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ABSTRACT The exponential growth in Internet-connected devices has escalated the demand for optimized
network topologies to ensure high performance. Traditional optimization methods often fall short in
scalability and adaptability when it comes to network topology planning. In this paper, we address the
challenge of transforming mesh topologies into tree topologies for wireless networks, with the objective
of maximizing throughput. We propose two new methods: Path Selection with Rejection Strategy (PSRS),
which leverages Message-Passing Neural Networks (MPNN), and Dual-Agent Tree Topology Exploration
(DATTE), which employs Graph Attention Networks (GAT). These schemes integrate Deep Reinforcement
Learning (DRL) and Graph Neural Networks (GNNs) to construct efficient tree topologies with the goal of
maximizing the minimum throughput of the wireless network. Experimental results validate the scalability
and performance gains of the proposed approaches, highlighting their potential for real-world applications.

INDEX TERMS Deep reinforcement learning, graph neural networks, proximal policy optimization, tree
topology, wireless network.

I. INTRODUCTION
The proliferation of communication technologies has led
to an exponential increase in Internet-connected devices,
resulting in a corresponding expansion of network scale
and continuous upgrades to network infrastructure. Network
topology optimization plays a pivotal role in ensuring a seam-
less user experience. Given that key network performance
metrics such as link utilization, throughput, and latency are
profoundly influenced by network structure, there is a height-
ened focus among network operators on the critical problem
of topology optimization [1], [2], [3], [4], [5], [6].

The network planning problem presents formidable chal-
lenges. At its core, the topology problem is inherently com-
binatorial. Consequently, it exhibits high complexity, often
growing exponentially with the number of links involved.
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When undertaking network topology optimization, technical
constraints come into play. These constraints arise from the
intricate management-specific requirements governing net-
work topology. These requirements can be nonlinear and even
nonconvex. Examples include stipulations related to the per-
missible fraction of altered links, overall modification costs,
and post-optimization network performance metrics, such as
link utilization and throughput. Researchers have proposed
diverse models and approaches to tackle network topology
planning scenarios. Some formulations treat the problem as
a mixed integer linear programming challenge, while others
delve into complex multi-objective optimization [7], [8], [9].
These optimization objectives often focus on minimizing
costs and achieving multi-layer recovery. Existing topology
optimization works employ various algorithms, such as min-
imum spanning tree [10], centralized connection [11], and
approximation algorithms [12]. Additionally, heuristic meth-
ods [13], [14], [15] concentrate on explicit objective functions
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within limited connections. However, these algorithms lack
guarantees of close-to-optimal performance and are of high
computational complexity.

Deep reinforcement learning (DRL) has emerged as a
promising approach for tackling the complex problem of net-
work topology optimization [16]. By leveraging the power of
neural networks and reinforcement learning algorithms, DRL
offers a versatile framework for dynamically adjusting net-
work configurations to meet performance objectives. In the
context of network topology optimization, DRL algorithms
learn to make decisions about which links to add, remove,
or modify based on feedback from the network’s performance
metrics. Using DRL for network topology optimization offers
adaptability to changing conditions, unlike traditional meth-
ods reliant on fixed models. DRL algorithms learn and
improve decision-making by interacting with the network.
Additionally, DRL can grasp intricate network relationships,
enabling more comprehensive optimization strategies that
traditional methods may overlook.

Graph Neural Networks (GNNs) offer advanced capa-
bilities for network topology optimization by extending
neural networks to graph-structured data. GNNs itera-
tively update node representations through message-passing
phases, enabling the capture of local and global network
patterns. This allows GNNs to effectively model relation-
ships between network components, crucial for topology
optimization [17], [18]. In practice, networks are represented
as graphs with nodes and edges corresponding to devices
and links. GNNs are trained to optimize performance metrics
like link utilization and throughput, guided by a loss func-
tion to refine network configurations [19]. GNNs’ primary
advantage lies in their adaptability to various network scenar-
ios, ensuring robust performance across different topologies
and scales [20]. They also support real-time optimization,
accommodating dynamic network changes [21].

The goal of network topology optimization is to find
the optimal link structure between nodes to fulfill a given
objective, such as getting the optimal throughput of a graph
topology. Tree network topology is a mixture of star topology
and bus topology. Tree topology allows for the expansion
of an existing network and provides scalability, i.e., more
and more users can be attached to one node with secondary
nodes. Tree network topology is in play over a large global
area [22]. Finding the optimal path for data transmission from
the source node to the destination node is an important task.
In this paper, the focus of the proposed approaches is to
construct a graph tree for data transmission to maximize the
throughput of wireless networks using DRL. The construc-
tion of a balanced tree involves a proper selection of the links
to overcome the challenges of data transmission.

In this paper, we introduce two novel approaches that
leverage the synergistic power of DRL and GNN for network
topology optimization. The primary contribution lies in the
development of two distinct schemes: the Path Selection with
Rejection Strategy (PSRS) and the Dual-Agent Tree Topol-
ogy Exploration (DATTE). The key contributions include:

1) Proposing a GNN-driven DRL agent framework for
constructing tree topologies from mesh topologies,
aimed at maximizing minimum throughput.

2) PSRS, which integrates proximal policy optimiza-
tion (PPO) based DRL with Message-passing Neural
Networks (MPNN) to select optimal paths, ensur-
ing tree topology with high throughput. The rejection
strategy ensures that actions leading to non-tree topolo-
gies are avoided, maintaining structural integrity and
optimizing throughput.

3) DATTE, which employs dual agents using Graph
Attention Network (GAT) to iteratively refine tree
topologies by adding and removing links, enhancing
overall network performance. By embedding pre-
scribed constraints directly into the algorithm, we pre-
clude the possibility of the agents converging to
erroneous states, ensuring consistent tree topologies
throughout the optimization process.

The remaining part of this paper is organized as fol-
lows. Section II covers the study of existing work related
to tree graph construction approaches in wireless networks.
Section III presents the problem statement and the general
Architecture of the DRL and GNN schemes. The proposed
approaches are presented in Sections IV and V. Section VI
presents the simulation results and comparison of different
performance metrics of the proposed approaches compared
to the previous works. Finally, the work is concluded in
Section VII.

