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Abstract: Wearable technology can nowadays be used to improve para-swimming coaching;
however, the extent to which individual anatomy affects features of swimming variability is
unclear. Six paralympic swimmers were recruited, their upper-limb segment lengths were
measured, and their absolute bilateral limb asymmetry indices (AbsLAI ;1) were calculated.
They were instrumented with a sacrum-worn inertial measurement unit and performed
an in-water, fatiguing, freestyle aerobic test at incrementally faster paces. Stroke-to-stroke
outcome and execution variability were calculated, respectively, using sample entropy (Sam-
pEn) and fractal dimension (FD) on forward and mediolateral linear acceleration signals.
Significantly increased perceived exertion scores (F(4,28) = 154.1, p < 0.001) were observed.
Execution and outcome variability increased in the forward (SampEn = F(4,25) = 11.86,
p <0.001; FD = F(4,24) = 6.17, p = 0.001) and mediolateral (SampEn = F(4,25) = 9.46, p < 0.001;
FD =F(4,24) = 27.64, p < 0.001) directions. Modelling of FD (only) improved with AbsLAI ;.
as a covariate (forward = F(1,24) = 9.68, p = 0.005; mediolateral = F(1,24) = 8.57, p = 0.021),
suggesting that AbsL Al affects only execution, but not outcome, variability. This infor-
mation could help coaches determine which coordination indices should be personalized
when monitoring variability during para-swimming training.

Keywords: swimming; anthropometry; IMU; fatigue; variability; movement complexity;
movement irregularity; wearable sensors; performance analysis; para-swimming

1. Introduction

Freestyle swimming is a bilateral, cyclical movement task that requires coordinated
movement patterns of the upper limbs to maximize forward propulsion while minimizing
movement in other planes. Para-swimmers are a unique population who may have physical
and/or neurological impairments that impact the symmetry of their bilateral anatomy, in
turn impacting their ability to create symmetrical propulsive movement patterns. As such,
those para-swimmers must develop motor control strategies that account for any structural
or functional impairment in their ability to produce symmetrical movement patterns in
order to optimize their effort towards forward movement.

Some of the control strategies developed to improve swimming efficiency can target
motor variability, defined as the natural variation that occurs across repetitions of a move-
ment task [1]. In some areas of the literature, motor variability has also been considered
as a motor control strategy to mitigate the challenges induced by performing fatiguing
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tasks during training, whereby task-specific movement adaptations are produced to help
optimize a task-related performance goal while managing the exercise-induced fatiguing
effects on joint and muscles [2]. In other words, variability of the execution of a task is used
to stabilize the outcome variability of a movement [3]. In the context of swimming, this
would refer to how variabilities of limb movement patterns are used to stabilize propulsive
patterns at the centre of mass (CoM) of swimmers.

Several analytical approaches can be applied to movement (kinematic) signals to infer
changes in execution and outcome variability. Two such methods are sample entropy [4],
quantifying the inter-cycle irregularity of cyclical movement, and fractal dimension [5],
quantifying the amount of complexity present in a signal. In swimming, SampEn measured
near the CoM can quantify the repeatability or irregularity of propulsive patterns [6,7],
or outcome variability [3]. Additionally, FD measured near the CoM can provide infor-
mation on the complexity of a swimmer’s motor behaviour [7,8], which may reflect the
magnitude of flexible adaptations of coordinated limb movements, or execution variabil-
ity [3]. While both irregularity and complexity of acceleration patterns at the CoM are
nonlinear features of variability, movement irregularity quantifies the likelihood that the
next propulsion would be the same as the current one, while fractal dimension quantifies
richness of temporal structures at different time scales [9], or the adaptivity of movement
patterns. As such, the outcome variability in the current study reflects the repeatability of
the swimming pattern, while the execution variability represents the adaptive changes in
swimming patterns. Viewed through the theory of motor abundance [10], increased execu-
tion variability while outcome variability remains constant would suggest it is beneficial to
task performance, while increased execution variability with increased outcome variability
(irregularity) would suggest that these adaptive changes had negative impacts on the task.

