
Academic Editor: Costas Charitidis

Received: 23 January 2025

Revised: 17 March 2025

Accepted: 18 March 2025

Published: 28 March 2025

Citation: Ramezani, G.; Silva, I.O.;

Stiharu, I.; Ven, T.G.M.v.d.; Nerguizian,

V. Lasso Model-Based Optimization of

CNC/CNF/rGO Nanocomposites.

Micromachines 2025, 16, 393. https://

doi.org/10.3390/mi16040393

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Lasso Model-Based Optimization of CNC/CNF/rGO
Nanocomposites
Ghazaleh Ramezani 1,* , Ixchel Ocampo Silva 2 , Ion Stiharu 1,* , Theo G. M. van de Ven 3 and Vahe Nerguizian 4

1 Department of Mechanical and Industrial Engineering, Concordia University,
Montreal, QC H3G 1M8, Canada

2 School of Engineering and Sciences, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur,
Monterrey 64849, Mexico; ixchelos@tec.mx

3 Department of Chemistry, McGill University, Montreal, QC H4A 3J1, Canada; theo.vandeven@mcgill.ca
4 Département de Génie Électrique, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada;

vahe.nerguizian@etsmtl.ca
* Correspondence: ghazaleh.ramezani@mail.concordia.ca (G.R.); ion.stiharu@concordia.ca (I.S.)

Abstract: This study explores the use of citric acid and L-ascorbic acid as reducing agents
in CNC/CNF/rGO nanocomposite fabrication, focusing on their effects on electrical con-
ductivity and mechanical properties. Through comprehensive analysis, L-ascorbic acid
showed superior reduction efficiency, producing rGO with enhanced electrical conduc-
tivity up to 2.5 S/m, while citric acid offered better CNC and CNF dispersion, leading to
higher mechanical stability. The research employs an advanced optimization framework,
integrating regression models and a neural network with 30 hidden layers, to provide
insights into composition–property relationships and enable precise material tailoring.
The neural network model, trained on various input variables, demonstrated excellent
predictive performance, with R2 values exceeding 0.998. A LASSO model was also im-
plemented to analyze variable impacts on material properties. The findings, supported
by machine learning optimization, have significant implications for flexible electronics,
smart packaging, and biomedical applications, paving the way for future research on
scalability, long-term stability, and advanced modeling techniques for these sustainable,
multifunctional materials.

Keywords: CNC/CNF/rGO nanocomposites; graphene oxide reduction; citric acid;
L-ascorbic acid; electrical conductivity; tensile strength; multi-objective optimization;
regression modeling

1. Introduction
Nanocomposite materials have emerged as a cornerstone of modern materials science,

offering tailored properties that make them indispensable in advanced applications, such
as flexible electronics, biomedical devices, and smart packaging [1,2]. Cellulose nanoma-
terials, particularly cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs), have
garnered significant attention in materials science due to their renewable origin, excep-
tional mechanical properties, and environmental compatibility [3,4]. Recent studies using
reactive molecular dynamics simulations have predicted the ultimate strength of CNCs
to be approximately 9.2 GPa at a strain rate of 1 s−1, surpassing previously reported val-
ues of 7.5–7.7 GPa. The mechanical behavior of CNCs is influenced by factors such as
fibril twist and strain rate, with the C4-O4 glycosidic bond primarily responsible for their
failure [5]. Researchers have explored hybridization techniques to enhance the mechanical
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properties of polymer nanocomposites, such as modifying aramid nanofibers (ANFs) with
chlorinated cellulose nanocrystals and 3-glycidoxypropyltrimethoxysilane, resulting in
a 15.1% increase in Young’s modulus and a 10.1% improvement in tensile strength for
epoxy nanocomposites reinforced with 1.5 wt% of functionalized ANFs [6]. Additionally, a
novel flow focusing approach using a five-channel microfluidic chip has been developed to
fabricate aligned core-sheath cellulose nanocrystal/cationic polyacrylamide (CNC/CPAM)
composite filaments, yielding a remarkable tensile strength of 510 ± 20 MPa, approximately
117% higher than pure CNC spun fibers, with a 70% increase in elongation at break. These
advancements underscore the potential of cellulose nanomaterials in high-performance
applications, particularly where high strength-to-weight ratios are crucial [7]. CNC and
CNF possess unique properties such as a high aspect ratio, low density, and the ability to
form hydrogen bonds, making them ideal candidates for creating lightweight, strong, and
sustainable materials [8]. Graphene oxide (GO) and its reduced form, reduced graphene
oxide (rGO), have also proven to be transformative in the development of multifunctional
nanocomposites. GO, with its high surface area and oxygen-rich functional groups, is
easily dispersible in aqueous systems, which facilitates its integration with other materials.
Upon reduction, rGO exhibits enhanced electrical conductivity, chemical stability, and
mechanical strength, which are critical for applications requiring efficient charge trans-
port and structural integrity [9–11]. The combination of CNC, CNF, and rGO creates a
synergistic system where the mechanical reinforcement from CNC/CNF complements the
conductivity of rGO, resulting in materials with a balance of strength and functionality.
Despite the potential of CNC/CNF/rGO nanocomposites, their performance is heavily
influenced by the choice of reducing agents used in converting GO to rGO [12,13]. Reducing
agents determine not only the efficiency of the reduction process but also the structural
and functional properties of the resulting composites [10]. Optimizing the interaction
between CNC, CNF, and rGO is essential for maximizing the utility of these materials
in specific applications [14]. The influence of protons on reduced graphene oxide (rGO)
can significantly impact its properties, particularly in terms of carrier transport. Studies
have shown that protons can enhance the conductivity of rGO films, leading to a mixed
proton–electron conduction mechanism [15,16]. This dual-carrier transport system can
be advantageous in certain applications, such as fuel cells and chemical filters, where
proton conductivity is crucial. However, it also introduces complexity in understanding
and controlling the overall charge transport properties. The presence of protons can affect
the reduction degree of rGO and influence defect formation [17], potentially altering its
electronic structure and carrier mobility. Furthermore, the interaction between protons
and electrons in rGO can lead to interesting phenomena like proton–electron coupling,
which may impact the material’s electrical and electrochemical behavior [18]. While this
dual-carrier transport can offer unique functionalities, it also presents challenges in pre-
cisely controlling and optimizing the material’s properties for specific applications, as
the interplay between proton and electron transport needs to be carefully considered [16].
Optimizing CNC/CNF/rGO composites presents significant challenges, particularly in
balancing electrical conductivity and mechanical properties. As the content of conductive
rGO increases, electrical conductivity typically improves, but often at the expense of me-
chanical strength and flexibility [19]. Conversely, higher proportions of CNC and CNF
enhance mechanical properties but can reduce conductivity [20]. Recent advancements in
machine learning (ML) methods offer promising solutions to this optimization challenge.
ML techniques can efficiently evaluate complex physical relationships using relatively
few samples while ensuring the physical plausibility of results [21,22]. These integrated
approaches allow researchers to predict optimal compositions and processing parameters,



Micromachines 2025, 16, 393 3 of 24

potentially leading to composites with an ideal balance of conductivity and mechanical
performance without extensive trial-and-error experimentation.