II. RELATED WORK
DRL algorithms have surfaced as a means to discern
the underlying patterns between inputs and optimal solu-
tions [16]. Most DRL-based network optimization solutions
adopt a centralized approach, where the network status
(topology and link loads) and throughput matrix are assumed
to be known. One example of a centralized DRL solution is
ENERO [23], which uses a DRL agent powered by a GNN
to compute network paths on top of the initial shortest paths.
A Local Search algorithm is then used to further improve the
DRL solution. Another DRL solution is CRF-RL [24], which
aims to optimize the maximum link utilization (MLU) while
minimizing the degradation of Quality of Service (QoS). This
solution uses a two-step approach, where a DRL agent identi-
fies critical flows to be re-routed in the first phase and a Linear
Programming based approach is used to assess alternative
paths for each critical flow in the second phase.

In another approach [25], a DRL agent is trained to opti-
mize the Network Utility by computing splitting ratios for
a set of communication flows. The agent determines the
percentage of flow to be sent along each pre-computed path
based on the throughput and delay of each flow. In addition,
a notable challenge faced by these DRL-based solutions is
their difficulty in effectively performing in new and unseen
network scenarios. DATE approach [26] involves coordinated
offline training of DRL agents that are installed in network
edge nodes. These agents are able to compute ingress-egress
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paths online based on network link loads. However, DATE
has limitations in that it does not allow for fast reaction to
internal link anomalies. Additionally, it requires synchroniza-
tion among network nodes for the exchange of link load
values, resulting in wasted time.

Recently, Graph Neural Networks (GNNs) have gained
considerable attention for their ability to handle graph-
structured data, capturing complex relationships efficiently.
They have been successfully applied across diverse domains,
ranging from multimodal sentiment analysis and emotion
recognition in conversational graphs [27], to educational
applications like course recommendation systems [28]
and multimodal cross-modal retrieval [29]. Additionally,
recent advances in hierarchical and quantum kernel-based
approaches demonstrate GNN’s power in effectively clas-
sifying graph-structured data [30]. In network optimization,
GNNs integrated with DRL have shown promising results in
capturing intricate dependencies within network topologies
and significantly enhancing routing strategies [31].
The author in [31] proposes a novel approach for network

optimization by integrating GNN [32], [33] into DRL agents.
The architecture focuses on solving routing optimization in
optical networks and demonstrates impressive generalization
capabilities over never-seen arbitrary topologies. Inspired by
MPNN [34], the GNN captures crucial information about the
relations between links and traffic in the network topologies.
However, to generate an environment for large networks, tak-
ing the shortest paths using depth-first search [35] can result
in very long runtimes and it can reach O(n!) in the complete
graph of order n nodes. On the other hand, paths can have
very similar features and can lead to selecting insufficient
actions for the GNN model leading to a smaller reward.
In this paper, we present two novel and comprehensive
approaches that harness the strengths of both DRL and GNN
technologies, aiming to construct a tree topology network
achieving near-optimal performance and maximum through-
put. Our proposed method addresses the trade-off between
real-time performance and convergence speed, ensuring near-
instantaneous and efficient topology optimization even in
large-scale networks with complex topologies. The incorpo-
ration of GNNs, as a key technology enabling DRL to handle
network changes, allows for exceptional generalization
capabilities over diverse network configurations.

Recent studies highlight the growing importance of neural
architecture optimization in solving complex network prob-
lems. The Single-Domain Generalized Predictor, recently
introduced in [36], offers efficient strategies for neural archi-
tecture research. Additionally, innovative techniques have
been proposed for network topology optimization using
DRL as discussed in [37], underscoring the evolving inter-
play between neural network architectures and optimization
challenges.

In this paper, we delve into the potential applications of
an enhanced agent utilizing GNNs coupled with DRL tech-
niques. Our paper explores the extraction of a tree topology
graph from a complexmesh graph to achieve optimal capacity

utilization. Establishing an optimized tree structure enhances
network resilience, minimizes latency, and streamlines data
flow, ultimately leading to improved overall network per-
formance and robustness. We will provide a comprehensive
explanation of the underlying principles and information
aggregation mechanisms of the GNN architectures and DRL
techniques used in each approach. Moreover, we will illus-
trate how these architectures handle graph-structured data and
the advantages they offer in different scenarios. By providing
detailed insights into each GNN and DRL technique, we aim
to present a comprehensive understanding of their strengths
and how they can complement each other when combined.
This analysis will lay the foundation for our subsequent
exploration of their synergy in real-world applications and
empirical evaluations. To validate the effectiveness of our
proposed approaches, we conduct extensive simulations on
different network topologies and the results showcase signif-
icant advancements in network performance, scalability, and
adaptability, making our approaches promising solutions for
real-time network topology optimization.

III. PROBLEM STATEMENT AND GENERAL
METHODOLOGIES
A. PROBLEM STATEMENT
The rapid advancement of communication technologies has
significantly increased the number of Internet-connected
devices, leading to the expansion of network scales and
continuous upgrades to network infrastructure. This growth
necessitates effective network topology optimization to
maintain high network performance metrics such as link
utilization, throughput, and latency. However, the inherent
complexity of the network planning problem, which is combi-
natorial in nature, presents substantial challenges, especially
as it involves high computational complexity and technical
constraints like non-linear and non-convex management-
specific requirements.

Taking a set of nodes that can communicate with each
other, the objective is to determine the network topology
in the shape of a tree. In this topology, each node must
be able to reach all other nodes in the graph, and each
node should be directly connected to only one other node.
Traditional methods for network topology optimization, such
as mixed integer linear programming and multi-objective
optimization approaches, often fall short in terms of compu-
tational efficiency and near-optimal performance guarantees.
Recently, DRL has emerged as a potential solution, offer-
ing dynamic adaptability and improved decision-making by
learning from network interactions. Additionally, GNN has
shown promise in handling graph-structured data, capturing
intricate relationships between network components to opti-
mize performance metrics.

