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Abstract: Traditional solar trackers are designed to follow the sun’s exact position, assuming
that perfect sun alignment always results in optimal energy generation. However, despite
perfect alignment, external factors such as shading, dust, and wind can reduce power output
in real-world conditions. To address these challenges, our novel system draws inspiration
from the flocking behavior of birds, where individual entities adjust their behavior based
on their energy output and the energy outputs of neighboring panels. The system uses
Particle Swarm Optimization (PSO) to mimic this behavior, dynamically adjusting the solar
tracker’s position to respond to varying environmental conditions. One key innovation is
introducing a power threshold strategy, set between 1.5 W and 2 W, to avoid continuous
tracker movement and conserve energy by minimizing unnecessary adjustments when the
power difference is insignificant. The proposed system demonstrated an impressive 8%
increase in energy gain and a reduction of up to 11% in energy consumption compared
to the traditional continuous tracker. The tracking accuracy improved by 84%, with the
mean tracking error reduced in the range of 0.78° to 1.09°. The system also captured 17.4%
more solar irradiance, showcasing its superior efficiency. Despite environmental challenges
such as dust and shading, the proposed system consistently outperformed the traditional
tracker regarding energy savings and overall performance, offering a more resilient and
energy-efficient solution for solar energy generation.

Keywords: bird flocking behavior; particle swarm optimization (PSO); power threshold;
solar energy; solar trackers

1. Introduction

Traditional solar tracking systems typically rely on sun sensors or sophisticated sun
position algorithms to follow the sun’s trajectory throughout the day. Sun sensors detect
solar angles, adjusting the tracker’s position to ensure optimal exposure to sunlight. This
widely adopted approach has been explored in numerous studies, including those by
Hoffmann et al. [1], Morén et al. [2], Abouzeid [3], and Skouri et al. [4]. To further enhance
tracking accuracy, some researchers have incorporated GPS sensors, as demonstrated by
Sidek et al. [5], Verma et al. [6], and Wu et al. [7], which allow for more precise alignment of
the tracker with the sun’s movement, compensating for slight misalignhments and improving
overall system performance.
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Another alternative method involves using webcams as sensor components to detect
solar intensity, as demonstrated by Arturo and Alejandro [8]. Rather than relying on
physical sensors, some systems employ sun position algorithms to calculate the optimal
position of the tracker. These algorithms use geographic coordinates, time, and date to
compute the sun’s elevation and azimuth angles, enabling the system to adjust the tracker’s
position without the need for direct sensors. This approach was investigated by researchers
such as Seme and Stumberger [9], Ghabusnejad et al. [10], and Pirayawaraporn et al. [11],
who highlighted the potential for reducing hardware requirements while maintaining
tracking accuracy.

Irradiance sensors have further improved tracking accuracy, as demonstrated in the
studies by Abdollahpour et al. [12] and Canada-Bago et al. [13]. In addition to irradiance
sensors, other optimization techniques were explored by researchers such as Sidek et al. [14],
Nazir et al. [15], Tirmikci and Yavuz [16], and Loon and Daud [17], highlighting various
approaches to fine-tuning tracking systems for enhanced performance. More recently,
Fathabadi has focused on integrating Maximum Power Point Tracking (MPPT) systems
for energy optimization [18,19], providing significant advancements in system efficiency.
Additionally, Carballo has combined deep learning techniques with cost-effective hardware
to improve tracking precision and overall efficiency [20], offering a promising direction for
future solar tracking innovations.

Despite their sun-tracking effectiveness, traditional solar tracking systems encounter
several challenges that compromise their overall efficiency and reliability. A significant
issue is their high energy consumption. Solar trackers using sun sensors or GPS require
continuous power to operate and adjust to changing conditions throughout the day [21,22].
This constant energy demand can diminish the system’s overall efficiency, as the power
consumed for tracking may offset the energy generated by the panels, particularly in
systems that require frequent recalibration or adjustments [23,24].

