B) OAEC. The correlation was considered significant if its overlap with the null range was
less than 2.5% (equivalent to a 5% two-tailed threshold, with 2.5% in each tail). Frequency bands with significantly higher correlations than
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correlations were significantly higher than the null distribution for the beta band, whereas
interhemispheric correlations were not found statistically significant in any band.

To assess the reliability of our findings, we conducted a supplementary investigation using a
bootstrap resampling strategy to generate the iEEG connectomes. We divided the 60 s of iEEG
data into ten 6-s segments and performed bootstrapping with replacement 100 times (similarly to
the approach we proposed in Aydin et al., 2020). More details are provided in Supporting Infor-
mation S2. The spatial correlations between MEG and iEEG for AEC and OAEC, computed from
the 100 bootstrapped iEEG datasets, are shown in Supporting Information Figure S2. The patterns
for AEC and OAEC were similar to those shown in Figure 3B, suggesting robustness of our findings.

Cross-Modal Spatial Correlation: PLV and wPLI*

Figure 5A presents the cross-modal correlation between MEG and iEEG connectomes, depicted
for six frequency bands, using the connectivity metrics PLVand wPLI*. PLV exhibited moderate
cross-modal spatial correlation across all frequency bands, with the highest correlation in the
beta band. The differences between the cross-modal correlation and the null distribution for
all frequency bands were as follows: §: 0.29 £ 0.03, 8: 0.34 £ 0.03, : 0.25 = 0.04, 3: 0.36 =
0.03, low y: 0.31 £ 0.03, and high y: 0.34 + 0.03. For wPL[*, these differences were: §: 0.14 +
0.03,6:0.2 £0.03, @:0.13 £ 0.04, 8:0.15 £ 0.03, low y: 0.12 = 0.03, and high y:0.25 + 0.03.

In Figure 5B, the median values of each cross-modal correlation distribution are presented
as a bar plot for both PLV and wPLI*, highlighting correlations significantly larger than the
empirical null distribution. For PLV, MEG-estimated connectomes were moderately correlated
to iEEG connectomes across all frequency bands (~0.3). With wPL¥, the median of cross-
modal correlations decreased compared with PLV, but remained significantly higher than
the null distribution for all frequency bands.

A)  Cross-modal correlation between MEG and iEEG connectomes for PLV and wPLI*
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Figure 5. Distribution of cross-modal correlations and the null distribution (red) between MEG and iEEG for six frequency bands calculated
for PLV (blue) and wPLI* (green). (A) The medians of the distribution of cross-modal correlations were shown as a bar plot. (B) The correlation
was considered significant if its overlap with the null range was less than 2.5% (equivalent to a 5% two-tailed threshold, with 2.5% in each
tail). The frequency bands that showed significantly higher correlations than the null distribution were marked with an asterisk (*).
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The spatial correlations between MEG and iEEG for intra- and interhemispheric connec-
tomes for PLV and wPLI* are presented in Supporting Information Figure S3. For PLV, signifi-
cant cross-modal correlations were observed for both intrahemispheric connectomes in all
frequency bands. Interhemispheric correlations were statistically significant in all frequency
bands except alpha. Interestingly for wPLI*, the interhemispheric correlations were statistically
significantly higher than the null distribution in all frequency bands, whereas the left hemi-
spheric correlations were not significantly higher than null in any band. Moreover, the right
hemispheric correlations were found higher than the left hemispheric correlations in all fre-
quency bands. To further investigate this surprising result, we also evaluated the raw wPL/*
separately for iEEG and MEG for left-hemispheric versus right-hemispheric connectomes,
and the distributions of wPL* did not show such laterality differences.

