
Information Sciences 715 (2025) 122238

Available online 24 April 2025
0020-0255/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Reward shaping in DRL: A novel framework for adaptive resource 

management in dynamic environments

Mario Chahoud a,b, Hani Sami c,b, Rabeb Mizouni d, , Jamal Bentahar e,a, ,∗, 

Azzam Mourad e,b, , Hadi Otrok d, , Chamseddine Talhi b

a Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada
b Artificial Intelligence & Cyber Systems Research Center, Department of CSM, Lebanese American University, Beirut, Lebanon
c Department of Software and IT Engineering, Ecole de Technologie Superieure (ETS), Montreal, Quebec, Canada
d Center of Cyber-Physical Systems (C2PS), Department of Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
e KU 6G Research Center, Department of Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates

A R T I C L E I N F O A B S T R A C T 

Keywords:

Resource management

Reinforcement learning

Reward shaping

On-demand

Dynamic environment

Fast convergence

In edge computing environments, efficient computation resource management is crucial for 
optimizing service allocation to hosts in the form of containers. These environments experience 
dynamic user demands and high mobility, making traditional static and heuristic-based methods 
inadequate for handling such complexity and variability. Deep Reinforcement Learning (DRL) 
offers a more adaptable solution, capable of responding to these dynamic conditions. However, 
existing DRL methods face challenges such as high reward variability, slow convergence, and 
difficulties in incorporating user mobility and rapidly changing environmental configurations. 
To overcome these challenges, we propose a novel DRL framework for computation resource 
optimization at the edge layer. This framework leverages a customized Markov Decision Process 
(MDP) and Proximal Policy Optimization (PPO), integrating a Graph Convolutional Transformer 
(GCT). By combining Graph Convolutional Networks (GCN) with Transformer encoders, the GCT 
introduces a spatio-temporal reward-shaping mechanism that enhances the agent’s ability to select 
hosts and assign services efficiently in real time while minimizing the overload. Our approach 
significantly enhances the speed and accuracy of resource allocation, achieving, on average across 
two datasets, a 30% reduction in convergence time, a 25% increase in total accumulated rewards, 
and a 35% improvement in service allocation efficiency compared to standard DRL methods and 
existing reward-shaping techniques. Our method was validated using two real-world datasets, 
MOBILE DATA CHALLENGE (MDC) and Shanghai Telecom, and was compared against standard 
DRL models, reward-shaping baselines, and heuristic methods.

1. Introduction

In dynamic edge computing environments, efficiently managing computational resources is essential for selecting appropriate 
hosts and assigning services to meet user application demands. These environments are characterized by rapidly changing user lo

cations and fluctuating service loads, which complicates resource allocation [1]. Mobility introduces additional challenges, as the 

* Corresponding author.

E-mail address: jamal.bentahar@ku.ac.ae (J. Bentahar).

https://doi.org/10.1016/j.ins.2025.122238

Received 27 December 2024; Received in revised form 19 April 2025; Accepted 21 April 2025 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
http://orcid.org/0000-0001-6915-3759
http://orcid.org/0000-0002-3136-4849
http://orcid.org/0000-0001-9434-5322
http://orcid.org/0000-0002-9574-5384
mailto:jamal.bentahar@ku.ac.ae
https://doi.org/10.1016/j.ins.2025.122238
https://doi.org/10.1016/j.ins.2025.122238
http://creativecommons.org/licenses/by-nc-nd/4.0/


Information Sciences 715 (2025) 122238

2

M. Chahoud, H. Sami, R. Mizouni et al. 

available resources and optimal host locations shift in real-time. A prime example can be seen in applications such as video streaming 
optimization and smart city infrastructure [2]. In video streaming, edge servers must dynamically assign computing resources to 
handle real-time video processing and delivery as users move across different regions, ensuring low latency and high-quality service. 
Similarly, in smart cities, services like traffic monitoring or public safety systems must deploy computational tasks to edge hosts, 
efficiently distributing workloads based on the mobility and concentration of users [3]. Unlike static environments where resource 
allocation strategies can be predefined, real-world edge computing environments are highly dynamic, requiring continuous adap

tation. As user demand fluctuates and mobility affects resource availability, optimizing computational resource allocation becomes 
crucial for sustaining service quality and avoiding overloading any single node. Therefore, an adaptive, learning-based framework is 
required to dynamically optimize resource allocation while maintaining real-time responsiveness and system efficiency.

Deploying and managing computational resources in real-time are particularly challenging in dynamic environments where user 
demands and mobility patterns change frequently. The on-demand architecture for resource management, which utilizes Docker 
containers managed by Kubernetes masters, provides a flexible solution for deploying edge services on volunteer host devices [4]. This 
architecture transforms these devices into small, localized servers, allowing computational resources to be deployed closer to users, 
improving latency and service responsiveness. This setup allows rapid adjustments in response to changing demands. However, it still 
lacks an essential optimization component—deciding where and how services should be deployed in real time [5]. For applications like 
autonomous vehicles or Augmented Reality systems (AR), where real-time data processing is critical, effective resource management 
requires not just on-demand deployment but also an intelligent mechanism to optimize host selection and service allocation. Without 
this optimization layer, on-demand architectures alone cannot fully address the complexities introduced by constant changes in user 
mobility and computational needs, leading to latency, suboptimal resource utilization, and potential service failure during high

demand periods.

Numerous methods have been introduced for resource management, each offering distinct strengths and facing specific limitations. 
Traditional static resource allocation methods consistently struggle to adapt quickly to changes in demand, resulting in inefficiencies 
and potential service interruptions [6]. Heuristic approaches, while faster, often lack the precision necessary for complex, dynamic 
environments [7]. On the other hand, Deep Reinforcement Learning (DRL) has emerged as a promising solution for dynamic resource 
management due to its ability to learn from interactions with the environment and adapt over time using a reward function [8]. The 
use of DRL is vital in this scenario as it can optimize decision-making in real-time, allowing systems to respond to varying demands 
and changing conditions effectively [9]. However, many existing DRL-based methods face significant challenges when operating 
in dynamic environments, specifically when the group of devices requesting services exhibits mobility factors, which complicate 
achieving critical goals such as fast convergence, higher rewards, and improved accuracy in decision-making. These DRL solutions 
frequently neglect to incorporate the inherent complexities of dynamic environments into their frameworks [10]. While the existing 
solutions demonstrate accuracy for a small-time step, their decision-making will not be effective as the environment evolves [11]. 
This limitation reduces their ability to provide optimal resource management in scenarios where timely adjustments are crucial. 
Consequently, overcoming these DRL limitations is essential to boost responsiveness and efficiency in resource allocation, thereby 
improving service delivery across diverse applications.

Once an effective DRL solution is established, a second challenge arises which is the speed of convergence when the environment 
undergoes changes [12]. The speed of convergence in this context refers to the speed of the learning algorithm when reaching 
an optimal solution. Existing DRL-based methods often suffer from prolonged learning times, which can lead to suboptimal policy 
development, especially in rapidly changing environments [13]. While DRL can optimize decision-making under certain conditions, 
its effectiveness reduces when there is a need to adapt quickly to new dynamics. These methods frequently struggle to manage the 
rapid changes in user location and demand, resulting in delayed or suboptimal decisions [14]. Therefore, it is essential to improve DRL 
solutions not only to enable effective decision-making but also to accelerate convergence, ensuring optimal resource management in 
dynamic environments.

To tackle the decision-making challenges that arise when users change locations, we utilize Proximal Policy Optimization (PPO) 
within a novel Markov Decision Process (MDP) framework. This approach enables effective real-time optimization of resource allo

cation decisions. By integrating PPO, the DRL agent can adapt to the dynamic nature of user mobility [15]. The MDP framework 
accounts for critical factors such as the device computational limits, the distance between users and resources, and the variations 
in user mobility. This comprehensive approach ensures that resources are allocated efficiently and responsively, enhancing overall 
service delivery in a dynamic environment [16].

In parallel, there has been a rise in the application of reward shaping in reinforcement learning [17]. Reward shaping accelerates 
convergence and enables the system to adapt quickly to evolving conditions, ensuring continuous and reliable service in dynamic 
environments. By leveraging potential-based reward shaping, which enhances the learning process without altering the optimal re

ward function policy, more informative feedback is provided to the DRL agent. The use of potential-based reward shaping ensures 
faster learning and more accurate decision-making, despite significant environmental changes. To address the challenge of adapting 
quickly to changes in user groups, we incorporate reward shaping into our DRL framework, which delivers enhanced feedback sig

nals to the DRL agent, expediting the learning process. For the first time, we are integrating Graph Convolutional Networks (GCN) 
and transformer-based encoders within a DRL framework named the Graph Convolutional Transformer (GCT). GCN is essential for 
analyzing spatial dependencies, enabling the model to understand and utilize information from neighboring states. This capability is 
essential in dynamic environments, as it helps the agent recognize how changes in one area can impact others, mimicking the way it 
transitions from one state to another in response to spatial dynamics. Conversely, transformers are used to analyze temporal depen

dencies, allowing the model to track and adapt to changes over time [18]. By processing sequences of events, transformers ensure 
that the DRL agent considers the evolution of user behavior and environmental conditions, enhancing its responsiveness to temporal 



Information Sciences 715 (2025) 122238

3

M. Chahoud, H. Sami, R. Mizouni et al. 

shifts. Unlike conventional DRL methods that struggle with slow adaptation, our framework utilizes a structured spatio-temporal re

ward shaping mechanism that guides learning more efficiently. By leveraging Krylov subspace approximations, our approach reduces 
computational complexity while maintaining robust decision-making capabilities. We efficiently approximate transition probabilities 
within the Krylov subspace, significantly reducing computational complexity. To address the issues of slow learning and poor adapt

ability in dynamic edge computing scenarios, our framework incorporates Graph Convolutional Networks, Transformer encoders, 
and the Augmented Krylov Subspace Approximation. Together, these elements improve the agent’s capacity to understand spatial 
patterns, track temporal dynamics, and estimate transition probabilities with greater computational efficiency. This is the first work 
to combine reward shaping with GCN and Transformer encoders in the context of dynamic resource management, bridging the gap 
between reinforcement learning convergence and real-world deployment in edge environments.

Our approach outperforms several existing methods, including greedy and heuristic strategies, DRL techniques that lack reward 
shaping, and those that combine GCN with RNNs for reward shaping in gaming environments, which are generally less complex 
than dynamic environments. These were selected based on their widespread use in dynamic environments and their relevance to 
edge computing applications. Our extensive experiments validate the effectiveness of our framework, demonstrating on average 
across two datasets a 30% reduction in convergence time, a 25% increase in total accumulated rewards, and a 35% improvement 
in service allocation compared to standard DRL and heuristic methods. This performance has been validated using real-life datasets, 
demonstrating that our method has the ability to quickly adapt to changes in user requests within dynamic environments, even as 
users move, while achieving higher reward values. To our knowledge, this work is the first to address reward shaping within the 
context of on-demand deployment architecture through DRL in resource management environments, which not only guarantees faster 
adaptation to dynamic changes in the environment, but also achieves more accurate decisions measured by higher reward.

The key contributions of this work are as follows:

1. Proposing a DRL framework that integrates for the first time reward shaping in the context of resource management that guar

antees more accurate decisions and faster adaptation to environmental changes.