Moreover, these systems are vulnerable to environmental factors such as shading, dust,
and cloud cover, which can impair the accuracy of sun sensors or cause misalignment of the
trackers, leading to reduced energy output. While sun position algorithms offer theoretical
calculations for the sun’s position, they fail to account for real-world uncertainties, such as
shifting environmental conditions [25,26]. If initial positioning is even slightly incorrect
or the tracking intervals were not set optimally, it can result in significant tracking errors
and low accuracy. These inherent limitations in accuracy, combined with higher energy
consumption and increased maintenance requirements, undermine these systems’ long-
term performance and reliability [27,28].

This study aims to overcome these limitations by presenting an innovative solar
tracking system inspired by the collective dynamics of bird flocking behavior. In nature,
birds adjust their position based on the relative movements of nearby birds to optimize
energy use while maintaining cohesion [29,30]. Similarly, the proposed solar tracking
system uses local power sensors (current and voltage sensors) on each panel to monitor
energy output and make adaptive adjustments based on the relative energy outputs of
neighboring panels rather than relying on sun position calculations or specific sun sensors.

The system employs a Particle Swarm Optimization (PSO) algorithm. This computa-
tional method simulates the collective behavior of swarms to solve optimization problems,
which allows each panel to iteratively refine its position, balancing individual energy
maximization with the best-known positions of its neighbors. The PSO algorithm proves
especially effective in accounting for dynamic environmental factors, such as shading,
obstacles, dust, or clouds, that can impact the optimal positioning of the panels [31-34].
This method enhances PV systems by improving efficiency, reducing consumption, and
increasing adaptability. It may enable PV systems to respond more effectively to dynamic
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conditions such as shading, dust, and cloud cover, aiming to achieve optimal performance.
Minimizing unnecessary movements is anticipated to lower maintenance costs and con-
tribute to extending the lifespan of solar trackers.

Key contributions of this work include (1) the novel application of a bio-inspired solar
tracking system modeled after reference to the natural behavior of birds called bird flocking
behavior, (2) the use of decentralized decision-making to enhance scalability and robustness,
(3) the development of a dynamic, sensor-based adjustment strategy that achieves high
tracking accuracy, and (4) experimental validation demonstrating less energy consumption
compared to traditional trackers. These innovations establish a new paradigm in solar
tracking technology tailored to improve energy generation efficiency and sustainability
across diverse photovoltaic applications.

This paper is organized as follows:

Section 1 introduces the context and challenges of traditional solar tracking systems,
highlighting their limitations in efficiency and adaptability to dynamic environmental con-
ditions. It also presents the motivation behind the innovative flocking-inspired approach.

Section 2 describes the proposed strategy, detailing the integration of the Particle
Swarm Optimization (PSO) algorithm and the innovative flocking-inspired approach for
solar tracking. It also presents the experimental setup and evaluation metrics used to assess
the system’s performance under various conditions.

Section 3 discusses the results, including tracking accuracy, energy efficiency, and
adaptability to environmental factors such as shading and dust. We also compare the
proposed system with traditional solar trackers and explore its potential applications and
implications for the future of renewable energy technologies.

Finally, Section 4 concludes the study, summarizing the key findings and suggesting
directions for future research.

2. Methods and Materials
2.1. Proposed Strategy

This research presents an innovative solar tracking system inspired by the collective
movement dynamics of flocking birds (see Figure 1). Unlike conventional trackers that
aim to align precisely with the sun, our system prioritizes maximum power production by
adapting to real-world environmental conditions.

Conventional solar trackers are designed to follow the sun’s exact position, assuming
that direct solar alignment always results in optimal energy generation. However, this is
not always true in real environments. External factors such as shading from surround-
ing objects, dust accumulation, wind direction, and overheating due to continuous sun
exposure can reduce power output despite perfect sun alignment. In many cases, the best
position for energy generation is not the one facing the sun directly.

Our system mimics flocking behavior by using decentralized decision-making, where
panels behave like birds in a flock. Instead of following a fixed trajectory, panels continu-
ously adjust their position based on the energy output of its neighbors. Just as birds in a
flock respond to the movement of those around them to find an optimal flight path, our
panels adjust collectively to maintain the highest possible group energy yield.

