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Abstract: Wind energy is a vital renewable resource with substantial economic and en-
vironmental benefits, yet its spatial variability poses significant optimization challenges.
This study advances wind farm layout optimization by employing a systematic genetic
algorithm (GA) tuning approach using the design of experiments (DOE) method. Specifi-
cally, a full factorial 22 DOE was utilized to optimize crossover and mutation coefficients,
enhancing convergence speed and overall algorithm performance. The methodology was
applied to a hypothetical wind farm with unidirectional wind flow and spatial constraints,
using a fitness function that incorporates wake effects and maximizes energy production.
The results demonstrated a 4.50% increase in power generation and a 4.87% improvement
in fitness value compared to prior studies. Additionally, the optimized GA parameters
enabled the placement of additional turbines, enhancing site utilization while maintaining
cost-effectiveness. ANOVA and response surface analysis confirmed the significant interac-
tion effects between GA parameters, highlighting the importance of systematic tuning over
conventional trial-and-error approaches. This study establishes a foundation for real-world
applications, including smart grid integration and adaptive renewable energy systems,
by providing a robust, data-driven framework for wind farm optimization. The findings
reinforce the crucial role of systematic parameter tuning in improving wind farm efficiency,
energy output, and economic feasibility.

Keywords: wind farm optimization; genetic algorithms; designs of experiments; wake
effect; full factorial design; parameter tuning

1. Introduction

The global capacity for renewable energy has grown remarkably, increasing by 40.8%
from 473 GW in 2023 to 666 GW in 2024 [1,2]. This unprecedented surge is primarily
attributed to advancements in solar photovoltaic and wind energy technologies, which
are crucial in mitigating climate change and reducing dependency on finite fossil fuel
reserves [3,4]. Among these, wind energy holds a prominent position as a scalable, cost-
effective, and environmentally sustainable resource [5]. Wind farms, composed of multiple
turbines, convert wind’s kinetic energy into electricity. However, achieving optimal turbine
placement within wind farms is a significant technical challenge due to the aerodynamic
wake effect and other site-specific constraints [6,7].
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Although abundant and renewable, wind resources are not uniformly distributed
and are subject to considerable variability, influenced by local topographical and climatic
factors [8,9]. For instance, Algeria’s vast area of 2.382 million km? showcases stark contrasts
in wind energy potential across its regions. Coastal zones like Annaba, Oran, and Béjaia
benefit from strong wind acceleration due to the Tellian Atlas relief, while regions such
as Adrar Kabertan in the southwest exhibit exceptional wind capacity that is conducive
to electricity generation [10,11]. Conversely, lowland interior regions typically possess
limited wind potential, underscoring the necessity for strategic and optimized wind turbine
placement to maximize energy production, while addressing site-specific limitations and
environmental challenges [12,13].

The aerodynamic wake effect—a key consideration in wind farm optimization—occurs
when upstream turbines create turbulence that reduces wind speed and efficiency for
downstream turbines. This phenomenon necessitates a delicate balance between turbine
density, spacing, and overall energy efficiency to ensure a wind farm’s economic and
technical viability [14,15]. Addressing this challenge is particularly important for regions
with limited wind resources, where maximizing output is essential for project feasibility.

Integrating artificial intelligence (Al) algorithms in renewable energy systems has
become indispensable for enhancing efficiency, energy forecasting, and predictive mainte-
nance [16]. The optimization of wind farm layouts has evolved since the pioneering work
of Mosetti et al. (1994), who first introduced genetic algorithms (GAs) for optimizing wind
turbine placement. Building on this foundation, Kennedy and Eberhart (1995) developed
the particle swarm optimization (PSO) algorithm, inspired by the collective behavior of
social organisms, offering an alternative heuristic approach for wind farm layout opti-
mization [17,18]. Grady et al. (2005) refined the GA-based method by introducing a larger
population size, improving search space exploration and convergence rates [19].

As optimization techniques evolved, Marmidis et al. (2008) introduced Monte Carlo
simulation as a complementary tool for heuristic-based wind turbine placement [20]. In
2010, Gonzélez et al. expanded on these methodologies by proposing a multi-objective
approach that integrated turbine layout optimization with electrical network design and
topographical constraints, leading to a more comprehensive framework for wind farm
development [21]. Their contributions culminated in 2014 when they published a detailed
review that consolidated advancements in the field [22].

