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This study presents ensemble machine learning (ML) models for predicting residential energy consumption in South Africa. By
combining the best features of individual ML models, ensemble models reduce the drawbacks of each model and improve
prediction accuracy. We present four ensemble models: ensemble by averaging (EA), ensemble by stacking each estimator (ESE),
ensemble by boosting (EB), and ensemble by voting estimator (EVE). These models are built on top of Random Forest (RF) and
Decision Tree (DT). These base predictor models leverage historical energy consumption patterns to capture temporal intricacies,
including seasonal variations and rolling averages. In addition, we employed feature engineering methodologies to further
enhance their predictive abilities. The accuracy of each ensemble model was evaluated by assessing various performance in-
dicators, including the mean squared error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and
coefficient of determination R2. Overall, the findings illustrate the efficiency of ensemble learning models in providing accurate
predictions for residential energy consumption. This study provides valuable insights for researchers and practitioners in
predicting energy consumption in residential buildings and the benefits of using ensemble learning models in the building and

energy research domains.

1. Introduction

The growing global demand for electricity, driven by ur-
banization and industrialization, has increased the com-
plexity of electricity distribution and management. South
Africa, in particular, for more than a decade, has been facing
the persistent problem of load shedding, which highlights
the prevailing challenges in meeting the rising energy de-
mand. Load shedding is the intentional and controlled
temporary interruption of electricity distribution that is
performed to better manage demand and prevent the power
grid from breaking down. According to the International
Energy Agency (IEA), residential buildings account for up to
32% of the overall energy consumption [1]. In South Africa,
residential buildings account for up to 23% of the total
energy consumption in the country [2]. With declining
energy generation and an inability to meet the increasing

demand [3], thus leading to extended periods of load
shedding, there is a pressing need for innovative approaches
to accurately predict and manage residential energy con-
sumption. The detrimental impacts of load shedding on
various sectors of the economy [4, 5], particularly residential
buildings, have highlighted the importance of addressing
energy consumption challenges. Accurate prediction of
energy consumption patterns can help in mitigating these
impacts and promoting sustainable energy management
practices.

Although several studies have explored machine learn-
ing (ML) models for predicting energy consumption in
residential and commercial buildings, it was observed that
there is a lack of research specifically proposing and eval-
uating ensemble models for predicting residential energy
consumption in South Africa. Figure 1 shows the South
African electricity generation from 2004 to 2014.
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FIGURE 1: South African electricity generation (2004-2014) [3].

This study adopted predictive ensemble models to ad-
dress the energy consumption problem. Building an en-
semble model is a common method to improve the
performance of the resulting model for regression tasks.
Generally, it is well known that on average, an ensemble of
individual predictors outperforms the single underlying
predictor model. By combining the strengths of the base
predictor models, the ensemble model can provide more
accurate predictions for the underlying data. This study
considered four ensemble models: ensemble by averaging
(EA), ensemble by stacking each estimator (ESE), ensemble
by boosting (EB), and ensemble by voting estimator (EVE).
The base predictor models chosen in this study are the two
tree models, Decision Tree (DT) and Random Forest (RF).
RF can be viewed as an ensemble model, as it is essentially
a collection of various DT models. Although one can only
consider these ensemble models to provide a good pre-
diction, we enhance their effectiveness by utilizing feature
engineering techniques to improve learning. These tech-
niques consider historical consumption patterns, temporal
seasonality, and rolling average. This training strategy en-
hances the models to achieve significantly higher prediction
accuracy.

1.1. Main Contributions, Novelty, and Findings of the Study.
This study proposes and evaluates four ensemble models,
namely, EA, ESE, EB, and EVE, for predicting residential
energy consumption in South Africa. These ensemble
models can mitigate drawbacks of each model and combine
the strengths of individual models, such as RF and DT, to
improve overall prediction accuracy. The study employs
feature engineering techniques, including incorporating
historical consumption patterns, temporal seasonality, and
rolling averages, to enhance the predictive abilities of the
ensemble models. These techniques aim to capture the
temporal intricacies and trends present in the energy con-
sumption data. We use the Domestic Electrical Load (DEL)
dataset, which is recognized as the largest and most extensive
study on residential energy consumption in Africa and

covers diverse geographic regions, climatic zones, income
groups, and dwelling structures in South Africa and
Namibia, providing a representative sample for analysis.

To the best of our knowledge, this study is among the
first to propose and evaluate ensemble models specifically
for predicting residential energy consumption in South
Africa. This study goes beyond traditional ML approaches by
incorporating feature engineering techniques, such as in-
corporating historical consumption patterns and temporal
seasonality, to enhance the predictive capabilities of the
ensemble models.

This study will investigate which of the ensemble models,
outperform the individual base models (RF and DT) in
terms of prediction accuracy, as measured by various
evaluation criteria such as mean squared error (MSE), mean
absolute error (MAE), mean absolute percentage error
(MAPE), and coefficient of determination (R?). The study
will investigate the effectiveness of ensemble models in
providing accurate predictions for residential energy con-
sumption in South Africa. This approach will provide
valuable insights for researchers and practitioners in the field
of building and energy research, highlighting the advantages
or not of using ensemble models for predicting energy
consumption in residential buildings.

The remainder of this paper is organized as follows. In
Section 2, we present an overview of related work on pre-
dictive ML models and ensemble models used for predicting
energy consumption in residential buildings. In Section 3,
we present the proposed approach, including ML and en-
semble models, dataset characterization, and a schematic
framework. Section 4 presents the performance evaluation
results, including the evaluation criteria and discussion of
the results. Section 5 concludes the paper and provides
directions for future research.