Despite these advancements, existing DRL and GNN-
based methods face limitations in real-time performance,
generalization to unseen network scenarios, and the ability
to maintain optimal network configurations dynamically.
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These shortcomings highlight the need for more robust and
efficient approaches to network topology optimization.

This paper addresses these challenges by introducing two
novel approaches that leverage the combined strengths of
DRL and GNNs: PSRS and DATTE. These approaches aim
to construct tree topologies from mesh topologies to maxi-
mize throughput and ensure structural integrity. The proposed
methods incorporate advanced mechanisms such as PPO-
based DRL, MPNN, and multi-head attention in GAT to
optimize network performance while adhering to predefined
constraints.

B. TREE TOPOLOGY NETWORK CONSTRUCTION
In this paper, we present two novel approaches that harness
the combination power of two distinct machine learning tech-
niques, DRL and GNN. The inputs to each approach are the
special distribution of the nodes to be connected as well as the
parameters of their inter-links. The target of the approaches
is to get the best tree topology that gives the maximum data
streams (minTH ). The establishment of a well-structured tree
topology is equally crucial for network optimization, as seen
in wireless communication systems. A tree topology facili-
tates efficient data dissemination, where nodes are organized
hierarchically, minimizing the number of hops required for
data transmission and enhancing the network scalability [38].

In Figure 1, we outline the DRL agent’s process to con-
struct the tree topology network. The agent interacts with an
environment by observing its state, selecting actions from
GNN based on the current state, receiving feedback in the
form of rewards or penalties, and updating its strategy based
on this feedback to achieve its goals. The agent aims to learn
the best actions to take over time by balancing exploration
and exploitation.

Taking the general framework of our approaches, the basic
differences between the two proposed schemes are as follows:

1) The first scheme environment implementation depends
on the selection of a path between a source and desti-
nation nodes as an action to construct the tree topology
network, while the second scheme’s environment is
based on the idea of deleting and adding edges as an
action for the same purpose.

2) The implementation of the GNN architecture in the first
scheme consists of the MPNNmodel, while the second
scheme uses GAT [39] to select the best link to delete
from the mesh topology input.

In Sections IV and V, we will explore each scheme by
introducing the implementation of their RL environment first,
the detailed architecture of their GNN model, and finally,
explain how the agent/agents of each scheme interact between
the environment and GNN model.

IV. SCHEME 1: PATH SELECTION WITH REJECTION
STRATEGY (PSRS)
In this study, we explore network optimization, building upon
the groundwork established in [27]. Our attention is directed
towards a GNN-driven DRL agent tasked with intricately

FIGURE 1. General Architecture of DRL and GNN Scheme. The red links in
the graph represent the final selected links to construct the tree topology
network.

orchestrating the construction of a tree topology from a mesh
topology, aiming for optimal minimum throughput.

The agent’s pivotal role involves making judicious deci-
sions for incoming source-destination (src-dst) paths, taking
into account the specific features of the links encompassing
different potential paths. Each path selected for a src-dst pair
must adhere to the imperative of generating a tree topology.

Within this section, we present the PSRS framework that
comprises two key components, namely the GNN-basedDRL
agent and the optimization environment. The GNN-based
DRL agent takes on the role of orchestrating actions within
the network topology, specifically focusing on selecting
potential paths that provide optimal minimum throughput.
Our agent employs the PPO algorithm [40] to guide its
actions and leverage a GNNmodel. Conversely, the optimiza-
tion environment establishes the problem to be addressed.
This environment houses critical information such as the
network’s topology and associated link features. Moreover,
it is tasked with generating rewards following action execu-
tion, offering feedback to the agent regarding the efficacy of
its choices. The following subsection illustrates the details
of the DRL environment, GNN architecture, and the agent
procedure for the construction of an optimal tree topology.

A. PSRS ENVIRONMENT
Within this section, we outline the contextual environment
essential to the PSRS scheme. The environment in our sce-
nario is structured for an input graph, where each path,
defined as the links between a source node and a distention
node, within the graph, represents a distinct state. The state
applied to the GNN to get the action. The environment plays
a crucial role in the agent’s learning process by offering feed-
back based on the actions it takes. This feedback is typically
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provided in the form of rewards for positive outcomes or
penalties for unfavorable ones. The overarching objective of
the agent within this environment is to develop a policy that
maximizes the cumulative rewards obtained over time, ulti-
mately guiding it from an initial starting state to a designated
goal state.

The observation space is the graph links features of each
path which embraces five integral features: link throughput,
link path loss, link betweenness centrality, and the first and
the second neighbor links. The action space is the selection of
a path amongK paths for each src-dst pair of nodes (or at each
step) until generating a tree topology graph. Ensuring action
space equivalence across various network topologies is essen-
tial for effective generalization. To establish paths between a
given source and destination pair within the network graph,
we employ the random paths algorithm (Algorithm 1). The
method starts by generating a random spanning tree using
a modified Kruskal’s algorithm and stores the paths with
the minimum throughput, and the capacity information for
all src-dst pair links. The algorithm will iterate over each
src-dst path for IT iterations and taking into account the
paths with high minimum throughput. This offers increased
flexibility and scalability, enabling a more comprehensive
exploration of potential paths. The higher value of K ensures
that the action space remains sufficiently diverse, especially
in larger and more intricate networks comprising 50 nodes
or more with high connectivity. Additionally, we find that
the increased value of K does not result in a dispropor-
tionately high computational cost due to our strategic path
update mechanism, which efficiently refines paths after each
episode. The proposed algorithm for generating paths for
src-dst pairs offers notable advantages over the traditional
shortest path method [27] in terms of speed, efficiency, and
scalability. This algorithm leads to a faster convergence to
optimal or near-optimal solutions, as the algorithm explores
a broader range of potential paths within the network.
Consequently, the proposed algorithm can significantly
reduce the computational time required to find suitable paths
compared to the traditional shortest path method, especially
in large-scale networks with complex topologies.