The year 2015 was particularly transformative in wind farm optimization research.
Feng and Shen (2015) combined GA with random search methods, enhancing solution
diversity, while Shafig-ur-Rehman Massan et al. introduced the firefly algorithm to eval-
uate wind farm energy capacity [23,24]. Gao et al. (2016) further advanced the field by
incorporating environmental constraints into optimization models, ensuring that turbine
placement decisions accounted for ecological impacts and resource variability [25].

By 2021, optimization approaches had become increasingly refined and diversified.
Wu and Wang (2021) developed an improved ant colony optimization (ACO) algorithm for
wind farm layout, while Celik et al. enhanced the PSO method with novel improvements
in parameter adaptation and search efficiency [26,27]. Ogunjuyigbe (2021) took a more
practical approach, considering multidirectional wind patterns and refining GA-based
solutions for real-world wind farm scenarios [28].

Asfour et al. (2022) recently proposed a hybrid approach, integrating an optimized
GA with Jensen’s wake model to maximize energy production and minimize costs [29].
Their findings demonstrated that increasing GA iterations improved turbine placement
configurations, leading to significant productivity gains.

These studies contribute to the development of bio-inspired metaheuristic algorithms,
particularly evolutionary algorithms based on the mechanisms of Darwinian evolution [30],
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which can effectively solve complex optimization problems in wind farms. However, the re-
search highlights the need for a more thorough justification of algorithmic parameter selection.

Although several studies have indicated that GAs offer good results in optimizing
the layout of wind farmes, little attention has been paid to the study of their parameters.
While this paper references previous works [17,19,31], its primary focus is on a different
topic. The present study bridges a critical gap in wind farm optimization by introducing a
systematic and statistically driven approach for fine-tuning GA parameters. While GAs
have been widely applied in wind farm layout optimization, limited research has focused on
optimizing their internal parameters to enhance both computational efficiency and solution
accuracy. Existing studies primarily employ default or empirically chosen crossover and
mutation rates, leading to suboptimal convergence and inconsistent results.

To address this limitation, this study implements a design of experiments (DOE)
framework, specifically a complete factorial design, to systematically analyze interaction
effects between crossover and mutation coefficients. This structured tuning approach
provides quantifiable insights into how these parameters influence energy production
outcomes and computational efficiency, ensuring a robust and adaptable optimization
process. By refining GA parameter selection, this research significantly improves the
precision, reliability, and scalability of GA-based wind farm layout optimization, making it
a more effective tool for advancing renewable energy solutions.

Beyond its technical contributions, the study has broader implications for developing
efficient and sustainable wind energy systems. By integrating systematic optimization tech-
niques, the proposed methodology offers practical applications for resource-constrained
regions such as Algeria, where maximizing wind farm efficiency is crucial to meeting
increasing energy demands. Furthermore, the approach lays a foundation for future ad-
vancements, including real-time smart grid integrations, which could adapt dynamically to
changing conditions and enhance the resilience of renewable energy infrastructures.

The remainder of this paper is structured as follows: Section 2 outlines the imple-
mentation of the design, Section 3 presents the results, Section 4 discusses and analyzes
the findings, and Section 5 concludes the study by summarizing its contributions and
implications. By addressing critical gaps in parameter optimization, this research offers
practical and theoretical insights that advance the state of wind farm design, ensuring that
renewable energy systems can meet future challenges.

2. Methodology

A GA is an organized set of instructions designed to iteratively generate solutions from
a specified starting point. Inspired by natural processes, GAs mimic biological phenomena
such as crossover, mutation, and selection to identify optimal solutions. Conceptualized
initially by John Holland in the 1960s and further developed by David Goldberg in the
1980s [32], GAs evolve a population of potential solutions through genetic operations,
progressively improving the quality of the solutions over successive generations [33].

The effectiveness of GAs largely depends on carefully selecting and tailoring their
parameters to suit specific problems. Well-designed parameters enable these algorithms
to explore the solution space efficiently and converge toward optimal results, even for
complex challenges. Additionally, GAs can be combined with other techniques to form
hybrid systems, further enhancing their adaptability and robustness [28]. In this framework,
each solution is represented by a chain analogous to a biological chromosome, which
undergoes evolutionary interactions with other solutions to improve its quality over time.
The versatility of GAs is demonstrated by their wide range of applications, underscoring
their efficiency in solving diverse optimization problems.
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This study’s context is optimizing wind turbine placement within a wind farm. The
following attributes characterize the wind farm:

e A total area of 2 km?, divided into 100 cells.
e  Each cell has a surface area of 200 m?2.
e A surface roughness coefficient of 0.3.