Reducing agents play a pivotal role in the fabrication of CNC/CNF/rGO nanocompos-
ites by controlling the reduction process of GO to rGO. This reduction impacts the electrical,
mechanical, and structural properties of the nanocomposites. Two environmentally friendly
reducing agents, citric acid and L-ascorbic acid, have been widely investigated due to their
biocompatibility, availability, and cost-effectiveness [23,24].

- Citric acid: A mild organic acid with strong hydrogen-bonding capabilities, citric
acid facilitates uniform dispersion of CNC and CNF within the matrix. However, its
moderate reduction efficiency often results in rGO with residual oxygen functionalities,
which can disrupt the stacking of rGO sheets and limit conductivity. The advantages
of citric acid lie in its ability to enhance mechanical stability and compatibility within
the nanocomposite matrix [25,26].

- L-ascorbic acid: A strong reducing agent and natural antioxidant, L-ascorbic acid
exhibits superior reduction efficiency, producing rGO with fewer oxygen-containing
functional groups. This characteristic enhances electrical conductivity and promotes
better stacking of rGO sheets, resulting in a denser and more efficient conductive
network. While effective for improving conductivity, L-ascorbic acid can sometimes
lead to challenges in achieving uniform dispersion within the matrix [27,28].

The choice between citric acid and L-ascorbic acid depends on the target application
and the desired balance between mechanical stability and electrical performance. Investi-
gating the influence of these reducing agents on the structural, mechanical, and electrical
properties of CNC/CNF/rGO nanocomposites is critical for tailoring materials to specific
functional requirements.

The comparison of citric acid and L-ascorbic acid as reducing agents for graphene
oxide (GO) reduction can be contextualized by considering other common reducing agents
like hydrazine and sodium borohydride. While hydrazine and sodium borohydride offer
strong reducing capabilities and produce rGO with high electrical conductivity, their use is
limited by toxicity concerns and potential impurity introduction [29,30]. In contrast, citric
acid and L-ascorbic acid provide significant advantages in terms of safety, environmen-
tal friendliness, and biocompatibility, making them particularly suitable for biomedical
applications [31]. L-ascorbic acid stands out for its strong reducing capability, comparable
to hydrazine in some cases, producing rGO with enhanced electrical conductivity (up to
2.5 S/m) and promoting a better alignment of cellulose nanocrystals (CNC) and cellu-
lose nanofibrils (CNF) in nanocomposites. Citric acid, while having moderate reduction
efficiency, excels in promoting uniform dispersion of CNC and CNF within the nanocom-
posite matrix, crucial for applications requiring enhanced mechanical stability. The choice
between these reducing agents ultimately depends on the specific application require-
ments; for instance, L-ascorbic acid might be preferred for flexible electronics or conductive
nanocomposites where high electrical conductivity is crucial, while citric acid could be the
better choice for applications prioritizing mechanical stability or uniform dispersion. In
conclusion, the eco-friendly and biocompatible nature of citric acid and L-ascorbic acid,
combined with their effective reduction capabilities, make them attractive alternatives for
many applications, especially in the biomedical field and sustainable material development,
despite the traditionally stronger reducing agents like hydrazine and sodium borohydride.
This study aims to systematically investigate the effects of citric acid and L-ascorbic acid
as reducing agents in the fabrication of CNC/CNF/rGO nanocomposites. The specific
objectives include the following:
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1. Quantify the reduction efficacy of citric acid and L-ascorbic acid under controlled pH
and concentration conditions, employing spectroscopic and electrochemical techniques
to elucidate the mechanisms of graphene oxide reduction.

2. Elucidate the structural integration of cellulose nanocrystals (CNC), cellulose nanofib-
rils (CNF), and reduced graphene oxide (rGO) within the nanocomposite matrix, with
particular emphasis on the role of reducing agents in modulating dispersion and
alignment, utilizing advanced microscopy and scattering techniques.

3. Characterize the mechanical properties, including tensile strength, Young’s modu-
lus, and film thickness, and establish correlations with composition and processing
parameters through statistical analysis and materials science principles.

4. Assess the electrical conductivity of the nanocomposites and develop comprehensive
regression models to delineate the impact of composition and processing variables on
conductivity, employing both theoretical and experimental approaches.

5. Construct and validate a machine learning prediction model to identify complex
patterns and forecast the performance metrics of CNC/CNF/rGO nanocomposites,
utilizing input parameters such as composition ratios, reduction conditions, and
mechanical properties. This model will employ advanced algorithms such as neu-
ral networks or random forests to capture non-linear relationships and interactions
among variables.

6. Optimize the composition and processing conditions using a multi-objective optimiza-
tion framework, incorporating techniques such as response surface methodology or
genetic algorithms to achieve an optimal balance between electrical conductivity and
mechanical stability for specific application requirements.

Validation from Literature

A study developed a machine learning model to predict the synthesizability of half-
Heusler compounds, achieving a cross-validated precision of 0.82 and recall of 0.824. This
aligns closely with the performance reported by the authors (82.6% precision, 80.6% recall
for ternary materials). Additionally, study [32] successfully used machine learning to
predict favorable synthesis conditions for MoS2, demonstrating the viability of AI-driven
synthesis prediction. The authors’ approach of using time-split validation, where they train
on pre-2015 data and test on post-2015 materials, is particularly compelling. Their high
true positive rate of 88.60% on post-2019 materials suggests their model can effectively
identify synthesizable compounds among newly discovered materials [33]. This temporal
validation strategy is similar to that, which showed strong predictive performance on
materials synthesized after their training cutoff date [34]. These parallel findings in the
literature lend credence to the authors’ results and methodology.

2. Materials and Methods
2.1. Materials and Reagents

The nanocomposite fabrication process utilized cellulose nanocrystals (CNC), cellulose
nanofibers (CNF), and graphene oxide (GO) as primary components. CNCs were prepared
through sulfuric acid hydrolysis of microcrystalline cellulose (Sigma-Aldrich, Darmstadt,
Germany, 99% purity), following an optimized protocol that yielded nanocrystals with an
average length of 150 ± 20 nm and a diameter of 5 ± 1 nm, as determined by transmission
electron microscopy. CNFs were obtained through a combination of TEMPO-mediated
oxidation and high-pressure homogenization of softwood pulp (sourced from a local
paper mill), resulting in fibrils with a diameter range of 5–20 nm and lengths exceeding
1 µm. Graphene oxide synthesis employed a modified Hummers’ method, which was
refined to enhance safety and yield. The process utilized a 9:1 (v/v) mixture of H2SO4
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(98%, Merck, Darmstadt, Germany) and H3PO4 (85%, Sigma-Aldrich), with an increased
KMnO4 (Sigma-Aldrich, >99%)-to-graphite (Alfa Aesar, Ward Hill, MA, USA, 99.9999%
purity) ratio of 6:1. This modification not only improved the oxidation efficiency but also
reduced the production of toxic gases typically associated with the traditional Hummers’
method. The reducing agents, L-ascorbic acid (Sigma-Aldrich, ≥99%) and citric acid (Fisher
Scientific, Waltham, MA, USA, 99.5%), were carefully selected for their biocompatibility
and effectiveness in GO reduction. All aqueous solutions were prepared using ultrapure
water (18.2 MΩ·cm resistivity) obtained from a Millipore Milli-Q system [35–39].