To assess if the left versus right and interhemispheric asymmetry found by wPLI* could be
influenced by the choice of the source imaging method (WMEM), we also repeated this anal-
ysis using another standard source imaging method, the minimum norm estimate (Hamaldinen
& llmoniemi, 1994). We found a similar trend, that is, the interhemispheric correlations were
higher than the left/right hemispheric correlations and the right hemispheric correlations were
higher than the left hemispheric correlations (result not shown). In Supporting Information
Figure S4, we also provided the correlations between MEG and iEEG for intra- and interhemi-
spheric connectomes for wPLI, calculated using the original definition, which also included
envelope amplitudes, as described in Equation 7. Using this implementation, the resulting cor-
relations were overall very low and not statistically significant in any frequency bands.

Cross-Modal Spatial Correlation for Superficial Versus Deep Sources

In Figure 6, we investigated the cross-modal correlations between MEG and iEEG for superfi-
cial and deep ROI pairs. For each iEEG channel, we measured the eccentricity, defined as the

Cross-modal correlations between MEG and iEEG for superficial and deep sources
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Figure 6. (A) Eccentricity of iEEG channels shown on the brain cortex with 80% transparency to ensure all deep iEEG channels are visible. (B)
Distribution of the distances between ROI pairs for all pairs exhibiting either an eccentricity >85 mm (top) or <85 mm (bottom). The cross-
modal correlation between MEG and iEEG for two groups (both eccentricity values >85 mm in blue and both eccentricity values <85 mm in
red) for AEC (C), OAEC (D), PLV (E), and wPLI* (F). The correlation was considered significant if its overlap with the null range was less than
2.5% (equivalent to a 5% two-tailed threshold, with 2.5% in each tail). The frequency bands that showed significantly higher correlations than
the null distribution were shown with an *.
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distance between the channel location and the center of the head. Deep channels have there-
fore low eccentricity, and superficial channels have high eccentricity. shows the
distribution of eccentricity values for all the channels, using 80% transparency of the cortical
mesh so that all channels are visible in the figure. A threshold of 85-mm eccentricity was
selected to classify the channels into superficial and deep channels. We used this threshold
of 85 mm to have a similar number of ROI pairs in superficial versus deep connectomes. The
distributions of the distance between ROI pairs for two groups (eccentricity >85 mm for both
ROls of the pair and eccentricity < 85 mm for both ROIs of the pair) are shown in

The cross-modal correlations between MEG and iEEG connectomes for these two groups are
depicted for the six frequency bands for AEC, OAEC, PLV, and wPLI* ( ). For AEC
and PLV, the cross-modal correlations were significantly higher than the null distribution for all
frequency bands for both groups. However, the cross-modal correlations for deep ROI pairs
had a trend of decrease when compared with superficial ROI pairs for delta, theta, alpha, and
beta bands. For OAEC, the cross-modal correlations were significantly higher than the null
distribution in the beta band for both superficial and deep ROI pairs. On the other hand,
the correlation for deep ROI pairs in the alpha band was found significantly higher than null,
whereas the correlation for superficial ROI pairs did not reach the significant threshold. Inter-
estingly for wPL[¥, the correlations for superficial ROI pairs were significantly higher than the
null distribution for all frequency bands except low gamma, whereas the correlations for deep
ROI pairs were very low and did not reach the significant threshold in any frequency band.

Connectivity as a Function of Distance Between Two ROIs

In this section, we investigated raw connectivity values from iEEG and MEG. shows
the AEC and OAEC values as a function of the distance between two ROlIs for iEEG and MEG for
beta band results. For MEG, the connectivity values were averaged over 45 subjects. As
expected, both AEC and OAEC decreased as a function of distance between the two ROIls. How-
ever, for AEC, MEG connectivity values were greater than iEEG. After orthogonalization, both
MEG and iEEG connectivity values decreased, but the decrease in MEG was higher than iEEG,
which was quantified and plotted in . The AEC and OAEC for all frequency bands are
presented in . Across all frequency bands, the reduction in
MEG connectivity following orthogonalization exceeded that of iEEG (see