The wind regime considered is unidirectional, consistently blowing from the north at
a fixed speed of 12 m/s, as depicted in Figure 1. These parameters were chosen to model
realistic conditions and provide a robust framework for evaluating the performance of the
proposed optimization methodology. However, assuming a constant and unidirectional
wind is a notable simplification, as wind direction and speed vary in real-world conditions.
These limitations should be considered when interpreting the results. Nevertheless, this
assumption remains relevant in our case study as it allows for an adequate assessment of
the proposed optimization methodology while maintaining a balance between accuracy
and computational feasibility.

Uo=12m/s

2222222222222%'

X

Figure 1. Unidirectional wind regime used in the study.

To execute the GA, an initial population of potential solutions, or layouts, is created.
Each individual, represented as a chromosome, encodes the location of wind turbines,
defining a possible wind farm configuration. The GA evaluates each layout using a fitness
function designed to maximize energy production while minimizing costs. The fitness

fitness = (C;St> 1)

where P represents wind power in watts (W), calculated by Equation (2):

function is expressed as:

P= %pAuE’v 2)

In this equation:

A: Area swept by the turbine blades (m?).

p: Air density (kg/m3).

u: Wind speed (m/s).

n: Efficiency coefficient of the wind turbine, accounting for energy conversion losses.
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The economic model for wind turbines assumes that the total cost is influenced solely
by the number of turbines (N) deployed in the wind farm. The annual total cost is calculated
using [34]:

2 1
Cost = (3 + 360.00174N2> -

The fitness function incorporates both energy production and spatial constraints,
addressing the interactions between turbines caused by the wake effect [35]. Wake effects
are modeled using Jensen’s wake model [36], which assumes a linear expansion of the
wake and is expressed mathematically as:

_ G
U(x)—lloo<1 (1+2k;5)2> (4)

where:

U(x) is the wind speed at distance x downstream.
U is the free-stream wind speed.

Cr is the thrust coefficient.

k is the wake decay coefficient.

D is the rotor diameter.

It significantly reduces downstream turbines” wind speed and energy output, as de-
picted in Figure 2. This ensures that the optimization process accounts for the aerodynamic
interdependence between turbines.

Jensen Wake Model - Wind Speed Deficit
10 == Pemmm T e e -

Wind Speed (m/s)
o

5 L
4t
3t — \Wake Velocity
——- Free-stream Wind Speed
20 0 e Rotor Diameter Reference :
0 20 40 60 80 100

Downstream Distance (x / D)

Figure 2. The Jensen wake effect model.

The Jensen wake model was selected because of its widespread use in wind farm opti-
mization studies, particularly in computationally constrained scenarios where efficiency is
a priority. While more sophisticated wake models exist, the Jensen model balances accu-
racy and computational simplicity, enabling a clear assessment of optimization strategies
without excessive processing costs. Similar simplifications have been adopted in previous
studies, such as those by Grady et al. (2005) and Emami & Noghreh (2010), to facilitate
optimization while capturing essential wake interactions [19,34].

However, it is important to acknowledge the limitations of the Jensen model. The
assumption of a uniform wake expansion does not account for turbulence effects, wake
asymmetry, or atmospheric stability variations, which may impact the accuracy of the
results. Despite these limitations, the Jensen model remains an effective choice for this study,
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as it provides a practical and computationally efficient framework for wind farm layout
optimization while maintaining a reasonable level of accuracy for performance evaluation.

Additional considerations are included in the fitness function to ensure realistic and
practical solutions. These include:

e  Terrain roughness, which influences wind flow.

e  Environmental constraints, such as local ecological and regulatory factors.

e Minimum safety distances between turbines to mitigate mechanical and opera-
tional risks.

By integrating these factors, the GA ensures that the resulting layouts are both energy-
efficient and economically viable, providing a robust framework for wind farm optimization.

The wind blows at a particular speed u, until it reaches a turbine with a rotor of a
specific size r,. When it reaches a distance x downstream of the turbine, its speed decreases
to 1, and the diameter of the wake (initially equal to r,) becomes:

rn=ax+r, (5)

The scalar coefficient & governs the rate of expansion of the wake as the distance
increases and is defined as follows:
N=— 6
g ©)
where:
z: The height of the turbine hub generating the wake.
zo: Surface roughness, depending on the characteristics of the terrain.
The following equation shows the downwind wind speed derived from the Jensen
wake model (4):

2
U =g 1- (7)

(1+a(¥/n))

where 7 is the axial induction factor, and it is related to the thrust coefficient C; by the

following equation:
a:O.S(l—\/l—Ct) ®)

The downstream radius, r1, is given by:

©)

The GA begins by generating an initial population of potential wind farm layouts,
where each individual represents a unique turbine configuration. The evaluation process
identifies the most promising solutions, referred to as parents, which are then used to
produce a new generation of solutions or children. A growth coefficient is employed
to maintain genetic diversity and prevent premature convergence to local optima, and
a mutation operator is selectively applied to specific individuals. This ensures that the
algorithm continues exploring the solution space effectively. The detailed steps of the GA
are illustrated in the flowchart in Figure 3, which outlines its iterative process of selection,
crossover, and mutation.
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Figure 3. Flowchart of GA method.