2. Introducing a novel MDP design for the DRL agent that considers the dynamic nature of users in terms of mobility as well as 
their demand.

3. Presenting a novel reward shaping mechanism with a unique shaping function, incorporating GCN and transformer encoders 
specifically for this purpose, a combination that has not been previously explored.

2. Literature review

This section provides an overview of the solutions proposed by researchers for dynamic resource management environments, 
along with the various reward-shaping techniques highlighted in the literature.

2.1. Resource management solutions in dynamic environments

Recent advancements in resource management across computing paradigms address critical challenges posed by the rapid growth 
of Internet of Things (IoT) applications and future network systems. In this context, [19] presents a monitoring and management 
system for microservices that enhances efficiency and Quality of Service (QoS) in Amazon Web Services (AWS) environments by 
predicting load variations and resource requirements. In the realm of 5G and beyond, [20] proposes a multi-objective approach for 
traffic forecasting using Deep Convolutional Neural Networks and Long Short-Term Memory networks, combined with the Tasmanian 
Devil Optimization-Elite method to improve precision and resource efficiency. Meanwhile, [21] suggests a Cluster-based Parallel 
Split Learning approach to reduce training latency by parallelizing within device clusters and optimizing resource management. 
Additionally, [22] reviews machine learning techniques in fog computing, emphasizing strategies for provisioning, scheduling, and 
load balancing, and highlighting future research directions. In dynamic environments, Researchers in [23] introduce the DetFed 
framework, which integrates federated learning with Time-sensitive Networks to enhance learning accuracy and network performance 
through dynamic resource scheduling. Additionally, [24] addresses cloud load balancing by integrating RL, large language models, 
and edge intelligence, improving throughput, security, and scalability while tackling challenges related to proprietary cloud APIs and 
multi-cloud interoperability. Moreover, in dynamic environments, the authors of [25] introduce a heuristic approach leveraging a 
Memetic Algorithm for service scheduling, with a focus on optimizing resource management objectives.

RL research has also evolved, with [26] exploring fog computing’s role in managing time-sensitive requests through a framework 
using Software Defined Networking and advanced RL to optimize resource allocation for low-latency requirements in heterogeneous 
IoT environments. Moreover, [27] introduces the OSCAR model to enhance QoS in fog-assisted cloud computing by optimizing task 
scheduling and resource allocation using DRL, achieving better resource utilization and reduced response times. In addition to that, 
[28] presents solutions for intelligent resource management by leveraging DRL to optimize resource allocation while having dynamic 
service demands.

Both heuristic and DRL methods often fall short in dynamic environments due to their limited ability to quickly adapt to rapid 
changes. Heuristics lack real-time flexibility, while traditional DRL may suffer from slow and unstable learning, making them less 
effective in fast-changing conditions. As a result, these methods may fail to deliver the necessary responsiveness and efficiency 
required for robust performance in highly dynamic scenarios.



Information Sciences 715 (2025) 122238

4

M. Chahoud, H. Sami, R. Mizouni et al. 

Table 1
Comparison of Existing Approaches.

Method Adaptability Complexity Conv. Speed Scalability 
Heuristic [21,34,25] Low Low Fast Limited 
DRL [26--28] Mod High Slow Mod 
Reward Shaping [30--33] Mod Mod Fast Limited 

2.2. Reward shaping methods

In the context of reward shaping within RL, [29] reviews the evolution of reward function design, focusing on reward shaping, 
intrinsic motivation, and related approaches. In [30], the authors propose an adaptive reward-shaping technique using a bi-level 
optimization approach, demonstrating improved performance in sparse-reward environments. Authors of [31] present Exploration

Guided Reward Shaping, a self-supervised framework that enhances learning in sparse-reward environments by combining intrinsic 
rewards with exploration bonuses. Moreover, [32] introduces a Bayesian reward-shaping framework incorporating prior beliefs to 
accelerate learning in the presence of delayed rewards, showing faster task completion with intuitive priors. Furthermore, [33] 
addresses low-speed convergence in RL by proposing a novel reward-shaping scheme integrating Graph Convolutional Recurrent 
Networks (GCRN), augmented Krylov basis, and look-ahead advice. This approach combines GCN and Bi-Directional Gated Recurrent 
Units (Bi-GRUs) to handle spatial and temporal dependencies more effectively. The Krylov basis provides accurate transition matrix 
estimation, while look-ahead advice refines reward shaping by considering both states and actions. Evaluations on Atari 2600 and 
MuJoCo demonstrate that this method accelerates learning and achieves higher rewards compared to existing GCN-based approaches.

A variety of approaches has been explored for dynamic resource management, spanning from traditional heuristics to modern 
AI-driven solutions. Heuristic-based methods [21] improve efficiency but often lack adaptability to real-time fluctuations. More re

cently, DRL-based approaches [28] have emerged as a promising solution, offering adaptive decision-making capabilities in highly 
dynamic environments. However, existing DRL techniques often suffer from slow convergence, high sample complexity, and sensi

tivity to environmental shifts, particularly when user mobility is involved. Moreover, it faces several challenges in scalability and 
computational feasibility. Standard RL models, such as DQN and PPO, require extensive training data and struggle with dynamic 
environmental shifts. Additionally, reward-shaping techniques [33] have been proposed to accelerate learning, yet their integration 
in dynamic edge computing scenarios remains limited. This paper builds upon these prior works by integrating GCN and Transformer 
encoders for a more structured reward-shaping mechanism, specifically tailored for dynamic environments with high user mobility. 
Unlike conventional DRL-based approaches, our proposed framework maintains the same fundamental resource requirements while 
significantly reducing convergence time, leading to lower overall data usage, computational overhead, and retraining costs. This 
efficiency makes our approach more suitable for real-world edge computing applications, where adaptive learning is necessary for 
dynamic service allocation in mobile environments.

To provide a structured comparative analysis of existing approaches, we summarize key aspects of heuristic-based, reinforcement 
learning, and graph-based optimization techniques in Table 1. This comparison highlights the limitations of traditional methods in 
terms of adaptability, computational feasibility, and convergence speed. While our approach builds on reward shaping methods, it 
introduces key enhancements to improve adaptability and scalability in dynamic, mobility-driven environments. By incorporating a 
Graph Convolutional Transformer (GCT), our framework captures spatial-temporal patterns more effectively, enabling faster learning 
and more efficient decision-making. In contrast to traditional DRL methods that struggle with slow convergence and high complex

ity, our structured reward shaping and message-passing mechanisms help the agent adapt smoothly to changing conditions with 
minimal computational overhead. Although the integration of GCNs, Transformers, and Krylov-based approximations may require 
more advanced deployment infrastructure compared to simpler DRL or heuristic approaches. However, our design was intentionally 
optimized to reduce overhead. These strategies help preserve computational efficiency while maintaining adaptability to dynamic 
environments, making the approach practical and scalable for real-time edge deployment.

3. Architecture

This section offers an in-depth explanation of the architecture shown in Fig. 1, detailing the key components and their interactions. 
It discusses the reasoning behind design decisions, the flow of data between modules, and how the architecture ensures flexibility 
and the efficiency of both individual components and the system as a whole.

3.1. Architecture overview

At its core, the on-demand architecture [35] is designed for efficiently deploying services close to the end-user. This proximity 
is achieved by deploying Docker containers on devices located near the requesting users. By utilizing these devices as ``near edge'' 
nodes, the architecture can process requests locally, thereby maximizing the QoS. The management of these containers is orchestrated 
by master nodes, which are responsible for maintaining the kubeadm cluster. This cluster serves as the backbone of the on-demand 
architecture, ensuring that the containers are connected and managed effectively. The architecture features a decision module within 
the master nodes that determines when to push services based on request volume. The cloud processes service requests and forwards 
them to the master nodes, which then allocate these services to the worker nodes. This would reduce the load on the cloud, and also 



Information Sciences 715 (2025) 122238

5

M. Chahoud, H. Sami, R. Mizouni et al. 

Fig. 1. The Overall Proposed Architecture. 

decrease the number of users the cloud has to serve. The host devices are distributed across different geographical areas, and the 
on-demand architecture ensures that they are deployed and positioned close to the users who need services.

The deployment and placement of services and host devices are optimized through a DRL agent. This agent is tasked with maxi

mizing specific objectives, as discussed in Section 4, while adhering to various constraints. The dynamic nature of the environment, 
characterized by constantly shifting user demands and varying locations of users in different areas, adds significant complexity to 
this process. Our framework optimizes resource placement to reduce contention and support effective decision-making. While the 
on-demand architecture handles host deployment, the DRL agent is tasked with placing services on available hosts based on user 
mobility and demand. By accounting for users’ movement patterns in its optimization goals, the agent can adapt more accurately 
to changing conditions, ensuring responsive and efficient resource management. Future work may explore incorporating network 
latency models to further enhance deployment strategies in latency-sensitive environments.

Moreover, in highly dynamic environments, where the conditions change frequently, the DRL agent faces the challenge of learning 
and adapting to new data in real time. If the agent’s learning process is prolonged, it may fail to converge before the environment 
changes again, rendering its learned policies ineffective. This introduces a continuous learning loop, where the agent must adapt to 
an ever-evolving environment. The risk here is that if the agent takes too long to converge, its policy may become obsolete, leading to 
inefficiencies. To tackle this challenge, we have integrated a reward-shaping method into the architecture. We are using a potential

based reward shaping to improve the learning speed of our reinforcement learning agents while preserving the optimal policy. This 
approach adjusts the reward signal by incorporating information from a potential function that reflects the state space. By enhancing 
the reward with this additional guidance, the agent learns more efficiently. Importantly, potential-based reward shaping ensures that, 
despite these adjustments, the agent still learns the same optimal strategy as it would without the shaping. This approach accelerates 
the learning process and helps the agent achieve higher reward functions in fewer episodes by providing more effective guidance 
in dynamic environments. This method enables the agent to quickly adapt to environmental changes, outperforming traditional 
learning methods. The DRL agent initiates the learning process. Subsequently, the second component, the reward-shaping module 
(GCT), processes these transitions to extract a shaping value that is incorporated into the overall reward. Once this module has 
matured, it can efficiently manage service placement and deployment, even in environments characterized by dynamic conditions 
and mobile users.

A key feature of our framework is its ability to preserve continual learning despite evolving environmental conditions. By utilizing 
a replay buffer, we ensure that past experiences are retained, preventing catastrophic forgetting while incorporating newly observed 



Information Sciences 715 (2025) 122238

6

M. Chahoud, H. Sami, R. Mizouni et al. 

changes. This balances short-term learning updates with long-term stability, ensuring that the agent remains responsive to mobility

driven fluctuations in service demand while maintaining an optimized policy. Unlike conventional approaches that may struggle with 
ongoing adaptation, our DRL-based framework naturally integrates continuous learning, making it well-suited for real-world, highly 
dynamic environments.