2. Related Work

Over the last decade, the application of ML models to predict
energy consumption in residential and commercial build-
ings has attracted increasing interest from many researchers.
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This stems from the fact that energy generation and con-
sumption underpin the growth of the modern global
economy. However, the amount generated does not match
the consumption, especially in urban residential buildings.

Several studies on predictive ML models of energy
consumption and their possible applications in optimizing
energy usage in residential buildings have been conducted to
address consumption issues. Unlike commercial buildings,
which generally have monitoring systems in place (such as
sensors) to record energy consumption and provide more
granular datasets for researchers, energy consumption data
from residential buildings lack granularity [6]. In [7], the
authors considered the aggregated dataset from [8] and
adopted ML models, including RF, DT, Extreme Gradient
Boosting (XGBoost), and Adaptive Boosting (AdaBoost), to
predict the hourly energy consumption of South African
residential buildings. Both RF and DT provided the highest
accuracy for the prediction of residential energy con-
sumption, which are time-consuming for training. In [9], an
artificial neural network (ANN) model was used to improve
the accuracy of energy consumption predictions during the
initial design phases of residential buildings by employing
parametric modeling techniques. In addition, they in-
troduced an automated platform that enables the analysis,
modeling, and simulation of building energy consumption,
with a focus on both accuracy and performance.

Cheng et al. [10] implemented ensemble models using
eight individual models: multiple linear regression (MLR),
autoregressive integrated moving average (ARIMA), sup-
port vector regression (SVR), RF, multilayer perceptron
(MLP), boosting tree (BT), multivariate adaptive regression
splines (MARS), and K-nearest neighbors (kNN) to forecast
the next-day energy consumption and peak demand of the
tallest building in Hong Kong. While the dataset used was
large and the quality of the data was well documented, the
ensemble models presented low prediction accuracy, with
MAPE of 2.32% and 2.85% for the next-day energy con-
sumption and peak power demand, respectively.

Wahid et al. [11] used MLP and RF for the classification
of residential buildings in terms of energy consumption, and
reported that MLP outperformed RF in terms of prediction
accuracy. Priyadarshini et al. [12] also presented an ML-
based ensemble model for predicting energy consumption in
smart homes using DT, RF, and XGBoost: while the authors
provided a useful contribution to the field of energy con-
sumption prediction, they did not discuss the quality of
the data.

In a recent study to improve the forecasting potential in
the early schematic design phase, Olu-Ajayi et al. [13] ex-
plored various ML models and found that deep neural
network (DNN) outperformed ANN, Gradient Boosting
(GB), support vector machine (SVM), RF, KNN, DT,
Stacking, and logistic regression (LR). However, this novel
improvement was time-consuming for training. Rahman
et al. [14] proposed an ensemble model based on the
Mahalanobis distance to predict the energy consumption of
a smart home using a combination of ARIMA, Recurrent
Neural Network (RNN), and multivariate and univariate
linear regression models. They reported that the ensemble

model performed better than individual prediction models.
However, the generalizability of these findings to other
smart home systems is limited, because the authors used data
collected from a single smart home system. Moreover, the
authors did not report the quality of their data.

Hosseini and Farad [15] analyzed residential energy
consumption with the objective of forecasting the various
factors that mostly influence energy usage in buildings,
including overall height, roof area, surface area, and relative
compactness. To achieve this prediction, they employed DT,
RF, and KNN. Their findings showed that RF was the best
model compared with the DT and KNN models in terms of
prediction accuracy. Furthermore, Konhauser et al. [16]
implemented 12 ML models, including standalone models,
as well as both homogeneous and heterogeneous ensemble
learning models, with the aim of increasing the accuracy of
predicting building energy consumption in the residential
sector.

Wang et al. [17] investigated a novel model called En-
semble Bagging Trees (EBTs) to predict hourly building
energy usage. To train their model, the authors used data
obtained from meteorological systems, building-level oc-
cupancies, and meters. Although the authors discussed the
quality of the data collected and highlighted that the pro-
posed EBT model outperformed the Classification and Re-
gression Tree (CART) model in predicting the hourly
electricity demand of the test building, training was time
consuming. Wang [18] applied a Deep Learning model to
predict the energy consumption of four types of public
buildings in China and found that the model performed well
in terms of MAPE and RMSE; however, it was also time-
consuming.

Pinto et al. [19] introduced three ensemble learning
models, namely gradient boosted regression trees, RF, and
an adaptation of AdaBoost, to forecast electricity con-
sumption 1hour ahead, using real data from an office
building as a case study. The authors highlighted that the
adapted AdaBoost model outperformed the other two
models in terms of prediction accuracy; however, they did
not report the quantity and quality of their data. Luo et al.
[20] introduced a model known as GA-DFNN, which le-
verages genetic algorithms (GAs) to design an optimal ar-
chitecture of deep feedforward neural network (DFNN).
This model was used to predict the day-ahead hourly and
week-ahead daily electricity consumption of a real-world
campus building in the United Kingdom. Their research was
based on data collected over a period of 1 year and 6 months.
Although the GA-DFNN outperformed the reference
models in terms of prediction accuracy, namely, a single-
layer feedforward neural network, DFNN models with
different architectures, long-term-short-memory (LSTM)
neural network model, and temporal convolutional network
(TCN) model, it is time-consuming.