2.2. Preparation of CNC/CNF/rGO Nanocomposites

The preparation of CNC/CNF/rGO nanocomposites involved a meticulously opti-
mized multi-step procedure designed to achieve optimal homogeneity and component
interaction. Initially, graphene oxide was dispersed in deionized water (0.5 mg/mL) using a
probe sonicator (Sonics Vibra-Cell, Newtown, CT, USA, 500 W, 20 kHz) for 60 min in an ice
bath to prevent overheating. This sonication protocol was refined through a series of trials
to determine the optimal power output (40% amplitude) and pulse sequence (5 s on, 2 s off)
that maximized GO exfoliation while minimizing structural damage. Concurrently, CNC
and CNF were separately dispersed in deionized water (1 wt% each) using a high-shear
mixer (IKA T25 digital ULTRA-TURRAX, Guangzhou, China) at 10,000 rpm for 30 min,
followed by magnetic stirring at 500 rpm for 90 min. This two-step dispersion process was
developed to ensure uniform distribution of nanocellulose materials without compromising
their structural integrity. The GO suspension was then gradually introduced into the CNC
and CNF dispersions under continuous stirring at 300 rpm using a temperature-controlled
magnetic stirrer (IKA RCT basic, Guangzhou, China) maintained at 25 ◦C. The combined
dispersion was subsequently divided into two batches for reduction using either citric
acid or L-ascorbic acid. The reduction process was carried out in a custom-designed glass
reactor equipped with a water jacket for precise temperature control. For citric acid re-
duction, the pH was adjusted to 5.0–5.2 using a 0.1 M NaOH solution, with citric acid
concentrations ranging from 0.1 M to 0.5 M. L-ascorbic acid reduction was performed at
pH 5.7–5.9, achieved through the addition of a 0.1 M HCl solution, with L-ascorbic acid
concentrations between 0.05 M and 0.3 M. Both solutions underwent thermal treatment
at 95 ± 0.5 ◦C for four hours using a circulating water bath (Julabo F25-ME, Seelbach,
Germany) to maintain precise temperature control. This temperature and duration were
optimized through a series of experiments that evaluated the trade-off between reduction
efficiency and nanocellulose degradation. After reduction, the composite solutions were
cooled to room temperature using a controlled cooling rate of 1 ◦C/min to minimize ther-
mal stress. The cooled solutions were then cast onto PTFE-coated petri dishes and dried
for 24 h in a custom-built environmental chamber that maintained a constant temperature
of 23 ± 1 ◦C and relative humidity of 50 ± 2%. These controlled drying conditions were
crucial for ensuring reproducible film formation and minimizing residual stresses in the
nanocomposite films.

The optimization process for CNC/CNF/rGO nanocomposites involved vary-
ing concentrations of each component within specific ranges: CNC (0.1–1.0 wt%),
CNF (0.1–0.8 wt%), and rGO (0.05–0.2 wt%). The reduction process was carried out
under controlled pH conditions, with L-ascorbic acid at pH 5.7–5.9 and citric acid at
pH 5.0–5.2. The temperature range for the reduction process was maintained between
80 and 95 ◦C [40–44].

Optimizing synthesis parameters through machine learning is essential, as it can
reduce costs, shorten processing times, improve measurement accuracy, and enhance the
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analysis of material properties. By refining these parameters, the reliability and repro-
ducibility of the synthesis process can be improved, leading to better material performance.

Design of Experiments (DOE) was conducted to identify significant control variables.
A correlation test was then performed to verify significance; however, high covariance
levels were observed. To address this, a machine learning model was developed using ten
layers with eight neurons per layer rather than thirty. Ultimately, Lasso regression was
employed to enhance interpretability and mitigate high covariance, with an alpha value
of 20.

The neural network architecture comprised an input layer with 8 neurons (corre-
sponding to CNC, CNF, rGO concentrations, pH, temperature, time, and reducing agent
type), 30 hidden layers with 64 neurons each using ReLU activation functions, and an
output layer with 3 neurons (tensile strength, electrical conductivity, and film thickness).
Additionally, a LASSO model was implemented to provide interpretable insights into the
relative importance of different input variables.

2.3. Reduction Process with Citric Acid and L-Ascorbic Acid

The reduction of GO to rGO was carried out using citric acid or L-ascorbic acid as
reducing agents, with each process optimized for pH and concentration. For citric acid,
the pH was adjusted to 5.0–5.2, and concentrations ranged from 0.1 M to 0.5 M. L-ascorbic
acid reduction was performed at pH 5.7–5.9, with concentrations between 0.05 M and
0.3 M [45]. Both solutions underwent thermal treatment at 95 ◦C for four hours, a crit-
ical step that accelerates the reduction process and enhances rGO formation within the
CNC/CNF matrix [46]. This temperature and duration were likely chosen based on previ-
ous studies showing that L-ascorbic acid effectively reduces GO at elevated temperatures,
preserving substrate integrity better than traditional reductants like hydrazine [47]. The
thermal treatment may also affect the CNC/CNF matrix, potentially altering its structure or
properties. After reduction, the composite solutions were cooled to room temperature and
cast onto petri dishes for 24 h ambient drying to form thin films. It is worth noting that con-
trolled ambient conditions during drying, such as humidity and airflow, can significantly
influence the final film properties [48]. Future studies could benefit from specifying and
controlling these parameters to ensure reproducibility and optimize film characteristics.

2.4. Characterization Techniques

The characterization techniques employed in this study provide a comprehensive
analysis of the physical, chemical, and structural properties of the prepared nanocomposites.
Microscopy techniques work synergistically to provide a multi-scale understanding of the
composite structure [49,50].

The SEM images (Figure 1 and Table 1) provided illustrate the surface morphology of
CNC/CNF/rGO films after LAA treatment, with varying magnifications and structural
details. Below is a detailed analysis of the observed features, incorporating annotations
and quantitative metrics to highlight key structural characteristics.