Figure 4 provides a broader view of the optimization process, detailing how the GA
integrates various evaluation criteria to iteratively refine the wind turbine layout. This
flowchart highlights the optimization process.

Traditional GA parameter tuning often relies on trial-and-error techniques, which
can be both inefficient and computationally expensive. For instance, Mosetti et al. [17]
and Grady et al. [19] employed arbitrary mutation and crossover rates in their wind farm
optimization studies, leading to suboptimal convergence rates and requiring extensive
fine-tuning. More recent adaptive approaches, such as those introduced by Feng Liu et al.
(2017) [37], dynamically adjust parameters based on population diversity. However, these
adaptive techniques introduce additional complexity and necessitate further optimization
of their hyperparameters.

Given the lack of a standardized and systematic approach for fine-tuning critical GA
parameters (e.g., mutation and crossover rates), an efficient methodology that improves
algorithm performance without excessive computational cost is urgently needed.
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Figure 4. Optimization flowchart.

A commonly used empirical approach involves testing multiple parameter combina-
tions to evaluate their impact on GA performance. In this study, we considered:

e  Mutation rate: Interval of [0.01, 0.1], step size 0.01
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e  Crossover rate: Interval of [0.6, 0.9], step size 0.03

This resulted in 100 different parameter configurations. Each configuration was tested,
and the best-performing one was selected based on fitness improvement. Table 1 provides
a sample of these results.

Table 1. Traditional GA parameter tuning method.

P, P, Total Energy (kWh/Year) Fitness Value
0.6 0.01 14,557 0.00155304
0.6 0.05 14,663 0.00154182
0.6 0.1 14,460 0.00156346
0.75 0.01 14,602 0.00154826
0.75 0.05 14,641 0.00154413
0.75 0.1 14,615 0.00154688
0.9 0.01 14,514 0.00155764

Although this brute-force approach helps identify adequate parameter settings, it
presents several drawbacks:

o A large step size may overlook optimal solutions.
o A smaller step size improves precision but significantly increases the number of
required tests, making optimization computationally costly.

This approach evaluates parameters independently, ignoring potential interactions be-
tween mutation and crossover rates, even though they jointly influence algorithm performance.

To overcome these limitations, this study adopts the design of experiments (DOE)
methodology, which provides a systematic framework for analyzing parameter interactions
and optimizing their configurations using only four well-defined parameter combinations.
Unlike trial-and-error methods, DOE offers statistical insights into how mutation and
crossover rates impact algorithm convergence and solution quality, ensuring a more robust
and reliable tuning process [38].

Several studies have successfully applied DOE to GA parameter tuning;:

e Arin et al. (2011) [39] used DOE to optimize GA parameters for scheduling prob-
lems, demonstrating that statistically analyzing genetic operators’ main effects and
interactions enhanced robustness while reducing computational time.

e  Mosayebi and Sodhi (2020) [40] employed factorial designs to refine GA parameters
for the Traveling Salesman Problem (TSP), leading to improved convergence and
solution quality.

Building on these approaches, our study applies DOE to systematically refine GA
parameters in wind farm optimization. We employ a full factorial design to ensure efficient
solution space exploration while improving algorithm convergence and robustness.

A full factorial design evaluates all possible combinations of selected factor levels,
making it particularly useful for examining interaction effects between parameters [41].
Unlike fractional factorial designs, which reduce the number of experiments by analyzing
only a subset of combinations, a full factorial approach ensures that no critical interaction
effects are overlooked.

This is particularly important for GA optimization, where crossover and mutation rates
can significantly influence algorithm performance. Certain parameter combinations may
cause genetic drift, reducing diversity and increasing the risk of premature convergence. By
systematically evaluating all parameter configurations, full factorial DOE enables precise
optimization, leading to a more efficient and reliable wind farm layout.
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While fractional factorial designs could reduce experimental costs, they risk losing
information on higher-order interactions, which are often nonlinear and unpredictable
in GA optimization. As highlighted by Goupy (1990) and Mosayebi & Sodhi (2020), full
factorial designs provide a more reliable assessment of parameter dependencies, ensuring
that the optimal configuration is identified with high confidence [40,42].