Our approach introduces a new network state representa-
tion s that encompasses two critical link-level attributes: the
demand links (Ld ) and the reserved links (Lr ). Ld indicates the
current demanded links that represent all the paths for a given
src-dst, while Lr assigns a value of 1 to the links with respect
to the selected path, chosen by the action, among all the paths
for the given src-dst that will contribute to generating the tree
topology. Thus, the state s at time step t can be represented
as:

st = (Ld ,Lr )t (1)

These attributes, in addition to the features of the obser-
vation space, enhance our ability to identify and prioritize
key links that play a crucial role in generating the desired
tree topology. By incorporating these attributes, our method
captures the importance of each link more comprehensively,

leading to better-informed path selections. Fig. 2 and Table 1
provide an overview of the attributes and features present in
the link’s hidden states. For instance, in Fig. 2, when a path
request is made from node 4 to node 6, it is assigned to the
path comprising nodes {4, 1, 6} due to adherence to the tree
topology constraint.

The action at time step t is the selection of a path p from K
possible paths for a given -dst pair:

at = p∈{p1, p2, . . . ,pK }(src−dst)t (2)

where {p1, p2, . . . ,pK }src−dst is theK paths for a given src-dst
based on the randompath technique presented inAlgorithm 1.
The step function executes a step in the environment given
at . It updates st based on the selected action to st+1. When an
action a (path pi) is selected, the state s=(Ld ,Lr ) transitions
to a new state st+1 = s′=(L ′d ,L

′
r ), where L

′
r is updated to

include the links of the selected path pi while L ′d reset to be
ready for the next src-dst.

Algorithm 1 Random Path
Input: Data: graph, k, current_state_cap,Paths, Paths_Cap
Output: Result: Paths’, Paths_Cap’
if i == 0 then

Paths′ = {};
Paths_Cap′ = {};

else
Paths′← Paths;
Paths_Cap′← Paths_Cap;

for j in 0, . . . , 100 do
R.G.T ← generate_trec(graph, k );
for src, dst in R_G_T .nodes() do

current_path = R.G.T (src,dst);
cap = current_state_cap(src,dst);
if len(Paths) < k current_path not in Paths then

Paths′ {src, d st} ← current_path;
Paths_Cap’ {src, d st} ← cap;

else
if cp > smallestcapacitypathinPaths_Cap then

Indx = Index of the smallest capacity in
Paths_Cap;
Paths′ {src, dst}[Indx]← current_path :
Paths_Cap′ {src, dst}[Indx]← cap;

Formally, if pi contains the links {l1, l2, . . . ,lm}:

L ′r = Lr ∪ {l1, l2, . . . ,lm} (3)

L ′d = ResetDemands((scr_dst)t+1) (4)

The reward r for the agent is determined based on the
connectivity and topology of the graph:

1) If the graph GT is not connected and has no cycle
connection, the reward is set to 0.5 to encourage explo-
ration.

2) If the GT forms a tree, the reward is computed based
onminTH and the total data steams throughput (totTH )
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FIGURE 2. Representation in the link hidden states for tree topology
network optimization.

TABLE 1. Input feature of the link hidden states. N corresponds to the
size of the hidden state vector.

ofGT , aiming to maximize both variables to achieve an
optimal or near-optimal solution.

3) If the graph is connected but does not form a tree
topology, the reward is set to 0, indicating a suboptimal
or invalid state.

Mathematically, the reward r at a time step t can be repre-
sented as:

rt =


0.5, if at contributes to an incomplete GT
1+ minTH + (α · totTH) ,

if at completes a tree GT
0, if at form a cycle in GT

(5)

where α is a constant less than 1. The episode will be over
once it reaches either the second or the third option in r
and a new episode is starting. The reset method resets the
environment for a new episode. It returns the initial state
along with randomly selected source and destination nodes
to encourage exploration and learning across various starting
points.

In the context of our proposed approach, the action reject
strategy can be particularly advantageous for ensuring adher-
ence to the tree topology extraction constraint. As our method
aims to extract a tree topology network while maximizing
its minTH and totTH values, rejecting certain actions can
help the agent maintain the structural integrity of the tree
throughout its decision-making process. In situations where a
selected action might lead to a violation of the tree topology
requirement, the agent can choose to reject that action and
explore alternative options. This rejection mechanism acts as
a safeguard against inadvertent violations and ensures that the
resulting topology adheres to the desired tree structure.

B. PSRS GNN ARCHITECTURE
The GNN model is constructed as an MPNN model. In our
context, emphasis is placed on the linked entity, and the
message-passing process unfolds among all links. Opting for
link entities, as opposed to node entities, stems from the
fact that link features define the tree topology optimization
problem. Algorithm 2 outlines the formal procedure of the
message-passing process, taking links’ features (xl) as input
and generating a q-value (q) as output.
The algorithm executes T message passing steps,

as depicted in Fig. 3, iterating through all links in the
network topology. For each link, its features are merged
with those of neighboring links using a fully connected
mechanism, denoted as M in Fig. 3. The outcomes of these
operations are referred to as messages in GNN notation.
Subsequently, the messages computed for each link with
their neighbors are aggregated via an element-wise sum
(line 5 in Algorithm 2). Following this, a Recurrent Neural
Network (RNN) is employed to update the link hidden states
(hLK ) with the newly aggregated information (line 6 in
Algorithm 2). Upon completing the message passing phase,
the resulting link states are aggregated using an element-wise
sum (line 7 in Algorithm 2).

Algorithm 2Message Passing
Input: xf
Output: hTl , q
1: for each l ∈ L do
2: h0l ← [xl, 0 . . . , 0]
3: for t = 1 to T do
4: for each l ∈ L do
5: M t+1

l =
∑

i∈N (l) m
(
htl , h

t
i

)
6: ht+1l = u

(
htl ,M

t+1
l

)
7: rdt ←

∑
lec hi

8: q← R(ndt)

FIGURE 3. Message passing architecture [27].