Based on the previous literature from other fields, effective fatigue mitigation strategies
would then draw from changes in FD in ways that would not negatively affect (increase)
SampEn in order for performance to be maintained despite fatigue being gradually devel-
oped when performing a repetitive task. Indeed, previous studies of other cyclical tasks
performed by able-bodied participants showed that fatigue induced through running led
to increased mediolateral range of motion of the centre of mass [11] and increased motor
variability that negatively impacted task performance, attributed to a decrease in control
of the centre of mass [12]. This highlights the potential use of studying control of the
centre of mass in complex, multi-segment movement patterns as a surrogate measure of
outcome variability. Previous research has also applied these entropy and fractal dimension
analyses to swimming to determine differences in expertise level and swimming stroke
styles [7,13]. However, they used cable displacement-based techniques with a belt attached
to the swimmers” hips to measure those features, which may have restricted the swimmers’
trunk motion and could have affected the ecological validity of their measurements.

Recently, wearable technologies, such as inertial measurement units (IMU), have become
a popular tool for swimming analyses [14-18]. Compared to previous swimming motion
analysis techniques, they provide tridimensional acceleration data that can be used to quickly
compute various movement metrics. In turn, these metrics can inform coaches and athletes on
the quality of swimming movements [19-21]. Previous studies using a single sacrum-worn
IMU to analyse swimming have been able to estimate instantaneous velocity [22,23] and swim
stroke mechanics (such as instantaneous stroke rate, distance per stroke, and upper-limb
movement timing symmetry) [18,24,25] in able-bodied samples. Additionally, estimation of
instantaneous velocity [17] and multiple swim stroke mechanics [16] have also been validated
in para-swimmers. Furthermore, a single sacrum-worn IMU was sufficient in order to obtain
individualized training-based, performance-relevant values for para-swimmers [26]. Few
studies have used a single sacrum-worn IMU to analyse swimming-related variability metrics
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in able-bodied swimmers [19,20], but no research to date has investigated how features of
variability evolve during the performance of fatiguing tasks in paralympic swimmers. Finally,
no research has investigated if individual features of anthropometric asymmetry may affect
the various components of swimming-related motor variability.

The aim of the present study was to use wearable inertial sensor data to investigate
how anthropometric limb asymmetry in para-swimmers affects the motor variability char-
acteristics of movement irregularity and complexity of CoM acceleration responses to
performing a fatiguing task. We hypothesized that movement outcome variability char-
acteristics would become more irregular (i.e., entropy would increase) and movement
execution variability characteristics would become more complex (i.e., fractal dimension
would increase) as fatigue gradually develops. We further hypothesized that accounting
for individual limb asymmetry scores would improve the statistical modelling of responses
in movement irregularity and complexity outcomes.

2. Materials and Methods
2.1. Participants

Six elite (sex = 3m, 3f; age = 22.5 £ 3.2 years; height = 155.1 + 29.4 cm; body mass
60.2 £+ 19.4 kg) paralympic swimmers were recruited to participate in this study. All
swimmers were classified by the World Para Swimming Classification Panels and competed
at an international level. Details of the impairment and swimming classification groups are
reported in Table 1. Informed consent was obtained from all participants. This study was
conducted according to the guidelines of the Declaration of Helsinki and approved by the
Institutional Review Boards of McGill University (protocol code 22-05-021) and Ecole de
Technologie Supérieure (protocol code H20221001).

Table 1. Details of impairments and para-swimming classification levels.

Swimmer ID Impairment Class
1 Right femoral-fibula—ulnar syndrome; Dysmeliac right upper limb 58
2 Intellectual Impairment 514
3 Dysmelia, congenital left-hand amputee 510
4 Cerebral palsy 59
5 Pseudoachondroplasia S5
6 Achondroplasia dwarfism 56

Note: For freestyle swimming, the World Para Swimming classifications for physical impairment range from S1 to
510. S14 refers to an intellectual impairment. A lower number indicates a more severe activity limitation than a
higher number.