This is achieved through a Particle Swarm Optimization (PSO) algorithm, which
enables panels to communicate and reposition themselves only when a new position offers
significant energy improvement. This prevents unnecessary movement, reduces energy
consumption, and ensures that the system adapts dynamically to real-world disturbances.

Instead of simply tracking the sun, our system tracks the most productive energy
position, considering real environmental challenges. Combining swarm intelligence with
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an adaptive movement strategy offers a more resilient and efficient alternative to traditional
continuous solar tracking methods.

Flocking-inspired solar tracking system

I Best position found

Panels adjust their positions
dynamically using PSO to find the
optimal configuration for maximum
power production, taking into
account environmental factors such
as shading, dust, and wind

Figure 1. Proposed flocking-inspired solar tracking system.

2.2. Particle Swarm Optimization (PSO)

This work relies on Particle Swarm Optimization (PSO) because traditional tracking
methods cannot adapt to real-time environmental changes. This algorithm is particularly
useful when factors other than sun position, such as shade, obstacles, dust, or clouds,
affect the optimal orientation of the solar panels [25,26]. PSO is a computational algorithm
inspired by the social behavior of birds flocking and fish schooling. Introduced by Kennedy
and Eberhart in 1995, PSO simulates the movement of individuals within a population to
explore and exploit a search space, converging toward optimal solutions through iterative
adjustments of their positions and velocities. Each particle represents a potential solution,
and through collaboration and information sharing, the swarm collectively navigates the
problem space to find the best possible outcome [34].

PSO has been effectively applied in solar energy systems to optimize Maximum Power
Point Tracking (MPPT) algorithms. MPPT is crucial for photovoltaic (PV) systems to operate
efficiently by continuously adjusting the operating point to the maximum power point.
Traditional MPPT methods, such as Perturb and Observe (P&O), often face challenges under
rapidly changing environmental conditions, leading to slower convergence and reduced
efficiency [35,36]. A study by Regaya et al. (2024) introduced a modified multiswarm PSO
algorithm with an adaptive factor selection strategy, demonstrating enhanced tracking
accuracy and robustness under partial shading conditions [37]. Additionally, Lin and
Liao (2024) proposed an adaptive PSO-based dynamic MPPT algorithm that effectively
addresses rapid irradiance changes, improving convergence speed and stability [38].

PSO addresses these challenges by dynamically adjusting the search parameters, en-
abling faster convergence to the maximum power point and improved energy capture.
PSO-based control systems for MPPT in a real-time PV system significantly reduced settling
time and energy losses compared to traditional P&O algorithms [39,40]. For instance, a
study published in Scientific Reports (2024) conducted a comparative analysis of conven-
tional and digital MPPT techniques, highlighting the superior performance of PSO-based
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methods in maximizing solar power generation [41]. Furthermore, Ahessab et al. (2024)
developed an enhanced MPPT controller using a modified PSO algorithm combined with
an artificial neural network, achieving improved performance in partially shaded PV
systems [42].

Beyond MPPT, PSO has also been applied to designing and implementing solar
tracking systems. Solar trackers adjust the orientation of PV panels to follow the sun’s
path, thereby enhancing energy absorption. By employing PSO, these systems can optimize
the tracking parameters, accounting for factors such as shading, temperature variations,
and mechanical constraints [43,44]. Boubii et al. (2023) proposed an integrated control
and optimization approach for grid-connected PV systems, utilizing model-predictive
control and PSO to enhance system performance [45]. Additionally, a study by Regaya et al.
(2024) introduced a modified multiswarm PSO algorithm with an adaptive factor selection
strategy, demonstrating improved tracking accuracy and robustness in partially shaded
conditions [37].