For this study, a 22 full factorial design was employed, with two GA parameters
(crossover rate and mutation rate) tested at two levels, as shown in Table 2. The parameter
values were selected based on a comprehensive literature review, ensuring their practi-
cal relevance.

Table 2. DOE factors and their levels.

Parameter High Level Low Level
Crossover rate 0.9 0.6
Mutation rate 0.01 0.1

The DOE methodology systematically evaluated these four parameter combinations,
assessing their effectiveness based on multiple performance metrics:

1.  Algorithm convergence time

2. Quality of power optimization solutions

3. Robustness of results to initial conditions

4. Impact on energy efficiency and cost-effectiveness

Regarding the objective function and cost consideration, it is essential to clarify that
the cost metric used in this study corresponds to the cost per unit of produced power
(“cost/kWh”), which serves as the objective function for optimization. This cost is deter-
mined solely by:

e  The number of installed wind turbines
e  The annual energy production

The methodology ensures enhanced efficiency, improved power output, and a more
cost-effective wind farm layout by refining GA parameters through DOE-driven optimization.

This systematic approach also allowed the study of potential interactions between pa-
rameters, a feature often overlooked in conventional trial-and-error methods. By evaluating
the relative influence of crossover and mutation rates and their interactions on the fitness
function, statistical insights were obtained using analysis of variance (ANOVA). ANOVA
results statistically confirmed the findings, with the adjusted coefficient of determination
(R? = 1.0) indicating a perfect model fit. However, to avoid overfitting, the R? value was
interpreted cautiously. Residuals were rigorously analyzed for uniformity and normality,
ensuring statistical validity and identifying anomalies.

To assess the relative importance of factors, standardized effect coefficients were
calculated, and interaction graphs and response surfaces were generated. Pareto charts were
used to prioritize the effects of parameters and their interactions. Residual analysis was
conducted to validate model assumptions, identify any anomalies, and improve statistical
reliability. These tools provided a comprehensive understanding of the impact of crossover
and mutation rates on GA performance, ensuring the robustness and reproducibility of
the findings.

By employing this systematic and statistically validated approach, the study advances
the optimization of GAs for wind farm layout design, offering a replicable methodology
that replaces trial-and-error with rigorous, efficient experimentation.
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3. Results

Figure 5 illustrates the main effects of mutation rate (A) and crossover rate (B) on
the fitness value (Y). A steeper negative slope on line B suggests that crossover rate (B)
substantially influences optimization performance more than mutation rate (A).

Perturbation

15.60 ==,
—— B

X Reference Point

15.58

15.56

15.54

15.52

15.50

15.48

15.46

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Deviation from Reference Point (Coded Units)

Figure 5. Main effects of mutation (A) and crossover (B) on the fitness value.

When the mutation rate (A) increases from its lowest to the highest value, the fitness
value Y decreases moderately from 15.56 to 15.50, reflecting a small variation of 0.06.

In contrast, increasing the crossover rate (B) from its lowest to highest value results in
a more significant drop in fitness value from 15.60 to 15.45, representing a larger variation
of 0.15.

This indicates that the crossover rate plays a more substantial role in optimizing the
solution than the mutation rate.

Notably, performance improves significantly when the crossover rate exceeds 0.75, as
the fitness value drops more rapidly towards 15.45, signifying better optimization results.
However, performance deteriorates when the crossover rate falls below 0.75, with the
fitness value rising toward 15.60.

Furthermore, crossing the lines in Figure 5 highlights a strong interaction effect be-
tween mutation and crossover. This suggests that the impact of mutation depends on the
crossover rate, meaning that these parameters should be optimized jointly rather than
independently to achieve the best results.

Figure 6 shows the interaction effect between parameters. The x-axis shows the values
of A, while B is represented by a black line at a low level (0.6) and a red line at a high
level (0.9).

The variation of crossover from 0.6 to 0.9 shows its positive effect on fitness, while mu-
tation has a less apparent average effect, which is conditioned by the crossover level, as illus-
trated graphically. Increasing mutation weakens performance in the case of low crossover
(0.6) while increasing mutation improves performance in the case of high crossover (0.9).
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Figure 6. Graph of the interaction of factors on GA performance.

The interaction is highly significant because the effect of A reverses, depending on the
value of B.