2.2. Instrumentation

A single IMU (£16 g, 120 Hz, Xsens Dot, Xsens Technologies, Enschede, The Nether-
lands) was placed between the participant’s posterior superior iliac spines. A Tegaderm
adhesive patch (3M Health Care, Minneapolis MN, USA) was used to secure the IMU to the
participant’s skin, ensuring firm attachment and minimizing sensor movement during data
collection. The IMU had dimensions of 36 x 30 x 11 mm and a mass of 3.15 g. The IMU
measured tri-axial linear accelerations. Data were recorded offline on the IMU onboard
memory. To ensure adequate statistical power with the current analyses, only acceleration
signals in the cranio-caudal (referred to as “forward” in the present study) and mediolateral
directions were analysed in the present study.

2.3. Protocol

Bilateral measurements of upper-limb segment lengths were taken. Three manual
measurements were taken of left and right (1) upper arm (acromioclavicular joint to the
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lateral epicondyle of the elbow), (2) forearm (lateral epicondyle of the elbow to the mid-
point between the medial and lateral styloid processes), and (3) hand (mid-point between
the medial and lateral styloid processes to the most distal point of the middle finger) lengths
by a trained operator. For swimmers with undeveloped or amputated limbs, measurements
were taken to the most distal part of the segment.

The participants performed a freestyle aerobic step test, as described by Anderson [27].
Briefly, the step test comprised 5 incrementally faster repetitions of freestyle swimming,
referred to as steps, over 200 m (n =4), 150 m (n = 1) or 100 m (n = 1), based on the swimmer’s
impairment. The target times for each of the 5 steps were based on the swimmer’s personal
best time for the given distance. The target time of the final step was defined as the
swimmer’s personal best time rounded up to the nearest minute. The target time for the
first step was 20 s slower than the final step, and each of the steps between were swum at
a target time of 5 s faster than the previous step [27]. Thus, the test aimed to assess how
an athlete is able to execute the task at progressively faster speeds in a state where the
incremental steps gradually induced a fatiguing effect on the muscles. In the present study,
the collected measures reflect both changes in fatigue and pace in a way that does not
permit distinguishing between them. All tests were completed in an Olympic-size (long
course; 50 m) swimming pool, which was each swimmer’s usual training environment.
Ratings of perceived exertion (RPE) were also measured after each step of the test using the
Borg CR-10 scale [28].

2.4. Data Processing
2.4.1. Anthropometric Data

Mean (£SD) averages of each limb segment length measurement were calculated.
Left and right upper-limb lengths were calculated as the sum of the mean upper arm,
forearm, and hand segment lengths for the left and right sides. The Limb Asymmetry
Index (LAI) [29] between the left and right upper-limb lengths (LAI;1) were calculated
using Equation (1). Positive LAl values represent a greater left upper-limb length in
proportion to their right length.

(Left Limb Length — Right Limb Length )

LANIL = 7 Timb Length + Right Limb Length)

x 100 (1)

Finally, absolute values of LAI;; were calculated (AbsLAIy;), representing a non-
directional magnitude of asymmetry.

2.4.2. Swimming Data

All swimming data processing were completed in MATLAB (Version 2023a, Mathworks,
Natick, MA, USA). Raw linear acceleration signals from the x and y axes defined the forward
(cranio-caudal) and medio-lateral (ML) data. To ensure that the analyses focused on steady-
state swimming, starts, flip turns, and the first and last two stroke cycles of each lap were
manually removed from the data. The remaining cyclical swimming data were vertically
concatenated using MATLAB's “vertcat” function. A sample entropy (SampEn) analysis [4]
was applied to the subsequent raw forward and mediolateral linear acceleration signals to
quantify movement irregularity. N was defined as the length of the dataset; embedding
dimension (m) was defined as 2 using the false nearest neighbours method [30]; and the
tolerance limit, r, was set as 0.1 x SD. SampEn ranges from 0 (perfectly predictable) to infinity
(completely unpredictable). A fractal dimension (FD) analysis was applied to the raw forward
and mediolateral linear acceleration signals, using the Higuchi algorithm [5]. FD ranges from
1 (low complexity in structure, such as a straight line) to 2 (highly complex patterns). In
freestyle swimming, expert able-bodied swimmers had approximate entropy, analogous to
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SampEn, and FD values of 0.66 & 0.12 and 1.84 =+ 0.08, respectively [13]. Percentage of baseline
SampEn and FD values were calculated, where the baseline was defined as step 1 values. This
quantified the relative changes in irregularity and complexity, defined as SampEn% and FD%.