Amiri et al. [21] applied XGBoost model to predict the
energy usage of residential and commercial buildings in
Philadelphia. Their study provided energy consumption
prediction for the year 2015, which served as a reference
point, and for the year 2045, which was constructed by
considering economic factors such as income and

85USD17 SUOWILIOD BAIea1D) 3|edldde 3y} Ag peusenob aJe s3plie O ‘SN JO S9N o} AeigiT 8UlIUO A3 UO (SUORIPUCD-PUR-SWIB)ALIOD A8 | 1M Afe.q BUIIUO//SAIY) SUORIPUOD pUe SWiB | 8L} 89S *[5202/S0/7T] Uo Areiqiaulluo AB|im Inetedns a1Bojouyos | 80 81003 Aq 6THTTZSASI9R/SSTT OT/I0p/L0D A8 | 1M ARig Ul uO//Sd1Y WOy papeojumod ‘T ‘SZ0T ‘S6LY



employment trends. Shi et al. [22] explored the utilization of
ML models in building energy management based on studies
published between 1998 and 2020. They presented an in-
tegrated framework and highlighted the development trends
in ML-Building Energy Management, making a valuable
contribution to the existing knowledge in this field.

Liu et al. [23] explored how feature selection techniques,
including filter, wrapper, and embedded methods, improve
the prediction accuracy of XGBoost, LightGBM, and RF
models for predicting building energy consumption. The
authors used an energy consumption dataset of 478
healthcare buildings in China, and their findings indicated
that the wrapper method gave the best result in terms of
prediction accuracy using XGBoost model, but required
more computation time.

Iftikhar et al. [24] proposed a novel ensemble learning
approach for predicting monthly electricity consumption in
Pakistan. The study divides electricity consumption into
deterministic and stochastic components, using multiple
regression and ML. The heterogeneous ensemble model
outperformed other models, achieving the lowest error
metrics. However, the study is limited to Pakistan.

Moon et al. [25] used ensemble learning models in-
cluding RF, Gradient Boosting Machine, and CatBoost,
combined with explainable artificial intelligence methods
such as Shapley Additive Explanations, to improve resi-
dential building electricity consumption forecasting accu-
racy. The authors used the university residential complex
and appliances energy prediction datasets. The Gradient
Boosting Machine model performed best, while CatBoost is
most effective. The study found that ensemble models
outperformed deep learning models in handling noisy and
high-variability data, with historical consumption patterns
and temperature-humidity index being key predictors.
However, one of the limitations includes high error rates.

The study in [26] predicted energy consumption in U.S.
residential buildings using ML algorithms and the resi-
dential energy consumption survey dataset. It developed
separate prediction models for apartments and single-family
houses, revealing key features influencing energy use in-
tensity. The LightGBM-based model performed best for
apartments, while CatBoost-based model performed best for
single-family houses. The study highlights the need for
separate prediction models for different building types.

Kumaraswamy et al. [27] have developed a hybrid neural
network model that combines LSTM networks with Feed
Forward Neural Networks (FFNN) to improve energy
predictions. The model is integrated with the Stationary
Wavelet Transform (SWT) method to reduce instability and
increase data dimensionality, leading to better forecasting
accuracy. However, the model’s performance depends on the
quality and quantity of data used for training and validation,
and its complexity may lead to challenges in model in-
terpretability and computational resources. The model’s
applicability for long-term forecasting is limited, and a de-
tailed comparison with baseline models is needed to fully
understand its scope and applicability.

Compared with other works, this study concentrates on
the predictive modeling of energy consumption in South
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African residential buildings using ensemble models with
real-world data. While the authors in [7, 28, 29] proposed
different techniques for predicting energy consumption of
residential building, this study investigates whether or not
the ensemble models proposed outperform their individual
models in terms of prediction accuracy.

Table 1 presents some of the recent studies on ML-based
predictive energy consumption, their strengths and weak-
nesses. In summary, researchers have proposed several ML
models for predicting energy consumption in residential
buildings. However, to the best of our knowledge, no study
has proposed ensemble learning models for the energy
consumption in residential buildings in South Africa.
Table Al in Appendix A presents the nomenclature of the
abbreviation used in this study.

Furthermore, in reviewing the related literature, we
noted a critical short coming in how the quality and quantity
of the underlying dataset are reported. In this study, we
provide an overview of the extensive consumption dataset
used, and adopt the ensemble to predict the consumption.

3. Approach

This section provides a brief overview of the ML models used
as base predictor models to build an ensemble. For a more
detailed description, refer to [30, 31] and other related
studies therein. We explored the energy consumption
dataset collected over 2 decades in [8].

3.1. ML and Ensemble Models. Here, we introduce the 2 ML
models and four ensemble models used in this study. As
mentioned earlier, the ML models form the basis of the
proposed ensemble models. In [7], the authors introduced
several ML models to address the South African residential
energy dataset, and it was shown that RF and DT out-
performed other boosted tree-based models. We briefly
outline the models as follows: DT, RF, EA, ESE, EB,
and EVE.

3.1.1. DTs. A DT is a supervised ML algorithm that uses
a tree-like structure to make predictions. It splits the dataset
into different branches based on different features and
creates a tree of decisions that leads to the final prediction.
Each internal node of the tree represents a feature, each
branch represents a possible value for that feature, and each
leaf node represents a class label or prediction. DTs are
known for their interpretability and their ability to handle
both categorical and numerical data. The process of con-
structing the tree recursively partitions the data into subsets
based on feature values with the objective of minimizing the
MSE of the predictions. Figure 2, presents an example of an
algorithm for building DT.