3.2. Architecture components

3.2.1. DRL environment

The DRL environment is structured as an MDP, which is represented by the following tuple < 𝑆,𝐴,𝑃 , 𝑟, 𝛾 >. To build the DRL 
agent, these components need to be carefully designed according to our problem; mobile client selection and service assignment. The 
MDP tuple definition is presented in Section 4. The set 𝑆 represents all possible states of the environment, each capturing a specific 
configuration or condition at any given time. The set 𝐴 includes all possible actions the agent can undertake from any state, dictating 
how the agent interacts with the environment. The transition probability matrix 𝑃 defines the likelihood of transitioning between 
states given an action, encapsulating the dynamics of the environment. The reward function 𝑟 assigns a value to state-action pairs, 
providing feedback on the desirability of actions and guiding the agent’s learning process. Finally, the discount factor 𝛾 determines 
the weight of future rewards compared to immediate rewards, influencing the agent’s decision-making strategy. Together, these 
components form a comprehensive model for evaluating and optimizing strategies in complex and evolving scenarios. This formulation 
focuses on optimizing the number of successfully fulfilled requests, minimizing the distance between the users and the edge devices 
serving their requests, primarily in dynamic and mobile environments, and optimizing the number of deployed hosts while respecting 
service priorities. In the remainder of this section, the description of addition components from the proposed architecture is presented. 
Details about the formulated MDP are provided in Section 4.

3.2.2. Look-ahead advice

This mechanism uses both states and actions to improve the learning process by informing the agent of what happens next [36]. 
This helps the agent in performing improved decisions. By considering possible future changes, the agent can adapt more quickly and 
develop stronger strategies.

The primary objective of reward shaping is to refine and guide the reward function. This is achieved by incorporating scaling 
values from the shaping function 𝐹 defined in Equation (1) into the reward function 𝑟 (from the MDP tuple), to form the combined 
reward function 𝑅 defined in Equation (2). By appending these values, the reward function is effectively directed and adjusted, 
resulting in an enhanced formulation.

𝐹 (𝑆𝑡,𝑆𝑡+1) = 𝛾𝜙(𝑆𝑡+1) − 𝜙(𝑆𝑡) (1)

𝑅(𝑆𝑡,𝐴𝑡,𝑆𝑡+1) = 𝑟(𝑆𝑡,𝐴𝑡) + 𝐹 (𝑆𝑡,𝑆𝑡+1) (2)

where 𝐹 is the shaping function, 𝜙 is the potential shaping functions that output a scalar value, 𝑆𝑡 is the state representation at 
timestep 𝑡, and 𝐴𝑡 is the action taken at timestep 𝑡.

In our proposed architecture, we present the state transitions through actions by a graph, where nodes are states and edges 
correspond to actions. Using the graph structure, we are able to capture spatial and temporal dependencies between the various 
states, thus extracting useful insights to control the reward signal. By applying the message passing technique commonly used in 
Hidden Markov Models (HMM) [37], we can calculate the probability that the agent is following an optimal trajectory based on the 
current state and action. This probability serves as a valuable signal for accelerating learning.

A more comprehensive approach involves constructing reward shaping based on both states and actions, which we adapt when 
building the proposed potential-based reward shaping solution. Building on the look-ahead advice outlined in [36], the shaping 
function is formulated to incorporate this dual consideration, resulting in the following structure:

𝐹 (𝑆𝑡,𝐴𝑡,𝑆𝑡+1,𝐴𝑡+1) = 𝛾𝜙(𝑆𝑡+1,𝐴𝑡+1) − 𝜙(𝑆𝑡,𝐴𝑡) (3)

𝑅(𝑆𝑡,𝐴𝑡,𝑆𝑡+1,𝐴𝑡+1) = 𝑟(𝑆𝑡,𝐴𝑡) + 𝐹 (𝑆𝑡,𝑆𝑡+1,𝐴𝑡+1) (4)

As shown in both equations, the shaping function is a function of both the state and action with the intention of giving the DRL 
agent a more informed advice specific to a given action instead of the whole state. The message passing process involves computing 
forward and backward messages, which can be computationally intensive, especially when dealing with a large graph comprising 
numerous states and transitions [37]. The shaping function dynamically adjusts based on the agent’s real-time transitions, ensuring 
that reward adjustments remain aligned with the evolving mobility patterns and service requests. Therefore, we present in the next 
section a graph neural network model that is well suited to perform message passing.

3.2.3. GCT model

This component operates through the following process: for each episode in the environment, we begin by collecting a sample of 
the agent’s transitions. With these transitions, we construct a sub-graph, highlighted in Fig. 1. This sub-graph serves as the foundation 
for the next steps. The graph of states and action are used to form as an input for the GCN. Considering actions in addition to the 
state reinforces the look-ahead advice mechanism.



Information Sciences 715 (2025) 122238

7

M. Chahoud, H. Sami, R. Mizouni et al. 

In its nature, a forward pass in GCN requires the adjacency matrix in the graph, which corresponds to the nature of connections 
for given graph as input. In our case, the provided graph represents the states transitions through actions. Therefore, the adjacency 
matrix should correspond to the probability transition matrix 𝑃 from the MDP tuple. Since it is impossible to model the transition 
matrix due to the high dynamicity a non-stationarity in the environment, the proposed approach utilizes an approximation of 𝑃 . 
Hence, we utilize the augmented Krylov algorithm to build the Krylov subspace 𝐾 , which approximates the transition matrix 𝑃 . 
The advantage of using the Krylov subspace lies in its ability to efficiently capture the dynamics of the environment with reduced 
computational complexity, making it well-suited for large-scale problems. The augmented Krylov algorithm requires only a subset 
of 𝑃 to build the approximation. Following training on various versions of the graph depending on the DRL agent’s experiences, the 
GCN produces an output denoted as (𝐺𝐶) for time step 𝑡. Before producing the shaping value out of GCN, a transformer encoder 
is appended to GCN to study the long term dependencies between the different states and actions of the given graphs. The overall 
network combining GCN and the transformer encoder is named 𝐺𝐶𝑇 , which forms our shaping function.

GCN: In this model, the GCN handles the message passing by propagating information about rewarding states to neighboring 
nodes using a filter matrix (𝐾 representing the approximated 𝑃 ), while the transformer predicts the next reward shaping value. The 
GCT model effectively captures the intricate spatio-temporal dynamics within the environment by harnessing the complementary 
capabilities of GCN and transformer encoders. GCNs, due to their recursive design, are well-suited for message passing, allowing 
efficient propagation of information across the graph. This is supported by the use of the graph Laplacian, which acts as a filtering tool 
during the process. The Laplacian either represents the relationships and connectivity between nodes or serves as an approximation 
of the transition matrix, allowing the GCN to process complex graph-based data. Previous research, such as in [17], has employed 
the graph Laplacian in the context of reward shaping within GCN, under the assumption that the value function is smooth across 
the MDP graph. However, this smoothness assumption can introduce inaccuracies in the value function’s approximation. To address 
these potential errors, the Krylov basis [38] is computed, offering a more precise approach to approximating the transition dynamics. 
Using the Krylov basis generated by the augmented Krylov algorithm generates a closer estimate to 𝑃 , which is the actual transition 
matrix, compared to the graph Laplacian [39].

Initially, the GCN is employed to conduct semi-supervised learning, leveraging its recursive architecture and ability to propagate 
information from labeled data to neighboring nodes. By converting samples of the agent transitions into a graph structure, we can 
utilize the GCN to execute message passing. A forward pass in the GCN with two layers can be expressed as follows:

𝜙𝐺𝐶𝑁 (𝑋) = Softmax(𝐾ReLU(𝐾𝑋𝑊1)𝑊0) (5)

Where the activation functions used are ReLu and Softmax, 𝐾 is the 𝐺𝐶𝑁 filter, 𝑋 is the input matrix (states and actions forming a 
sub-graph), and 𝑊0, 𝑊1 are the layers’ weights.

Transformer: In prior research, GCN was combined is RNNs to predict shaping values for reward shaping in Atari games [33], lever

aging their sequential data processing capabilities. However, in the context of resource management within dynamic environments, 
where states and actions are represented as a graph and integrated with GCN, transformer encoders offer distinct advantages over 
RNNs. Unlike RNNs, which process data sequentially and may struggle with long-range dependencies due to their inherent recurrence, 
transformer encoders utilize a self-attention mechanism, allowing them to efficiently capture both local and global dependencies in 
the graph. This capability is especially useful in dynamic environments, where rapidly changing state-action relationships require 
full graph context for accurate shaping value prediction. By optimizing with attention mechanisms, this integration enhances the 
architecture’s ability to handle complex scenarios effectively.

The transformer encoder inputs sequences using the self-attention mechanism and feed-forward neural network. For an input 
sequence 𝑋 with embedding 𝑥𝑖, the encoder layer applies self-attention followed by a feed-forward network. The combined equation 
for one layer of the Transformer encoder is:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑋𝑊 𝑄(𝑋𝑊 𝑘)𝑇√
𝑑𝑘

)(𝑋𝑊 𝑣) (6)

𝑁𝑜𝑟𝑚𝑎𝑡𝑡 =𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋 +𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋)) (7)

𝐹𝐹𝑁(𝑁𝑜𝑟𝑚𝑎𝑡𝑡) =𝑚𝑎𝑥(0,𝑁𝑜𝑟𝑚𝑎𝑡𝑡𝑊1′ + 𝑏1)𝑊2′ + 𝑏2 (8)

𝑂𝑢𝑡𝑝𝑢𝑡 =𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑁𝑜𝑟𝑚𝑎𝑡𝑡 + 𝐹𝐹𝑁(𝑁𝑜𝑟𝑚𝑎𝑡𝑡)) (9)

where 𝑊 𝑄, 𝑊 𝑘, 𝑊 𝑣 are the weight matrices for the query, key, and value projections. Moreover, 𝑑𝑘 is the dimension of the 
key vectors. Furthermore, 𝐹𝐹𝑁() method is the Feed-Forward method, while 𝑊1′ and 𝑊2′ are the weight matrices for the feed

forward network. In conjunction with this, 𝑏1 and 𝑏2 are the biases for the feed-forward network. Lastly, 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 denotes layer 
normalization. In summary, each layer of the Transformer encoder applies self-attention followed by a feed-forward network, with 
residual connections and layer normalization applied at each step to ensure stable training and efficient representation learning.

Our reward shaping module, implemented using a GCN, is executed in parallel with the DRL agent PPO. The GCN is updated 
at predefined intervals, ensuring that it does not interfere with the real-time decision-making of the DRL agent. Additionally, our 
approach leverages an offline pre-training phase where the GCN learns spatial-temporal relationships from historical data. This struc

tured learning phase significantly reduces the computational burden during deployment, as the DRL agent starts with an optimized 
policy, minimizing unnecessary updates. This dual-phase approach ensures that our solution maintains computational efficiency while 
effectively handling dynamic service allocation in mobile edge computing. To effectively handle the challenges of slow convergence 
and inefficient adaptation in dynamic edge computing environments, our framework integrates GCN, Transformers, and Augmented 



Information Sciences 715 (2025) 122238

8

M. Chahoud, H. Sami, R. Mizouni et al. 

Krylov Subspace Approximation. Together, these components help the agent capture spatial patterns, model long-term dependencies, 
and approximate transitions efficiently. By combining Krylov approximation with real-time GCN updates and Transformer-based tem

poral modeling, the system adapts well to non-stationary edge environments and maintains reliable decision-making under changing 
conditions.

