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 A B S T R A C T

This paper investigates the link between sex and the human brain from anatomical MRI data, where a primary 
confound is the size difference between male and female groups. Anatomy is characterized by the 3D scale-
invariant feature transform (SIFT), where features are salient image regions that are automatically identified 
and normalized according local size or scale. Experiments use T1-w MRI data of 422 healthy unrelated subjects 
from the Human Connectome Project (HCP) dataset (211 males, 211 females, 22–36 years of age). We found 
that brain sex may be predicted via image-to-image feature matching with 91.9% accuracy, that classification is 
driven largely by weakly-informative features distributed throughout the brain and shared by unique subsets 
of subjects, and that a pair of features identified in the right and left thalamic regions of 97% of subjects 
predicts sex with 74% accuracy. Misclassified subjects exhibit features typical of the opposite sex in one or 
both hemispheres.
1. Introduction

Biological sex is a critical variable in neuroscience impacting both 
normal gender-related behaviour (Hines, 2020) and mental health dis-
orders (McCarthy, 2016) including the variable prevalence of autism 
spectrum disorder (Ferri et al., 2018) and schizophrenia (Abel et al., 
2010). Do male and female brains differ in terms of anatomy, and if so 
how? On the one hand, relatively subtle sex-related neuroanatomical 
differences are well-known, for example the interthalamic adhesion 
(ITA), aka massa intermedia, tends to be larger and more preva-
lent in women than men (de Macedo, 1889; Allen and Gorski, 1991; 
Wong et al., 2021). However, size is a major confound, as the male 
anatomy is on average larger than the female, and a recent survey 
suggested that few meaningful differences persist between male and 
female brains after correcting for size differences (Eliot et al., 2021). 
Deep network methods are able to discriminate between male and 
female brain MRIs with high accuracy even following normalization for 
size differences (Ebel et al., 2023; Gao et al., 2019), however these may 
be difficult to interpret due to the black box nature of deep network 
processing (Rudin, 2019) and it is unclear which structures might be 
most representative of male and female brains (Eliot et al., 2021; Ebel 
et al., 2023; Gao et al., 2019). While overall classification accuracy 
is of interest, our the primary goal of this study is to understand the 
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neuroanatomical features driving sex classification independently from 
known sex-related size differences (Eliot et al., 2021).

This paper reports on representative characteristics of male and 
female human brains identified using the 3D scale-invariant feature 
transform (SIFT) method (Toews and Wells, 2013; Rister et al., 2017). 
In contrast to typical analyses focusing on standard neuroanatomical 
structures of interest, the SIFT method is based on generic salient 
regions of interest that may not be shared by all subjects but that 
when present may be detected in a manner invariant to the image 
scale or resolution. The classic 2D SIFT method is widely used in the 
field of computer vision to identify point-to-point matches between 
different photographs of the same scene or object despite differences in 
size or image resolution (Lowe, 2004). Similarly, in our previous work 
we have found the 3D SIFT method to be effective in 3D brain MRI 
tasks, e.g. identifying pairs of family members (Chauvin et al., 2021) 
and repeated subject scans in large public datasets (Chauvin et al., 
2020). High sex classification accuracy (AUC = 95) was reported using 
3D SIFT (Chauvin et al., 2021) with data from Human Connectome 
Project (HCP) dataset (Van Essen et al., 2013). These findings led us 
to hypothesize that sex classification was being driven by informative 
local features throughout the brain, and classification accuracy values 
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were reproduced here to validate the current independent study into 
the nature of these features.

The remainder of this paper investigates sex classification of T1-
w human brain MRIs using 3D SIFT features, where classification is 
driven by image-to-image feature matches identify the salient anatom-
ical regions of interest. We note that in the context of this work, sex 
refers to self-reported binary categorization as either male or female, 
as provided by subjects in the HCP dataset (Van Essen et al., 2013). 
Gender refers to socially constructed roles, behaviours and identities 
related to women, men and gender-diverse individuals, and is not 
studied here.