3.1.2. RF. RF is an ML model that constructs a collection of
decision trees and aggregates their predictions to enhance
accuracy and mitigate overfitting. The construction of each
tree involves the use of a random subset of the training data,
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Input: an attribute-valued dataset D

. Tree = {}

.if D is ‘true’ or other stopping criteria met then

. terminate

end if

. for all attribute a € D do

. compute information-theoretic criteria if we split on a
7. end

8. apeq = Best attribute according to above computed criteria
9. Tree = Create a decision node that tests ay e

10. D, = Induced sub-datasets from D based on ay,.

11. for all D, do

12. Tree, = C4.5 (D,)

13. Attach Tree, to the corresponding branch of Tree

14. end for

15. return Tree

o Ul A W

FiGure 2: Example of decision tree algorithm (C4.5) [30].

a technique known as bagging [32], as an example of
a bagging algorithm. In addition, a random subset of features
is employed, which is referred to as feature bagging. The final
prediction is determined by calculating the average or taking
a majority vote among the predictions generated by each
individual tree.

Figure 3 illustrates Breiman’s 2001 description of the RF
algorithm. In essence, RFs are ensembles of binary decision
trees. Each node in the decision tree represents a condition
based on a single characteristic. This condition is chosen to
partition the dataset into two subsets, ensuring that samples
with similar characteristics are grouped together. RFs are
observable, unaffected by scaling and other feature trans-
formations, resistant to the inclusion of irrelevant features,
and capable of estimating the importance of features via
mean decrease in impurity (MDI).

3.1.3. Ensemble Models. As mentioned previously, ensemble
learning is a robust ML model that combines multiple base
models to produce the best possible output. It has become
highly popular owing to its exceptional ability to generalize
[10]. These models frequently exhibit superior performance
compared with their constituent individual models. There
are three reasons for this [33]. First, the training data may
not provide sufficient information to select the optimal
model; hence, integrating models with comparable perfor-
mances could be a more favorable option. In addition,
ensembles can mitigate the limitations of the individual
search processes.

Furthermore, it is important to note that in practical
applications, the existence of a true target function may be
uncertain or nonexistent. In this case, ensembles can offer
a reasonably accurate approximation, leading to improved
generalization performance [10, 33].

Ensemble learning has been applied in diverse domains,
including face recognition, medical diagnosis, and gene
expression analysis. In this study, we reviewed four ensemble
models: EA, ESE, EB, and EVE. Each ensemble model and its
specific uses are described as follows:
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FIGURE 3: RF algorithm as described by Breiman in 2001.
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¢ EA integrates predictions from many base models by
averaging their results, making it one of the most
straightforward ensemble models. By combining
several models, one may reduce the effect of errors in
individual models and obtain a more robust and
precise prediction [30]. In our case, we take the average
of the outputs of the two base models RF and DT.

¢ A more advanced ensemble model is the ESE, which is
often known as stacked generalization. This involves
using predictions from various base models to train
a metamodel (typically boosting tree models). The
metamodel learns to make predictions based on base
model predictions, which are interpreted as new fea-
tures. Stacking tends to be more accurate than aver-
aging because it often captures the complex
relationships between the predictions of base models.

e EB prioritizes the fixing errors made by prior models.
It operates by sequentially training the base models,
with each new model assigning more weight to in-
stances incorrectly predicted by the prior models.

e Another simple ensemble model is the EVE, which
integrates predictions from many models by de-
termining the majority votes or weighted averages.
Voting ensembles can be divided into two categories:
hard voting and soft voting. In hard voting, each model
casts one “vote,” and the prediction with the most
votes win out as the result. Soft voting selects the class
with the highest average probability by averaging the
probabilities predicted by each model.

Although we could have considered several other en-
semble models, we chose these models based on the ratio-
nales, advantages, and limitations outlined in Table 2.

In summary, EA provides a simple and computationally
efficient way to combine the base models (RF and DT),
reducing individual model errors and variance. The ESE
captures complex relationships between the base model
predictions, potentially improving accuracy. The EVE
provides stable predictions. The EB iteratively focuses on
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correcting mistakes made by previous models, adapting to
difficult instances.

Several authors have considered ensemble models, other
than those listed in Table 2. The objective of this study was to
explore a diverse range of ensemble models to determine the
model that best suits the data without being exhaustive.

3.2. Dataset and Schematic Framework

3.2.1. Dataset Description. This study utilized the DEL
dataset for South Africa [8, 34] to evaluate the performance
of the four ensemble learning models. The dataset includes
metered household electricity consumption data covering
a diverse population sample that encompasses urban, in-
formal (township settlements), and rural environments; five
climatic zones; a wide range of income groups; households
that have recently been electrified; those that have had
electricity for a long time; and various types of dwelling
structures. This dataset was collected in South Africa and
Namibia in [8, 34]. This dataset is widely recognized as the
largest and most extensive study on residential energy
consumption in Africa [8]. We examined the DEL metering
hourly data, which is an aggregation of consumption current
(Amps) data over lhour. Although the dataset spans
20 years and has undergone multiple annual validations and
testing procedures to ensure reliability [8], this study only
considered the span from 2004 to 2008. This choice is based
on the size of the dataset and the fact that electricity gen-
eration in South Africa peaked in 2007 (see Figure 1) [3].

The National Rationalized Specification Load Research
(NRSLR) program and DEL study dataset contributed sig-
nificantly to the electrification of South African households.
In particular, this study influenced power system design,
improved load specifications, and the development of new
technologies for national energy provider (Eskom) and
municipalities. This dataset is the most comprehensive
electricity usage dataset collected in Southern Africa. In
terms of geographical factors, Figure 4 shows the spread of
the data-collection process across Southern Africa.