The adaptability and efficiency of PSO make it a valuable tool in the renewable energy
sector, particularly for optimizing solar energy systems. Its ability to handle complex,
nonlinear optimization problems and adapt to dynamic environmental conditions positions
PSO as a promising approach for enhancing the performance and reliability of solar energy
technologies [46,47]. For example, the study of Sarang et al. conducted a comparative anal-
ysis of conventional and digital MPPT techniques, highlighting the superior performance
of PSO-based methods in maximizing solar power generation [41]. Furthermore, Boubii
et al. proposed an integrated control and optimization approach for grid-connected PV
systems, utilizing model-predictive control and PSO to enhance system performance [45].
In addition, Lin and Liao proposed an adaptive PSO-based dynamic MPPT algorithm
that effectively addresses rapid irradiance changes, improving convergence speed and
stability [38]. Similarly, Ahessab et al. developed an enhanced MPPT controller using a
modified PSO algorithm combined with an artificial neural network, achieving improved
performance in partially shaded PV systems [42].

Previous research has used Particle Swarm Optimization (PSO) primarily in solar
tracking systems to optimize photovoltaic panel alignment with the sun, aiming to maxi-
mize solar irradiance and energy production. These systems adjust tracker positions based
on the sun’s angle to capture the most solar energy. In contrast, our approach introduces
a novel application of PSO by incorporating a wider range of real-time environmental
factors, such as shading, dust accumulation, wind, and temperature variations, which
can significantly impact panel performance. Our flocking-inspired system allows panels
to adjust based on local conditions and neighboring panels, aiming to optimize overall
energy production. PSO is essential for navigating the complex, dynamic environment
and adjusting panel positions accordingly, as traditional methods cannot effectively handle
such diverse and changing conditions. Therefore, PSO is critical for ensuring optimal
performance in our system.

2.3. The Workflow of the System
The workflow of the system follows several key steps (see Figure 2):

1.  Random Initial Positioning: The system begins by assigning random initial positions
to the solar panels. These random positions simulate the natural variability in the
environment, where each panel has an initial guess of its optimal position. This
randomness mirrors the behavior of birds in a flock, where they start without knowing
the best direction but move toward it by interacting with their neighbors.

2. Energy Output Calculation: Each solar panel has sensors that measure its energy
output (voltage, current, or power). The energy output is a proxy for how “good”
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the current position is relative to the sun. This measurement reflects the panel’s
effectiveness in capturing sunlight in its current orientation.

Fitness Function Evaluation: Each solar panel’s performance is evaluated using a
fitness function designed to quantify the quality of the panel’s position. The fitness
function typically takes the following into account:

e  Energy output of the panel: Higher energy output indicates a better position.

o  Relative energy output compared to neighboring panels: The panel compares its
energy output with its neighbors to evaluate if it is in an optimal position within
the group.

The fitness function is formulated as follows:
f=E—axAP (1)

where f represents the fitness value of a solar panel’s position, E is the panel’s energy
output, « is a weighting factor that adjusts the influence of neighboring panels’
positions, and AP is the deviation from the optimal position of neighboring panels.
This fitness function is used to evaluate the current state of each particle (solar panel)
in the swarm.

Velocity and Position Update (PSO Mechanics): PSO works by adjusting each particle’s
(panel’s) position and velocity based on its own best-known position (personal best,
pbest) and the best-known position in the entire swarm (global best, gbest).

e Personal best (pbest): Each panel remembers its best position based on its highest
energy output.

e  Global best (gbest): The panel performing the best in terms of energy output in
the entire system is considered the global best.

The velocity update formula for each panel is given by [34] the following:

Vi(H—l) = le(t) +c1r. (Pbesti - Xi(t>) +c2.12. (Pbestneighbori - Xi(t)> 2)
where V;*) is the velocity of panel “i” at iteration “”, Py,; is the personal best position
of panel “i”, Pyesteighpor; is the best position among the neighboring panels of panel

i”, ¢ and c; are cognitive and social coefficients, and r; and r; are random numbers
between 0 and 1.

The position update formula is [34] as follows:
X, = x, () 4y (D) 3)

This formula updates the panel’s position based on its velocity.