). The raw PLV and wPL[* values as a function of distance between ROls for all

frequency bands are presented in . Similar to AEC and OAEC,
A) AEC and OAEC as a function of distance B) Decrease in connectivity after leakage
between two ROIs ( band) correction (B band)
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Figure 7. (A) AEC and OAEC as a function of distance between two ROls plotted for iEEG and

MEG in the beta band. (B) The distribution of differences between OAEC and AEC (OAEC minus
AEC) for MEG and iEEG.
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PLValso decreased as a function of the distance between two ROIs for both MEG and iEEG. PLV
estimated by MEG were greater than iEEG. However for wPLF¥, the relationship of the values as a
function of the distance between ROI pairs is not as clear as found for other metrics.

Cross-Modal Spatial Correlation and the Number of Subjects Averaged in ROI Pairs

In previous results, we actually estimated the iEEG connectomes (real or virtual) by averaging
all possible pairs of channels between each ROI pair ( ). The
results shown so far were produced using this criterion: at least one pair of channels connect-
ing the ROI pair, which resulted in a connectome containing 1,278 ROI pairs (out of 2,888
possible ROI pairs, resulting in 44% coverage of the whole connectome). To assess the effect
of the number of subjects having an ROI pair, we further investigated the cross-modal spatial
correlations between MEG and iEEG connectomes while increasing the minimum number of
subjects to be averaged for each ROI pair. However, increasing the minimum number of sub-
jects in each ROI pair limits the coverage of the iEEG connectome we could consider (some
ROI pairs have only one subject, some have two, etc.).

shows the cross-modal correlations for AEC and OAEC in the beta band as an
example. On the y-axis, we show the minimum number of subjects on the left and the per-
centage coverage of the whole connectome on the right. The cross-modal correlations
between MEG and iEEG increased as the minimum number of subjects included in each
ROI pair increased. The lowest value of the minimum number of patients (= 1) means includ-
ing all possible ROI pairs, thus maximizing the connectome coverage. Using a minimum num-
ber of patients of one provided 1,278 ROI pairs, covering 44% of the whole connectome.
Increasing the minimum number of patients in each ROI pair to two, three, four, and five
decreased the connectome coverage to 20%, 10%, 6%, and 3% of the whole connectome,
respectively. We did not show results for a minimum number of patients greater than five, as
the coverage of the connectome decreases to less than 1%.

Cross-modal correlation when number of subject averaged in each ROI pair increases
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Figure 8. Distribution of cross-modal spatial correlations between MEG and iEEG connectomes in
the beta band obtained using AEC and OAEC (obtained from 5,000 bootstrap MEG samples), as we
increase the minimum number of subjects from one to five in each ROI pair. Increasing the mini-
mum number of subjects in each ROI pair (as shown on the left) decreases the available coverage of
the iEEG connectome from 44% to 3% (as shown on the right). For example, the bottom row dis-
plays histograms of the correlations between MEG and iEEG connectomes when the iEEG connec-
tome was created with ROI pairs that include at least one patient, covering 44% of the connectome.
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The cross-modal correlations for six frequency bands as we increased the minimum number
of subjects in each ROI pair are shown in . A similar trend of
increased cross-modal correlation was found for AEC and OAEC in delta, theta, alpha, beta,
and low gamma bands.

In , the cross-modal correlations obtained using PLV and
wPLFF are shown for all six frequency bands as we increased the minimum number of subjects
in each ROI pair. For all frequency bands, the cross-modal correlations for PLV increased as the
minimum number of subjects in each ROI pair increased. However, for wPLI*, we did not find the
trend of increasing cross-modal correlation as we increased the minimum number of subjects.