2. Methods

We investigate the sex classification of anatomical brain MRI data 
based on nearest-neighbour SIFT feature matching, as described in
Chauvin et al. (2021), including the overall classification accuracy and 
the interpretation of matches driving classification. Classification is 
based on a continuous sex prediction score estimated from nearest-
neighbour feature matches between a subject and a set of labelled 
training subjects stored in memory (Cover and Hart, 1967). Intuitively, 
feature matches indicate distinctive anatomical similarities between 
subjects, and the similarity between a subject and male or female 
groups is quantified by their proportions of shared feature matches 
using the Jaccard index.

Our analysis represents each image as a set of salient keypoints, 
which are identified via the 3D scale-invariant feature transform (SIFT) 
method (Toews and Wells, 2013; Rister et al., 2017). Each SIFT feature 
is an image region detected at a location (𝑥, 𝑦, 𝑧) and scale 𝜎 that locally 
maximizes the spherically symmetric Laplacian-of-Gaussian operator: 
∇2𝐼(𝑥, 𝑦, 𝑧, 𝜎) = ∇2 ∗ 𝐺(𝜎) ∗ 𝐼(𝑥, 𝑦, 𝑧), (1)

where in Eq.  (1), ∇2 is the Laplacian operator, 𝐺(𝜎) is the Gaussian 
kernel of standard deviation 𝜎, 𝐼(𝑥, 𝑦, 𝑧) is the image, and ∗ is the 
convolution operator. Once detected, the local image content sur-
rounding (𝑥, 𝑦, 𝑧) is normalized by scale 𝜎 to a standard resolution 
and encoded as a scale-invariant appearance descriptor from image 
gradient orientation information. The SIFT method was designed orig-
inally to identify corresponding keypoints in different photographs of 
the same scene, despite geometrical deformations due to changes in 
perspective and resolution (Lowe, 2004), and was used to classify sex 
and interpret sex differences from human face photographs acquired 
from arbitrary viewpoints (Toews and Arbel, 2008). The 3D SIFT-Rank 
method extended scale invariance to volumetric image data (Toews 
and Wells, 2013) and enabled a number of applications, including our 
own work in chest CT classification (Toews et al., 2015), ultrasound 
registration for image-guided neurosurgery (Machado et al., 2018), and 
whole-body MRI segmentation (Wachinger et al., 2018), and in other 
work robust mid-sagittal plane detection (Wu et al., 2014), deformable 
registration evaluation (Paganelli et al., 2012) and ultrasound liver 
image stitching (Ni et al., 2008). The strength of the SIFT method 
lies in the capacity to identify informative local image patterns in a 
manner invariant to translations, rotations and scalings of the image, 
with minimal image pre-processing. In studies of the human brain from 
anatomical MRI, it was used to identify discriminative features related 
to Alzheimer’s disease (Toews et al., 2010), and proved highly accurate 
in identifying images of family members and same-subjects from large 
MRI datasets (Chauvin et al., 2021, 2020) in comparison to neural 
networks (Puglisi et al., 2023).