Furthermore, from 1994 to 2014, the DEL dataset
comprised granular electricity meter readings obtained at 5-
min intervals and household surveys that gathered socio-
economic information about metered households and cer-
tain non-domestic entities in South Africa and Namibia
[8, 34]. Information such as household income, number of
people in household, location, number of employed in-
dividuals, and so forth, were recorded.

3.2.2. Schematic Framework. As mentioned earlier, resi-
dential electricity consumption data lack granularity and
thus an aggregation model must be adopted to structure the
data for research. The aggregation of the DEL dataset fol-
lowed a well-structured data processing regime to remove all
invalid readings and missing values [8, 34]. The original data
collected was a 5-min interval electricity metering dataset,
and the observations were later aggregated to hourly values.
Details of the aggregation model are outlined in [8]. Figure 5
illustrates the schematic framework adopted to build the
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FIGURE 4: Map view of DEL study data collection sites, 1994-2014.

prediction model. To train the model, the initial 80% of the
data were chosen as the training dataset, while the remaining
20% were used to assess the accuracy and effectiveness of
the model.

The adopted schematic framework involves several steps.
Algorithm 1 presents the steps involved, along with a de-
tailed explanation of the purpose and reasoning behind each
step, for predicting residential energy consumption.

This algorithm outlines the key steps involved in the pro-
posed schematic framework for predicting residential energy
consumption using ensemble models. It starts with obtaining
and preprocessing the DEL dataset, followed by splitting the data
into training and testing sets. Feature engineering techniques are
then applied to enhance the predictive capabilities of the models.
The ensemble models are trained using the training set, and their
performance is evaluated on the testing set using various
evaluation criteria. Finally, the best-performing ensemble model
is selected and deployed for predicting future residential energy
consumption patterns, providing valuable insights for energy
management and decision-making processes.

3.2.3. Feature Extraction and Engineering. While the au-
thors in [8] performed a lot of work on data preprocessing,
we transformed the data to suit our needs by combining the
various years (2004-2008) together and extracted the rele-
vant features. The extracted DEL dataset contained ap-
proximately 19 million rows and five columns. The first
column indicates RecorderID, and the second column
documents ProfileID. The third to final columns give a date
and time (Datefield), indicate units read (Unitsread), and
indicate whether the details captured are valid (Valid), re-
spectively. Further preprocessing was performed to remove
noise from the data prior to model training, which reduced
the dataset to approximately 17 million rows.

To capture and understand the temporal dependencies
within the dataset, a feature engineering technique in-
corporating the values of lagl and lag2 was performed. This
enables the model to incorporate the most recent historical
data of the time series to make accurate predictions [11]. A
rolling mean feature was also implemented, and all features
in the test and training split data were normalized. Nor-
malizing the features helps to maintain consistency while
enabling the interpretation of feature importance.
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FIGURE 5: Schematic framework of predicting energy consumption.

Consequently, the overall performance of the model im-
proves. Table 3 presents a summary of the dataset indicating
the spread and count of Unitsread and ProfileID.

We considered temporal trends within the dataset, in-
cluding features such as hour, day of the week, day of the
year, quarter, month, and year of consumption. Training and
testing of the models were performed using these features.
The feature importance is presented in Table 4.

We also observed that, after training, testing, and vali-
dation, the predictions were not as accurate; thus, we
employed feature engineering techniques to enhance the
model prediction. As mentioned in the study, the lag features
include past values of the target variable. In the code, the lag
features, “lag_1” and “lag_2” were created by shifting the
electricity consumption, Unitsread, by one time step. We
further considered the moving average to capture trends and
seasonality in the data so that the initial feature importance
may not have been captured. In the code, a rolling mean
feature was calculated to smooth out fluctuations in con-
sumption over time. After validation, these engineered
features aim to improve the prediction results of the models.

4. Performance Evaluation

4.1. Settings of the Study. In this study, the ensemble models
were trained using features extracted from the DEL dataset
using Python libraries. Table 5 provides the information on
the environment used in this study. The data and code used
to support the findings of this study are available from the
corresponding author upon reasonable request.