DISCUSSION

Our objective was to validate the ability of MEG to estimate resting-state connectomes for
healthy subjects by comparing them with an iEEG atlas. To compare the two modalities in
the same space, we converted MEG sources into virtual iEEG potentials (

; ). As opposed to estimating virtual channels using beamforming

approaches ( ), our strategy is to combine an MEG source imaging method
that was evaluated for its ability to localize accurately resting-state MEG data and notably
oscillations, the wMEM ( ), followed by applying an iEEG forward problem

to estimate virtual iEEG potentials in microvolts that correspond to our MEG sources (

; ). This offers a solid quantification approach to compare MEG
sources (estimated by solving an inverse problem) with actual iEEG in situ recordings. Conse-
quently, the two modalities were associated with different distributions of available data when
estimating connectomes. For MEG, we were able to estimate 45 connectomes, each coming
from one subject and providing virtual iEEG data on all channels of the iEEG atlas. Thus, each
connectome was contributed by the same subject. In contrast, when considering the multicen-
tric iEEG atlas, we were able to estimate one iEEG connectome, which was obtained by pool-
ing data from 110 subjects, each subject contributing to a subset of the connectome. To
address the discrepancy between MEG and iEEG data distribution when estimating connec-
tomes, we proposed a bootstrap resampling approach to create an MEG connectome spa-
tially sampled in the same way as the iEEG connectome, such that each bootstrapped MEG
connectome was built by pooling data in a similar way of constructing iEEG connectome.

Spatial cross-modal correlations between MEG and iEEG ranging from ~0.25 to 0.38 were
observed for AEC and PLV. As expected, we found that considering OAEC or wPLI*, as metrics
that correct/remove zero-lag connectivity, led to a reduction in cross-modal correlations. This
highlights the trade-off: While MEG may exhibit more connectivity due to source leakage,
removing zero-lag connectivity also eliminates genuine connections, thereby decreasing over-
all cross-modal correlation. These results are also supported by the fact that even for the orig-
inal iEEG, we found a small decrease in connectivity when removing zero-lag connectivity.
This suggests that the observed connectivity is more likely to be genuine time-locked zero

phase connectivity (see ), as iEEG, being local in situ measurements, are less sensitive
to source leakage and volume conduction ( ). These findings are
consistent with prior studies ( ; ) that were conducted

using simulations. In addition, there was a general trend of higher cross-modal spatial corre-
lations between MEG and iEEG for superficial ROl pairs compared with deep ROI pairs, with a
few exceptions. The decrease in correlations for deep ROI pairs was more prominent in phase-
based metrics compared with amplitude-based metrics. The differences in cross-modal corre-
lations for amplitude- and phase-based metrics also highlight that those metrics are capturing
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distinct information, more likely supported by different underlying mechanisms (

).

Moreover, to the best of our knowledge, our study is the first to quantify the extent of over-
estimation of MEG connectivity when compared with ground truth iEEG data, at the popula-
tion level. This overestimation was consistently observed across all frequency bands. This is
also the first study to quantify and compare MEG and iEEG connectomes. For both MEG and
iEEG, AEC and PLV values decreased with increasing distance between two ROls, consistent
with previous studies with animal electrophysiology ( ) and human iEEG
( ). The decrease in connectivity with increasing distance between regions
was also found for OAEC, but not much for wPLI* for which we mainly found very small
connectivity values on those resting-state data.

Moderate Correlations Between MEG and iEEG Connectome

The cross-modal correlations between MEG and iEEG connectomes for different metrics across
all frequency bands were generally moderate to low (~0.12 to 0.37 for all connections, when
statistically significant). It is however important to note that we did not expect very high cor-
relations between these two modalities due to several factors contributing to the differences,
such as: (a) nonsimultaneous data from two different groups; (b) different subjects contributing
to the single iEEG connectome versus each of the 45 participants contributing to the MEG
connectome (45 MEG connectomes), although we attempted to address this by adopting a
bootstrap resampling approach; and (c) different levels of averaging for different ROI pairs
(ranging between 1 and 217 channel pairs). Considering these variabilities, the cross-modal
correlations found between MEG and iEEG suggest that we can recover some relevant con-
nectivity patterns from MEG. However, since these correlations are moderate to low and vary
across different metrics, the choice of metrics is important and the results of MEG connectivity
should be interpreted with caution.