The consolidated result undergoes processing through a
fully connected Deep Neural Network (DNN), which models
the readout function of the GNN. The output of this function
is the estimated q-value corresponding to the input state and
action. RNN’s role is to learn how the link states evolve
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during the message-passing phase. As link information per-
meates through the graph, each hidden state accumulates
information from increasingly distant links, introducing the
concept of time. RNNs, tailored for capturing sequential
behavior in domains like text, video, and time-series data,
are well-suited for this purpose. Additionally, certain RNN
architectures, such as GRU, are designed to handle large
sequences, mitigating issues like vanishing gradients, which
is a common challenge with extensive sequences. These char-
acteristics make RNNs suitable for learning how the links’
states evolve during the message-passing phase, even for
large values of T .

C. PSRS AGENT OPERATION FOR TREE TOPOLOGY
CONSTRUCTION
On encountering a src-dst path, the agent creates a state
representation that combines the current network state and
the new path. This input guides its GNN model to determine
a construction decision. The chosen action is converted into
forwarding rules and implemented in network nodes. During
training, the agent explores diverse path strategies, earning
rewards tied to path contributions in constructing the tree
topology.

PPO collects trajectories of actions and rewards from the
environment, estimates advantages for actions, and updates
the policy iteratively [40]. PPO uses a surrogate function to
guide policy updates while preventing overly large changes
through a clipping mechanism. It maintains a trust region
to ensure controlled policy updates and can include entropy
regularization for exploration. PPO focuses on improving
the policy using a combination of optimization techniques
and constraints to prevent drastic updates. The policy (πθ )
represents the probability of taking action a given state s and
is parameterized by θ :

πθ (a|s) (6)

In PPO, the policy is updated to maximize the expected r
while ensuring that the updates do not change the policy too
much, to maintain stability. The advantage Function A(s, a)
estimates the relative value of an action compared to the
average action in a given state:

A(s, a) = Q(s, a)−V (s) (7)

where Q(s, a) is the action-value function, representing the
expected return of taking action a in state s, and V (s) is the
value function, representing the expected return of being in
state s. PPO uses a clipped surrogate objective function to
limit the change in policy between updates. This prevents
large updates that can destabilize training. The objective func-
tion L(θ ) can be written as:

L(θ ) = Et

[
min

(
rt (θ) Ât , clip(rt (θ ), 1−ϵ, 1+ϵ)Ât

)]
(8)

where rt (θ) =
πθ (at |st )

πθold (at |st )
is the probability ratio, ϵ is a

hyperparameter that controls the clipping range, and Ât is the
estimated advantage at time step t .

In response to PPO, the GNN constructs a graph represen-
tation, with the links of the topology manifesting as the nodes
of the graph. This representation initializes link hidden states
by incorporating input link-level features and the path action
under evaluation. Subsequently, a message-passing mech-
anism iterates amongst the hidden states of linked nodes,
aligning with the graph’s structure. The outcomes of this iter-
ative process, namely the novel link hidden states, aggregate
into a unified global hidden state that encapsulates essential
topology insights. This collective hidden state is then chan-
neled through RNN for further processing.

The DRL agent engages with the environment through a
sequential process. The environment is initialized with link
features. Simultaneously, the environment generates paths
encapsulated as the tuple {src, dst}, and an initial environ-
ment state, denoted as Cumulative reward (s) is initialized
to zero. DRL agent’s operation focuses solely on the task of
constructing a tree topology within the given mesh network.
The DRL agent interacts with the environment to iteratively
apply a series of actions aimed at achieving a tree topology
graph. The primary objective is to form a tree topology with
the highest minimum throughput and total graph throughput.
The operational procedure is outlined as follows:

1) DRL agent persists in finding a proper path for each
random src-dst until either the successful construction
of a tree topology that complies with the throughput
constraints and tree topology criteria or until it becomes
apparent that a solution is unattainable given the current
state and src-dst.

2) The reward calculation is designed to incentivize the
agent to effectively construct the tree topology as
shown in (5).

3) An Episode is considered completed if the agent has
effectively established a tree topology graph. How-
ever, if the process encounters a violation of the tree
graph criteria, the agent will apply an action-rejecting
mechanism.

In the context of our proposed approach, the action-reject
strategy can be particularly advantageous for ensuring adher-
ence to tree topology construction. The action-reject strategy
can provide a mechanism to address situations where certain
configurations lead to undesirable outcomes. By incorporat-
ing action rejection, the RL agent can make more informed
decisions by considering a wider range of possibilities, reject-
ing actions that are unlikely to lead to desirable results, and
focusing on those with higher potential for optimization. The
operation of the action rejection strategy within our proposed
approach involves the following steps:

1) Action Evaluation: The RL agent evaluates a set of
candidate paths using the established criteria based on
the current state of the construction of the tree topology.
These criteria include factors such as link throughput,
link betweenness, and the links allocated for the tree
topology graph.

2) Action Rejection Decision: A rejection mechanism is
defined as representing a binary value for the quality
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or potential of an action. Paths that do not help in
constructing a tree topology graph based on the current
state are deemed less favorable and are considered for
rejection.

3) Path Update and Learning: If an action is rejected,
the corresponding path is discarded from the set of K
provided paths for the given src-dst, and the remaining
paths will go through GNN to select a new action,
and the agent updates its policy based on the out-
comes of the selected actions. In the event that all
provided src-dst paths violate the tree topology con-
straint, the present src-dst combination is dismissed.
Subsequently, a new src-dst pair is assigned, while the
state remains unaltered prior to the previous src-dst
selection.

V. SCHEME 2: DUAL-AGENT TREE TOPOLOGY
EXPLORATION (DATTE)
In this scheme, our aim is to embed the prescribed constraints
directly into the algorithm itself, thus pre-empting any possi-
bility for the agents to converge to an erroneous state, such
as a non-tree topology. Employing a two-agent system, each
agent complements the other by selectively activating and
deactivating links within the initial topology, thereby seeking
a configuration that maximizes the minimum throughput.
Beginning with a tree topology and maintaining a consistent
count of activated links while employing action masking,
we ensure that, at every iteration, the topology remains a tree.

Herein, we introduce the DATTE framework, comprising
three primary components: a creation agent, a deletion agent,
and a shared environment facilitating their learning process.