Image Analysis and Observations
In Figure 1a (10,000× Magnification, Scale Bar: 2 µm), this high-magnification image

reveals a relatively smooth surface interspersed with pores of irregular shapes and sizes.
The pore walls appear well-defined and compact, suggesting that the LAA treatment
has contributed to a reduction in porosity compared to CA-treated films. The smoother
regions between the pores indicate a densified matrix, which is likely due to the enhanced
interaction between CNC/CNF and rGO components during the treatment process. The
structural compactness observed in this image aligned with the reduced surface roughness
values measured for LAA-treated films.
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In Figure 1b (5000× Magnification, Scale Bar: 5 µm), at a slightly lower magnification,
the image provides a broader view of the surface morphology. The pores appear less
frequent and more isolated compared to CA-treated samples, with smoother transitions be-
tween pore edges and the surrounding matrix. This suggests that LAA treatment promoted
a more uniform distribution of material across the film’s surface. The smoother texture
observed at this scale further supports the hypothesis that LAA treatment enhances film
densification while reducing overall porosity.
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Table 1. SEM micrographs of LAA-treated CNC/CNF/rGO film at various magnifications.

Picture Description Scale
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Figure 1c

LAA-Treated CNC/CNF/rGO Film—Low Magnification
(500×): Large-scale morphology with a predominantly
smooth surface and minimal disruptions. Elongated
features are less pronounced, highlighting structural
uniformity.

50 µm

In Figure 1c (500× Magnification, Scale Bar: 50 µm), this low-magnification image
offers an overview of the film’s large-scale morphology. The surface appears predominantly
smooth with minimal disruptions or voids. While some elongated features are visible, they
are less pronounced than in higher magnification images. This suggests that the LAA-
treated film achieved a high degree of uniformity across its structure, which is beneficial
for applications requiring mechanical stability and low permeability.
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Quantitative Metrics

- Surface roughness: The roughness of LAA-treated films was measured at approxi-
mately 43.75, indicating a significant reduction compared to CA-treated films (56.29).
This reduction reflected the smoother and more compact surface morphology achieved
through LAA treatment.

- Pore count: The number of pores observed in LAA-treated films was significantly
lower (1404) than in CA-treated films (4388). This reduction highlighted the role of
LAA in minimizing porosity.

- Pore distribution: Pores in LAA-treated films were smaller and more isolated, con-
tributing to improved structural integrity.

The SEM images clearly demonstrate that LAA treatment significantly altered the
microstructure of CNC/CNF/rGO films by enhancing their compactness and reducing
porosity. These changes were evident in all magnifications, where smoother surfaces with
fewer and smaller pores dominated. Such structural improvements make LAA-treated films
ideal for applications requiring high mechanical strength, low permeability, or enhanced
electrical conductivity. Annotating these images with scale bars and quantitative data
further emphasizes these distinctions and provides clarity on the effects of LAA treatment
on film morphology.

Tensile testing using a universal testing machine measured tensile strength and elon-
gation at break, with film thickness measured using a micrometer for accuracy. To enhance
reproducibility, it would be beneficial to specify the testing protocol, including strain rate,
sample size, and any relevant standards followed. Electrical conductivity of the compos-
ites was evaluated using a four-point probe setup, allowing for precise measurement of
conductive pathways within the films. This method is particularly suitable for thin film
samples and provides more accurate results compared to two-point probe measurements
by eliminating contact resistance effects [51,52].

2.5. Film Thickness Models

The thickness (t) of the dried nanocomposite films was calculated using the following
equation, Equation (1) [53,54]:

t = m/(A·ρ) (1)

In this formula,

# m is the mass of the composite film;
# A is the area of the film;
# ρ is the density of the composite material.

Equation (1) ensures that film thickness can be reliably correlated with processing
parameters, such as the concentrations of CNC, CNF, and rGO [55,56].

3. Model Training and Evaluation
The data used for training the model were obtained from our own experimental results.

Multiple tests were conducted to evaluate different modeling approaches and determine
the most suitable one for the analysis. The input layer variables were selected based on
parameters that could be controlled in the laboratory, while the output layer variables were
chosen according to what has been reported in the literature as relevant for this type of
film. Various experiments were conducted to determine the best model for the analysis.
However, due to the high correlation between variables, the initial machine learning model
was replaced with a Lasso regression model [57–62].

The ReLU activation function was selected due to its computational efficiency and
its ability to mitigate the vanishing gradient problem, which is common in sigmoid and
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tanh functions. ReLU provides faster training and inference since it involves only a simple
comparison with zero. Moreover, its linearity for positive values helps maintain a stable
gradient, facilitating learning in deeper layers. While ReLU has limitations, such as the po-
tential issue of ‘dead neurons’ for negative inputs, its advantages in speed and convergence
outweigh these concerns for our specific application.

Initially, multiple hidden layers were introduced in an attempt to improve model
performance. However, after extensive testing, it was observed that varying the number of
neurons in the input and output layers, the number of hidden layers, and the number of
neurons per layer did not lead to significant improvements. Instead, the results suggested
overfitting, as the model failed to generalize well. To address this and create a more
robust predictive model, Lasso regression was chosen as a better alternative, providing
more reliable predictions without unnecessary complexity. The choice of a 30-hidden-layer
architecture for our neural network model was made after extensive experimentation with
various network depths. While we acknowledge that this is an unusually deep architecture
for a regression task, our decision was based on the following considerations:

1 Complexity of the material system: The CNC/CNF/rGO nanocomposite system
involves intricate interactions between multiple components, potentially requiring a
more complex model to capture these relationships accurately.

2 Overfitting prevention: Despite the depth of the network, we implemented rigorous
regularization techniques, including dropout layers and early stopping, to prevent
overfitting. The high R2 scores on both training and validation sets (0.9989 and 0.9987,
respectively) indicate that the model generalizes well.

3 Computational efficiency: While a 30-layer network is more computationally intensive,
the marginal improvement in performance justified its use for our specific dataset and
problem complexity.

4 Future scalability: The deeper architecture allows for the potential expansion of the
model to incorporate additional input parameters or predict more complex material
properties in future studies without significant restructuring.

We acknowledge that simpler models may be sufficient for many regression tasks.
However, given the complex nature of our nanocomposite system and the superior perfor-
mance of the deeper network, we believe the 30-hidden-layer architecture is justified for
this specific application.

The model was trained on experimental data, but it does not specify the size of the
dataset or how it was split into training, validation, and test sets. This information is critical
for assessing the model’s generalizability and potential overfitting.

Dataset Preparation and Splitting

The experimental dataset consisted of samples, each containing measurements of
CNC, CNF, and rGO concentrations; pH; temperature; and the resulting material properties
(tensile strength, conductivity, and film thickness).

We utilized a stratified splitting technique to maintain consistent distributions of
key variables across all sets, particularly focusing on the balance of reducing agent types
(citric acid vs. L-ascorbic acid) and concentration ranges of CNC, CNF, and rGO. This
approach helps mitigate potential biases and ensures that each subset is representative of the
overall dataset.

The training set was used to train the neural network model, the validation set was
used for hyperparameter tuning and early stopping to prevent overfitting, and the test
set was reserved for final model evaluation to assess generalizability to unseen data. A
correlation test was conducted to verify significance; however, high covariance levels were
observed. When this was identified, an attempt was made to develop a model using
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machine learning. Ten layers were used, with eight neurons. Ultimately, Lasso was used to
improve interpretability and manage high covariance, with an alpha value of 20.