For connectivity metrics that do not remove zero-lag connectivity (AEC/PLV), moderate but
significant cross-modal correlations (~0.25 to 0.45) between MEG and iEEG were found in all
frequency bands. For connectivity metrics that corrected/removed the zero-lag connectivity,
the cross-modal correlations decreased. When compared with the empirical null distribution
of cross-modal correlation, the resulting correlations were found significant in alpha and beta
bands for OAEC. For wPLI*, although the correlations were low (~0.15 to 0.25), they were
statistically significant in all frequency bands. Overall, we observed the highest cross-modal
correlation in the beta band for AEC, OAEC, and PLV.

Previous studies suggested that intrinsic networks estimated by MEG show the strongest
correlation with fMRI-derived networks in the alpha and beta bands estimated by AEC
( ). They proposed that the frequency of the amplitude envelope in these
bands might better match slower fMRI signal fluctuations. Similarly,
estimated the cross-modal correlation between simultaneous fMRI and EEG connectome
generated using imaginary coherence ( ) and reported similar cross-modal
correlations as those we obtained (~0.29 to 0.36), with the highest correlations also found in
the beta band. They found consistent results with multiple datasets using imaginary coherence
( , ) and across different MRI systems using AEC/OAEC and imaginary
coherence ( ). In , the cross-modal correlations
between fMRI and EEG connectivity using OAEC were lower compared with AEC, which is
consistent with our findings.
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In contrast to the studies mentioned above, where two modalities were compared across
various frequency bands, adopted a different approach to compare fMRI
and MEG-derived connectivity using OAEC. They illustrated that MEG oscillations across mul-
tiple bands might combine to give rise to the fMRI functional networks. They reported that
while all frequency bands contribute to forming fMRI networks, beta band connectivity made
the largest contribution, followed by theta and alpha connectivity. This was consistent with
previous studies ( ; ; ) sug-
gesting that the frequency of the slower oscillation (i.e., extracted from the envelope of the
alpha/beta oscillations) would be more similar to the fMRI fluctuations.

Unlike those studies, which compared hemodynamic correlations measured with fMRI with
EEG/MEG connectivities, known to capture different brain mechanisms at varying time scales,
we aimed to compare two modalities, iEEG and MEG, capturing essentially the same brain
dynamics at the same time scale. For this reason, it is surprising that the cross-modal correla-
tions between MEG and iEEG were in a similar range as, and not higher than those observed,
in studies comparing fMRI with EEG/MEG. The reasons for the frequency-specific, cross-modal
similarities, as well as why correlations in the beta band were higher than in other bands,
remain unclear and pose important questions for future studies.

However, it is interesting to observe higher cross-modal correlations between MEG and
iEEG for AEC, OAEC, and PLV when we increase the number of subjects to average in each
ROI pair to construct the connectome, but at the cost of reducing overall connectome cover-
age. For instance, when we ensured at least three subjects in each ROI pair to construct the
connectome, the cross-modal correlations between MEG and iEEG for AEC, PLV, and OAEC
were 0.6, 0.6, and 0.45 ( , and S9), respectively,
compared with 0.37, 0.36, and 0.26 ( and 5), values found when we used at least
one subject for each ROI pair. However, even if we found larger cross-modal correlations
when averaging more subjects, we could hardly consider this a comprehensive connectome
because it covered only 10% of the entire connectome. Thus, we chose to use at least one
subject to create the connectome, which maximized connectome coverage (44%). More sur-
prisingly, wPLI* did not follow this trend.