4.2. Evaluation Criteria. To evaluate the performance of the
four ensemble models outlined in Section 3.1.3, this study
considered the following four criteria commonly used in
statistical analyses: the MAE, MSE, MAPE, and R?. MAE is
a commonly used criterion in ML to quantify the average
absolute deviation between predicted and actual values [35].
Moreover, MAE assigns equal weights to all errors. In ad-
dition, the mean squared deviations between the expected
and actual values are quantified using MSE. The algorithm
assigns a higher penalty to larger errors than to smaller
errors [35].
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Input: D > DEL dataset
Output: Predicted residential energy consumption
. Obtain the DEL dataset
2. Preprocess the dataset
2.1. Remove invalid readings, missing values, and outliers
2.2. Aggregate data to a suitable time interval (hourly)
. Split the preprocessed dataset into {D1, D2} [> Training and testing sets
3.1. Assign 80% of the data to D1 I> Training set
3.2. Assign 20% of the data to D2 D> Testing set
. Perform feature engineering on D1
4.1. Incorporate historical consumption patterns
4.2. Include temporal seasonality features (hour, day of week, day of year, quarter, month, and year)
4.3. Calculate rolling averages to capture trends and seasonality
. Train the ensemble ML models on D1
5.1. Train EA model
5.2. Train ESE model
5.3. Train EB model
5.4. Train EVE model
. Evaluate the performance of the trained models on D2
6.1. Calculate MSE
6.2. Calculate MAE
6.3. Calculate MAPE
6.4. Calculate R?
. Select the best-performing ensemble model based on the evaluation criteria
. Deploy the selected ensemble model for predicting residential energy consumption
8.1. Use the trained model to predict future energy consumption patterns
8.2. Provide insights and support energy-related decision-making processes
ALGORITHM 1: Schematic Framework for Predicting Residential Energy Consumption.
TaBLE 3: Summary of the DEL dataset.
Statistics ProfileID Unitsread
Count 18,890,940 18,890,940
Mean 1,004,008 2.64
Standard deviation 1359.01 5.18
Minimum 1,001,634 0.00
25% 1,002,766 0.13
50% 1,004,101 0.97
75% 1,005,272 2.75
Maximum 1,006,659 98.99
TaBLE 4: Feature importance of the ensemble models.
Feature importance
Hour 0.068654
Day of week 0.014288
Day of year 0.059465
Quarter 0.000000
Month 0.000000
Year 0.857593
TaBLE 5: The platform environment of the study.
Parameter Value
oS Red Hat Enterprise Linux 7.4.
e 128 standard compute nodes with dual Intel Xeon E5-2690 v4 CPUs (2.6 GHz, 14
CPU cores per socket, 28 cores per node)
e Supports AVX2 instruction set for optimized performance
RAM ¢ 256 GB RAM per standard compute node
e 2 “Fat” nodes with 1 TB RAM each (64 cores per fat node)
Libraries sklearn, imblearn, xgboost, matplotlib.pyplot, numpy, pandas, os

85U8017 SUOWWOD BAIKS.ID 3(gedldde ay) Aq peusenob afe sapiie YO ‘8sn Jo S8|ni o} Akeid18UIIUO A1 UO (SUONIPUOD-PUR-SLLIBYWO A8 | 1M Afe.d 1 [ulUO//SANY) SUORIPUOD pue SWis 1 84} 88S *[5202/50/7T] uo Ariqiauliuo A8|im ‘inetedns aifojouyoe | 80 81093 Aq 6THTTZS/S19/GSTT 0T/I0p/L0o A3 1M AteIqipuljuo//Sdiy W1y pepeojumod ‘T ‘G202 ‘S6.Y



Applied Computational Intelligence and Soft Computing

In addition, MAPE provides the average absolute per-
centage difference between the predicted and actual values.
This is particularly useful when errors are represented as the
ratio of true values. The R? score quantifies the percentage of
the variance in the dependent variable that can be accounted
for by the independent variables. The output is a numerical
value ranging from 0 to 1, with a value of 1 indicating
a perfect fit. The four evaluation criteria are defined in
Equations (1)-(4), respectively, as follows:

n _
MAE = Zi:l'yi )’i|’ (1)
n
1 & 5
MSE:; Z (yi_j)i) > (2)
i=1
L5 -7
MAPE = - i il (3)
h ; Vi
2 S i)
R:=1- i=1 1 i (4)

Y (i yi)Z)

where y; is the actual measurement, y; the predicted value,
7, the mean of the actual target values, and n the number of
measurements.

The relevance and limitations of MSE, MAE, MAPE, and

R? in this context are presented next:

4.2.1. Relevance

e MSE and MAE: both capture the difference between
the predicted and actual energy consumption. Lower
values indicate a better prediction. MSE penalizes
larger errors more heavily, whereas MAE focuses on
the average magnitude of errors.

MAPE: this is useful when dealing with data con-
taining significant fluctuations, as it expresses errors
as a percentage of actual consumption. This allows for
a fair comparison across different consumption
levels.

e R% indicates how well the predicted values align with
the actual trends. A higher R* value suggests a strong
correlation between the predicted and actual values.

4.2.2. Limitations

e MSE: sensitive to outliers. A single large error can
significantly inflate the MSE, potentially masking an
otherwise accurate prediction.

e MAE: does not consider the error direction. An un-
derestimation by the same amount as an over-
estimation will have the same MAE, which may not
be ideal.

e MAPE: not suitable for cases where actual con-
sumption values are close to zero, as it can lead to
division by zero errors.

11

e R%: a high R? can occur even with a consistent under-
or overestimation by the model. This only reflects the
strength of the linear relationship.

Wilcoxon and analysis of variance (ANOVA) statistical
tests were performed to ensure the quality of the base models
(RF and DT). We ran the tests for three and five years of
consumption data, that is, 2004-2006 and 2004-2008, re-
spectively. Table 6 presents the results of Wilcoxon and
ANOVA tests for the selected periods.

We can observe a higher p value (typically more than
0.05) for both the Wilcoxon and ANOVA tests for the two
groups of data (2004-2006 and 2004-2008, respectively).
Because the p value is greater than the level of significance
(p value > 0.05) for the Wilcoxon and ANOVA tests, the
null hypothesis is accepted for both statistical tests, and
we can conclude that there is no statistically significant
difference in performance between the RF and DT
models.

To validate the performance comparisons between the
RF and DT models, we considered the Bland-Altman plot
test. The Bland-Altman plot compares the performance of
the RF and DT models by plotting the difference between
their predictions against the average of their predictions.
Figure 6 presents the Bland-Altman plot test.

Figure 6 shows a horizontal line at 0, indicating perfect
agreement between the models. The majority of the data
points are clustered around this line, suggesting that the two
models generally agree in their predictions. However, there
is some spread of data points, with some exhibiting large
differences from the line of perfect agreement. This indicates
that while the models often agree, there are also cases where
their predictions diverge.