2.5. Statistical Analyses

Statistical analyses were completed using R [31]. An ANOVA model compared step (1:5)
on RPE values, using base R’s “aov” function. ANOVA models also compared the main effects
of step (1:5) with and without the covariate AbsLAIj; on SampEn% and FD% using forward
and mediolateral acceleration data. Post hoc Tukey’s HSD was run on significant main effects,
using base R’s “TukeyHSD” function. Finally, given that the variability results were analysed
relative to step 1 data, to account for potential inter-individual differences in non-fatigued
swimming variability as a function of LAI, we ran Spearman’s rank correlations between
AbsLAIp, and the step 1 values of SampEn and FD. Benjamini-Hochberg corrections were
applied to critical alpha values to account for multiple comparisons [32].

3. Results
3.1. Rate of Perceived Exertion (RPE)

RPE increased significantly by step (F(4,28) = 154.1, p < 0.001), with significant differ-
ences between all steps (p < 0.05). Mean (+SD) RPE values with post hoc differences are
shown in Figure 1.

*k*

*k*

10

RPE

1 2 3 4 5
Step

Figure 1. Mean + SD ratings of perceived exertion (RPE) values at each step of the step test. The
grey circles show all RPE values. Post hoc differences in RPE by step for each participant, after
a significant main effect of step in the analysis of variance (ANOVA) model. Significant post hoc
differences are displayed with significance brackets. *** denotes statistical significance at p < 0.001,
** denotes statistical significance at p < 0.01.
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3.2. Limb Asymmetry
The average measurements of left and right arm lengths, and AbsLAIy;, values are
displayed in Table 2.

Table 2. Limb asymmetry index results for each swimmer.

Swimmer ID Left Arm Length (cm) Right Arm Length (cm) AbsLAIyr

1 79.90 62.73 12.04
2 88.10 91.13 1.69
3 66.43 81.27 10.04
4 80.17 80.37 0.12
5 45.77 44.77 1.10
6 51.40 50.00 1.28

3.3. Motor Variability
3.3.1. Baseline (Step 1) Values

The baseline values for SampEn and FD are shown in Figure 2. The mean (+SD)
baseline SampEn values were 1.07 (£0.22) and 0.41 (£0.17) in the forward and mediolat-
eral directions, respectively. The mean (£SD) baseline FD values were 1.33 (£0.06) and
1.18 (£0.07) in the forward and mediolateral directions, respectively.
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Participant Participant

Figure 2. Baseline values for forward (red circles) and mediolateral (blue circles) components of
SampEn and FD. Mean (£SD) values shown as dashed line (£cloud).

3.3.2. Sample Entropy (SampEn)

SampEn% ANOVA models with and without AbsLAIy;; as a covariate are displayed
in Table 3. Significant main effects of step were observed in all models. AbsLAI;;, was not
a significant covariate in the forward or mediolateral SampEn% ANOVA models. The post
hoc changes are displayed in Figure 3. No correlations (forward = r(4) = —0.31, p = 0.56;
ML = r(4) = —0.20, p = 0.71) were observed between the step 1 SampEn values and
AbsLAI uL-



Sensors 2025, 25, 3297

70f13

W
o
-

Table 3. Analysis of variance (ANOVA) model results for main effects of step (1-5), with and
without Absolute Limb Asymmetry (AbsLAIy1) as a covariate on percent change in sample entropy
(SampEn%). F-score, degrees of freedom, and significance (p) are presented for the forward and
mediolateral (ML) directions.