With features extracted, a prediction score is derived from feature 
set overlap as follows. The similarity two feature sets 𝐴 = {𝑎𝑖} and 𝐵 =
{𝑎𝑖} may be estimated via the Jaccard index or intersection-over-union 
𝐽 (𝐴,𝐵): 
𝐽 (𝐴,𝐵) = |𝐴 ∩ 𝐵|∕(|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|), (2)
2 
where in Eq.  (2), |𝐴 ∩ 𝐵| is the cardinality of the set intersection 𝐴∩𝐵 of 
features common to both 𝐴 and 𝐵. The Jaccard index lies on the range 
𝐽 (𝐴,𝐵) ∈ [0, 1], where 𝐽 (𝐴,𝐵) = 1 indicates perfect overlap or similar-
ity. Equivalence between a pair of features 𝑎𝑖 ∈ 𝐴 and 𝑏𝑖 ∈ 𝐵 is defined 
as according to the Euclidean distance 𝑑(𝑎𝑖, 𝑏𝑗 ) = ‖𝑎𝑖 − 𝑏𝑗‖ between 
their appearance descriptors. The exponential function 𝑒𝑥𝑝−𝑑2(𝑎𝑖 ,𝑏𝑗 ) ∈
[0, 1] provides a soft or non-binary measure of feature equivalence, 
accounting for noise and inter-subject variability, and is summed over 
feature matches to compute |𝐴 ∩ 𝐵|. The larger the number of matches 
between sets (𝐴,𝐵), the greater the Jaccard index. Our prediction score 
is based on the Jaccard indices 𝐽 (𝐴, 𝐹𝑒𝑚𝑎𝑙𝑒) and 𝐽 (𝐴,𝑀𝑎𝑙𝑒) between 
a test subject feature set 𝐴 and feature sets pooled from 𝑀𝑎𝑙𝑒 and 
𝐹𝑒𝑚𝑎𝑙𝑒 subject MRIs. Noting that the logarithm transforms the Jaccard 
overlap to a distance measure − log 𝐽 (𝐴,𝐵) ∈ [0,∞], we define our 
prediction score as the difference of Jaccard distances log 𝐽 (𝐴, 𝐹𝑒𝑚𝑎𝑙𝑒)−
log 𝐽 (𝐴,𝑀𝑎𝑙𝑒) ∈ 𝑅1 from subject feature set 𝐴 to either group, 
𝑆𝑐𝑜𝑟𝑒(𝐴) = log 𝐽 (𝐴, 𝐹𝑒𝑚𝑎𝑙𝑒) − log 𝐽 (𝐴,𝑀𝑎𝑙𝑒), (3)

where 𝑆𝑐𝑜𝑟𝑒(𝐴) generally ranges from positive or negative depending 
on weather 𝐴 is more representative of the 𝑀𝑎𝑙𝑒 or 𝐹𝑒𝑚𝑎𝑙𝑒 group, 
respectively.

Experiments analysed 3D T1-weighted MRI brain scans from the 
human connectome project (HCP) dataset (Van Essen et al., 2013), 
aged 22–36 years (mean 29 years) from 434 families. A balanced set 
of 211 male and 211 female subjects were randomly selected from 
422 different families, thereby removing potential family-related bias. 
Sex labels are determined based on self-reporting, HCP subjects self-
reporting as female and providing complete menstrual history records 
(ten fields including menstrual irregularity, birth control usage, etc.) 
are considered female, others are considered males. Pre-processing 
steps such as registration or segmentation are generally not required for 
SIFT classification, however skull-stripped MRI data are used to restrict 
analysis to brain tissues.

Our analysis considers 3D SIFT features extracted from MRI volumes 
that are spatially registered to the MNI152 brain coordinate reference 
space (Mazziotta et al., 1995) according to standard HCP processing 
pipelines (Van Essen et al., 2013), including rigid registration (Jenkin-
son et al., 2002) which preserves brain size and shape, and non-linear 
registration which does not (Andersson et al., 2007). We compare 
classification from data following rigid and non-linear registration, in 
order to observe the effect of normalization on sex classification. We 
also consider classification with or without geometrical information, 
i.e. feature (x,y,z) centroid location and scale, where geometrically 
inconsistent feature matches are down-weighted in computing the Jac-
card overlap and prediction score. We expect accuracy to be highest in 
the case of rigid registration, where size and shape information may 
play a role, and in the case where feature geometry information is 
included.

3. Results

Results here first establish baseline classification accuracy, then 
interpret classification in terms of prediction score and sex-informative 
3D SIFT features. Table  1 summarizes the result of classification and 
feature extraction. As expected, accuracy is highest in the case of 
rigid registration and where feature geometry information is included 
(0.933) and lowest in the case of non-linear registration and no geome-
try information (0.832). In the case of non-linear registration, accuracy 
is approximately 8% lower than for rigid registration and feature counts 
are approximately equal. This is consistent with expectation, i.e. as non-
linear registration removes size and shape differences between subjects, 
extracted features are more homogeneous and less informative. We 
note that in the case of rigid registration, male images contain 16% 
more features per image at a given resolution, these arise from fine-
scaled image information only observable in images of larger brains 
which are typically male. They represent spurious noisy features that 
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Table 1
Sex classification of MRI brain features, given registration algorithm and inclusion of 
geometry information.
 Registration Accuracy Features per image
 w/o Geometry w Geometry Female Male  
 Rigid 91.9 ± 0.7 93.3 ± 0.0 252 ± 42 292 ± 42  
 Non-linear 83.2 ± 0.3 85.1 ± 0.5 315 ± 33 314 ± 33  