The spread of data points appears to increase as the
average prediction value increases, suggesting that the dis-
crepancy between the models becomes more pronounced for
higher prediction values.

In addition, there seems to be a slight negative trend in
the data points, implying that the RF model tends to predict
slightly lower values compared with the DT model for higher
average predictions.

Overall, the Bland-Altman plot suggests that while the
RF and DT models generally agree in their predictions, there
are instances where their performance diverges, especially
for higher prediction values.

4.3. Results and Discussion. In this section, we present the
results of the ensemble models. Owing to the size of the
dataset, we ran the algorithms for each model using the
University of South Africa (UNISA) high performance
computing (HPC) system. As mentioned earlier, we were
interested in the accuracy of the presented predictive
models. We ran the models for three and five years of
consumption data, that is, 2004-2006 and 2004-2008, re-
spectively. The selected periods are shown in Figure 7.
Figure 7(a) shows the data related to the time intervals from
2004 to 2006 and 2004 to 2008. Figure 7(b) presents the
electricity consumption for the week from October 1 to 8,
2004, and the training and testing data split.
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TaBLE 6: Wilcoxon and ANOVA tests results.

Base model
Statistical tests
RF vs. DT (2004-2006) RF vs. DT (2004-2008)
Wilcoxon signed-rank test p value=0.25 (p value > 0.05) p value=0.38 (p value > 0.05)
One-way ANOVA test p value=0.99 (p value > 0.05) p value=0.99 (p value > 0.05)

Bland-altman plot: random forest vs decision tree
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FIGURE 6: Bland-Altman plot test.
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FIGURE 7: Energy consumption data showing the various weekly, hourly, and yearly consumptions from 2004 to 2008. (a) Energy
consumption data from 2004 to 2006 and 2004 to 2008. (b) Weekly (first week of October 2004, that is 10-01-2004) and training and
testing split.

85U8017 SUOWWOD BAIES.ID 3(gedl|dde ay) Aq peusenob afe Sapiie O 8Sn Jo S8|ni o} Akeid18UIIUQ A1 UO (SUONIPUOD-PUR-SLLIBYWOD A8 | 1M Afe.d [ulUO//:SANY) SUORIPUOD pue SWis 1 84} 88S *[5202/50/7T] uo Ariqiauliuo A8|im ‘netedns aifojouyoe | 80 81093 Aq 6THTTZS/S19/GSTT OT/I0p/L0o A3 1M AteIqipuljuo//Stny WOl pepeojumod ‘T ‘G202 ‘S6.1



Applied Computational Intelligence and Soft Computing
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FIGURE 8: Week of year and hourly energy consumption from 2004 to 2008.

Furthermore, Figure 8 shows the relationship between
the week of the year and hourly consumption of the data
over the course of the year. This visual representation allows
for the observation and analysis of any potential patterns or
trends that may exist between these two variables.

Tables 7 and 8 present the prediction performance
(hourly data) for the four ensemble models presented in
Section 3.1.3, as well as the underlying ML base models.
Table 7 shows the performance of each model in relation to
four criteria: MSE, MAE, MAPE, and R?. The best score is
marked in bold text. As mentioned previously, we chose RF
and DT as the base models because of their prediction ac-
curacy in [6]. Table 7 presents the performance for the
3years of data, from 2004 to 2006. From Table 7, the en-
semble models EA and EVE outperformed the base models
RF and DT, respectively. As observed, the prediction error
was very close to zero, which indicates that these models
performed well (with very high prediction accuracy) for the
energy consumption dataset. The R? of course shows how
well the model fits the data. Furthermore, we can observe the
challenges of EB and ESE in accurately predicting con-
sumption data. It is important to note that EB is not able to
fit the data, and further analysis is required to improve the
accuracy of the model.

In Table 8, regarding the MSE, the ensemble models (EA
and EVE) outperformed the base models (RF and DT). This
case was slightly different for MAE and MAPE, where the
base models slightly outperformed the ensemble models (EA
and EVE). All of these models present very good predictions
of the data. In general, tree-based ensemble models out-
performed boosted and stacking ensemble models with
respect to the electricity consumption dataset. We note that
this may not necessarily be the case for other datasets
[16, 17].

4.4. Limitations of the Study. Limitations refer to influences
or shortcomings that are beyond researchers’ control and
place restrictions on the methodology and analysis of re-
search data [36]. The limitations of this study related to the
research problem under investigation are as follows:

e In this study, we focused only on the accuracy of the
ensemble models without considering computational
efficiency.

e More elaborate exploratory data analysis related to the
utilized dataset could be provided.

e The ensemble models used default hyperparameters.
In future work, these hyperparameters can be opti-
mized to improve prediction accuracy.

o The specific characteristics of the South African resi-
dential energy consumption dataset could be further
elaborated.

e More statistical tests could be performed on the data to
ensure the quality of the proposed models.

Although the proposed ensemble models showed
promising results in predicting residential energy con-
sumption with the DEL dataset, there are some important
limitations to consider regarding the representativeness of
this dataset and potential biases.

