
Received 11 April 2025, accepted 24 May 2025, date of publication 5 June 2025, date of current version 13 June 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3576823

ODACE-RMS: A Remote Web-Based Platform for
Automated Multi-Device Android Testing
and Certification
SUNDOS MOJAHED 1, (Student Member, IEEE), RÉJEAN DROUIN2,
AND LOKMAN SBOUI 3, (Senior Member, IEEE)
1Software and IT Engineering Department, École de Technologie Supérieure (ÉTS), University of Quebec in Montreal, Montreal, QC H2L 2C4, Canada
2Vidéotron, Montreal, QC H3B 1E3, Canada
3Systems Engineering Department, École de Technologie Supérieure (ÉTS), University of Quebec in Montreal, Montreal, QC H2L 2C4, Canada

Corresponding author: Sundos Mojahed (sundos.mojahed.1@ens.etsmtl.ca)

ABSTRACT The evolving nature of the software industry has increased the complexity and cost of software
testing. This paper highlights the critical need for automation in software testing, specifically for mobile
Android device certification.We introduce ODACE-RMS, a platform designed to streamline the certification
process by enabling the automated execution of comprehensive telecommunication test scenarios. ODACE-
RMS runs as an application on a tester’s PC, featuring a browser-based interface powered by Appium. The
paper also outlines ODACE-RMS’s modular architecture that combines Appium, ADB, and USB-over-IP
to support remote and parallel testing. With a Spring Boot backend and web-based frontend, the platform
enables flexible multi-device test sessions, whether connected locally via USB or remotely through a USB-
over-IP hub. These features significantly reduce certification time and allow engineers to execute tests
without physically handling devices. Our study compares ODACE-RMS with traditional systems, which
reduced engagement time in certification testing by 89%, significantly decreasing the need for human
intervention and enhancing the overall efficiency of the certification process. Additionally, the proposed
ODACE-RMS architecture results show that testing remotely is not much slower than testing locally through
physical ports, even when multiple devices are tested in parallel, with an average 7% delay.

INDEX TERMS Android mobile devices, Appium, automation, certification, multi-device testing, remote
testing, software testing, testing framework, USB-over-IP.

I. INTRODUCTION
Telecommunication operators are required to certify each
new mobile device and software update to ensure reliable
service delivery to network users while meeting market-
ing, operational, and legal requirements. Traditionally, the
certification process was entirely manual, which demanded
significant time and effort for routine tasks. This manual
procedure underlined the need for automation in the certi-
fication. According to an earlier study [2], testing costs can
account for nearly 50% of the total development cost; this
proves the importance of efficient and streamlined testing
methods [3]. Especially considering that nearly 5 million

The associate editor coordinating the review of this manuscript and

approving it for publication was Tai-Hoon Kim .

mobile devices are sold every day [4], the demand for mobile
technology continues to grow. Additionally, the total number
of mobile users has reached 5.75 billion in recent years,
with expectations for significant growth in the near future
[5], [6].

Parallel to this development, automated testing in the
mobile devices industry became more important and
widespread. In fact, many tools have been built to automate
parts of the testing process, such as Appium, an open-source
tool that uses the WebDriver protocol to perform testing of
iOS and Android applications [7]. For instance, Calabash is
an automation framework that aims to perform automated
UI acceptance tests on the Android and iOS platforms [3].
Also, Frank is an automated acceptance testing framework
for testing iOS applications [8]. On the contrary, Robotium

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 99863

https://orcid.org/0009-0006-2638-434X
https://orcid.org/0000-0003-1134-4055
https://orcid.org/0000-0003-0117-8102


S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

is specifically designed to automate Android application UI
test cases [9].

Automation of certification is expected to increase pro-
ductivity while simultaneously reducing costs by saving the
certification engineers (CE) time and effort and reducing
the risks of human errors [10], [11]. In addition, automated
testing is a highly efficient alternative to manual testing
that offers several other advantages, as follows: Providing
greater flexibility for testing, handling repetitive tasks [12],
making debugging easier, providing more accurate results,
offering reusable processes, automatically recording test
results (execution logs, counter results, summaries, etc.) and
providing standardization for testing executions. These points
motivate us to address new ideas that were not implemented
previously, such as using the traditional automation tool
to automate the testing of mobile applications to enhance
the mobile phone certification process. This involves ADB
(Android Debug Bridge) and Appium for automated control
and testing of the device functions and features. Another idea
is to integrate dedicated mobile phones acting as bots to fully
automate telephony scenarios.

To adapt to the ongoing developments, we develop
ODACE [1], which in French refers to: ‘‘Outil
D’Automatisation des tests de CErtification’’ (Certification
Test Automation Tool). This platform extends Appium
beyond traditional application testing to full mobile device
certification, integrates novel solution bots to reduce human
intervention and delivers efficiency improvements.