To further enhance scalability, we optimize message passing and self-attention mechanisms by limiting computations to sampled 
transitions rather than maintaining a large, persistent graph structure. Our Transformer-based learning mechanism ensures that only 
the most relevant information is used for decision-making, minimizing unnecessary computations while preserving learning efficiency. 
This approach ensures that our framework remains scalable and suitable for dynamic edge computing environments without incurring 
significant performance strain.

3.2.4. Users

In this architecture, users request services, given that the number of users in different areas changes dynamically. Their interac

tions are deeply embedded within the environment, with their movements and activities meticulously tracked and recorded. These 
interactions are not just passive; they actively influence the environment’s complexity and adaptability. By incorporating real-time 
user activities and varying user numbers, the environment becomes highly responsive to rapid changes in user behavior. This design 
ensures that the environment can simulate the dynamic shifts and challenges associated with fluctuating user demands, providing a 
realistic and robust setting for testing and optimizing the architecture’s performance.

4. Model formulation and solution

In this section, we outline the design and setup of our components, including the MDP environment formulation, as well as the 
objective functions and constraints. Besides, we describe the PPO algorithm employed and the reward-shaping method to achieve 
rapid adaptation and higher reward in dynamic environments. Our framework operates in a non-tabular state-action space.

4.1. MDP formulation

Our architecture is designed to accommodate users moving across various locations, dynamically requesting services that need to 
be efficiently managed and deployed. The system is structured with a set of services 𝑆𝑣 = [𝑆𝑣1, 𝑆𝑣2,… , 𝑆𝑣𝑛], where 𝑛 denotes the total 
number of services. To support these services, we have 𝑚 host devices, represented as 𝐻 = [𝐻1,𝐻2,… ,𝐻𝑚], each capable of hosting 
one or more services. Each host 𝐻𝑗 is characterized by its resource capacity, detailed as 𝐻𝑗 = [𝐻𝑗,𝑐𝑝𝑢,𝐻𝑗,𝑚𝑒𝑚𝑜𝑟𝑦,𝐻𝑗,𝑑𝑖𝑠𝑘𝑠𝑝𝑎𝑐𝑒,𝐻𝑗,𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛]
representing the available CPU, memory, disk space, and geographic location of the host, respectively. Similarly, each service 𝑆𝑣𝑖 has 
specific resource requirements to operate effectively, represented as 𝑆𝑣𝑖 = [𝑆𝑣𝑖,𝑐𝑝𝑢,𝑆𝑣𝑖,𝑚𝑒𝑚𝑜𝑟𝑦,𝑆𝑣𝑖,𝑑𝑖𝑠𝑘𝑠𝑝𝑎𝑐𝑒,𝑆𝑣𝑖,𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦]. The 𝑆𝑣𝑖,𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦
parameter indicates the priority level of a service, ranging from 0 (low priority) to 1 (high priority). This representation ensures that 
as users move and generate service requests, the system can dynamically allocate resources to meet the demands efficiently while 
considering the priority of each service.

Let 𝐿(𝑡) denote the vector of normalized request counts for each service at time t. The 𝐿(𝑡) for a service 𝑆𝑣𝑖 denoted as 𝐿(𝑡)𝑆𝑣𝑖
is 

calculated as:

𝐿(𝑡)𝑆𝑣𝑖
=

Number of requests for service 𝑆𝑣𝑗 at time t
Total number of requests for all services at t

(10)

The placement decision is made step by step, by considering each service on a host device, within a state at time 𝑡 until all 
available clients have been examined. The overall placement decision, represented as 𝑘, is a two-dimensional matrix of size 𝑛×𝑚. In 
this matrix, the value 𝑘𝑖,𝑗 (𝑡) = 1 indicates that service 𝑆𝑣𝑖 is deployed on device 𝐻𝑗 at time 𝑡, while 0 signifies otherwise.

The state space is represented by 𝑆(𝑡) ∈ 𝑆 , with 𝑆(𝑡) = (𝑘(𝑡), 𝑖, 𝑗,𝐷𝐴(𝑡)), where 𝑘 is the current deployment and placement matrix, 
𝑖 is the index of the service that we are trying to deploy, 𝑗 is the current host device index, and 𝐷𝐴 is a vector of length 𝑦 that 
indicates the requested areas for deploying clients, where 𝐷𝐴𝑦 is set to 1 if the area is requested and 0 if it is not. Here, 𝑦 represents 
the total number of area locations in the environment.

The available actions in our framework are binary, offering two distinct choices: (1) selecting a host for service deployment or (2) 
excluding a host from the deployment process. Specifically, when a host 𝐻𝑗 is selected, the action involves deploying service 𝑆𝑣𝑖 on 
that host. In contrast, if a host is not chosen, the selected service remains unassigned to that device. These actions are represented 
as 𝐴 = [0,1] where 1 indicates the deployment of the service 𝑆𝑣𝑖 on the host and 0 signifies the exclusion of the host from the 
deployment cycle of the service.

4.2. GCT configuration

The GCT model integrates GCN and Transformer encoders, as illustrated in Fig. 1. This hybrid architecture enables the model 
to capture both intricate spatial dependencies and evolving temporal dynamics within the state-action graph. Specifically, the GCT 
framework consists of a GCN module followed by a Transformer encoder. The GCN processes the initial input of states and actions, 
implementing the look-ahead advice mechanism to enhance decision-making. The processed output from the GCN then serves as the 
input for the Transformer encoder. The final output of the GCT is a probability distribution, which represents the potential shaping 
function and informs resource allocation strategies.



Information Sciences 715 (2025) 122238

9

M. Chahoud, H. Sami, R. Mizouni et al. 

To compute the Krylov basis, we utilize the augmented Krylov algorithm applied to a sub-graph of the system [40]. This algorithm 
generates a series of vectors that approximate the transition matrix’s behavior. Specifically, the augmented Krylov algorithm operates 
by iteratively generating vectors that capture the dominant characteristics of the transition matrix based on the sub-graph. These 
vectors are then aggregated to form the Krylov basis, which serves as an approximation of the transition matrix. This basis facilitates 
the representation of the system’s dynamics in a reduced-dimensional space, enabling more efficient computation.

The standard loss function for the GCT integrates both base and recursive components to accurately capture the message pass

ing mechanism. The loss function is designed to reflect these two aspects, ensuring a comprehensive evaluation of the network’s 
performance. Specifically, the loss function is expressed as follows:

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠0(S, A) +𝐿𝑜𝑠𝑠𝑟𝑒𝑐(𝑆,𝐴) (11)

In this formulation, the Base Loss (𝑙𝑜𝑠𝑠0) pertains to the initial states and actions, while Recursive Loss accounts for the iterative 
updates based on the message passing through the network. The lists Base States and Base Actions represent the foundational data 
points where each action is paired with its corresponding state, and these are associated with non-zero rewards for the current episode. 
Conversely, 𝑆 and 𝐴 denote the states and actions derived from the sampled transitions, which are used to compute the recursive 
loss (𝑙𝑜𝑠𝑠𝑟𝑒𝑐). This structure ensures that both the static and dynamic aspects of the network’s operation are considered, allowing for 
a more accurate and effective learning process.

4.3. Reward function

Our reward shaping method is designed to simultaneously satisfy four key objective functions while avoiding specific constraints, 
ensuring a balanced and efficient approach to resource management. Each objective is associated with a weight value, denoted as 
𝑤𝑖 where the total weight sum 𝑊 =

∑4
𝑖=1𝑤𝑖 = 1. These weights are fully adjustable, allowing for flexibility in prioritizing different 

objectives depending on the specific needs of the environment or application. The four objective functions are: (1) Maximize Service 
Fulfillment, (2) Minimize Host-Service Distance, (3) Maximize High-Priority Service Deployment, and (4) Minimize the Number of 
Deployed Hosts. By carefully adjusting the weights assigned to each objective, our method can adapt to different scenarios, striking 
an optimal balance between competing goals such as service coverage, resource efficiency, and priority management.

The first goal is to Maximize Service Fulfillment 𝑐1. This objective is designed to maximize the number of services that are 
successfully deployed, ensuring the system meets user demands, even in dynamic environments where users and devices are constantly 
moving. The goal is to encourage the agent to strategically place services in anticipation of shifting demand at the next time-step. 
By learning the patterns of service demand fluctuations and user mobility over time, the agent becomes more adept at predicting 
and responding to these changes. In such dynamic environments, this approach ensures that a higher number of user requests are 
fulfilled by the edge cluster, despite the challenges posed by constantly changing locations and service requirements. This leads 
to lower response times, increased throughput, and overall improved QoS. The objective is to drive the agent towards maximizing 
service fulfillment, minimizing the cost associated with unmet demands, and ensuring efficient resource allocation that adapts to the 
movement of users and the evolving environment. This cost can be mathematically formulated as

𝑐1(𝑡) =𝑚𝑎𝑥(
𝑛 ∑

𝑖=1 

𝑚 ∑
𝑗=1 

𝐷𝑖(𝑡) × 𝑘𝑖,𝑗 (𝑡)) ×𝑤1 (12)

𝑐1 is summing the total number of services given that they were requested at time 𝑡, where 𝐷(𝑡) is an array of size 𝑛. Each element 
𝐷𝑖(𝑡) = 1 indicates that the service 𝑆𝑣𝑖 was both requested, as denoted by 𝐿𝑖(𝑡) = 1, and successfully deployed on a host from the set 
𝐻 . Each element 𝐷𝑖(𝑡) is defined as:

𝐷𝑖(𝑡) =
⎧⎪⎨⎪⎩

1, if 𝐿𝑖(𝑡) = 1 and 𝑆𝑣𝑖(𝑡) is successfully

deployed on a host from the set 𝐻,

0, otherwise.

(13)

The second objective is to Minimize Host-Service Distance 𝑐2. This function focuses on minimizing the physical or network 
distance between the hosts and the services they deploy, especially in a dynamic environment where users are constantly moving. 
By strategically placing services closer to where users are located or expected to be, the system reduces latency and enhances service 
efficiency. This approach is crucial for the fog computing layer, as it aims to deliver services as near as possible to the end-users. 
The on-demand architecture tracks user movements within its clusters, allowing it to compute the average time each user spends in 
a cluster and predict their likely next location as proved in [35]. By doing so, it aims to minimize the distance between the current 
service deployment host and the user’s next place location, ensuring the service remains accessible as users move. This strategy helps 
reduce bandwidth delays and improves physical reachability, optimizing overall service performance. Prioritizing proximity not only 
improves response times but also ensures a higher QoS, adapting in real-time to the shifting locations and demands of users. This cost 
function can be expressed as:

𝑐2(𝑡) =𝑚𝑖𝑛(
𝑛 ∑

𝑖=1 

𝑚 ∑
𝑗=1 

𝑑𝑖,𝑗 × 𝑘𝑖,𝑗 (𝑡)) ×𝑤2 (14)



Information Sciences 715 (2025) 122238

10

M. Chahoud, H. Sami, R. Mizouni et al. 

where 𝑑𝑖,𝑗 is the distance (physical or network) between host 𝐻𝑗 and the user requesting service 𝑆𝑣𝑖, extracted from 𝐻𝑗,𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 
the next place a user will be in a dynamic and moving environment.