Direction Covariate Step AbsLAIy;,
F q With F(4,24) =13.11, p < 0.001 *** F(1,24) =3.64,p =0.07
orwar Without F(4,25) = 11.86, p < 0.001 ***
ML With F(4,24) =10.28, p < 0.001 *** F(1,24) =3.16,p =0.09
Without F(4,25) =9.46, p < 0.001 ***

Note: *** denotes statistical significance at p < 0.001 for ANOVA model main effects.
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Figure 3. Post hoc differences in relative change in sample entropy (SampEn%) by step (1-5) for
each participant, after a significant main effect of step in the analysis of variance (ANOVA) models.
The mean (£SD) response is shown with a grey dashed line (SD = grey cloud). Significant post hoc
differences are displayed with significance brackets. *** denotes statistical significance at p < 0.001,
** denotes statistical significance at p < 0.01, and * denotes statistical significance at p < 0.05.

3.3.3. Fractal Dimension (FD)

FD% ANOVA models with and without AbsLAIyj; as a covariate are displayed in
Table 4. Significant main effects of step were observed in all models. AbsLAI;; was a
significant covariate in both the forward and mediolateral FD% ANOVA models. The post
hoc changes are displayed in Figure 4. No correlations (forward = r(4) = —0.37, p = 0.50;
ML =1(4) = —0.31, p = 0.56) were observed between the step 1 FD values and AbsLAIjy.

Table 4. Analysis of variance (ANOVA) model results for main effects of step (1-5), with and without
Absolute Limb Asymmetry (AbsLAIyj1) as a covariate on relative changes in fractal dimension
(FD%). E-score, degrees of freedom, and significance (p) are presented for forward and mediolateral
(ML) directions.

Direction Covariate Step AbsLAIyg

. q With F(4,24) = 6.17,p = 0.001 *  F(1,24) = 9.68, p = 0.005 **
orwar Without F(4,25) = 4.58, p = 0.009 **
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Table 4. Cont.
Direction Covariate Step AbsLAIyr
ML With F(4,24) =27.64,p <0.001 ***  F(1,24) =8.57,p =0.021 *

125

RGN
= N
o O

Without F(4,25) =21.21, p < 0.001 ***

Note: ** denotes statistical significance at p < 0.001, ** denotes statistical significance at p < 0.01 and * denotes
statistical significance at p < 0.05 for ANOVA model main effects.
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Figure 4. Post hoc differences in relative change in fractal dimension (FD%) by step (1-5) for each

participant, after a significant main effect of step in the analysis of variance (ANOVA) models. The
mean (+SD) response is shown with a grey dashed line (SD = grey cloud). Significant post hoc
differences are displayed with significance brackets. *** denotes statistical significance at p < 0.001,
** denotes statistical significance at p < 0.01.

4. Discussion

In this study, we investigated how anthropometric upper-limb asymmetries con-
tributed to changes in movement irregularity (SampEn) and complexity (FD) from start to
finish of an incremental, fatiguing step test. The results show that the baseline values for
movement irregularity (outcome variability) and complexity (execution variability) were
higher in the forward direction, compared to in the mediolateral direction. Additionally,
both movement irregularity and complexity of propulsive patterns increased with step, in
both the forward and mediolateral directions. Anthropometric asymmetries contributed
to relative changes in movement complexity (execution variabilities), but not movement
irregularity (outcome variabilities). Finally, no correlation was observed between baseline
variability values and limb asymmetry.