Convergence to Optimal Solution: As the PSO algorithm iterates, the panels grad-
ually converge to positions where the collective energy output is maximized. The
swarm of panels adapts based on the changing energy output of each panel, ensuring
that they follow a path toward optimal alignment with the sun, even if shading or
environmental factors cause deviations in individual panel performance.

Threshold for Energy Consumption: To prevent excessive energy consumption, a
threshold is set where panels only move if the change in energy output is significant.
Suppose the improvement in energy output is below a predefined threshold. In that
case, the panels do not move, reducing unnecessary adjustments and ensuring that
the system does not waste energy by continuously seeking a better position when it is
already close to optimal.
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7. Re-evaluation of Positions: Each iteration of the PSO algorithm recalculates the energy

output and evaluates the fitness function for each panel. As the panels adjust their
positions, the PSO process repeats, continually refining the positions based on the
panels” own best-known locations and the overall best position in the system.

8.  Final Adaptation: After several iterations, the system converges to an optimal set of

panel positions that maximize the energy capture based on the dynamic environmen-
tal conditions. The panels work collaboratively, adjusting to changing factors like
shading, clouds, or nearby obstacles.

1.Initialize Parameters:
*+ Randomly initialize panel positions
+ PSO parameters(cl,c2.....)

7 ’;l

2 .Evaluate Fitness:
+ Measure the power output of each panel
+ Use the power output as the fitness value
d y
3. Calculate Fitness
Function
P>Phest
il YES
Phbest=Pbest
Pbest=>Pbest_neighbor
Pbest=Pbest_neighbor
4. Update position
and velocity
- NO Iteration=max
YES
5. Adjust the orientation
of the solar tracker
L )

Figure 2. Proposed tracking system flow chart.
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2.4. Experimental Setup and Simulation Methodology

The proposed flocking-inspired solar tracking system was tested and compared to
a traditional continuous tracking system, which was implemented as shown in Figure 3.
The prototype was designed to benchmark our system and evaluate its performance under
different power thresholds. To assess its effectiveness, we tested the same prototype under
three environmental conditions: dust accumulation, shading, and wind exposure.

(b)

Figure 3. The designed solar tracker: (a) control unit, (b) prototype.

2.4.1. Implementation Details

The control unit, depicted in Figure 3a, is powered by an Arduino Uno. Mechanical
operations are powered by two stepper motors, a NEMA 17 for elevation rotation and a
NEMA 23 for azimuth rotation, both driven by L298N motor drivers. Communication
between trackers is facilitated through an HO5 Bluetooth module. The prototype consists of
an elevation driver using a linear screw mechanism for tilt and stow positioning and an
azimuth driver employing a V-belt pulley system for both azimuth and wind attack angles,
as shown in Figure 3b. Table 1 provides the detailed specifications of the components used
in the implemented system, which were also used in the simulation.

The specifications of each component used in this study are summarized in Table 1 below.

Table 1. The specifications of the components used in the proposed solar tracking system (Hardware
components were supplied by the university’s laboratory (L2GEGI Laboratory at Ibn Khaldoun
University of Tiaret, Tiaret, Algeria) which are usually sourced from AliExpress).

Category

Item Specifications

Control Unit

Microcontroller: ATmega328PDigital I/O
Pins: 14
Arduino UNO Flash Memory: 32 KB

Communication Interfaces: 1 UART serial
communication port

Model: HC-05 module

Bluetooth Module -
SPP (Serial Port Protocol) module
Maximum Motor Voltage: 46 V
L298N Motor Drivers Maximum Continuous Current: 2 A

Motor Control Type: The dual H-bridge driver
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Table 1. Cont.