do not match systematically to either sex, and removing the excess 
of 292 − 252 = 40 smallest-scaled features from male sets does not 
affect classification. We note that the SIFT-based classification results 
from rigidly registered data here are consistent with those previously 
reported (Chauvin et al., 2021), and that results from non-linearly 
registered data are new to this work.

Subjects may be interpreted lying along a prediction score contin-
uum as in Fig.  1, with subjects sorted from most female (left, orange) to 
most male (right, blue). Note the close linear fit with 𝑅2 = 0.98, in com-
parison subjects distributed equally according to a binary-valued score 
would form a discontinuous step function with squared correlation of 
𝑅2 = 0.75. Visual examples of features (circles) associated with correct 
and incorrect classification are shown below. Circle colour indicates 
the affinity of each feature 𝑓 in terms of the log likelihood ratio 
log 𝑝(𝑓 |𝑀𝑎𝑙𝑒)

𝑝(𝑓 |𝐹𝑒𝑚𝑎𝑙𝑒) , which ranges from female (orange) to neutral (white) 
to male (blue). In general each brain exhibits features associated with 
either male or female affinity, and it is their combination which deter-
mines classification (Chauvin et al., 2021). Two larger features centred 
approximately in the right and left thalami are visually consistent with 
correct classification, as indicated by arrows. These are automatically 
identified in the right and left thalamic regions of 97% of subjects, and 
thus represent informative common structure shared by most of the 
population.

Subjects may also be interpreted as clustering into prediction score 
distributions 𝑝(𝑆𝑐𝑜𝑟𝑒|𝐹𝑒𝑚𝑎𝑙𝑒) and 𝑝(𝑆𝑐𝑜𝑟𝑒|𝐹𝑒𝑚𝑎𝑙𝑒) conditioned on
{𝑀𝑎𝑙𝑒, 𝐹 𝑒𝑚𝑎𝑙𝑒} labels as in Fig.  2, note that these exhibit a range of 
overlap associated with misclassification. Images below show examples 
of features associated with correctly classified subjects (a, d) and mis-
classified subjects (b, c). The upper and lower image rows show features 
that are either correctly classified or misclassified for the associated 
subject group. Note that misclassified subjects may exhibit thalamic 
features that are absent or consistent with the opposite sex, as indicated 
by arrows in Fig.  2 lower row. Note that the distributions appear 
slightly shifted to the left, e.g. the optimal classification threshold at 
which distributions cross is slightly lower than 0. This is due to the 
additional spurious male features, these increase the size of the male vs 
the female feature set |𝑀𝑎𝑙𝑒| > |𝐹𝑒𝑚𝑎𝑙𝑒|, which decreases the Jaccard 
index in Eq.  (2) for the male group.

Finally, the geometry of the thalamic feature pair as identified in 
correctly classified subjects may be visualized together in Fig.  3 for 5 
males (blue) and 5 females (orange). Note that female features (orange) 
are located in closer proximity, consistent with an interthalamic adhe-
sion more frequently observed in female brains (de Macedo, 1889; Allen 
and Gorski, 1991; Wong et al., 2021). These two features predict sex 
at an accuracy of 0.69 individually and 0.74 when combined as a pair.

4. Discussion

Size is a primary confound in identifying meaningful anatomical 
differences between male and female brains in MRI data, as the male 
anatomy is on average larger than the female. Here we present the 
result of a unique feature-based analysis that recently reported high sex 
classification accuracy using 3D SIFT image feature matching (Chauvin 
et al., 2021). In 3D MRI data, SIFT features represent maximally sym-
metric image patterns, e.g. blob-like regions of bulging image contrast, 
where size or scale is determined automatically by the Laplacian-
of-Gaussian detector (Toews and Wells, 2013) and used to compute 
3 
image descriptors that are invariant to the local scale of the anatomy. 
Furthermore, classification is achieved via feature matching, which 
requires no explicit training procedure and allows the result to be 
interpreted in terms of matches between specific anatomical regions 
of specific individual subjects.