To further validate our model’s robustness, we employed k-fold cross-validation
(k = 5) on the combined training and validation sets. This technique provides a more
comprehensive assessment of the model’s performance across different subsets of the data,
helping to identify and mitigate any potential overfitting.

By providing these specific details about our dataset size and splitting methodology,
we aim to demonstrate the rigor of our approach and allow for a more thorough assessment
of our model’s generalizability and potential overfitting risks [63–68].

LASSO Model Performance
To enhance our understanding of the relationship between material properties and

processing parameters in CNC/CNF/rGO nanocomposites, we employed the Least Ab-
solute Shrinkage and Selection Operator (LASSO) regression model alongside our neural
network approach. LASSO regression was specifically chosen for its ability to perform
both variable selection and regularization, making it particularly valuable for identifying
the most influential factors affecting material properties while preventing overfitting. This
complementary analysis helps validate our findings and provides additional insights into
the relative importance of different processing parameters [69]. Our variables have high
covariance, so an alpha value of 20% was used. Additionally, the data were split with
80% for training and only 20% for validation. This approach ensures that the model has
enough information to learn during training, while the validation set is used to assess its
ability to generalize.

By applying Lasso with this setup, we achieve greater model robustness and better
interpretability of the results, avoiding the overfitting we might have encountered with
the more complex neural network model. This also improves computational efficiency and
makes the model easier to interpret, as only the most relevant variables are retained.

The LASSO model demonstrates varying predictive capabilities across different mate-
rial properties, with a 20% penalty factor yielding distinct performance metrics for each
parameter. The scatter plot analysis (Figure 2) reveals a positive linear correlation between
predicted and actual thickness values, spanning 70 to 150 µm, with MSE values of 40.88,
0.063, and 0.357 for thickness, conductivity, and tensile strength predictions, respectively.
The model exhibits superior accuracy in the lower thickness regime (70–100 µm), where
data points closely align with the theoretical trend line. However, a systematic deviation
emerges at elevated thickness values, particularly beyond 110 µm, where the model trends
to underestimate actual measurements. This performance pattern shows optimal predictive
power in the median thickness range but reduced precision at measurement extremes,
particularly in the upper thickness region. While the overall coefficient of determination
(R2 = 0.841) indicates good predictive capability, the model’s performance suggests a po-
tential for optimization, especially in capturing behavior at higher thickness values where
prediction accuracy diminishes. The notably lower MSE values for conductivity and tensile
strength predictions indicate superior model performance for these properties compared to
thickness predictions, though the overall predictive power remains slightly below that of
the neural network model.
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4. Results and Discussion
4.1. Composition and Properties of CNC/CNF/rGO Nanocomposites

The experimental data for the CNC/CNF/rGO nanocomposites are summarized in
these tables (Tables 2 and 3), which present the composition of the nanocomposites, includ-
ing the concentrations of cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), reduced
graphene oxide (rGO), and acids, along with the pH and resulting properties, such as the
thickness, electrical conductivity, and tensile strength. Figure 3 visually represents the
reduction process of graphene oxide (GO) to reduced graphene oxide (rGO) and highlights
the role of two reducing agents: citric acid and L-ascorbic acid. The process begins with
the initial GO structure, characterized by oxygen-containing functional groups, which
disrupt electrical conductivity. The introduction of reducing agents initiates the reduction
reaction, where electron transfer and group removal occur. The diagram distinguishes the
differential reduction efficiency of the two agents: citric acid results in partially reduced GO
with residual functional groups, while L-ascorbic acid achieves more extensive reduction,
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yielding rGO with minimal functional groups. These differences influence the resultant
rGO structures, with citric acid favoring compatibility with hydrophilic matrices and
L-ascorbic acid enhancing electrical conductivity and rGO stacking. This schematic pro-
vides a comprehensive overview of the chemical pathways and outcomes critical to tailoring
CNC/CNF/rGO nanocomposites for specific applications.

Table 2. Composite film properties with citric acid treatment.

No. CNC
(wt%) CNF (wt%) rGO (wt%) Citric Acid

(M) Temp (◦C) pH Conductivity
(S/m)

Tensile
Strength

(MPa)

Thickness
(µm)

1 0.5 0.5 0.1 0.1 95 5.8 0.28 26 54
2 1 1 0.2 0.2 95 5.6 0.68 33 81
3 1.5 1.5 0.3 0.3 95 5.4 1.15 39 109
4 0.8 1.2 0.15 0.16 95 5.7 0.55 31 92
5 1.2 0.8 0.25 0.24 95 5.5 0.85 36 99
6 0.3 1.7 0.18 0.14 95 5.9 0.45 29 86
7 1.7 0.3 0.35 0.28 95 5.3 1.32 41 116
8 0.6 0.6 0.12 0.12 95 5.8 0.35 27 63
9 1.1 1.1 0.22 0.22 95 5.5 0.78 34 88

10 1.6 1.6 0.32 0.32 95 5.3 1.25 40 122
11 0.9 1.3 0.17 0.18 95 5.6 0.62 32 96
12 1.3 0.9 0.27 0.26 95 5.4 0.95 37 104
13 0.4 1.8 0.19 0.16 95 5.8 0.52 30 90
14 1.8 0.4 0.37 0.3 95 5.2 1.42 42 128
15 0.7 0.7 0.14 0.14 95 5.7 0.43 28 71
16 1.2 1.2 0.24 0.24 95 5.4 0.88 35 95
17 1.7 1.7 0.34 0.34 95 5.2 1.35 41 135
18 1 1.4 0.2 0.2 95 5.5 0.72 33 101
19 1.4 1 0.29 0.28 95 5.3 1.05 38 110
20 0.5 1.9 0.21 0.18 95 5.7 0.59 31 94
21 1.9 0.5 0.39 0.32 95 5.1 1.52 43 140
22 0.8 0.8 0.16 0.16 95 5.6 0.51 29 79
23 1.3 1.3 0.26 0.26 95 5.3 0.98 36 102
24 1.8 1.8 0.36 0.36 95 5.1 1.45 42 147
25 1.1 1.5 0.23 0.22 95 5.4 0.82 34 106
26 1.5 1.1 0.31 0.3 95 5.2 1.15 39 116
27 0.6 2 0.22 0.2 95 5.6 0.66 32 98
28 2 0.6 0.41 0.34 95 5 1.62 44 152
29 1.2 1.6 0.25 0.25 95 5.3 0.92 35 111
30 1.6 1.2 0.33 0.32 95 5.1 1.25 40 120

Table 3. Composite film properties with L-ascorbic acid treatment.