The third objective is to Maximize High-Priority Service Deployment 𝑐3. This objective focuses on ensuring that high-priority 
services are given precedence in deployment decisions, guaranteeing that essential applications receive the resources they need to 
operate efficiently. In a dynamic environment where users are constantly moving and generating varying demands, it’s crucial to 
prioritize the rapid deployment of critical services. By doing so, the system maintains a high level of QoS for these vital applications, 
ensuring they are deployed promptly and without delay, even in the face of competing demands from lower-priority services.

𝑐3(𝑡) =𝑚𝑎𝑥(
𝑛 ∑

𝑖=1 

𝑚 ∑
𝑗=1 

𝑝𝑖 × 𝑘𝑖,𝑗 (𝑡)) ×𝑤3 (15)

where 𝑝𝑖 is the priority of service 𝑆𝑣𝑖, derived from 𝑆𝑣(𝑖,𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦), with values ranging from 0 to 1.

The fourth objective is to Minimize the Number of Deployed Hosts 𝑐4. The goal is to reduce the number of active hosts required 
for service deployment, which is significantly important in dynamic environments where user movements and fluctuating demands can 
strain system resources. By minimizing the number of hosts in use, the system conserves unused resources, simplifying management 
and reducing the overall complexity of the infrastructure. This approach not only lessens the burden on servers responsible for 
monitoring and maintaining host health but also accelerates the learning process for adapting to changing resource availability and 
optimizing service placement in real-time.

𝑐4(𝑡) =𝑚𝑖𝑛(
𝑚 ∑
𝑗=1 

(
𝑛 ∑

𝑖=1 
𝑘𝑖,𝑗 (𝑡) ≥ 0)) ×𝑤4 (16)

This objective reduces the number of hosts being used by ensuring services are deployed on the minimum number of hosts required.

Those objectives are subject to resource constraints. Each host 𝐻𝑗 has limited resources 𝐻𝑖,𝑐𝑝𝑢, 𝐻𝑖,𝑚𝑒𝑚𝑜𝑟𝑦, 𝐻𝑖,𝑑𝑖𝑠𝑘𝑠𝑝𝑎𝑐𝑒, and the 
total resources used by all services deployed on that host must not exceed the available capacity as express below:

𝑛 ∑
𝑖=1 

𝑘𝑖,𝑗 (𝑡) × 𝑆𝑣𝑖,𝑐𝑝𝑢 ≤𝐻𝑖,𝑐𝑝𝑢 (17)

𝑛 ∑
𝑖=1 

𝑘𝑖,𝑗 (𝑡) × 𝑆𝑣𝑖,𝑚𝑒𝑚𝑜𝑟𝑦 ≤𝐻𝑖,𝑚𝑒𝑚𝑜𝑟𝑦 (18)

𝑛 ∑
𝑖=1 

𝑘𝑖,𝑗 (𝑡) × 𝑆𝑣𝑖,𝑑𝑖𝑠𝑘𝑠𝑝𝑎𝑐𝑒 ≤𝐻𝑖,𝑑𝑖𝑠𝑘𝑠𝑝𝑎𝑐𝑒 (19)

while a service can only be deployed on a one host at a time.

𝑚 ∑
𝑗=1 

𝑘𝑖,𝑗 (𝑡) ≤ 1 (20)

If the constraints are violated, this will affect the reward function by adding those violations as punishments to the method. The 
𝐶𝑃𝑈𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 can be expressed as:

𝐶𝑃𝑈𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) =
𝑚 ∑
𝑗=1 

𝑚𝑎𝑥(0,
𝑛 ∑

𝑖=1 
𝑘𝑖,𝑗 (𝑡) ×𝑆𝑣𝑖,𝑐𝑝𝑢 −𝐻𝑖,𝑐𝑝𝑢) (21)

The same logic applies to 𝑀𝑒𝑚𝑜𝑟𝑦𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) and 𝑑𝑖𝑠𝑘𝑠𝑝𝑎𝑐𝑒𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑡).
The second violation occurs if a service is deployed on more than one host simultaneously expressed as follows:

𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) =
𝑛 ∑

𝑖=1 
𝑚𝑎𝑥(0,

𝑚 ∑
𝑗=1 

𝑘𝑖,𝑗 (𝑡) − 1) (22)

The overall reward method 𝑟(𝑡) at timestep 𝑡 will be equal to 𝑟(𝑡) = (𝑤1 × 𝑐1(𝑡)) − (𝑤2 × 𝑐2(𝑡)) + (𝑤3 × 𝑐3(𝑡)) − (𝑤4 × 𝑐4(𝑡)) −
(𝐶𝑃𝑈𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) +𝑀𝑒𝑚𝑜𝑟𝑦𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) + 𝑑𝑖𝑠𝑘𝑠𝑝𝑎𝑐𝑒𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) +𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑡)).

This optimization framework dynamically adjusts to user movements and changing demands, ensuring that the deployment of 
services is both efficient and responsive to the dynamic environment. The balance between maximizing service fulfillment, minimizing 
latency, prioritizing critical services, and optimizing host usage is achieved by tuning the weight parameters according to the system’s 
specific needs. This reward function is later shaped by Equation 4.



Information Sciences 715 (2025) 122238

11

M. Chahoud, H. Sami, R. Mizouni et al. 

4.4. Solution

Algorithm 1: PPO with GCT (GCN + Transformers) for Reward Shaping.

1 Input: Environment parameters, PPO parameters, GCT parameters; 
2 Output: Trained PPO model with reward shaping; 
3 Initialize PPO policy network 𝜋𝜃 ; 
4 Initialize GCT model with GCN and Transformer layers; 
5 Initialize Rollout storage storage; 
6 Initialize optimizers for 𝜋𝜃 and GCT models; 
7 while not done do

8 for each step in num_steps do

9 Sample actions 𝐴𝑡 from policy network 𝜋𝜃(𝐴𝑡|𝑆𝑡); 
10 Step the environment, observe new states 𝑆𝑡+1, and dones 𝑑𝑡 ; 
11 Store experiences (𝑆𝑡,𝐴𝑡, 𝑟,𝑆𝑡+1 , 𝑑𝑡) in storage; 
12 if step % GCN_interval == 0 then

13 Build Transition Graph G; 
14 for each transition in storage do

15 Add transition (𝑆𝑡,𝐴𝑡,𝑆𝑡+1) to 𝐺; 
16 end 
17 Build the sampled transition matrix 𝑃 ′ from 𝐺; 
18 Construct Krylov basis 𝐾 from 𝑃 ′ ; 
19 Update GCT with 𝐾 ; 
20 end 
21 end 
22 Compute returns 𝑟 and advantages 𝐴̂𝑡 ; 
23 Compute the probability ratio 𝑝𝑟(𝜃) = 𝜋𝜃 (𝐴𝑡 |𝑆𝑡 ) 

𝜋𝜃𝑜𝑙𝑑
(𝐴𝑡 |𝑆𝑡 )

; 
24 Compute the clipped objective:

𝐿𝐶𝐿𝐼𝑃 (𝜃) = 𝔼𝑡[min(𝑝𝑟(𝜃)𝐴̂𝑡, clip(𝑝𝑟(𝜃),1 − 𝜖,1 + 𝜖)𝐴̂𝑡)]

Update the policy parameters by maximizing the objective function:

𝜃 ← 𝜃 + 𝛼∇𝜃𝐿
𝐶𝐿𝐼𝑃 (𝜃)

Compute combined value function:

𝑄comb = 𝛼𝑄+ (1 − 𝛼)𝑄𝜙

Update rewards in storage with shaped rewards; 
25 if episode end then

26 Log rewards, losses, and other metrics; 
27 Save model checkpoints; 
28 end 
29 Reset storage and environment for new episode; 
30 end 
31 Return: Final trained PPO policy with GCT-based reward shaping; 

In dynamic environments where conditions are constantly changing, and users are frequently on the move, it is essential for RL 
agents to quickly and effectively adapt to these shifts. Our agent leverages the Proximal Policy Optimization (PPO) algorithm [41], 
a state-of-the-art policy gradient method that is particularly well-suited for environments characterized by such dynamism. The PPO 
algorithm optimizes the policy directly, which is crucial in scenarios where the environment is non-stationary, meaning the optimal 
actions can change over time as users move and as resources fluctuate.

PPO is favored in dynamic environments due to its ability to maintain stability during policy updates, which is vital when the 
environment is in shift. The algorithm introduces a clipped objective function, which ensures that updates to the policy do not deviate 
excessively from the previous policy. This stability is crucial when the agent must continuously adapt to new states and conditions 
without overshooting or making erratic changes that could lead to suboptimal performance. The PPO objective function is formulated 
as:

𝐿(𝜃) = 𝔼𝑡

[
min

(
𝑝𝑟(𝜃)𝐴̂𝑡, clip(𝑝𝑟(𝜃),1 − 𝜖,1 + 𝜖)𝐴̂𝑡

)]
(23)

where 𝜃 represents the policy parameter, The clip function in PPO limits the policy update by constraining the probability ratio 𝑝𝑟(𝜃)
within a range around 1, and 𝑝𝑟(𝜃) represents the probability ratio between the new policy and the old policy, expressed as:

𝑝𝑟(𝜃) =
𝜋𝜃(𝐴𝑡|𝑆𝑡) 
𝜋𝜃𝑜𝑙𝑑

(𝐴𝑡|𝑆𝑡)
(24)

Furthermore, 𝐴̂𝑡 is the advantage estimate that measures how much better an action 𝑎 performs compared to a baseline (usually 
the value function), and 𝜖 is a small hyperparameter that determines the range of clipping. This clipping mechanism is essential 
because it prevents large policy updates, which could destabilize learning in dynamic environments where the agent needs to make 
incremental adjustments rather than drastic changes. As the agent encounters new data, it can adjust its policy to accommodate 
changes in user behavior, resource availability, and other environmental factors. This adaptability ensures that the agent continues to 



Information Sciences 715 (2025) 122238

12

M. Chahoud, H. Sami, R. Mizouni et al. 

perform optimally even as the environment shifts, providing reliable service and maintaining high efficiency. In our context, where 
users are constantly moving and generating new service requests, PPO allows the agent to dynamically allocate resources in real time. 
By optimizing the policy to respond to changing conditions, PPO ensures that the agent can quickly adapt its strategy, effectively 
balancing resource usage and service quality. The process is outlined in Algorithm 1.

In parallel, we are training the GCT. At regular intervals, a subset of the transition matrix is used to construct a sub-graph, which is 
then employed to train the GCT. During this training, the augmented Krylov algorithm is utilized to approximate the transition matrix 
based on the sampled sub-graph [17]. The GCT’s loss function is then applied to optimize its performance. Subsequently, the combined 
value function 𝑄𝑐𝑜𝑚𝑏 = 𝛼𝑄 + (1 − 𝛼)𝑄𝜙, which incorporates reward shaping, is derived, enabling enhanced decision-making and 
learning efficiency within the dynamic environment. The GCT updates the reward shaping function periodically, while the DRL agent 
learns to optimize based on this enriched feedback. This combined approach helps in managing complex, dynamic environments with 
moving users, improving overall learning efficiency and system performance. Moreover, our reward function explicitly incorporates 
network latency as a core optimization criterion, ensuring that the agent learns to prioritize service placements that minimize delay. As 
the DRL agent optimizes its policy over time, it naturally selects edge hosts with lower expected latency to users, ensuring that service 
allocation remains responsive even under dynamic mobility conditions. This adaptive learning approach enables our framework to 
achieve low-latency, high-availability service delivery without requiring direct modeling of inter-host communication overhead.