Baseline classification accuracy is first established from spatially 
normalized brain volumes from the HCP dataset (Van Essen et al., 
2013), with normalization achieved via rigid and non-linear image 
registration. Rigid registration preserves scale and shape differences, 
and accuracy from scale-invariant descriptors alone is 0.919, which 
represents an upper limit of accuracy given no scale or location infor-
mation. Accuracy rises to 0.933 if geometry information i.e. feature 
location and scale are included, however this may be incorporating 
size-related information. Classifying non-linearly registered images is 
a more challenging context as scale and overall shape differences 
are removed. Accuracy following non-linear registration is 0.832 from 
invariant features alone, rising to 0.851 when geometry information is 
included. 0.851 thus represents a lower limit of accuracy given no scale 
or shape information, since assuming accurate registration, geometry 
information serves solely to disambiguate incorrect feature matches.

Local SIFT features driving classification may be interpreted as 
modes of anatomy that do not occur identically in all subjects, but 
with a probability across a population and within groups. For example 
in previous work, group-informative features were identified about 
the hippocampi and ventricles for Alzheimer’s disease patients (Toews 
et al., 2010), and distributed throughout the brain and cortices for 
family members (Chauvin et al., 2020). Here in the case of sex classifi-
cation, the most notable group informative features are a pair located 
symmetrically in the left and right thalamic regions. Together they pre-
dict sex with accuracy 0.74, and as they are automatically detected in 
97% of subjects, they represent informative common structure shared 
by most subjects. This finding is consistent with prior literature, where 
the thalamus has been linked to sex in the human brain (de Macedo, 
1889; Allen and Gorski, 1991; Wong et al., 2021) including neural 
networks and volume-normalized MRI data (Ebel et al., 2023; Gao 
et al., 2019), and also in brain MRI of other species such as mice (Spring 
et al., 2007). However, overall 0.919 classification appears to be driven 
largely by features scattered throughout the brain, a result also found 
in logistic regression and neural network analysis methods (Ebel et al., 
2023; Gao et al., 2019). These are associated with feature matches 
shared by small and apparently random subsets of subjects, which are 
on average informative regarding sex, but which are less representative 
of the population as a whole.

In terms of classification accuracy, our result of 0.919 from scale-
normalized feature matching appears consistent with recent literature 
on sex classification from volume-corrected MRIs. Logistic regression 
on a similar set of 399 HCP test subjects achieved 0.92 accuracy (with 
a model trained on an independent cohort of 3298 subjects) (Ebel 
et al., 2023), and SVM classifiers applied volume-normalized grey 
matter maps of age-matched subjects including 396 HCP subjects (1614 
in total) achieved 0.925 accuracy (Wiersch et al., 2023). In terms 
of regions, the cerebellum and thalamus were found to be the most 
informative, however classification was found to be driven primarily 
by sex-informative features distributed throughout the brain rather 
than localized within individual neuroanatomical regions (Ebel et al., 
2023). Our work also identified the thalamus as informative, we did 
not identify the cerebellum directly as it is a larger organ represented 
collections of smaller features, however these appear to impact overall 
classification similarly to other features distributed throughout the 
brain.