Category Item Specifications
V-Belt 2 cm wide belt

the drive pulley 4 cm diameter
the driven pulley 12 cm diameter

Azimuth Rotation System Model: 1m-57HS76-3004
Step Angle: 1.8°

Wooden Pulley

NEMA 23 Stepper
Holding Torque: 4 Ncm

Current Rating: 1.68 A

Lead Screw 69 cm screw and a 2 cm nut
Model: 1m-42HS34-1334AC

Elevation Rotation System Step Angle: 1.8°
NEMA 17 Stepper

Holding Torque: 26 Nem

Current Rating: 0.4 A
Base with Four Wheels /

Support Structure for Solar Panel /
Rated Maximum Power: (Pmax) 50 W

Output Tolerance: +5%

Current at Pmax: (Imp) 2.93 A

Voltage at Pmax: (Vmp) 17.4 V

Short-Circuit Current: (Isc) 3.13 A
Structural Elements Open-Circuit Voltage: (Voc) 21.8 V

Suntech STP050D-12/MEA Solar Panel Nominal Operating Cell Temp: (TNOCT) 45 °C + 2 °C
Weight: 5.3 kg

Dimension: 665 x 631 x 30

Maximum System Voltage: 1000 V

Maximum Series Fuse Rating: 10 A

Cell Technology: multi-Si

Application Class A
AM =1.5E = 1000 W/m? Tc = 25 °C

2.4.2. Tracker 1—Dust Accumulation

Tracker 1 was used to test the adaptability of the proposed system to dust accumulation.
The tracker was tilted at 0°, making it more susceptible to dust particles than the other
two trackers, which were tilted at 70° and 20°. The sand transport rate on 6 June 2023,
shown in Figure 4a, and the estimated dust accumulation in Figure 4b (based on tilt angles)
helped assess how well the system adapted to the dusty environment. Rather than focusing
on dust’s effect on efficiency, we aimed to demonstrate how the system maintained its
performance despite this condition. The methodology for obtaining these estimates is
detailed in [48].
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Figure 4. (a) Sand transport rate on 6 June 2023. (b) Estimated accumulated dust on surface of
solar trackers.

2.4.3. Tracker 2—Shading Effect

This test assessed the system’s adaptability to shading conditions. Tracker 2 was
placed in front of a 0.3 m high building, while the other two trackers were positioned in
unshaded areas. The shadow length throughout the day, shown in Figure 5, was used to
evaluate how the tracker responded to periodic shading. More details on the shading setup
can be found in [24].

ol
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Shadow Lenght(m)
o
%
o

O O 00 000 000 000 000 000 o0 oo o o
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Time

Figure 5. Shadow length of building affecting Tracker 2 on 6 June 2023.

2.4.4. Tracker 3—Wind Influence

Tracker 3 was used to assess the adaptability to wind exposure. To maximize wind
exposure, Tracker 3 was tilted at 70° and rotated to 200°, while the other two trackers were
positioned at 100° and 0° to minimize their wind exposure. This configuration reflects
a wind impact phenomenon discussed in [48-52]. The wind speed and wind direction
data for 6 June 2023 are shown in Figure 6a,b. Since the test site is a plateau, the wind
behavior at 10 m was used to capture the true impact of wind forces, as the ground-level
wind conditions do not fully reflect the forces affecting the tracker. The data were sourced
from NASA POWER [53]. The goal here was to demonstrate how the system adapted to
wind forces and maintained its performance despite exposure to this environmental factor.
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Figure 6. (a) Wind speed at 10 m on 6 June 2023. (b) Wind direction at 10 m on same day.

2.4.5. Testing and Simulation

The prototype was tested under real conditions on 6 June 2023, at the University of Ibn
Khaldoun Tiaret, Algeria, located at latitude 35.3879, longitude 1.32282, with clear weather.
In addition to the physical testing, the system was simulated in MATLAB 2019a using real-
world characteristics and data from the prototype to further evaluate its performance and
adaptability under various environmental conditions. The results of both the real-world
and simulated tests are detailed in Section 3.

3. Results and Discussion

This research presents a solar tracking system inspired by flocking behavior, where
each solar panel autonomously adjusts its position based on its power output and the
alignment of neighboring panels. The system optimizes energy, reliability, and efficiency
while accounting for uncertainties and dynamic factors like shading, clouds, and dust.
It adjusts panel positions only when the power output difference exceeds a specified
threshold, minimizing unnecessary movements and conserving energy. We tested the
system’s energy generation and consumption with different power thresholds, as shown in
Figure 7. Figure 7a demonstrates that when the threshold exceeds 2 watts, the produced

energy significantly drops. Figure 7b shows that energy consumption increases when the
threshold is below 0.5 watts.