5. Experiments and analysis

In our experiments, we simulate a highly dynamic environment where users exhibit significant mobility, frequently moving be

tween different geographic locations while requesting various critical services. An example of such services includes continuous 
health monitoring provided by wearable devices. To capture the intricate patterns of user movement and service requests, we utilize 
the MOBILE DATA CHALLENGE (MDC) dataset [42], which is notably well-suited due to its detailed records of user mobility and 
geographical context. This dataset allows us to model users as clients actively requesting services. The host devices that volunteer 
to provide these services are selected based on the Google Cluster Workload dataset [43], which offers a rich source of data on 
the resource capabilities and usage patterns of cloud-based systems. MDC represents a continuous record of user mobility patterns 
in a dynamic environment, making it ideal for analyzing user-driven service requests and resource availability fluctuations. To fur

ther validate our approach under real-world mobile edge computing conditions, we integrate the Shanghai Telecom Mobile User 
Dataset [44]. This dataset provides real-world cellular network mobility traces, including handover events between base stations 
and timestamped service requests such as data traffic, SMS usage, and call records. Unlike MDC, which primarily focuses on spatial 
mobility patterns, the Shanghai Telecom dataset allows us to analyze how mobile users generate service demands dynamically while 
transitioning between area locations. By integrating both datasets, we ensure that our evaluation considers both mobility-driven 
and service-driven variations, creating a comprehensive and realistic simulation of adaptive resource management in mobile edge 
computing environments.

To validate the effectiveness of our proposed solution, we conducted a comparative analysis involving several benchmarks. Our 
approach is assessed against a DRL model that does not utilize reward shaping, as well as heuristic solution [28] and reward shaping 
methods employing RNNs with GCN [33] (GCRN). This comparison aims to evaluate how the DRL agent performs under shifting 
environmental conditions, especially focusing on how it adapts to changes in movements. Additionally, we explore variations in our 
objective functions and observe the impact on available resources when implementing our solution.

We evaluate our approach using PPO and compare it with baseline methods. While Soft Actor-Critic (SAC) and Twin Delayed Deep 
Deterministic Policy Gradient (TD3) are known for their sample efficiency and policy stability, their reliance on off-policy learning 
and replay buffers makes them less suited for rapidly evolving environments where state transitions shift frequently. Our dynamic 
edge computing scenario introduces high variability in resource allocation, requiring an algorithm that can adapt to real-time changes 
efficiently. PPO, with its policy gradient updates and adaptive step size, achieves a better trade-off between stability and adaptability, 
ensuring robust performance in our use case.

The model architecture, as detailed, integrates a GCN layer with a predefined number of input features, which defines the di

mensionality of the output. This output is then processed by a Transformer Encoder, which is configured with a hidden size of 32, 
four attention heads, two layers, and a dropout rate of 0.2 to address potential overfitting. We conducted an extensive hyperparam

eter tuning process using Bayesian Optimization. The key parameters tuned include the learning rate, discount factor, batch size, 
exploration strategy, and network architecture parameters. The tuning process aimed to balance the trade-offs between convergence 
speed, sample efficiency, and computational overhead in a highly dynamic environment. The hidden size of 32 was chosen to balance 
computational efficiency and representational power, as larger hidden sizes were found to increase training time without significant 
performance improvement. The selection of four attention heads was based on preliminary experiments indicating that this configu

ration provides an effective trade-off between model complexity and the ability to capture diverse patterns in the input. The two-layer 
structure of the Transformer Encoder was determined to be sufficient for the task, as additional layers did not yield noticeable gains 
in performance, and increasing depth could lead to overfitting in the absence of a significantly larger dataset. The dropout rate of 
0.2 was tuned to mitigate overfitting, as higher values led to underfitting and lower values were insufficient for regularization. These 
architectural choices were informed by empirical validation and guided by considerations of computational feasibility, ensuring the 
model achieves robust performance while maintaining efficiency. The final output is produced by a fully connected layer that trans

lates the transformed features into the desired output format. Our experimental setup includes 45 services and 15 devices available 
as hosts. We utilize the Open AI Gym [45] due to its versatility in incorporating and merging various architectures, and we developed 
our customized dynamic environments within this framework. In the experiments, we simulate shifts and changes in the environment 



Information Sciences 715 (2025) 122238

13

M. Chahoud, H. Sami, R. Mizouni et al. 

Fig. 2. The performance of a DRL agent with and without the use of the GCT solution. 

Fig. 3. The performance of our DRL agent, both with and without the implementation of reward shaping, during shifts and changes in the environment. 

by dynamically altering the requests of a subset of users while the DRL agent continues to learn. Specifically, every 500 episodes, 
we randomly modify the requests of 5% to 10% of the users to mimic real-life scenarios where user mobility leads to changes in 
location, and new users arrive with different service requests. These changes directly impact the request matrix and the availability 
of host devices, reflecting the dynamic nature of resource management in real-world environments. Such scenarios make it crucial to 
have reward shaping in the dynamic environment, as it enables the DRL agent to adapt more quickly and efficiently to these changes, 
ensuring faster convergence and improved performance compared to standard learning approaches. This highlights the significance 
of reward shaping in keeping pace with evolving conditions and maintaining optimal resource allocation.

1) In our experiments, we assess the effectiveness of our proposed solution incorporating reward shaping and mobility consid

erations versus a baseline without reward shaping in a dynamic environment where users move frequently and request services. As 
depicted in Fig. 2, the DRL agent without reward shaping exhibits notable instability, struggling to achieve convergence and stable 
learning. This instability is reflected in the high fluctuations of reward values, particularly in the Shanghai Telecom dataset, where 
the reward values oscillate between 7 and 13 before stabilizing at a lower value. Similarly, in the MDC dataset, the absence of reward 
shaping results in fluctuations ranging between 9 and 14, with notable performance drops after 2000 episodes, indicating an inability 
to effectively adapt to dynamic changes.

In contrast, when incorporating reward shaping and user movement modeling, the DRL agent demonstrates improved learning 
stability across both datasets. In the MDC dataset, the agent achieves higher and more stable rewards, ranging from 12 to 17, 
with fewer fluctuations. Similarly, in the Shanghai Telecom dataset, reward shaping significantly improves adaptation, with rewards 
stabilizing at higher values between 11 and 14 compared to the baseline. This demonstrates that guiding the learning process through 
our structured reward shaping helps the agent adapt more effectively to environmental changes, resulting in faster and more stable 
convergence. Moreover, both datasets reached convergence around episode 8000 when reward shaping was applied. This suggests 
that reward shaping accelerates learning and allows the DRL agent to quickly adapt to the dynamic nature of user mobility and service 
demands. However, in the absence of reward shaping, the agent fails to achieve full convergence even after 10,000 episodes, with 



Information Sciences 715 (2025) 122238

14

M. Chahoud, H. Sami, R. Mizouni et al. 

Fig. 4. The performance of our agent as we increase the scale of the environment’s input with different users’ movements. 

reward values still fluctuating significantly. These findings highlight the critical role of reward shaping in improving DRL performance 
in dynamic environments, ensuring more efficient service allocation and deployment strategies.

2) To assess our model’s performance under rapid changes in a dynamic environment, we introduce significant shifts in user 
requests and host devices, creating a challenging scenario for fast convergence. Additionally, we allow the DRL agent that is not 
using our solution to have more learning rounds before implementing these shifts in user movement, demonstrating that even with 
extended training, classical DRL methods still fail to converge quickly under dynamic conditions. The results, illustrated in Fig. 3, 
highlight the effectiveness of our approach. In the left graph, where reward shaping is applied, the agent demonstrates resilience to 
swift changes. Although there is an initial drop in reward values to approximately 5 due to the shifts, the model quickly adapts, with 
reward values rising to about 12.5 within the next 500 episodes. This rapid recovery indicates that reward shaping facilitates quick 
stabilization in response to dynamic fluctuations.

In contrast, the right graph illustrates the performance of the DRL agent without the inclusion of reward shaping. Here, the agent 
experiences a drop in reward values to around 2.5 and shows a slower convergence to higher values, only reaching approximately 10 
after 1000 episodes. This slower adaptation underscores the critical role of guiding the agent and the importance of reward shaping 
in guiding the agent through rapid environmental changes. By incorporating reward shaping, our solution effectively mitigates the 
impact of sudden shifts and accelerates the learning process, demonstrating its superiority in managing dynamic and highly active 
environments.

3) To further assess the robustness of our proposed solution, we evaluated its performance across various input sizes, including 
configurations with 10 services and 5 hosts, 20 services and 10 hosts, as well as with 45 services and 15 hosts. As shown in Fig. 4, 
the model demonstrates a consistently acceptable and stable convergence rate even as the input size scales up while having different 
rates of user shifts and movements.

For the scenario with 10 services and 5 host devices, the reward values stabilize within the range of 22 to 25, indicating effective 
learning and stability despite the dynamic environment and the presence of critical services. This stability reflects the model’s capa

bility to handle varying conditions and maintain performance. Similarly, in the larger configuration with 20 services and 10 hosts, 
the reward values eventually settle between 12 and 15. This further illustrates that, regardless of the increased complexity, the model 
preserves stability and effectively adapts to larger input sizes. Moreover, as previously shown in Fig. 2, on 45 services and 15 hosts, 
the performance of the agent is also smooth and converges faster. The results confirm that our solution provides robust learning 
and consistent performance even in more complex and dynamic scenarios. This stability is achieved by incorporating the movement 
factor into the MDP formulation, which helps the agent adapt to user changes and mobility. By fine-tuning the reward values towards 
desired targets, we demonstrate the model’s capability to thrive in larger and more complex environments without compromising 
performance. Overall, this integration of the movement factor enhances the agent’s ability to respond effectively to the dynamics of 
user behavior.

4) Based on the analysis depicted in Fig. 5, our evaluation of resource utilization during deployment and service pushing highlights 
the benefits of the on-demand architecture over traditional static deployment methods. In terms of resource usage, the on-demand 
approach significantly improves availability, with CPU usage showing 60% for regular operations and 40% for on-demand tasks. 
Memory and hard disk utilization exhibit similar patterns, with on-demand usage reaching 70% and 65%, respectively, while regular 
usage remains around 30-35%. Battery usage is also optimized, with a 60% allocation for on-demand activities and 40% for regular 
usage. These figures indicate that our solution adapts dynamically to real-time demands, maximizing resource utilization while 
balancing power efficiency.

Furthermore, when examining the availability and usage of host devices, the on-demand deployment method uses about 30 
devices, leaving around 70 devices available, whereas regular deployment requires 50 devices, with only 30 remaining available. 
This enhanced flexibility ensures that our approach leverages a more diverse range of host devices, thereby increasing the pool of 
available resources and optimizing overall usage.



Information Sciences 715 (2025) 122238

15

M. Chahoud, H. Sami, R. Mizouni et al. 

Fig. 5. The resource utilization and availability of host devices when employing on-demand deployment compared to using static host devices. 