The results demonstrate that the crossover rate significantly impacts the mutation
rate. Raising the mutation rate when the crossover rate is low (0.6) negatively impacts
performance. This is because there is still a limited diversity of solutions in this situation,
and too much mutation causes noise that prevents convergence.

Conversely, the GA gains from greater diversity due to intensive crossover when
the crossover rate is high (0.9). In this context, increasing the mutation rate enhances
exploration without compromising convergence, which explains the observed perfor-
mance improvement.

After the results were analyzed, the following mathematical model was produced:

Y = 15.36640 + 7.20000 x A + 0.25404 x B — 10.07037 x AB (10)
In terms of coded factors (—1, +1), the model is expressed as follows:
Y =15.54 —0.016 x A —0.045 x B —0.068 x AB (11)

The Pareto diagram of the effects presented in Figure 7 illustrates the relative relevance
of the standardized effects arranged from greatest to least influence, as determined by
the analysis.
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Figure 7. Pareto diagram of standardized effects.

When the two components (A and B) interact, the interaction AB displays the most
significant effect, with an effect of —0.068. The response is least affected by main effect A
(—0.016), but main effect B (—0.045) exhibits a considerable influence. The significance of
taking into account the interaction between parameters rather than optimizing them alone
is highlighted by this effect prioritization.

Joint parameter optimization improves fitness by 151.1% compared to individual
optimization of B, since parameter B has a more significant influence on the response than
parameter A. This analysis allows for a better quantification of the impact of the interaction.
This result shows the importance of considering the interactions between parameters A
and B, leading to a more optimized result.

The ANOVA analysis confirms that both crossover and mutation factors significantly
impact the GA performance. Additionally, a strong interaction effect between these two
parameters was identified, indicating that the efficiency of crossover is influenced by the
level of mutation used. Specifically, a low mutation rate limits crossover efficiency, whereas
combining a high crossover rate with an adequate mutation rate yields the best overall
performance. This finding underscores the importance of systematic parameter tuning to
optimize GA performance effectively.

Figure 8 presents the response surface contour map, illustrating how changes in
mutation (A) and crossover (B) parameters affect the standardized fitness value (Y):

e  The global minimum is identified at A = 0.1 (mutation rate) and B = 0.9 (crossover
rate), achieving a minimum fitness value of 15.4087.

e The optimal region is concentrated in the upper-right corner of the experimental
domain, indicating that higher crossover rates consistently improve performance
when coupled with a moderate mutation rate.

e  The slight non-linearity in the surface further confirms the interaction effect (AB),
reinforcing that mutation and crossover must be optimized together rather than
in isolation.

Wind farm optimization studies have historically relied on empirical parameter tuning,
often without systematic justification:
e  Mosetti et al. (1994) arbitrarily set the mutation rate to 0.1 and the crossover rate to
0.6 [17].
e Grady et al. (2005) followed a similar range without formal validation [19].
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Factor Coding: Actual

Response: Y

@ Design Points

15.4087 [ 156346

e Sisbot et al. (2010) adopted a crossover rate of 0.8 for multi-objective GA optimiza-
tion [43].

o  Gaoetal. (2014) explored crossover rates between 0.7 and 0.9 and mutation rates from
0.001 to 0.05 for offshore wind farm optimization [44].
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|
0.01 0.03 0.06 0.08 0.10
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Figure 8. Y response contour map as a function of parameters.

Unlike previous studies that relied on trial-and-error tuning, our methodology em-
ploys a statistically rigorous DOE framework, ensuring:

e  Optimized parameter selection based on empirical evidence rather than arbitrary choices.
e  Better solution quality through systematic tuning rather than ad hoc adjustments.

e Improved convergence efficiency, reducing unnecessary computational cost.

e  Enhanced reproducibility, making the optimization process more reliable and generalizable.

By adopting A = 0.1 and B = 0.9, our approach aligns with commonly accepted
parameter ranges and outperforms traditional tuning methods by providing a data-driven,
reproducible, and computationally efficient optimization strategy.

To assess the reliability of the experimental results, we estimate the 95% confidence
interval (CI) for the mean response using the standard deviation and the number of
observations. The confidence interval provides a range of values within which the true
mean of the population is expected to lie, with a specified level of confidence (in this
case, 95%).

The 95% confidence interval for the mean Y is calculated using the following formula:

- s
Closy, =Y £ty 245 X <ﬁ> (12)

where:

- Y =15.54 (mean of the responses),
s = 0.0959 (standard deviation of the responses),
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- n = 4 (number of observations),
- tayo4y is the critical value from the Student’s t-distribution for a/2 = 0.025 and
df =n — 1 =3 degrees of freedom. For a 95% confidence interval, ty o253 ~ 3.182.