Increasing the minimum number of subjects to create the connectome likely removes noisy
connections contributed by single subjects. In another study using simultaneous EEG-fMRI
( ), the authors compared cross-modal correlations between EEG and fMRI.
Although the data were simultaneous, the cross-modal correlation between EEG and fMRI for
individual subjects was very low across all frequency bands. They found moderate cross-
modal correlations (~0.3 to 0.4) when averaging at least 712 subjects. This finding is inter-
esting, and we expect that cross-modal correlations between MEG and iEEG connectomes
could similarly benefit from averaging more subjects to reduce noisy connections. However,
drawing such conclusions from our iEEG data is challenging, as increasing the number of sub-
jects in each ROI pair drastically decreases the coverage of the iEEG connectome. We would
require more subjects in the iEEG atlas to fully assess this. Nevertheless, our results suggest that
cross-modal correlations between MEG and iEEG connectomes may increase when the iEEG
connectome includes more subjects in each ROI pair.

Compromise Between Removing Spurious Connectivity and Genuine Zero-Lag Connectivity

The issue of source leakage or volume conduction in EEG/MEG connectivity, as well as the
search for the best connectivity metric, has been a topic of discussion for the past few years.
Several studies reported the source leakage issue involved with EEG/MEG-derived
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connectivity and recommended to use connectivity metrics that remove zero-lag connections
for obtaining interpretable results ( ; ;

). investigated the test-retest reliability of MEG resting-state func-
tional connectivity for PLV, PLI, AEC, and OAEC by evaluating the within- and between-
subject variability using the intraclass correlation coefficient. They found higher reliability
for PLVacross theta to gamma bands and for OAEC and AEC in the beta band. They suggested
that volume conduction effects could contribute to high reliability for PLVand AEC.

compared resting-state EEG/MEG connectomes with fMRI-derived connectomes
and reported significant correlations (but very low) between EEG/MEG connectomes and fMRI
connectomes for AEC and PLV, whereas metrics that remove zero-lag connectivity exhibited
no significant spatial cross-modal correlations. proposed a computational
model and structural data from diffusion MRI tractography to simulate functional connectivity
in the alpha band and compared it with empirical EEG functional connectivity for six con-
nectivity metrics. They found high correlations between simulated and empirical functional
connectivity for PLVand coherence (~0.6), whereas the other metrics that remove zero-lag con-
nectivity including PLI and wPLI exhibited low correlations (~0.18). While they did not rule out
the possibility that the high correlation found for PLV and coherence could be influenced by
volume conduction, they questioned the use of metrics that remove zero-lag connectivity,
as they might eliminate genuine neural synchrony mainly driven by the underlying anatomical
structure.

Unlike previous studies that attempted to address this issue either through simulations or by
comparing modalities known to detect different brain mechanisms at varying time scales, such
as EEG/MEG with fMRI, we compared the MEG connectome with the iEEG connectome, both
of which record similar brain activity. When compared with the iEEG connectome, we
observed moderate correlations between the MEG connectome and iEEG connectome for
AEC and PLV. The comparison of raw connectivity values revealed that MEG exhibited higher
connectivity than iEEG across all frequency bands, confirming the inflated connectivity asso-
ciated with EEG/MEG source leakage and volume conduction. However, for OAEC and wPL/*,
metrics that remove or correct zero-lag connectivity (recommended to avoid spurious con-
nectivity), although the raw connectivity values were found more similar for both modalities
( ), the spatial correlations between MEG and iEEG connectomes decreased (
and 5). In addition, the quantification of the difference between AEC and OAEC for MEG
versus iEEG provided a clear representation that MEG indeed exhibits more zero-lag con-
nections compared with iEEG, consistently observed across all frequency bands ( ,

).