To further address computational efficiency, our analysis incorporates computational overhead, memory usage, and power con

sumption. The results indicate that our on-demand approach reduces the number of active devices, leading to lower overall computa

tional costs while maintaining system responsiveness. Additionally, our architecture minimizes redundant processing, ensuring that 
memory utilization remains within optimal bounds while avoiding unnecessary resource exhaustion. The reduced active device count 
further lowers overall power consumption, making the approach more sustainable and energy-e˙icient. By dynamically allocating 
resources based on real-time demand and balancing the load effectively, our on-demand architecture supports scalable and efficient 
deployment, ensuring that fewer devices are actively engaged while more resources remain available to meet the dynamic needs of 
the environment.

5) Afterward, we experimented with modifying the weights of our objective functions, as illustrated in Fig. 6. In our reward 
function formulation, we assign four distinct weights to each objective function, allowing them to be adjusted based on the service 
provider’s assessment of the environment’s requirements. Altering these weights introduces corresponding changes to the rewards 
calculated by the agent. In the figure, a signal value of one indicates that the weight is active for the current cycle. When multiple 
weights are active simultaneously, the total weight is distributed equally among them.

Initially, the reward function begins to converge steadily around a value of approximately 12. However, any change in the weights 
triggers a peak in the reward, as depicted in the results. For instance, around iteration 4×106, there is a noticeable peak in the reward 
value, reaching up to approximately 16. This peak reflects the agent’s response to the updated cost function. Each adjustment to the 
weights leads to a temporary spike in reward values before the agent re-stabilizes and continues to converge, demonstrating the 
system’s sensitivity to the weight distribution and its ability to adapt to shifting priorities in real-time.

6) To evaluate the impact of our GCT-based scheduling approach on service allocation latency, we compare it against a traditional 
Greedy algorithm. The Greedy algorithm follows an immediate selection strategy, allocating resources based on current availability 
without considering long-term optimization or load balancing. While this approach is computationally lightweight, it often leads to 
resource contention and higher queuing delays, particularly in dynamic environments.

Our experimental results, illustrated in Fig. 7, demonstrate that our proposed GCT-based approach significantly reduces service 
allocation latency. Specifically, the Greedy algorithm results in an average latency of 18.5 ms, whereas our proposed solution achieves 
a much lower latency of 10.2 ms, representing an improvement of approximately 45%. This reduction is attributed to our method’s 
ability to predict and optimize resource allocation decisions dynamically, preventing bottlenecks and ensuring a more efficient de

ployment strategy.

7) Finally, we compared our GCT approach with a GCRN that utilizes an RNN following a GCN training, as well as with heuristic 
methods such as Genetic Algorithms (GA) while having dynamic environments and the users are moving, as shown in Fig. 8. Unlike 
GCT, which incorporates Transformers for enhanced dynamic adaptation, the GCRN relies on RNNs. Additionally, heuristic approaches 
like GA, which depend on random processes to generate solutions, face challenges in large input scenarios due to the vast range of 
potential solutions, often struggling to find optimal results.



Information Sciences 715 (2025) 122238

16

M. Chahoud, H. Sami, R. Mizouni et al. 

Fig. 6. GCT performance while changing weights. 

Fig. 7. Greedy vs GCT latency comparison. 

In our experiments, we implemented the same cost/reward function described in Section 5 for evaluating fitness in the GA. As 
detailed in [35], the GA’s performance often suffers from outdated placements because it periodically executes solutions that may 
not reflect current demands. The random nature of heuristic algorithms, combined with the increasing execution time required for 
larger input sizes, renders them impractical for time-sensitive and dynamic environments.

As depicted in the graph, our GCT approach consistently achieves higher reward values compared to the GCRN and heuristic 
methods. Specifically, GCT reaches reward values that fluctuate around an average of 14 to 16 after 6,000 episodes, peaking at 
values above 16 in some instances. On the other hand, GCRN shows a lower average reward, oscillating around 12 to 14. The 
heuristic solution performs the least effectively, maintaining reward values mostly between 9 and 11. This clearly demonstrates that 
GCT’s ability to adapt quickly and effectively to changes in the environment provides it with a significant advantage.

In contrast, the key advantage of using Transformers over RNNs lies in their ability to handle long-range dependencies and adapt to 
dynamic changes more effectively. Transformers excel in capturing complex temporal and spatial relationships within the data, which 
is crucial for maintaining accurate and timely resource management in dynamic environments. The GCN-Transformer integration thus 
provides superior performance, significantly in critical applications where rapid adaptation and precise control are essential.

Our approach in general has contributed in 30% reduction on convergence time, a 25% increase in total accumulated rewards, 
and a 35% improvement in service allocation efficiency compared to the above-mentioned techniques.



Information Sciences 715 (2025) 122238

17

M. Chahoud, H. Sami, R. Mizouni et al. 

Fig. 8. The performance of GCT in comparison to GCRN and the GA heuristic approach. 

6. Conclusion

In highly dynamic environments, where users are constantly on the move, building a solution that maintains high accuracy while 
adapting to these movements and converging quickly during such transitions poses a significant challenge. In these settings, the 
agent continuously learns from new data, but the evolving nature of the environment can disrupt the learning process, potentially 
rendering the learning rounds outdated. This complexity arises because the agent’s operating conditions can shift during training, 
leading to an ongoing and never truly complete learning process. To address these challenges, we proposed a novel DRL framework 
that integrates reward shaping for the first time in the context of resource management. This framework guarantees more accurate 
decisions and faster adaptation to environmental changes, the proposed approach features a unique reward shaping mechanism that 
combines GCN and Transformer encoders, a combination not previously explored. Additionally, a novel MDP was designed to account 
for the dynamic nature of user mobility and demand. This integration of advanced techniques and novel MDP design significantly 
outperforms previous methods by providing more guided learning paths, enabling the agent to stabilize its policy more rapidly. Our 
approach significantly enhances the speed and accuracy of resource allocation while optimizing computational efficiency. Through 
our structured reward shaping, we achieved, on average across two datasets, a 30% reduction in convergence time, a 25% increase 
in total accumulated rewards, and a 35% improvement in service allocation compared to standard DRL and heuristic methods, 
mitigating the additional overhead introduced by advanced components. This enables scalable deployment in resource-constrained 
edge environments. We plan to incorporate additional environmental inputs, such as satellite imagery and IoT sensor data, to refine 
decision-making processes. Finally, we will investigate enhanced real-time optimization techniques, leveraging adaptive scheduling 
algorithms to further minimize computational latency in edge environments.

CRediT authorship contribution statement

Mario Chahoud: Writing -- review & editing, Writing -- original draft, Visualization, Validation, Software, Resources, Methodol

ogy, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Hani Sami: Writing -- review & editing, 
Validation, Supervision, Methodology, Investigation, Formal analysis, Conceptualization. Rabeb Mizouni: Writing -- review & editing, 
Supervision, Project administration, Funding acquisition, Conceptualization. Jamal Bentahar: Writing -- review & editing, Valida

tion, Supervision, Project administration, Funding acquisition, Data curation, Conceptualization. Azzam Mourad: Writing -- review & 
editing, Validation, Supervision, Project administration, Investigation, Funding acquisition, Formal analysis, Conceptualization. Hadi 
Otrok: Writing -- review & editing, Validation, Supervision, Project administration, Funding acquisition, Formal analysis. Chamsed

dine Talhi: Supervision, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

This work is supported by the Fonds de recherche du Québec -- Nature et technologies (FRQNT) and the Natural Sciences and 
Engineering Research Council of Canada (NSERC), Discovery Grant.



Information Sciences 715 (2025) 122238

18

M. Chahoud, H. Sami, R. Mizouni et al. 

Data availability

Data will be made available on request.

References

[1] C.G. Cassandras, Automating mobility in smart cities, Annu. Rev. Control 44 (2017) 1--8.

[2] K. McMillan, K. Flood, R. Glaeser, Virtual reality, augmented reality, mixed reality, and the marine conservation movement, Aquat. Conserv. Mar. Freshw. 
Ecosyst. 27 (2017) 162--168.

[3] C. Yin, Z. Xiong, H. Chen, J. Wang, D. Cooper, B. David, A literature survey on smart cities, Science China. Information Sciences 58 (10) (2015) 1--18.

[4] M. Chahoud, S. Otoum, A. Mourad, On the feasibility of federated learning towards on-demand client deployment at the edge, Inf. Process. Manag. 60 (1) (2023) 
103150.

[5] Z. Hu, W. Gong, W. Pedrycz, Y. Li, Deep reinforcement learning assisted co-evolutionary differential evolution for constrained optimization, Swarm Evol. Comput. 
83 (2023) 101387.

[6] H. Godhrawala, R. Sridaran, A dynamic Stackelberg game based multi-objective approach for effective resource allocation in cloud computing, Int. J. Inf. Technol. 
15 (2) (2023) 803--818.

[7] A.K. Sangaiah, A. Javadpour, P. Pinto, S. Rezaei, W. Zhang, Enhanced resource allocation in distributed cloud using fuzzy meta-heuristics optimization, Comput. 
Commun. 209 (2023) 14--25.

[8] A. Andam, J. Bentahar, M. Hedabou, Multimodal deep reinforcement learning for visual security of virtual reality applications, IEEE Internet Things J. 11 (24) 
(2024) 39890--39900.

[9] S. Fan, H. Liang, C.-C. Li, F. Chiclana, W. Pedrycz, Y. Dong, Optimal resources allocation to support the consensus reaching in group decision making, Inf. Fusion 
110 (2024) 102451.

[10] A.K. Jirjees, A.M. Ahmed, A.A. Abdulla, J. Lu, E.M. Noori, R.N. Kareem, B.A. Hassan, H. Veisi, T.A. Rashid, Machine learning for recruitment: analyzing job

matching algorithms, Mach. Learn. 27 (2025) 1.

[11] H. Zhang, H. Wang, Y. Li, K. Long, A. Nallanathan, Drl-driven dynamic resource allocation for task-oriented semantic communication, IEEE Trans. Commun. 
71 (7) (2023) 3992--4004.

[12] L. Hirsch, G. Katz, Multi-objective pruning of dense neural networks using deep reinforcement learning, Inf. Sci. 610 (2022) 381--400.

[13] G. Rjoub, J. Bentahar, O.A. Wahab, A.S. Bataineh, Deep and reinforcement learning for automated task scheduling in large-scale cloud computing systems, 
Concurr. Comput. Pract. Exp. 33 (23) (2021).

[14] L. Dong, N. Li, H. Yuan, G. Gong, Accelerating wargaming reinforcement learning by dynamic multi-demonstrator ensemble, Inf. Sci. 648 (2023) 119534.

[15] Y. Cao, A. Chandrasekar, T. Radhika, V. Vijayakumar, Input-to-state stability of stochastic Markovian jump genetic regulatory networks, Math. Comput. Simul. 
222 (2024) 174--187.

[16] T. Radhika, A. Chandrasekar, V. Vijayakumar, Finite-time h∞ synchronization of semi-Markov jump neural networks with two delay components with stochastic 
sampled-data control, Bull. Sci. Math. 195 (2024) 103482.

[17] M. Klissarov, D. Precup, Reward propagation using graph convolutional networks, Adv. Neural Inf. Process. Syst. 33 (2020) 12895--12908.

[18] S.S. Kusumawardani, S.A.I. Alfarozi, Transformer encoder model for sequential prediction of student performance based on their log activities, IEEE Access 11 
(2023) 18960--18971.