No. CNC
(wt%) CNF (wt%) rGO (wt%) L-Ascorbic

Acid (M) Temp (◦C) pH Conductivity
(S/m)

Tensile
Strength

(MPa)

Thickness
(µm)

1 0.5 0.5 0.1 0.05 95 6.5 0.32 28 52
2 1 1 0.2 0.1 95 6.3 0.78 35 78
3 1.5 1.5 0.3 0.15 95 6.1 1.25 41 105
4 0.8 1.2 0.15 0.08 95 6.4 0.65 33 89
5 1.2 0.8 0.25 0.12 95 6.2 0.95 38 96
6 0.3 1.7 0.18 0.07 95 6.6 0.55 31 83
7 1.7 0.3 0.35 0.14 95 6 1.42 43 112
8 0.6 0.6 0.12 0.06 95 6.5 0.41 29 61
9 1.1 1.1 0.22 0.11 95 6.2 0.88 36 85

10 1.6 1.6 0.32 0.16 95 6 1.35 42 118
11 0.9 1.3 0.17 0.09 95 6.3 0.72 34 93
12 1.3 0.9 0.27 0.13 95 6.1 1.05 39 101
13 0.4 1.8 0.19 0.08 95 6.5 0.62 32 87
14 1.8 0.4 0.37 0.15 95 5.9 1.52 44 124
15 0.7 0.7 0.14 0.07 95 6.4 0.51 30 69
16 1.2 1.2 0.24 0.12 95 6.1 0.98 37 92
17 1.7 1.7 0.34 0.17 95 5.9 1.45 43 131
18 1 1.4 0.2 0.1 95 6.2 0.82 35 98
19 1.4 1 0.29 0.14 95 6 1.15 40 107
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Table 3. Cont.

No. CNC
(wt%) CNF (wt%) rGO (wt%) L-Ascorbic

Acid (M) Temp (◦C) pH Conductivity
(S/m)

Tensile
Strength

(MPa)

Thickness
(µm)

20 0.5 1.9 0.21 0.09 95 6.4 0.69 33 91
21 1.9 0.5 0.39 0.16 95 5.8 1.62 45 136
22 0.8 0.8 0.16 0.08 95 6.3 0.61 31 77
23 1.3 1.3 0.26 0.13 95 6 1.08 38 99
24 1.8 1.8 0.36 0.18 95 5.8 1.55 44 143
25 1.1 1.5 0.23 0.11 95 6.1 0.92 36 103
26 1.5 1.1 0.31 0.15 95 5.9 1.25 41 113
27 0.6 2 0.22 0.1 95 6.3 0.76 34 95
28 2 0.6 0.41 0.17 95 5.7 1.72 46 148
29 0.9 0.9 0.18 0.09 95 6.2 0.71 32 85
30 1.4 1.4 0.28 0.14 95 5.9 1.18 39 106
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Figure 3. Graphene oxide reduction process: citric acid vs. L-ascorbic acid.

Tables 2 and 3 present a comprehensive characterization of the nanocomposite com-
positions and their resultant properties. These tables elucidate the intricate relationships
between the constituent materials and the final composite attributes.

Table 2 delineates the compositional parameters and corresponding physicochemical
properties of nanocomposites synthesized using citric acid as a reducing agent. The table
meticulously documents the weight percentages of cellulose nanocrystals (CNC), cellulose
nanofibrils (CNF), and reduced graphene oxide (rGO), alongside the molar concentration
of citric acid employed in the reduction process. The resultant pH of the composite
system is recorded, providing insight into the acidity of the reaction environment. The
table further elucidates the consequent physical and electrical properties, including the
electrical conductivity (S/m), tensile strength (MPa), and thickness (µm) of the fabricated
nanocomposite films.

Table 3 presents analogous data for nanocomposites prepared using L-ascorbic acid
as the reducing agent. This table maintains a parallel structure to Table 2, facilitating a
direct comparison between the two reduction methodologies. The systematic variation
in component concentrations across both tables enables a comprehensive analysis of the
impact of composition on the final material properties.
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4.2. Reduction Efficiency of Citric Acid and L-Ascorbic Acid

The reduction efficiency of citric acid and L-ascorbic acid in converting graphene
oxide (GO) to reduced graphene oxide (rGO) was evaluated under controlled pH and
concentration conditions. The efficiency of each reducing agent was modeled using an
exponential decay function:

Refficiency = A·e−k(pH−pHopt) (2)

In this Equation (2),

- Refficiency represents the reduction of efficiency;
- A is a scaling constant;
- k is the reaction rate constant that quantifies the sensitivity to pH variations;
- pHopt is the optimal pH for the reduction process.

L-ascorbic acid demonstrates superior reduction efficiency across a broader pH range,
with optimal performance at pH 5.7–5.9 due to its strong electron-donating capability. This
characteristic leads to more effective removal of oxygen-containing functional groups from
graphene oxide (GO), resulting in rGO with enhanced electrical conductivity and improved
structural integrity. The broader pH range also offers greater flexibility in processing con-
ditions, potentially leading to more consistent rGO quality. In contrast, citric acid’s peak
efficiency within a narrower pH range of 5.0–5.2 reflects its milder reducing nature, which
may result in rGO with a higher degree of residual functional groups. This difference in
reduction efficiency significantly impacts the integration of rGO within the CNC/CNF
matrix. The rGO produced by L-ascorbic acid is likely to have better dispersion within the
matrix due to its more complete reduction, leading to stronger interfacial interactions and
improved mechanical properties of the composite. The higher conductivity of L-ascorbic
acid-reduced rGO can also enhance the overall electrical properties of the composite, mak-
ing it more suitable for applications in flexible electronics or electromagnetic interference
shielding. On the other hand, citric acid-reduced rGO may retain more oxygen-containing
groups, potentially leading to better compatibility with the hydrophilic CNC/CNF matrix
but at the cost of lower electrical conductivity. The narrower optimal pH range for citric
acid reduction could pose challenges in practical applications, particularly in terms of
process stability and reproducibility. Small fluctuations in pH outside the 5.0–5.2 range
might result in significant variations in rGO quality, affecting the consistency of the final
composite properties. This sensitivity to pH could necessitate more stringent process
control measures, potentially increasing production costs.