At baseline (step 1), movement irregularity and complexity were higher in the forward
direction, compared to the mediolateral direction. This may be a result of the movement
task goal, whereby swimmers move predominantly in the forward direction. Additionally,
the effects of drag may result in inherently higher irregularity of the trunk during forward
swimming, due to the constant balance between positive and negative forward propulsion.
Finally, no correlations were observed between the magnitude of limb asymmetry and
levels of baseline movement irregularity and complexity. This may be the result of motor
control strategies that are effectively developed by these experienced athletes and that
account for any anthropometric differences between-limb when unfatigued. In previous
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studies, mediolateral movement irregularity of stride parameters, quantified by SampEn,
during regular walking were significantly higher in lower-limb amputees compared to
controls [33]. Furthermore, stability components in both the forward and mediolateral
directions were significantly lower in amputees, suggesting greater flexibility in movement
execution patterns [33]. However, the authors did not report whether inter-individual
differences were present among the amputees. In our study, the fact that no component of
baseline motor variability was impacted by the amount of upper limb bilateral asymmetry
is interesting and suggests that for non-fatigued swimming, this metric could be used
to monitor all para-swimmers in the present sample equally. However, this hypothesis
should be confirmed through future studies that have access to a homogenous sample of
para-swimmers with physical impairments affecting between-limb asymmetry.

However, the same cannot be said as the incremental step test progressed, which does
show an impact of limb asymmetry, although not for all the tested measures. To start, our
results do show that the different features of variability seem to evolve differently as the
incremental step test progresses. Indeed, increases in outcome (irregularity) variability
patterns, as quantified by SampEn, were observed in both the forward and mediolateral
movement directions. In fact, movement irregularity (outcome variability) had greater
relative increases from step one values than movement complexity (execution variability)
in both directions. Additionally, relative increases in movement irregularity were greater in
the mediolateral direction compared to the forward direction (Figure 3). While running
involves different mechanical patterns to swimming, it represents another sport that is
based on continuous cyclical, alternating limb movement patterns that are produced in
order to propel the body forward, which could help to ground the current study’s findings.
For example, runners increased their trunk’s motor variability patterns after completing a
fatiguing protocol, suggesting that fatigue negatively affected the control of their centre of
mass [12]. Moreover, in a similar study, the authors found that this was particularly the
case for mediolateral centre of mass movement increases with fatigue [11]. This supports
the interpretation of our findings in suggesting that control of the CoM, especially in the
mediolateral direction, could be a good strategy to help mitigate the development of fatigue
induced in forward-movement cyclical sports, such as running and swimming, and that for
better performance, its outcome measure of irregularity (SampEn) could be targeted and
further trained as part of fatigue mitigation strategies. One such approach may be a targeted
intervention developing core stability and strength endurance of shoulder musculature
in this population, but future studies are needed to determine which coaching-specific
interventions can be developed in order to target the irregularity (outcome variability)
changes observed in the current study.

Our results also show that movement complexity (execution variability) increased
in both the forward and mediolateral directions as the incremental test progressed, with
more distinct between-step changes in the mediolateral direction (Figure 4). This may be
the result of increased execution variability, or adaptive swimming patterns. Following
the motor abundancy hypothesis [10], increased variability of individual limb movement
patterns may have been used as a motor control strategy to mitigate the negative effects of
ongoing fatigue on continuous forward movement, the performance variable in swimming.
However, our results suggest that the strategy of modifying movement irregularity as
the incremental test developed may have its limits as a fatigue mitigation strategy. In
particular, we observe that increases in execution variability (complexity) in the forward
direction seemed to plateau well before the final step for the majority of participants, with
no significant differences observed between steps 3 and 5 (Figure 4). This reinforces the
interpretation that other fatigue mitigation strategies may have been developed starting
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from that point on, possibly to avoid further negatively impacting outcome variability
features that would in turn negatively further affect performance.