A. COMMON ENVIRONMENT
Both agents share a common environment, encompassing
their reward and reset functions, as well as states. In addi-
tion, both agents trained using the PPO algorithm [40] Their
collective objective entails intelligently exploring tree topolo-
gies, endeavoring to iteratively refine the topology from
its initial state. During evaluation, the agents collaborate
within a shared environment, alternating their interactions.
Episodes are defined as individual attempts to enhance the
topology from its starting configuration, with agents allot-
ted a fixed number of steps to enact changes. If, during a
step, an improvement in minimum throughput is achieved,
agents receive a positive reward contingent upon both the
minimum and total throughput of the resulting tree topology
graph (formatted as minTH + (α ·totTH ). Conversely, if no
improvement is observed within a step, agents typically
receive a reward of zero. Moreover, upon exhausting the allo-
cated steps without enhancing the topology, agents receive
a reward of −1, denoting a failure to explore in the correct
direction.

Notably, this framework diverges from traditional multi-
agent reinforcement learning (MARL) paradigms [41].
Initially, the first agent undergoes solo training, with random-
ness simulating the actions of the second agent. Subsequently,

the second agent is trained offline to cooperate with the first
agent.

In this scheme, a state is defined as a connectivity graph
G(N, L), where N represents a set of n nodes and L represents
the set of links that can be activated, alongwithG′, a subgraph
of G that connects all the nodes with n-1 links L ′. Implicitly,
G′ takes the form of a tree, and cannot contain any cycle. The
agents’ goal is to modify L ′ by removing and adding links
to it until they find a solution that maximizes the minimum
throughput.

B. ACTIVATING AGENT ENVIRONMENT
The primary objective of the activating agent is to augment
the topology by adding links. Given an almost-tree topology
as input, characterized by a single missing link for achieving
tree structure, the agent selects from a pool of candidate links
to produce a tree topology as output. At each step, a set
of K links is proposed randomly to the agent, drawn from
those capable of facilitating a tree topology. Utilizing action
masking and padding, the agent is prevented from selecting
invalid actions in scenarios where fewer than K eligible links
are available. The selected link is ultimately added to L.
Observations provided to the agent comprise global statis-

tics derived from potential link proposals, encompassing
throughput, path loss, graph node count, and node degrees.
The action space is structured as a set of K potential links,
from which the agent selects one.

Algorithm 3 demonstrates the procedure mentioned in this
section to generate the observation and rewards. For the
neural network architecture, a basic multi-layer perceptron
suffices, serving the purpose of classifying individual links
through feature extraction.

C. DEACTIVATING AGENT ENVIRONMENT
Contrary to the activating agent, the goal of the deactivating
agent is to selectively remove links from the topology. Given
a tree topology as input, the agent aims to produce an output
identical to the input, albeit with one link deactivated. At each
step, the agent surveys the entire topology and deactivates a
single active link i.e., removes a link from L ′.
The observation space for this agent is more intricate,

necessitating the employment of a GNN to classify links.
Algorithm 4 illustrates the steps to extract the observation
and the rewards using the deleting agent. Consequently, all
features of both links and nodes within the current topology
are required. The action space is denoted as (N − 1, ), where
N represents the number of nodes in the graph, with each
possibility corresponding to a single link within the tree
topology.

D. GNN ARCHITECTURE
The GNN utilized by the deleting agent comprises three
GATv2Conv [42] layers followed by fully connected layers.
The general framework of the GAT is shown in Fig. 4.
It employs attention mechanisms to selectively weigh the
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Algorithm 3 ‘‘Step’’ Function of the Activating
Agent
Input: Input: Action
Output: Output: Obecrvations, Reward
G.addLink(action); /* Activate the selected link */
minTH , tot TH ← evaluateTopology (G); /∗ Calculate
performance metrics */
reward ← 0; /* Calculate the reward */
if minTH > previousBestMinTH then

reward ← minTH + totTH/1000
previousBestMinTH ← minTH

end
G.deleteRandomLink(); /* Randomly deactive one link
from the
topology */
possibleLinks = []
for each link li ∈ A do

G′ ← G.c opy()
G′addLink(li)

end
if Gr isTree() then

possibleLinks.addl(li)
end

linkProposals = random.choices(liensPossibles, K )
observations← createObservations(linkProposals); /*
Create the observations used for the next step */

Return reward, observations

Algorithm 4 ‘‘Step’’ Function of the Deactivating
Agent
Input: Action
Output: Observations, Reward
G.remoneLink (a1); /* Renove the selected link fron the
topology */
creator.addLink(G); /* Use the proviously trained agent to
add a link to the topology */
minTH, totTH ← evaluateTopology (G); /* Calculate
performance metrica */
reward ← 0; /* Calculate the reward */
if minTH > previousBestMinTH then

reward ← minTH + totTH/1000 previousBestMinTH
& minTH

end
abservations← createObservations (Gr ) ; /* Create the
observation used for the next step */
Return reward, observations

importance of neighboring nodes, enabling more flexible
feature extraction. Given that GNN convolutions primarily
extract features for nodes, the input data is structured such
that each node embeds features of edges from the topol-
ogy, while edges embed features of nodes. This arrangement
enables the GNN to extract edge features from the topology,
facilitating the selection of the link to be deleted based on the
extracted feature vector. Table 2 shows the architecture of the
proposed GNN for the deleting agent.

FIGURE 4. GATv2 convolution framework.

TABLE 2. GNN architecture of the Actor agent.

The GNN used in DATTE simply takes the implementation
of GATv2Conv included in the Torch Geometric [40] library.
In GATv2 networks, a weight matrix W is first applied to
every pair of node’s concatenation followed by a LeakyReLU
activation. Then, a self-attention mechanism (a) is used to
evaluate the importance of one node’s features relative to
other connected nodes. Finally, these attention coefficients
are used to compute the next features of every node.

Graph Attention Networks can also be used in a ‘‘multi-
heads’’ fashion, as multiple weight matrixes and self-
attention mechanisms will be computed independently on the
same data, and then concatenated or aggregated at the end.
In our architecture, the first two layers of convolution have
two heads while the third has only one.