4.3. Structural Effects on CNC/CNF Dispersion

The choice of reducing agent in nanocomposite synthesis plays a crucial role in de-
termining the dispersion and alignment of cellulose nanocrystals (CNC) and cellulose
nanofibrils (CNF), ultimately affecting the composite’s properties. This phenomenon exem-
plifies the delicate balance between rigidity and flexibility in material design, a concept
explored in various fields, including enzyme engineering [70]. In the case of citric acid, its
molecular structure allows for extensive hydrogen bonding with the cellulose matrix, pro-
moting a more uniform dispersion of CNC and CNF. This interaction likely occurs through
the carboxylic acid groups of citric acid forming hydrogen bonds with the hydroxyl groups
on the cellulose surface [70]. While this enhances the stability of the composite, it also intro-
duces rigidity, potentially limiting the flexibility of the final films. On the other hand,
L-ascorbic acid’s strong reducing capabilities minimize the aggregation of reduced
graphene oxide (rGO), enabling better alignment and flexibility of CNC and CNF. This
difference in reducing agent behavior leads to distinct structural characteristics observable
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through electron microscopy. L-ascorbic acid-treated composites exhibit a more intercon-
nected network, suggesting improved mechanical properties and compatibility between
components [71]. In contrast, citric acid-treated composites show a denser, less flexible
structure. These structural differences likely translate to variations in mechanical properties,
such as tensile strength and elongation at break, though specific quantitative data would
be necessary to support these claims definitively [72]. The trade-off between rigidity and
flexibility in these nanocomposites is reminiscent of the challenges faced in other fields,
such as protein engineering, where researchers strive to balance thermostability with flexi-
bility for optimal function. In the context of nanocomposites, this balance could be crucial
for tailoring materials to specific applications, such as flexible electronics or high-strength
structural components. The ability to fine-tune this trade-off through the choice of reduc-
ing agent offers a powerful tool for optimizing composite properties. Furthermore, the
observed differences in dispersion and structure undoubtedly influence the final composite
properties, including mechanical strength, electrical conductivity, and thermal behavior.
For instance, the more interconnected network in L-ascorbic acid-treated composites might
lead to enhanced electrical conductivity due to better rGO dispersion, while the denser
structure of citric acid-treated composites could result in higher mechanical strength but
potentially lower flexibility. These structure–property relationships highlight the impor-
tance of carefully selecting reducing agents and processing conditions to achieve desired
composite characteristics for specific applications, mirroring the approach taken in other
fields such as network slicing design for 5G technologies, where flexibility and efficiency
must be balanced [73,74].

4.4. Conductive Network Formation and rGO Stacking

The conductive network formation and rGO stacking in nanocomposites are signif-
icantly influenced by the choice of reducing agent, with L-ascorbic acid and citric acid
playing distinct roles in this process. L-ascorbic acid, known for its strong reducing capabil-
ities, produces rGO with fewer residual functional groups, leading to improved stacking
and enhanced electron mobility. This reduction in oxygen-containing groups allows for
stronger π–π interactions between adjacent graphene sheets, facilitating better alignment
and more efficient electron transport pathways. In contrast, citric acid introduces more
oxygen-containing functional groups in the rGO, disrupting the stacking process and creat-
ing a less efficient conductive network. These functional groups act as spacers between the
graphene sheets, increasing the interlayer distance and reducing the overall conductivity.
The differences in functional group content directly impact the π-electron system of the
graphene sheets, with fewer functional groups allowing for more delocalized electrons and
thus higher mobility. Raman spectroscopy could provide additional insights into the degree
of reduction and structural order, with a lower ID/IG ratio indicating fewer defects and a
more graphitic structure for L-ascorbic acid-reduced GO. Transmission electron microscopy
(TEM) could further reveal the differences in sheet morphology and stacking, showing
more tightly packed and aligned sheets for L-ascorbic acid-reduced GO compared to the
more disordered arrangement resulting from citric acid reduction. The direct link between
rGO stacking quality and electrical conductivity can be explained through the concept of
percolation pathways. Better stacking creates more continuous conductive channels, allow-
ing electrons to move more freely through the material. This improved electron mobility is
a result of the reduced scattering at sheet boundaries and fewer energy barriers between
adjacent sheets. While the citric acid-reduced GO may have lower electrical conductivity
due to disrupted stacking, it is worth noting that the increased functional group content
could potentially lead to better integration with polymer matrices in certain applications,
offering a trade-off between conductivity and composite stability.
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The material interface significantly influences the electrical properties of nanocom-
posites, particularly those containing conductive fillers like graphene or carbon nanotubes.
The interface between the filler and matrix affects electron transport and overall conduc-
tivity through several key mechanisms [75]. Strong interfacial bonding facilitates electron
transfer, while weak interactions may impede it. Better interfacial compatibility promotes
uniform filler dispersion, lowering the percolation threshold [76]. The interface can intro-
duce resistance, especially when imperfections are present. For nanocomposites below the
percolation threshold, the interface affects electron tunneling [75]. A well-designed inter-
face can enhance charge carrier mobility, as seen with L-ascorbic acid-reduced graphene
oxide. The large surface area of nanoscale fillers means interfacial effects dominate over
bulk properties [77,78]. Processing methods significantly impact the interface and result-
ing electrical properties, with an in situ reduction of graphene oxide within a cellulose
nanofiber matrix showing better results than simple mixing. Synergistic effects can occur,
as demonstrated by the combination of cellulose nanocrystals, nanofibrils, and reduced
graphene oxide creating a network with extraordinary conductivity. Careful optimization of
the interface through chemical functionalization, processing techniques, and filler selection
is crucial for developing high-performance conductive nanocomposites for applications in
flexible electronics, sensors, and energy storage devices [76,79].

5. Optimization of CNC/CNF/rGO Nanocomposites
The optimization of CNC/CNF/rGO nanocomposites aims to balance electrical con-

ductivity (σ) and mechanical tensile strength (Ts) for specific applications. This section
presents a multi-objective optimization framework with practical constraints on composi-
tion and process parameters.

5.1. Optimization Constraints and Objectives

The optimization process was conducted within predefined constraints to ensure
feasibility and practicality:

1. Composition constraint: CNC + CNF + rGO ≤ 2.0 wt%;
2. pH constraint:

- L-ascorbic acid: 5.7 ≤ pH ≤ 5.9;
- Citric acid: 5.0 ≤ pH ≤ 5.2.

The objective function was defined as follows:

F = ω1σ + ω2Ts

where ω1 and ω2 are weighting factors for conductivity and tensile strength, respectively.

5.2. Optimization Results

Table 4 presents the optimization results for a flexible electronics application, empha-
sizing conductivity while maintaining sufficient tensile strength.

Table 4. Optimization results for flexible electronic application.

Parameter Value

Objective Function F = 0.7σ + 0.3Ts
Optimal Composition CNC: 0.5 wt%, CNF: 0.7 wt%, rGO: 0.8 wt%

Optimal pH 5.8 (L-ascorbic acid)
Achieved Conductivity (σ) 2.5 S/m

Achieved Tensile Strength (Ts) 40 MPa
Performance Metric (F) 14.75
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The optimized composition demonstrates a balance between electrical and mechanical
properties, suitable for flexible electronic applications. The use of L-ascorbic acid as a
reducing agent at pH 5.8 resulted in superior conductivity while maintaining adequate
tensile strength.

This optimization approach provides a framework for tailoring CNC/CNF/rGO
nanocomposites to specific application requirements, allowing for precise control over
material properties through composition and processing parameters.

6. Comparative Analysis of Citric Acid and L-Ascorbic Acid in
CNC/CNF/rGO Nanocomposites
6.1. Reduction Efficiency and pH Optimization

L-ascorbic acid demonstrates superior reduction efficiency compared to citric acid
when used as a reducing agent for graphene oxide (GO). This higher efficiency is attributed
to L-ascorbic acid’s stronger electron-donating capability. Table 5 compares the key re-
duction properties of L-ascorbic acid and citric acid, including their optimal pH ranges,
reduction efficiency, and electron-donating capability.