At this point, the described strategies are discussed across the group; however, some
of our results do show an impact of individual asymmetry scores on changes in variability.
Indeed, taking into account the magnitude of asymmetry between upper-limb lengths did
have an impact on some results: including AbsLAly; as a covariate did improve modelling
of changes in movement complexity (execution variability), but not movement irregularity
(outcome variability), in both the forward and mediolateral directions. Fractal dimension,
the measure of complexity, quantifies the amount of execution variability or adaptive
variability in individual limb movement patterns. In the present study, participants with
larger upper-limb asymmetries were those with Dysmeliac upper-limb and hand segments.
Therefore, it is possible that reduced degrees of freedom at the upper limb were accounted
for by increased motor variability strategies at the level of execution variability, or individ-
ual limb movements. However, accounting for limb asymmetry indices did not improve
our statistical models of forward and mediolateral movement irregularity, or outcome
variability. In other words, even if strategies of execution vary according to individual limb
asymmetry, the end result does not. This further reinforces that individuals may choose
from a range of potential motor solutions in planning to execute a performance, and this
may be especially true for elite athletes with highly unique features such as para-swimmers.
Therefore, general outcome features that affect drag, such as irregularity (outcome variabil-
ity) of the centre of mass movement during swimming, may be considered as a group-based
intervention metric, whereas complexity-based (execution variability) variables such as
fractal dimension, should be used in a personalized way, according to each swimmer’s
unique characteristics. The good news is that all those measures can be extracted rapidly
from one sacrum-worn sensor, with adequate training to help the sport scientist make
efficient choices in their coaching intervention practice.

5. Limitations and Future Work

We are aware of a number of limitations that could have impacted the results of the
present study. Firstly, the sample size is low (n = 6). However, the sample represents the
entire population of para-swimming athletes that were training with the studied group.
Additionally, the sample is heterogenous in their types of impairments. As such, a high
level of inter-subject variability exists in the dataset, although this too is representative of
the studied population. To mitigate heterogeneity and attempt to extract general, group-
based observations, we modelled the changes in motor variability outcomes relative to each
individual’s values in the first step of the step test. However, other differences in type of
impairments may also introduce error into our modelling of limb asymmetry on outcome
variability (irregularity), where anthropometry may not explain all of the underlying
causes for subject-specific differences in motor variability adaptations during incremental
fatiguing tests. In the current study, only two of the six participants had limb asymmetry
values considerably larger than the typical range, although the current literature on this
topic is limited [34,35]. Additionally, the magnitude of AbsLAIy;; values were clustered
into high (n = 2) and low (n = 4) groups. As such, hypotheses about the magnitude of
AbsL Al mustbe confirmed by future research studying a more homogenous population
of para-swimmers such as those with Dysmeliac upper limbs. Furthermore, it must be
acknowledged that during the performance of the chosen incremental step test, pace-related
changes may also contribute to the observed changes in variability, to an extent that cannot
be distinguished from any muscle fatigue effects. Due to data limitations, it was not possible
in the current study to control for changes in swimming velocity. Nevertheless, we believe
that our data can have practical use, in reflecting what happens during the performance of a
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test regularly completed by elite para swimmers. Future work should determine the effects
of fatigue, using a similar protocol, with athletes swimming a consistent velocity between
steps, as a way to tease out the effects of fluctuations in speed from those of muscle fatigue.
Lastly, we used a single IMU placed on the sacrum of the para-swimmers to infer changes
in individual limb movements (via complexity measures), but we did not specifically
measure the changes in these limbs throughout the test. As such, some errors may have
been introduced into our interpretations of execution variabilities. Future research should
confirm this by directly measuring elemental and performance variabilities in this context,
as well as evaluating the impact on IMU size and positioning on movement outcomes.

6. Conclusions

Our study further reinforces previous work in showing that it is possible to quantify
motor variability responses using inertial technologies. Through this methodology, we
have determined, for the first time, that anthropometric upper-limb symmetries contribute
to increases in forward and mediolateral movement complexity, or execution variability,
in paralympic swimmers completing an incremental step test. This implies that subject-
specific anthropometric asymmetries will affect how para-swimmers can flexibly adjust
movement patterns to mitigate perturbations to performance. However, the results of the
current study may be influenced by differing paces at each step of the incremental protocol
and from heterogeneity of the sampled para-swimmers. As such, future studies with
statistically robust designs should directly test if larger magnitudes of asymmetry result
in an earlier onset of the negative effects of fatigue, in protocols that isolate fatigue from
swimming velocity. Coaches may want to consider the magnitude of limb asymmetries
when programming training plans for para-swimmers to accommodate for individual
differences in motor variability responses to delay fatigue-related performance reductions.
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