[19] G. Marques, C. Senna, S. Sargento, L. Carvalho, L. Pereira, R. Matos, Proactive resource management for cloud of services environments, Future Gener. Comput. 
Syst. 150 (2024) 90--102, https://doi.org/10.1016/j.future.2023.08.005.

[20] D. Kulkarni, M. Venkatesan, A.V. Kulkarni, Deep learning traffic prediction and resource management for 5g ran slicing, J. Inst. Eng. (India), Ser. B (2024) 1--14.

[21] W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, W. Shi, Split learning over wireless networks: parallel design and resource management, IEEE J. Sel. 
Areas Commun. 41 (4) (2023) 1051--1066.

[22] M. Fahimullah, S. Ahvar, M. Agarwal, M. Trocan, Machine learning-based solutions for resource management in fog computing, Multimed. Tools Appl. 83 (8) 
(2024) 23019--23045.

[23] D. Yang, W. Zhang, Q. Ye, C. Zhang, N. Zhang, C. Huang, H. Zhang, X. Shen, Detfed: dynamic resource scheduling for deterministic federated learning over 
time-sensitive networks, IEEE Trans. Mob. Comput. 23 (5) (2024) 5162--5178, https://doi.org/10.1109/TMC.2023.3303017.

[24] B. Desai, K. Patil, Reinforcement learning-based load balancing with large language models and edge intelligence for dynamic cloud environments, J. Innov. 
Technol. 6 (1) (2023) 1--13.

[25] H. Sami, A. Mourad, Dynamic on-demand fog formation offering on-thefly IoT service deployment, IEEE Trans. Netw. Serv. Manag. 17 (2) (2020) 1026--1039.

[26] M. Anoushee, M. Fartash, J. Akbari Torkestani, An intelligent resource management method in sdn based fog computing using reinforcement learning, Computing 
106 (4) (2024) 1051--1080.

[27] H. Wadhwa, R. Aron, Optimized task scheduling and preemption for distributed resource management in fog-assisted IoT environment, J. Supercomput. 79 (2) 
(2023) 2212--2250.

[28] H. Sami, H. Otrok, J. Bentahar, A. Mourad, AI-based resource provisioning of IOE services in 6g: a deep reinforcement learning approach, IEEE Trans. Netw. 
Serv. Manag. 18 (3) (2021) 3527--3540.

[29] J. Eschmann, Reward Function Design in Reinforcement Learning, Reinforcement Learning Algorithms: Analysis and Applications, 2021, pp. 25--33.

[30] Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, C. Fan, Learning to utilize shaping rewards: a new approach of reward shaping, Adv. Neural Inf. 
Process. Syst. 33 (2020) 15931--15941.

[31] R. Devidze, P. Kamalaruban, A. Singla, Exploration-guided reward shaping for reinforcement learning under sparse rewards, Adv. Neural Inf. Process. Syst. 35 
(2022) 5829--5842.

[32] O. Marom, B. Rosman, Belief reward shaping in reinforcement learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[33] H. Sami, J. Bentahar, A. Mourad, H. Otrok, E. Damiani, Graph convolutional recurrent networks for reward shaping in reinforcement learning, Inf. Sci. 608 
(2022) 63--80.

[34] D. Baburao, T. Pavankumar, C. Prabhu, Load balancing in the fog nodes using particle swarm optimization-based enhanced dynamic resource allocation method, 
Appl. Nanosci. 13 (2023).

[35] M. Chahoud, H. Sami, A. Mourad, S. Otoum, H. Otrok, J. Bentahar, M. Guizani, On-demandfl: a dynamic and efficient multicriteria federated learning client 
deployment scheme, IEEE Internet Things J. 10 (18) (2023) 15822--15834.

[36] E. Wiewiora, G.W. Cottrell, C. Elkan, Principled methods for advising reinforcement learning agents, in: Proceedings of the 20th International Conference on 
Machine Learning (ICML-03), 2003, pp. 792--799.

[37] M. Toussaint, A. Storkey, Probabilistic inference for solving discrete and continuous state Markov decision processes, in: Proceedings of the 23rd International 
Conference on Machine Learning, 2006, pp. 945--952.

[38] M. Petrik, An analysis of Laplacian methods for value function approximation in MDPs, in: IJCAI, 2007, pp. 2574--2579.

[39] W. Yuan, K. He, D. Guan, L. Zhou, C. Li, Graph kernel based link prediction for signed social networks, Inf. Fusion 46 (2019) 1--10.

http://refhub.elsevier.com/S0020-0255(25)00370-6/bib20B1BCE1160B9373A86317B1CD9089C0s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib76B513C26A9E5B2458EA591FDBDFD228s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib76B513C26A9E5B2458EA591FDBDFD228s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib20AF919C08017F505D1BB6B5DB512A03s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibDEC6F8B1E069C1D5CB9EB473EEBC4469s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibDEC6F8B1E069C1D5CB9EB473EEBC4469s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib55FE38E7155A1CA5188AD4289A4CF96Es1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib55FE38E7155A1CA5188AD4289A4CF96Es1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib7AC63DE434332BB71FA68B1CFDEF66DBs1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib7AC63DE434332BB71FA68B1CFDEF66DBs1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibE57A5FC4E9C7EB81219876E579566D39s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibE57A5FC4E9C7EB81219876E579566D39s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib0376210A425611822C9EA8D7ED5B5841s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib0376210A425611822C9EA8D7ED5B5841s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib783941E290C939E7BD31D56623298010s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib783941E290C939E7BD31D56623298010s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib398FCE51FFFFE3023F31BEA6012238A1s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib398FCE51FFFFE3023F31BEA6012238A1s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibCB4A1300395D6DCC8A1D57A1EE6CF333s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibCB4A1300395D6DCC8A1D57A1EE6CF333s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibBC4FB7BB2AD25262594E26B2E6DF1526s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib89923DF4376E1434140F7DED02A9DD60s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib89923DF4376E1434140F7DED02A9DD60s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibC3632877AED5A67ED29CAD3EE7F10311s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibE6F3359842FA5043ED2F84B4CC6BA983s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibE6F3359842FA5043ED2F84B4CC6BA983s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib9C0324B7E4AE79423C68632AEA610F9Es1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib9C0324B7E4AE79423C68632AEA610F9Es1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibDEEBFAD2BB49455C0237DB6B27C0C8D9s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibC8BC415E301FCC65E40E22EA6D73EFF1s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibC8BC415E301FCC65E40E22EA6D73EFF1s1
https://doi.org/10.1016/j.future.2023.08.005
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib2F7CE3353C20F9C8F5C37E2AA16FEE11s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib4A22152BC24B5E2B2E6D65661832DF31s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib4A22152BC24B5E2B2E6D65661832DF31s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibF40CD41126327517A11723F3598A1F27s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibF40CD41126327517A11723F3598A1F27s1
https://doi.org/10.1109/TMC.2023.3303017
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib875E692F456914E3B025AE79B3474B11s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib875E692F456914E3B025AE79B3474B11s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib876E402706E377D2041C9456F3F73BEEs1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib6640507287FA46EEE9DE2E927DF75422s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib6640507287FA46EEE9DE2E927DF75422s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib9DDFECE199CED592FE2153C6A6B2E830s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib9DDFECE199CED592FE2153C6A6B2E830s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib1D76BAAF6AC6F91CA8EDA05AEDE3BD69s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib1D76BAAF6AC6F91CA8EDA05AEDE3BD69s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib783800DCAC0DC63AF8E29869CEB146CFs1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibDC9E4D3D8E5053A1C4500FDCE8D6FFF2s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibDC9E4D3D8E5053A1C4500FDCE8D6FFF2s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib270EC4D931D021D4C2185E07914FBB36s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib270EC4D931D021D4C2185E07914FBB36s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib23AD2BFE534E956082782D65CF0C8B80s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib641EA3A5D4A9FFA681433354384B8E5As1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib641EA3A5D4A9FFA681433354384B8E5As1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib1B55E01F580F9C597254803BC294C61Es1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib1B55E01F580F9C597254803BC294C61Es1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib8DED6D735431EE6A675825533CE58FC4s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib8DED6D735431EE6A675825533CE58FC4s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibEE2FD3310872B0647189F26C9CB7CCF0s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibEE2FD3310872B0647189F26C9CB7CCF0s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib36B5D4593F91609A86D7641EB87977EAs1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib36B5D4593F91609A86D7641EB87977EAs1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib0EB5AA398737103C1DDEF6A75A4EDCE7s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibC2E003293502946A78F97F468F387648s1


Information Sciences 715 (2025) 122238

19

M. Chahoud, H. Sami, R. Mizouni et al. 

[40] C.-Q. Miao, Computing eigenpairs in augmented Krylov subspace produced by Jacobi–Davidson correction equation, J. Comput. Appl. Math. 343 (2018) 363--372.

[41] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, Y. Wu, The surprising effectiveness of PPO in cooperative multi-agent games, Adv. Neural Inf. Process. 
Syst. 35 (2022) 24611--24624.

[42] J.K. Laurila, D. Gatica-Perez, I. Aad, B. J., O. Bornet, T.-M.-T. Do, O. Dousse, J. Eberle, M. Miettinen, The mobile data challenge: big data for mobile computing 
research, in: Pervasive Computing, 2012.

[43] Google, Google cluster workload traces, 2019.

[44] G. Zou, F. Zhao, S. Hu, Chestnut: a QoS dataset for mobile edge environments, arXiv e-prints, arXiv:2410.19248v1 [cs.LG], 2024.

[45] D. Cruz, J.A. Cruz, H. Lopes Cardoso, Reinforcement learning in multi-agent games: open AI gym diplomacy environment, in: Progress in Artificial Intelligence: 
19th EPIA Conference on Artificial Intelligence, EPIA 2019, Vila Real, Portugal, September 3--6, 2019, Proceedings, Part I 19, Springer, 2019, pp. 49--60.

http://refhub.elsevier.com/S0020-0255(25)00370-6/bib9EDDA3677C5CE9D8EA3D859C932BB64As1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib708E6D74538289B72852C7A9A0483B46s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib708E6D74538289B72852C7A9A0483B46s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib38AF2BC7B0A4B94E48722C7FBD601AD4s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib38AF2BC7B0A4B94E48722C7FBD601AD4s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib90330C90D9C25578903DAEAECD33459Es1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bibCCDFC1724F2CFCF2E5FC072474F86189s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib9EC1A16CE004B872A8F11EC309A5A988s1
http://refhub.elsevier.com/S0020-0255(25)00370-6/bib9EC1A16CE004B872A8F11EC309A5A988s1

	Reward shaping in DRL: A novel framework for adaptive resource management in dynamic environments
	1 Introduction
	2 Literature review
	2.1 Resource management solutions in dynamic environments
	2.2 Reward shaping methods

	3 Architecture
	3.1 Architecture overview
	3.2 Architecture components
	3.2.1 DRL environment
	3.2.2 Look-ahead advice
	3.2.3 GCT model
	3.2.4 Users


	4 Model formulation and solution
	4.1 MDP formulation
	4.2 GCT configuration
	4.3 Reward function
	4.4 Solution

	5 Experiments and analysis
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