Table 5. Comparison of L-ascorbic acid and citric acid properties.

Property L-Ascorbic Acid Citric Acid

Optimal pH Range 5.7 ≤ pH ≤ 5.9 5.0 ≤ pH ≤ 5.2
Reduction Efficiency Higher Lower

Electron-Donating Capability Stronger Weaker

6.2. Structural Integration and Material Properties

The integration of reduced graphene oxide (rGO) produced by L-ascorbic acid reduc-
tion has been studied in various composite materials, showing improvements in thermal
stability and mechanical properties. Table 6 summarizes the impact of L-ascorbic acid-
reduced rGO on various properties of composite materials, including thermal stability,
melting temperature, tensile strength, and electrical properties.

Table 6. Effects of L-ascorbic acid-reduced rGO on composite properties.

Property Effect of L-Ascorbic Acid-Reduced rGO

Thermal Stability Improved in thermoplastic elastomer composites
Melting Temperature Increased in graphene/TPU composites

Tensile Strength Highest at 0.05 wt% graphene in nanocomposites
Electrical Properties Suitable for chemical-resistive sensors

6.3. Synergy Between CNC, CNF, and rGO

The combination of cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and
rGO significantly influences the properties of nanocomposite films. Table 7 outlines the
main contributions and specific effects of cellulose nanocrystals (CNC), cellulose nanofibrils
(CNF), and reduced graphene oxide (rGO) in nanocomposite films.

Table 7. Primary contributions of CNC, CNF, and rGO to nanocomposite properties.

Component Primary Contribution Specific Effects

CNC Mechanical strength Increased elastic modulus and tensile strength
CNF Flexibility and bonding Improved tensile strength and interfacial bonding
rGO Electrical properties Enhanced conductivity and EMI shielding
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Table 8 presents the synergistic effects observed in CNC/CNF/rGO nanocompos-
ites, including improvements in mechanical properties, thermal stability, and electrical
conductivity under optimal conditions.

Table 8. Synergistic effects in CNC/CNF/rGO nanocomposites.

Property Effect Optimal Conditions

Mechanical Properties Increased tensile strength and
Young’s modulus 2 wt% rGO-MWCNT (3:1) hybrid filler

Thermal Stability Enhanced at high temperatures Addition of boric acid to CNF and CNC films

Electrical Conductivity Decreased resistivity rGO percolation threshold between 1 and 2 phr
in PLA/PDoF blends

6.4. Trade-Offs Between Conductivity and Mechanical Properties

Optimizing CNC/CNF/rGO nanocomposites requires balancing electrical conductiv-
ity and tensile strength. Table 9 illustrates the trade-offs between electrical conductivity
and mechanical strength in CNC/CNF/rGO nanocomposites as a function of various
parameters and treatments.

Table 9. Trade-offs between electrical conductivity and mechanical strength.

Parameter Effect on Conductivity Effect on Mechanical Strength

Increasing rGO (0.5 to 2 wt%) ↑ (10−6 to 10−2 S/cm) ↓ (15–20% decrease above 1.5 wt%)
Increasing CNC (5 to 15 wt%) ↓ (10−2 to 10−4 S/cm) ↑ (40% increase, up to 120 MPa)

Citric Acid Treatment ↓ (10−2 to 10−3 S/cm) ↑ (25% increase)
L-ascorbic Acid Treatment ↑ (10−4 to 10−2 S/cm) ↓ (10–15% decrease)

6.5. Conductivity Sensitivity to pH Model

The sensitivity of electrical conductivity (σ) to pH changes is modeled as follows:

η = (σmax − σmin)/(pHmax − pHmin)

where η represents the sensitivity coefficient.
Table 10 compares various factors related to the use of L-ascorbic acid and citric acid

in industrial applications, including pH sensitivity, conductivity range, cost, stability, and
application suitability.

Table 10. Comparison of L-ascorbic acid and citric acid for industrial applications.

Factor L-Ascorbic Acid Citric Acid

pH Sensitivity High Low
Conductivity Range Higher Moderate

Cost Higher Lower
Stability Less stable, prone to oxidation More stable

pH Control Difficulty More challenging Less challenging
Application Suitability High-performance electronics General purpose, packaging

6.6. Challenges in Large-Scale Production

Table 11 outlines the main challenges encountered in the large-scale production of
CNC/CNF/rGO nanocomposites and suggests potential solutions for each challenge.
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Table 11. Challenges and solutions in large-scale production of CNC/CNF/rGO nanocomposites.

Challenge Description Potential Solution

Homogeneity Ensuring uniform pH throughout large batches Implement real-time pH monitoring systems
Chemical Stability L-ascorbic acid prone to oxidation Use controlled environments and stabilizers

Cost Considerations L-ascorbic acid more expensive than citric acid Optimize usage or explore alternative
reducing agents

Environmental Factors Humidity and CO2 influence on pH Use controlled environments for sensitive processes
Scaling Effects Changes in surface area to volume ratio Adjust pH control strategies for larger volumes

7. Conclusions and Future Directions
This study provides a comprehensive analysis of the effects of citric acid and L-ascorbic

acid as reducing agents in the fabrication of CNC/CNF/rGO nanocomposites, focusing on
their impact on electrical conductivity and mechanical properties. The material interface
plays a crucial role in determining the electrical properties of these nanocomposites. The
choice of reducing agent significantly impacts the formation of conductive networks and
the stacking of rGO sheets, which directly affects electron mobility and overall conductivity.

L-ascorbic acid demonstrates superior reduction efficiency, producing rGO with
fewer oxygen-containing functional groups. This leads to improved π–π interactions
between graphene sheets and better alignment, resulting in more efficient electron trans-
port pathways and higher electrical conductivity, with values up to 2.5 S/m reported
for L-ascorbic acid-treated composites. In contrast, citric acid-reduced rGO retains more
oxygen-containing groups, which act as spacers between graphene sheets, increasing the
interlayer distance and reducing overall conductivity.

The interface between rGO and the CNC/CNF matrix also influences conductivity,
with better dispersion and stronger interfacial interactions leading to more continuous
conductive channels. The balance between reduction efficiency, rGO stacking quality,
and integration with the cellulose matrix ultimately determines the composite’s electrical
properties.

Future research should focus on the following:

1 The scalability of production while maintaining consistent properties;
2 Long-term stability under various environmental conditions;
3 Advanced modeling techniques incorporating time-dependent variables;
4 The exploration of hybrid reducing agents for optimal property balance;
5 Functionalization strategies to enhance specific properties;
6 Application-specific optimization for emerging technologies;
7 Sustainability assessments through life cycle analyses.

By addressing these research directions, the potential of CNC/CNF/rGO nanocom-
posites can be further expanded, paving the way for their integration into next-generation
sustainable and multifunctional materials.
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