The representativeness of the DEL dataset of the entire
South African population should be examined. The DEL
dataset covers a diverse range of urban, informal (township),
and rural environments, as well as various climatic zones
and income groups. However, the specific sampling meth-
odology and the extent to which different demographic
groups are represented in the dataset are not clearly de-
lineated. If certain regions or socioeconomic segments of the
population are underrepresented or overrepresented, the
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TABLE 7: Performance of the prediction models for three years of data (2004-2006).
Base model Ensemble model

Criteria DT RF EB EA ESE EVE
MSE 9.534e - 06 3.965e — 06 18.662 2.009¢ — 07 3.162 1.824e - 07
MAE 5.940e — 05 3.667e — 05 3.055 2.689%¢ — 05 0.341 2.664e — 05
MAPE 1.858¢ - 03 1.334e-03 5496 1.355e - 04 5.601 1.34e - 04
R? 0.99 0.99 0.43 0.99 0.90 0.99

Note: Table presents the performance for each model in relation to the four criteria, MSE, MAE, MAPE, and R,, and the best score is marked in bold text.

TaBLE 8: Performance of the prediction models for five years of data (2004-2008).

Base model

Ensemble model

Criteria DT RF
MSE 3.112e - 07 3.561e — 07
MAE 7.795¢ — 06 5.885e — 06
MAPE 2.263e - 04 2.582e — 04
R? 0.99 0.99

EB EA ESE EVE
18.332 6.014¢ - 08 5.181 6.08¢ -8
3.673 9.412e - 06 0.327 9.464e — 06
11,137 3.014e - 04 5.724 3.014e - 04

0.53 0.99 0.87 0.99

Table shows the performance for each model in relation to the four criteria, MSE, MAE, MAPE, and R,, and the best score is marked in bold text.

predictive models may exhibit biases and fail to capture the
consumption patterns accurately for those groups.

While the timeframe was chosen due to the peak in
electricity generation in South Africa in 2007, it is essential
to consider potential changes in residential energy con-
sumption patterns over time.

5. Conclusion and Future Work

We introduced an array of ensemble ML models that have
been employed to predict electricity consumption patterns
observed in residential buildings in South Africa. We
conducted a comparative analysis of various ensemble
models with the underlying base machine learning models,
including RF and DT to improve the prediction of con-
sumption patterns in a previous study. The ensemble models
considered in this study were averaging, stacking, voting,
and boosting models. The findings of this study indicate that,
in general, the averaging and voting ensemble models im-
prove the predictive ability of the underlying base models
with respect to the electricity data provided.

Predicted hourly national consumption can offer useful
insights to firms, individuals, and government officials,
which can help them make well-informed decisions. These
insights include peak time identification and consumption
patterns at the local and national levels. By leveraging this
data, more accurate and comprehensive projections of en-
ergy consumption can be generated, enabling stakeholders
to take preventative steps. In addition, this study contributes
to the continuing conversation on sustainable energy
management by fusing recent advances in machine learning
with actual energy-related problems. In addition, this work
offers practitioners and academics useful information on
how to estimate the consumption of energy in residential
buildings and the advantages of applying ensemble learning
models in the building and energy research fields.

The practical implications of this research are significant.
By accurately predicting residential energy consumption

patterns, stakeholders such as energy providers, policymakers,
and households can make informed decisions to optimize
energy usage and mitigate issues like load shedding. Accurate
predictions enable energy providers to better manage supply
and demand, reducing the risk of grid failures and prolonged
power outages. Furthermore, households can leverage these
predictions to implement energy-saving measures during peak
demand periods, potentially leading to cost savings and con-
tributing to a more sustainable energy landscape. Policymakers
can also use these insights to develop targeted initiatives and
incentives for promoting energy efficiency in the residential
sector, aligning with national goals for energy security and
environmental sustainability.

In future work, we plan to investigate the quantitative
data used in greater depth. We also plan to conduct further
analyses by considering other attributes (features) such as
appliance usage, features related to buildings (square foot-
age, floors per building, etc.), and energy tariffs. We also plan
to explore the potential of incorporating ensemble and
integrated ensemble models to enhance the prediction ac-
curacy of this study. In addition, we will consider in-
corporating other relevant factors, such as weather
conditions and occupancy patterns, to further refine our
analysis. Furthermore, we plan to adopt techniques that can
prescribe IoT solutions based on the DEL dataset. We plan to
add a comparison of standard single models with ensemble
models in terms of computational efficiency. In future work,
we plan to investigate the performance criteria used in
a much deeper manner. Moreover, we plan to conduct
further performance evaluations by considering additional
criteria relevant to the energy consumption prediction.

By addressing the limitations of this study, future re-
search can further refine and improve the accuracy and
generalizability of ensemble ML models for predicting
residential energy consumption, contributing to more in-
formed decision-making processes and effective energy
management strategies.
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Appendix A: List of Abbreviation

TaBLE Al: Nomenclature of the abbreviation used.

ANN Artificial neural network
ARIMA Autoregressive integrated moving average
BT Boosting tree

CART Classification and regression tree
DEL Domestic electrical load
DFNN Deep feedforward neural network
DNN Deep neural network

DT Decision tree

EA Ensemble by averaging

EB Ensemble by boosting

EBT Ensemble bagging trees

ESE Ensemble by stacking each estimator
ETR Extra trees regressor

EVE Ensemble by voting estimator
GB Gradient boosting

GA Genetic algorithm

IEA International energy agency

IoT Internet of things

kNN k-nearest neighbors

LR Logistic regression

LSTM Long short-term memory
MAE Mean absolute error

MAPE Mean absolute percentage error
MARS Multivariate adaptive regression splines
MDI Mean decrease in impurity

ML Machine learning

MLP Multi-layer perceptron

MLR Multiple linear regression

MSE Mean squared error

NRSLR National Rationalized Specification Load Research
RF Random Forest

RNN Recurrent neural network
SVM Support vector machine

SVR Support vector regression
TCN Temporal convolutional network
XGB Extreme gradient boosting
XGBoost Extreme gradient boosting
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