Substituting the values into the formula:

Clogy, = 15.54 £ 3.182 x (0'09594> (13)
V4
Clgs9, = 15.54 4 3.182 x (0.04795) (14)
Clgsy, = 15.54 +0.1525 (15)
Thus, the 95% confidence interval for the mean response Y is:
Clgse, = [15.39; 15.69] (16)

The 95% confidence interval for the response Y is [15.39; 15.69]. This means that if the
experiment were repeated multiple times under the same conditions, we would expect the
true mean of the responses Y to fall within this interval in 95% of the cases. The narrow
range of the confidence interval indicates high precision in estimating the mean response.

4. Discussion

Through experiment design, we determined the ideal set of parameters (B = 0.9,
A =0.1), which allows for more targeted search space exploration with GAs.

As seen in Figure 9, this new configuration allows better use of the site area by
installing additional wind turbines (31), compared to the previous studies of Mosetti
(26 turbines) and Grady (who used 30 turbines), leading to increased energy production.

Mosetti's result Grady's result Present study

Figure 9. Disposition of wind turbines.

Table 3 summarizes the comparison of results between the present study and the
previous ones [17,19].

Table 3. Comparison with results in the literature.

Criteria Mosetti et al. [17] Grady et al. [19]  Present Study
Fitness Value 0.0016197 0.0015436 0.00154087
Total Power (kWh/ Year) 12,352 14,310 14,672
Number of Turbines 26 30 31
Efficiency (%) 91.645 92.015 91.298

Convergent Generation Not reported 1203 991
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The site’s energy potential has been improved, as indicated by the increase in electricity
production, at 14,672 kWh. The fitness ratio (0.00154087), defined as the ratio of the cost
to installed power, also improved, indicating a more cost-effective option. This fitness
confirms the reliability of our approach to optimizing the turbines’ layout. Furthermore,
the technique displayed faster convergence, requiring fewer computer resources for an
ideal solution.

However, there was a modest decline in energy efficiency compared to previous ex-
periments. This decline could be attributable to higher turbine density, which may have
resulted in more significant interference losses. This trade-off between energy efficiency
and cost minimization highlights the inherent constraints of optimizing complex systems.
Nonetheless, the comparison results, as detailed in Table 2, show that, despite the minor
loss in efficiency, the significant cost reduction, increased energy production, and conver-
gence speed demonstrate the resilience of this hybrid strategy that combines the design of
experiments with GAs.

This study represents a promising advancement in wind farm techno-economic opti-
mization, offering a systematic approach to fine-tuning GA parameters. Future research
could further enhance this methodology to address broader energy efficiency concerns and
adapt the optimization process to different wind conditions.

To evaluate the impact of wind speed on crossover and mutation parameters, we
expanded our initial study—conducted at 12 m/s—to include two additional wind speeds:
10 m/s and 17 m/s. The optimization focuses on GA parameters rather than wind farm
sizing, meaning that the number of wind turbines (31) remains constant across all scenarios.

The primary objective is determining how optimal GA parameters (crossover and mu-
tation rates) change with varying wind conditions and whether the identified trends remain
consistent or require adjustments. The optimal crossover and mutation combinations were
identified for each wind speed scenario, demonstrating consistent trends across varying
conditions. The resulting fitness values and annual energy production were analyzed, and
the results are presented in Table 4:

Table 4. Optimization of GA parameters based on wind speed.

Wind Speed (m/s) P, P, Nbr of Turbine Annual Energy (kWh/Year) Fitness Value
10 0.9 0.01 31 8831 0.00255993
12 0.9 0.1 31 14,672 0.00154087
17 0.9 0.1 31 19,607 0.00115303

The analysis reveals that higher wind speeds increase energy production, with annual
output rising from 8831 kWh/year at 10 m/s to 19,607 kWh/year at 17 m/s. This trend
underscores the direct relationship between wind availability and power generation effi-
ciency. Additionally, the optimal crossover rate (P.) remains consistently high, at 0.9, across
all wind speeds, suggesting that a more substantial genetic diversity enhances convergence
and improves solution quality. However, the mutation rate (Pp,) varies based on wind
conditions, with lower values (0.01) being more effective at lower wind speeds (10 m/s),
to minimize unnecessary randomness. In comparison, higher values (0.1) are preferable
at 12-17 m/s to help the GA escape local optima in more dynamic wind environments.
Furthermore, fitness values decrease as wind speed increases, dropping from 0.00255993
at 10 m/s to 0.00115303 at 17 m/s, indicating improved optimization efficiency at higher
wind speeds. This trend suggests that greater wind availability contributes to more stable
convergence and better overall GA performance.