2000 250
1800 eSS0 0 0 0 0 0 @
®e o

— 1600 ° — 200
3 ® £
3 1400 o 2
& 1200 ® & 150
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S 1000 w
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Threshold (W) Threshold (W)
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Figure 7. Impact of power thresholds on energy output and consumption of proposed system: (a)
energy production, (b) energy consumption.

Based on these observations, we chose to test the system’s performance with power
thresholds ranging from 0.5 W to 2 W to determine the optimal value illustrated in Figure 8.
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The results show that a 0.5 W threshold reduces energy consumption but leads to a lower
net energy gain compared to the traditional tracker. A 1.5 W threshold provides a better
balance, offering a net energy gain similar to that of the traditional tracker but with lower
energy consumption. The 2 W threshold results in the highest net energy gain of 1737 Wh
while minimizing energy consumption to 5.4%. Therefore, the 2 W threshold is identified
as the optimal choice for maximizing energy efficiency, with thresholds between 1.5 W and
2 W being the most effective.
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Figure 8. Choosing power threshold: (a) produced energy, (b) consumed energy, (c) energy consump-
tion rate, and (d) net energy gain.

The second test assessed the tracking accuracy of the system by comparing the sun’s
position with the actual position of the solar trackers. Figure 9 represents the comparison
between the calculated sun position and the position of the solar tracker throughout the day.
The results indicate that the trackers require 15 min to adjust their position before achieving
stable alignment, which is considered a rapid convergence in the context of multi-agent
coordination. Following this period, they accurately tracked the sun’s trajectory. This is
reflected in the tracking error analysis shown in Figure 10, where the instantaneous tracking
error quickly stabilizes near zero, and the mean tracking error of each tracker remains
within 0.78° to 1.09°. With these tracking errors, the solar trackers capture 93% to 96.5%
of the available direct solar irradiance, as shown in Figure 11. These results confirm the
system’s high solar alignment and energy capture accuracy.
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Figure 11. The solar irradiance captured by the solar trackers vs. the total available direct solar
irradiance: (a) instantaneous irradiance and (b) daily average irradiance.

Figure 12 compares the performance of the proposed system with the traditional
continuous solar tracker. While the traditional tracker produced slightly more power on a
clear day, the proposed system was tested under various environmental conditions (dust,
shade, and wind). Despite these challenges, the proposed system consumed significantly
less energy due to reduced movements, resulting in higher energy gains (see Figure 12d).
Trackers 1 and 2, which were subjected to dust and shade, produced the most energy, while
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Tracker 3, influenced by wind, performed similarly to the traditional tracker in terms of

energy gain. This suggests that the proposed system is better adapted to dust and shade
but maintains stability under wind conditions.
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Figure 12. The performance of the proposed system: (a) power output, (b) produced and consumed
energy, (c) energy consumption rate, and (d) net energy gain throughout the day.

Table 2 summarizes the improvements of the proposed system compared to the
traditional tracker. The proposed system achieved 8% higher energy gain while reducing
energy consumption by up to 11% compared to the traditional tracker. It also improved
tracking accuracy by 84%, ensuring better alignment with the sun. Additionally, the system
collected 17.4% more solar irradiance than the traditional tracker. Although energy output
was not significantly higher due to testing under real environmental conditions (dust,
shade, and wind), the proposed system would perform significantly better in clear and

clean conditions.

Table 2. The performance of the proposed system vs. the traditional tracker.