The consistency of our results with recent literature is particularly 
notable considering the very different prediction strategies, i.e. our 
method uses scale-normalized feature matching parameterized by a 
memory of approximately 114K features extracted from 422 subjects, 
vs neural network and logistic regression models with 1.3M parameters 
estimated 3299 volume-normalized subject images (Ebel et al., 2023). 
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Fig. 1. The top graph plots 422 test subjects sorted according to female (left) vs male (right) prediction score, the value of 𝑅2 = 0.982 indicates a near-linear continuum. The four 
lower figures display sex-informative features as circles in coronal (upper) and axial (lower) slices for the 5 strongest classifications (outer pair) and misclassifications (inner pair). 
Feature colour indicates the log likelihood of male (blue) vs female (orange) labels associated with individual features 𝑓 , white indicates equal likelihood. Two features centred 
approximately upon the left and right thalami (arrows) are visibly consistent with correct classification. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 2. The top graph shows distributions of prediction score conditioned on female and male labels, note that misclassifications occur within an overlap range containing 29% of 
subjects (dashed lines). The four lower figures display sex-informative features as circles in coronal slices for the 5 strongest classifications (a) and (d), and strongest misclassifications 
(b) and (c). Feature colour indicates the log likelihood of male (blue) vs female (orange) labels associated with individual features, white indicates equal likelihood. The upper 
and lower rows display features classified or misclassified, respectively. Note that some misclassified subjects (lower row) (b) and (c) exhibit thalamic features consistent with the 
opposite sex. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Visualizing thalamic feature variation for the five most strongly classified females and males over a representative brain MRI. Circles indicate feature location and scale, 
and colour indicates the log likelihood of male (blue) vs female (orange) associated with individual features. The scale difference (11.6±1.46, 11.9±1.34) between male and female 
features is statistically significant (p=0.0402), with a female/male size ratio of 0.968, similar to the ratio 0.970 estimated from image-to-image registration. A notable shift in z 
coordinate is observed due to rigid misregistration and size, this may be used to classify with 0.722 accuracy. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)
The features distributed throughout the brain and driving classification 
are of particular interest, observed here and in Ebel et al. (2023). In 
our work, these appear to be similar features shared by small and 
seemingly random subsets of subjects, which when identified tend to 
be informative regarding sex. This seems consistent with the hypoth-
esis of brain structure development affected by multiple independent 
mechanisms, leading to individual brains appearing as a unique mosaics 
of both female and male-informative features (Joel, 2021). Feature 
matching offers a means of further investigating the variability of such 
sex-informative neuroanatomical structure that may only be observed 
in subsets of the population. For example, clusters of feature matches 
represent sparse correlations throughout the brain between subsets 
of subjects, and these could be characterized by alternative methods 
or imaging modalities to understand their role in strong overall sex 
prediction.

Various limitations are to be noted with regard to this work. Al-
though features identified in the thalamic region appear informative 
regarding sex, we cannot further comment on their link to sex, and they 
may be simply the result of neurodevelopment in a larger or smaller 
cranial anatomy. Our investigation is limited to self-reported binary 
sex, and does not account for transgender or intersex individuals who 
do not necessarily fall into binary male or female categories. Our results 
are limited to the HCP cohort age range of 22–36 years, where the brain 
morphology is relatively stable, and does not include young or elderly 
subjects whose anatomy would be affected by growth and aging.

In conclusion, our findings are consistent with the interpretation 
that an individual level, each brain image may be viewed as mosaic 
of features that are generally associated with either sex (Joel, 2021). 
No single brain region classifies sex definitively, and classification is 
driven primarily by features distributed throughout the brain that may 
be pooled to predict sex with an accuracy of approximately 0.92. 
Individual subjects may be assigned a continuous sex prediction score, 
in our work based on the Jaccard index of feature set overlap, in 
other work based on regression (Ebel et al., 2023) or likelihood ratios 
associated with features (Phillips et al., 2019). Specific features such as 
the thalamic features observed here are identified in 97% of subjects 
and predict sex with an accuracy 0.74. Experiments with rigidly regis-
tered subjects reveal that these occur despite size differences between 
males and females, which are normalized out by the SIFT method 
here. The misclassification rate for whole-brain sex classification from 
feature matching lies conservatively between 9%–15%, for rigidly and 
non-linearly registered images, respectively. Misclassified brains are 
observed to exhibit features typically associated with the opposite sex.1

We note that this research was approved by the Research Ethics 
Committee at ETS, that all procedures conformed to the guidelines laid 
out in the most recent revision of the Declaration of Helsinki, and 
that all participants provided written informed consent prior to the 
acquisition and use of their data.

1 Code required to reproduce our results may be obtained at https://github.
com/3dsift-rank.
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