To evaluate the effectiveness of our GA-DOE optimization approach, we compared it
against binary particle swarm optimization (BPSO) using key performance metrics. The
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resulting wind farm configuration is presented in Figure 10, and the results are summarized
in Table 5 [45]. This comparison provides valuable insights into energy production, fitness
value, efficiency, and overall optimization robustness, highlighting the advantages and
limitations of each method.

BPSO AG-DOE
Figure 10. Wind farm configurations generated by BPSO and GA-DOE.

Table 5. Comparison between BPSO and GA-DOE.

Criteria BPSO [45] Present Study
Fitness value 0.001544 0.00154087
Total power (kwh/year) 14,310 14,672
Number of turbines 30 31
Efficiency (%) 92.01% 91.29%

A comparison between BPSO and GA-DOE reveals key differences in efficiency, energy
output, fitness value, and adaptability. While BPSO achieves a slightly higher efficiency
of 92.01% compared to 91.29% for GA-DOE, this is primarily due to its use of fewer
wind turbines (30 vs. 31). However, GA-DOE produces higher total energy, generating
14,672 kWh/year compared to 14,310 kWh/year with BPSO, representing a +2.5% increase
in energy output. This demonstrates that GA-DOE optimizes spatial utilization more
effectively, ensuring more significant energy production.

The GA-DOE approach also achieves a better fitness value (0.00154087 vs. 0.001544 for
BPSO). A lower fitness value indicates a more efficient cost-to-power ratio, meaning that
GA-DOE optimally allocates resources, while maintaining a high-performance level. This
suggests that the DOE-based tuning process enhances the overall effectiveness of the GA
optimization method.

One of the key advantages of GA-DOE over BPSO lies in its systematic parameter-
tuning methodology. Unlike BPSO, where parameters remain fixed throughout the opti-
mization process, GA-DOE employs a structured DOE framework to dynamically fine-tune
crossover and mutation rates. This leads to:

e  More reliable convergence towards optimal solutions.

e  Greater adaptability for different wind conditions and configurations.

e  Enhanced robustness in the optimization process, making it more applicable to di-
verse scenarios.

Despite these advantages, computational cost remains a consideration for GA-DOE,

particularly for large-scale applications. While the DOE-based tuning improves conver-
gence speed and accuracy, its computational demands could limit scalability. To address
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this, future research should explore adaptive heuristics to reduce the number of GA itera-
tions while maintaining optimization efficiency. This would enable GA-DOE to be more
scalable, making it a viable solution for larger wind farm projects.

5. Conclusions

This study investigated the effects of genetic algorithm (GA) parameters on wind farm
optimization, demonstrating the effectiveness of a systematic approach using full factorial
design. The tuning of GA parameters significantly enhanced the optimization process,
yielding notable improvements in both performance and efficiency.

By employing this method, the optimization process was considerably accelerated,
allowing for the incorporation of a higher number of turbines and resulting in superior out-
comes. Specifically, this approach achieved a 2.53% increase in power output compared to
Grady’s study and a 4.50% increase compared to Mosetti’s. Additionally, fitness improved
by 0.176% relative to Grady and 4.87% relative to Mosetti, reflecting a better optimized
cost-to-power ratio.

The methodology presented in this study demonstrates strong potential for generaliza-
tion and adaptability across various wind farm optimization scenarios. Using a fixed wind
speed of 12 m/s, this research ensured that parameter tuning effects could be assessed
under controlled conditions, allowing for a systematic evaluation of GA optimization.

Future research could incorporate real-time wind speed data collected hourly via a
data logger to enhance its practical applicability. This approach would enable dynamic
adjustments of GA parameters, allowing the optimization model to adapt in real time to
actual wind variations. Such a real-time tuning mechanism would improve the model’s
flexibility and accuracy, making it more responsive to environmental changes and better
suited for real-world deployment.

Expanding this framework to smart grid applications could unlock more adaptive
and sustainable renewable energy solutions. In smart grid environments, where real-time
operational adjustments are essential, this methodology could enhance energy production
efficiency, while simultaneously improving grid stability and resource allocation. By inte-
grating real-time GA tuning within smart grids, wind farms could operate more efficiently
and reliably, further contributing to developing resilient, high-performance renewable
energy systems.
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