VI. EXPERIMENTAL RESULTS
In this section, we present the evaluation of our proposed
schemes designed for tree topology optimization for different
networks as outlined in Sections IV and V. The primary
focus of these experiments is to assess the performance and
generalization capabilities of the two proposed schemes.

A. TRAINING SETUP
Our schemes, described in Sections IV and V, were imple-
mented using Pytorch [43] and Torch Geometric [44] and
subjected to evaluate the tree topology optimization, based on
the OpenAI Gym framework [45]. For each simulated case,
we assume having N nodes randomly distributed following
a Poisson point process with an average node density of
1 node per 10 km2. Then, we assume that b randomly selected
links are fully blocked. For the remaining unblocked links,
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we assume a simple path loss model, where a link’s path
loss is calculated as the summation of the free space path
loss and a random excess loss representing the loss due to
shadow fading and terrain diffraction, etc. Consequently, the
throughput of each link is calculated based on the Shannon
capacity formula, where we assume a bandwidth of 20 MB
and an antenna gain of 8 dBi. In all cases, we assume
symmetric links and no interference (due to careful frequency
planning). In terms of traffic patterns, we assume saturated
traffic, where each node is sending traffic to all other nodes.
This assumption results in a total of N · (N − 1) data streams.
Consequently, each resulting tree topology is evaluated based
on minTH . The best topology is the one that maximizes
minTH . Different random wireless networks, including their
adjacency matrix, path loss, and link throughput, are utilized
for the evaluation. The achievement of a successful tree
topology signifies the attainment of nearly optimal minimum
throughputs of the tree topology graph.

Initial experiments were conducted to choose a suitable
gradient-based optimization algorithm and fine-tune hyper-
parameters for both schemes. In the PSRS environment,
link betweenness centrality is generated using the Brandes
algorithm [46], which iteratively assesses individual links’
contributions to shortest paths between node pairs, capital-
izing on dependencies within the graph. In the PSRS GNN
model, we defined link hidden states hl as 20-dimensional
vectors populated with features fromTable 1 for tree topology
optimization, respectively. The size of these hidden states
is linked to their potential information encoding. For PSRS
GNN forward propagation, we performed T = 4 message
passing steps using batches of 32 samples. As for DATTE,
single passes were performed and batches of 64 samples were
used. The chosen optimizer was Adam [47] with a learning
rate of 10−4 and weight decay of 10−5 for both approaches.
PSRS applied L2 regularization with a coefficient of 0.1 to
the readout function. α was set to 0.01 for both algorithms.
The critic discount factor γ was set to 0.8, while the entropy
beta was set to 10−2. Entropy beta corresponds to the strength
of the entropy regularization, which makes the policy more
random. This ensures that discrete action space agents are
properly explored during training. The clipping value ε was
set to 0.2 and it corresponds to the acceptable threshold of
divergence between the old and new policies during gradient
descent updating.

B. EVALUATION PERFORMANCE FOR THE TREE
TOPOLOGY OPTIMIZATION
Our schemes were evaluated for tree topology optimization
in simulated wireless networks with 10 and 30 nodes with
different path loss conditions. For training, both schemes’
agents were employed on a 30-node mesh topology, with b
set to 0.5. The optimization of wireless network topologies
is a crucial task to enhance network efficiency, coverage, and
overall performance. In this context, we conducted a compre-
hensive analysis of our two proposed schemes’ capabilities in

attaining near-optimal solutions while minimizing execution
time.

We composed our performance into two experiments in
terms of optimal minimum throughput and computational
time, as demonstrated in Fig. 5 and Fig. 6. In Fig. 5, the
proposed schemes were evaluated on 100 graphs of 10 nodes,
and b = 0.5 for 60 and 600 seconds and compared with
the brute-force solution in terms of cumulative distribution
function (cdf) curve. We selected the durations of 60 and
600 seconds purely for analytical purposes to observe the
impact of increased computational time on the performance
of the two algorithms. These timeframes were chosen to pro-
vide a clear comparison and to understand how extending the
computation time influences the results. This approach allows
us to assess the scalability and efficiency of the proposed
schemes in a controlled manner.

The comparative analysis of DATTE and PSRS across
different timeframes reveals their respective strengths and
weaknesses. To the best of the authors’ knowledge, no exist-
ing works that address our exact problem statement (i.e.,
maximizing the minimum throughput in large-scale tree-
topology wireless networks) are available for direct compar-
ison with our proposed methods. Therefore, we evaluate the
performance of our proposed methods, PSRS and DATTE,
by comparing them with the brute-force approach, when
possible, resulting in optimal solutions. In Fig. 5, the results
show that DATTE achieves near-optimal minTH compa-
rable to the brute-force method, with the same median
value of 1.25 Mbps for both 60 and 600 seconds. This
demonstrates DATTE’s efficiency in producing high-quality
solutions rapidly. In contrast, PSRS underperforms relative
to DATTE when given only 60 seconds, showing a median
difference of 0.16Mbps from the brute-force result. However,
the performance dynamics shift with an extended execution
time. When allowed 600 seconds, PSRS surpasses DATTE,
delivering solutions closer to the brute-force minTH . This
suggests that while DATTE is advantageous for quick, near-
optimal results, PSRS excels when more time is available,
leveraging its computational resources to produce superior
outcomes.

The effectiveness of relational GNN within DATTE plays
a critical role in identifying and leveraging the structural
distinctions of the tree-like topology, enhancing decision-
making for optimal tree formation. Additionally, the rein-
forcement learning component enables agents to refine their
strategies through iterative experiences, improving perfor-
mance over time. Thus, DATTE is preferable for scenarios
requiring rapid results, whereas PSRS is more suitable for
situations where extended computation can be afforded to
achieve higher precision.

Fig. 6 demonstrates the result of each proposed scheme to
reach the near-optimal solution in 60 and 600 seconds for
each of the 10,000 input mesh graphs of 30 nodes and three
different probabilities of full blockage (0.2, 0.5, and 0.8).
This outcome is essential in real-world deployment scenar-
ios where timely decisions are crucial to maintain network
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performance. The analysis of both algorithms reveals distinct
advantages depending on the available computational time.