Thus the question of which metric is best for EEG/MEG connectivity analysis remains dif-
ficult to answer. The choice of metric should depend on the research question. Based on our
findings, for the resting-state connectivity analysis at the connectome level, it may be impor-
tant to use metrics that preserve zero-lag connections. If the study necessitates removing vol-
ume conduction, OAEC could be a good compromise as it corrects for zero-lag connectivity
and also shows significant correlations between MEG and iEEG in the alpha and beta bands.
Moreover, the cross-modal correlations for OAEC increased when we increased the minimum
number of subjects to create the iEEG connectome, a trend also observed for AEC and PLV. For
wPLI*, we found significantly higher cross-modal correlations in all frequency bands, which
were consistently significant when only superficial ROls were included. However, wPL[* for
deep ROI pairs showed very low and statistically nonsignificant correlations in all frequency
bands. The number of subjects averaged in each ROI pair also did not affect wPLI* results,
unlike what was observed for AEC, OAEC, and PLV ( and S9).
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Unlike AEC, OAEC, and PLV, the wPLI* metric was also not affected by the distance between the
two ROIs ( ). Furthermore, it remains unclear why there was
asymmetry in cross-modal correlations computed for left, right, and interhemispheric connec-
tomes using wPLI*. These surprising trends reported using wPL* should be further investigated,
and this metric should therefore be considered with caution. Carefully assessing the reliability
of wPLI* but also other metrics, using test/retest reliability ( ) could be very
important, but this was out of the scope of present study. It is important to note that we only
considered the phase information to calculate the wPL¥. When analyzed with the original def-
inition, which includes the amplitude information of Hilbert, the cross-modal correlations were
very low (clearly lower than wPLI* results) and not significant in any frequency band, suggesting
some instabilities when considered this family of metric.

Cross-Modal Correlations for Deep Versus Superficial ROls

The raw connectivity values for superficial versus deep ROls had similar distributions for both
iEEG and MEG. However, the correlations between MEG and iEEG connectomes for super-
ficial ROIs were higher than for deep ROls. This is not surprising because detecting and
localizing deep subcortical sources by EEG/MEG is challenging for several reasons, such
as the rapid attenuation of signals generated from deep structures with the distance of the
generator from the EEG/MEG sensors, a phenomenon more pronounced for MEG when con-
sidering gradiometers ( ; ). The spatial
configuration of the deep/subcortical structures also results in signal cancellation (
; ) and are difficult to detect by distant sensors. In

, we proposed a depth-weighting parameter in MEM methods that significantly

improved EEG/MEG localization from deep sources. In this study, we used the depth-weighted

WMEM proposed in . Although depth weighting in the source imaging
methods can improve localization accuracy from deep generators ( ), these
are often associated with large localization errors compared with superficial sources
( ; ). Interestingly, we found that the decrease

in correlations between MEG and iEEG for deep ROIls was more pronounced in phase-based
metrics than in amplitude-based metrics. This could be because AEC is estimated from the
signal envelope, which is associated with synchronization over a larger scale, resulting in a
higher SNR and reduced sensitivity to noise ( ). PLV and wPLF*, on the
other hand, rely on instantaneous phases and are linked to local synchrony. Phase-based mea-
sures could be more sensitive to noise and would therefore be more difficult to estimate from
resting-state and deep sources using EEG/MEG source imaging. The assessment of phase and
amplitude-based connectivity for superficial versus deep sources could be investigated in
future studies and was beyond the scope of the current study. For the deep ROIs estimated
by wPLI*, the cross-modal correlations between MEG and iEEG were very low and not statis-
tically significant in any frequency bands. The reason why wPLI* estimations from deep
sources were more affected than PLV was not clear. We repeated this analysis using another
source imaging method (minimum norm estimate) and found a similar trend (result not
shown). Comparison with minimum norm estimate was to check whether the choice of the
source imaging method, wMEM, had influenced the results.