Parameter Tracker 1 Tracker 2 Tracker 3 Traditional Tracker Improvement (%)
Energy Gain (Wh) 1856.37 1857.94 1733.51 1731.79 +8%
Energy Consumption (Wh) 22.60 29.56 99.10 229.50 —11%
Tracking Accuracy (°) 1.09° 0.78° 1.05° 5.0° +84%
Collected Solar Irradiance (W/m?) 95.80% 96.24% 93.44% 82% +17.4%
Stability in Wind (m/s) Stable Stable Stable Unstable (4

4. Conclusions

This study introduces an innovative solar tracking system inspired by birds” natu-
ral flocking behavior, offering a transformative approach to addressing the limitations
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of traditional solar trackers. By combining local power sensors with a Particle Swarm
Optimization (PSO) algorithm, the proposed system dynamically adapts to real-world
uncertainties such as shading, cloud cover, and dust. This design eliminates the need for
dedicated sun sensors or complex sun position calculations, reducing system complexity
and energy consumption.

The main contributions of this research are as follows:

o  The system eliminates dedicated solar sensors by using power output adjustments,
achieving precise solar alignment with tracking errors of 0.78° to 1.09°.

e  The Particle Swarm Optimization (PSO) algorithm identifies the optimal positions
for solar panels rather than determining the sun’s position. This method considers
real-world uncertainties and dynamic factors like shading, cloud cover, and dust
accumulation, which static calculations cannot address.

e  The threshold-based tracking approach reduces energy consumption to 1.2% and 5.4%
of produced energy, unlike traditional systems, which consume 11%.

e  The proposed system achieved a 10% increase in net energy production over traditional
tracking systems, improving energy efficiency.

e  Power thresholds of 1.5 W to 2 W optimize energy efficiency by reducing unnecessary
movements in tracking systems.

e  The system has a rapid response time, synchronizing solar trackers to achieve optimal
power output and align with the sun’s position within just 15 min.

e  The method is adaptable to different photovoltaic configurations, making it scalable
and suitable for both large-scale and small-scale applications.

e  This decentralized approach reduces system failure risk by distributing decision-
making among multiple panels, enhancing overall robustness and reliability.

This research has the potential to redefine solar tracking technology by enhancing
energy efficiency, sustainability, and operational reliability. The system’s ability to re-
duce maintenance needs and improve net energy gains establishes a pathway for more
cost-effective and environmentally friendly photovoltaic systems. The combination of
adaptive algorithms, minimal energy consumption, and rapid convergence to optimal
positions within 15 min positions this approach as a next-generation solution for renewable
energy applications.

The proposed flocking-inspired solar tracking system is well suited for both large-
scale solar farms and off-grid solar installations. In solar farms, the system’s adaptive and
decentralized approach optimizes panel positioning under dynamic conditions such as
shading, dust, or weather variations, enhancing energy efficiency and sustainability. Low
energy consumption and minimal maintenance requirements for off-grid installations make
it an ideal solution for remote locations where reliability and efficient energy utilization are
critical. This versatility highlights its potential to improve renewable energy generation
across diverse applications.

While the proposed flocking-inspired solar tracking system demonstrates significant
advantages in energy efficiency, adaptability, and scalability, its performance under extreme
climatic conditions, such as heavy snowfall [54], sandstorms [55], or high winds [56],
warrants further investigation. Additionally, our system relies on real-time local power
measurements, which may be affected by sensor inaccuracies or communication delays.
Future work will focus on refining sensor accuracy, optimizing communication strategies,
and testing under diverse environmental conditions. These advancements will support
the broader adoption of solar energy by addressing key operational challenges, ultimately
contributing to global renewable energy goals.
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Nomenclature

o Weighting factor for neighbor influence

AP Position deviation from neighbors” optimal positions
E Panel energy output

f Fitness function value

\A Velocity of panel i

Xi Position of panel i

w Inertia weight (PSO parameter)

c1, C Cognitive/social coefficients (PSO)

1,1 Random numbers € [0, 1]

P_best  Personal best position

G_best  Global best position

PSO Particle Swarm Optimization

PV Photovoltaic

MPPT  Maximum Power Point Tracking

GPS Global Positioning System

NEMA National Electrical Manufacturers Association (motor standard)
Wh Watt-hour

CFD Computational Fluid Dynamics
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