The computational complexity of performing brute-force
optimization increases exponentially with the number of
nodes in the network due to the rapid growth in the number
of possible topologies. The number of distinct connectivity
graphs,G(N ), and tree topologies, T (N ), for a fully connected
graph with N nodes can be estimated using the following
formulas:

G (N ) =
∏N−1

i=0
2i (9)

T (N ) = NN−2 (10)

The exponential growth of G(N ) is evident from the com-
binatorial nature of generating all possible topologies, while
T (N ) follows Cayley’s formula [48] for the enumeration of
labeled trees. Table 3 summarizes these values for networks
with up to 12 nodes.

FIGURE 5. CDF comparison of the minimum throughput data stream
between the two approaches against the brute-force solution for
100 graphs of 10 nodes for b = 0.5.

Moreover, the time required for brute-force optimization
varies significantly with the level of network connectivity.
Table 4 highlights the computational time for different
network sizes and levels of connectivity (blockage). This
emphasizes that the required computational time escalates
rapidly with both the number of nodes and the level of con-
nectivity blockage, making brute-force methods impractical
for large-scale networks such as those with 30 nodes at 50%
connectivity. Consequently, our proposed PSRS and DATTE
methodologies offer a viable alternative by efficiently nav-
igating the vast solution space to achieve near-optimal
tree topologies without the prohibitive computational costs
associated with exhaustive search techniques.

In Fig. 6, the DATTE algorithm demonstrates a signifi-
cant speed advantage, generating near-optimal solutionsmore
quickly. This is evident as DATTE consistently outperforms
PSRS in shorter timeframes, such as 60 seconds, with mini-
mal differences in reaching the optimal solution. Specifically,
DATTE achieves better performance with median minTH
differences of 0.024 Mbps, 0.041 Mbps, and 0.04 Mbps

TABLE 3. Number of possible tree topologies of a fully connected graph.

TABLE 4. The required time for brute-force optimization.

for blockage probabilities of 0.2, 0.5, and 0.8, respectively.
However, when given more time resources, PSRS shows its
strength and surpasses DATTE. With an extended execution
time of 600 seconds, PSRS attains closer performance to
the brute-force solution, exhibiting median differences of
0.011Mbps, 0.004Mbps, and 0.003Mbps for the same block-
age probabilities. This indicates that while DATTE is more
efficient for quicker, near-optimal solutions, PSRS benefits
significantly from additional computational time, ultimately
providing superior results with extended execution.

To further validate the scalability of our proposed method-
ologies, we extrapolate our experimental findings from
networks comprising 10 and 30 nodes to larger-scale net-
works with up to 200 nodes. Note that the time complexity for
generating all possible spanning trees in a graph withN nodes
and different connectivity is known to grow exponentially
with respect to the number of edges in the graph. Specifically,
the time complexity is estimated as

O
(
2

(
cN (N−1)

2

))
(11)

where c is the edge connectivity percentage of the graph.
This leads to an exponential increase in computational time as
the number of nodes increases. Figure 7 shows the relation-
ship between the number of nodes and the time complexity
for generating tree topologies at varying connectivity levels
for PSRS and DATTE. PSRS and DATTE maintain high-
performance efficiency as the network size increases and the
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FIGURE 6. CDF of minimum throughput over 10,000 graphs of 30 nodes
for b = 0.2 (a), 0.5 (b), and 0.8 (c) in 60 and 600 seconds.

computational complexity of both methods grows at a man-
ageable rate, ensuring their applicability to larger and more
complex network topologies. This scalability is attributed to
the inherent design of PSRS and DATTE, which leverage

FIGURE 7. The time complexity for generating tree topologies with
varying connectivity using PSRS and DATTE.

DRL and GNN to efficiently navigate and optimize the exten-
sive solution space without exhaustive enumeration.

In practical deployment scenarios, particularly on
resource-constrained edge devices, analyzing memory usage
is essential. The memory footprint of PSRS and DATTE
primarily stems from neural network parameters and interme-
diate activation states. PSRS, which utilizesMessage-Passing
Neural Networks (MPNN), demonstrates memory require-
ments that scale linearly with the number of nodes and hidden
state dimensionality. In contrast, DATTE, based on

Graph Attention Networks (GAT), incurs greater memory
consumption due to multi-head attention layers and per-edge
computations. As shown in Table 5, DATTE consistently con-
sumesmorememory than PSRS,with the gap increasing from
23.3MB at 10 nodes to over 60MB at 50 nodes. This behavior
reflects the additional memory overhead of storing attention
coefficients and intermediate transformations. While DATTE
yields faster convergence, its elevated memory demand may
limit applicability in memory-constrained systems.

TABLE 5. Memory usage for PSRS and DATTE algorithms.

VII. CONCLUSION
This study delves into the realm of network optimization,
expanding upon the groundwork laid in previous research.
Focusing on a GNN-driven DRL agent, we endeavor to
meticulously compose the transition from a mesh topology
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to an optimal tree topology while maximizing the minimum
throughput.

The proposed PSRS framework, comprised of a GNN-
based DRL agent and an optimization environment, guided
the agent’s actions by using the PPO algorithm, leveraging
the power of GNN models to navigate the network topology
effectively. The optimization environment provides critical
feedback to the agent, driving its learning process and shaping
its decision-making capabilities. In parallel, the proposed
DATTE framework was introduced, where two agents col-
laboratively manipulate the initial topology to maximize the
minimum throughput. Employing a strategic combination of
link activation and deactivation, the agents iteratively refine
the topology toward the desired tree structure.

Through comprehensive experimentation and evaluation,
we demonstrate the efficacy and efficiency of our proposed
schemes. Our results showcase the remarkable potential of
GNN-driven DRL agents in achieving near-optimal solu-
tions for tree topology optimization, even in large and
complex network environments. Furthermore, our schemes
exhibit impressive efficiency in execution time, essential for
real-world deployment scenarios where timely decisions are
paramount.

Future studies could explore the impact of various neural
network architectures on the effectiveness and reliability of
network topology optimization algorithms. Such investiga-
tions could identify optimal architecture specifically tailored
for different practical deployment scenarios.
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