Limitations

One limitation of this study is that the connectome available from the iEEG atlas covered only
44% of the whole brain. Despite not encompassing the entire brain, this approach represents
the best means available to validate EEG/MEG-derived connectomes. Further validation could
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be considered with simultaneous EEG/MEG and iEEG recordings, although this can only pro-
vide even more limited spatial coverage unless it can be done on a large number of subjects.
Another limitation is that we utilized a regularization parameter in wMEM, which was opti-
mized for source estimation. The spatial prior model used in wMEM initializes each parcel
using the MNE energy of the sources and therefore would be influenced by minimum norm
estimate (MNE) regularization ( ). Through extensive MEG simulations,

demonstrated that the regularization optimal for MEG source estima-
tion was suboptimal for connectivity estimation. They showed an increased risk of being
affected by spurious connections when using the regularization optimized for source estima-
tion. Their findings suggested the need for less regularization to mitigate false positives. It may
be necessary to reduce the regularization to improve the estimation of connectivity, a topic we
plan to explore in future research. Additionally, since the study was conducted using simplistic
simulated data, investigating how regularization could impact connectivity measures in the
context of our multimodal real MEG/iEEG data could be valuable.

Another limitation is that the iEEG atlas, which is developed using iEEG channels from
healthy brain regions, is still derived from patients with epilepsy. Studies using fMRI,
EEG/MEG, and iEEG suggest that seizures or interictal epileptic activity can affect brain net-
work properties even in regions distant from the epileptic focus ( ;

; ; ; ). However, this
limitation is unavoidable since iEEG data are never collected from healthy subjects. Also,
while regions may exhibit abnormalities in iEEG, these are unlikely to be consistent across
patients as these are caused by the specific epileptic focus. Increasing the number of
subjects/patients in each ROI pair (as illustrated in ,

and S8) could mitigate these effects, potentially explaining the increased cross-modal cor-
relations between MEG and iEEG when averaging more subjects.

Our goal was to validate the assessment of functional connectivity of normal brain activity
using healthy MEG data. Currently, the iEEG atlas of normal brain activity (i.e., using iEEG
channels exhibiting no epileptic activity) provides the best available ground truth for such val-
idation with global brain coverage. One could argue that a more comparable MEG cohort
would be a group of patients with epilepsy, excluding pathological regions as done in the iEEG
atlas. However, excluding pathological regions from MEG would imply that we already trust
MEG source imaging to identify these regions, which would make our validation objective
redundant. The ideal dataset for this validation would be to consider challenging simultaneous
iEEG and MEG recordings ( ), but from a large group of patients, allowing for
whole-brain coverage. However, such data are not yet available.

Another limitation of this study is that the distribution of patients’ ages in the iEEG atlas
(31 + 10 years, range: 13-62 years) was wider than that of the MEG dataset (28.67 + 4.13 years,
range: 20-38 years). We also acknowledge that the M-female [F] ratio was balanced in the
iEEG dataset (F: 56, M: 54), whereas there were more Fs than Ms in our MEG dataset (F:
35, M: 10). Age and sex could influence resting-state oscillation properties (

; ). However, these effects are small ( ), and
given that the healthy subjects covered the range between the 25th (25 years) and 75th
(40 years) percentiles of the patients’ age distribution, we believe our results to be minimally
biased by age. Moreover, the effects of M-F differences were found to be less pronounced
in eyes-closed conditions compared with eyes-open conditions (

), as this was the case for our study. For the comparisons between metrics such as
AEC versus OAEC and PLV versus wPLI, both metrics are likely to be influenced by the
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same factors (age/sex), so we believe this should not bias our comparisons between metrics at
the group level.

CONCLUSIONS

This is the first validation of the MEG-derived connectome with the iEEG connectome at a
group level. Based on the moderate spatial correlations between the two modalities, we
can conclude that they share some commonalities. Differences in correlations estimated from
different metrics may suggest that these metrics capture different/complementary aspects of
brain activity. Moderate correlations were found between MEG and iEEG connectomes for
metrics that include zero-lag connectivity. For metrics that removed or corrected zero-lag con-
nectivity, the cross-modal correlations between MEG and iEEG decreased. This suggests that
although correction of zero-lag connections may help in removing false connectivity related to
volume conduction, it also removes true connections, as reflected in the overall decrease in
cross-modal correlation between MEG and iEEG. In addition, a higher prevalence of zero-lag
connectivity in MEG compared with iEEG was quantitatively presented.
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