The remainder of this paper is structured as follows:
Section II describes the related study. Section III provides
an overview of the certification process within the telecom-
munications industry. Section IV introduces the proposed
automated certification solution. Section V details the
remote and multi-session capabilities. Section VI discusses
experimental results. Section VII discusses the platform
and outlines potential future research directions. Finally,
Section VIII presents the conclusions.

II. RELATED WORK
The development of an automation framework to test
software with less effort and cost is a crucial goal of multiple
previous works. Numerous automation tools for application
testing have recently emerged. However, we identified a
gap in the availability of automation tools specifically
designed for the certification process in the telecom sector.
Furthermore, we found a lack of platforms or tools dedicated
to testing mobile phone devices’ functionalities beyond
just the applications. For instance, Vajak et al. in [8]
presented a novel idea for automation tests, which is a simple
environment that uses efficient libraries to reduce code lines
and execution time. Their work can be a base upon which to
build for future work. However, researchers need to find a
way to test iOS and Android under the same conditions and
the same script file.

Some earlier studies by Kim et al. in [13] investigated
testing and automation and looked at the performance

of these tools and the vulnerabilities of testing software
tools. Furthermore, Salam et al. in [14] discussed an
advanced automated functional testing framework for mobile
applications designed to be easy to use with a testing process
throughout the software development life cycle (SDLC).
Also, this design proposed new ideas and solutions for issues
in previous tools and frameworks. Nevertheless, this solution
usedmany dependency libraries, somaintenancewill bemore
complex in the future. In addition, Verma in [15] discussed
using Appium to test mobile applications, but this work did
not implement a touch action instance for each test case. Also,
there are no log files for each test executed in this solution.
Moreover, Singh et al. in [16] explained the importance of
the Appium testing tool in efficient software and bug-free and
quality-rich applications. Motwani et al. in [17] developed a
framework for browser compatibility testing using Selenium
WebDriver. However, none of the previous articles addressed
the scenarios where Appiummight not be the optimal choice.

Tran et al. [18] published an article about a framework
based on Appuim to automate the testing of IP multimedia
subsystems, which focuses on automating service validation
such as voice calls and messaging within telecommuni-
cations systems. This solution could include some other
tasks like taking videos of the process and rebooting the
device. However, the solution does not cover testing other
device functions or technologies beyond the IP Multimedia
Subsystem.

Another mobile automation framework was designed and
implemented to be compatible with both iOS and Android
platforms by Cui et al. [19]. This framework was built based
on Appium, and the user could use it to customize it and
automate the testing of his own application. This solution
does not cover the automation testing for the device and
network functions.

Alotaibi and Qureshi [20] proposed the SerME database
framework for efficient data storage and management but
lacks detailed technical explanations and may be less acces-
sible to non-technical users due to programming knowledge
requirements. Additionally, Rao et al. in [21] proposed
a method to develop the testing process. Also, Jain and
Sharma in [22] created a test-driven automation framework
by creating keyword-based test cases.

AirMochi, introduced by Lukić et al. [23], is a versatile and
platform-independent tool designed for automated testing
and vulnerability analysis of iOS apps. It enables remote con-
trol, video stream recording of app interfaces, and timestamps
UI events. Additionally, its Model Extractor component
extracts behavioural models of apps for further analysis.
The tool produces accurate and valuable behavioural models.
However, the solution is complex and usesmany technologies
and languages, which could be challenging to debug. It is
limited to iOS and requires a certain level of technical
expertise and knowledge to use it effectively.

Segron’s Automated Testing Framework [24] is a solution
designed for telecommunications services and device testing.
It supports different technologies, including 5G, VoLTE,

99864 VOLUME 13, 2025



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

and it offers automated test execution on various devices
and networks. However, it is limited to testing the network
functions without the other device’s essential function.

While the previous works offer robust frameworks for
UI testing, they fall short in automating the comprehensive
telecommunication testing required for certification [25].
Most of the platforms focused on application testing,
ignoring mobile device functionality such as voice calls,
SMS, and network interaction, which is required for the
certification process [26], [27]. In addition, the load times
of libraries before each test run were a big challenge, which
increased execution time and testing the user interface [14].
Additionally, there are no log files to monitor and track the
test execution process [15].

To address these limitations, we introduce ODACE-RMS
(ODACE Remote Multi-Sessions), a platform to test all
mobile telephony functions and both native and non-native
applications with enhanced execution efficiency.

The key contributions:

• Specialized Device Certification: While existing tools
focus on application-level testing, we introduce a new
framework which focuses explicitly on device certifi-
cation requirements to cover not only application-level
testing but also the device functionalities and features,
ensuring comprehensive validation for every new device
software update. This specialization fills a gap not
covered by general mobile testing solutions and reduces
the manual testing, and engagement time for the
certification engineers.

• Parallel Testing: The platform supports simultaneous
testing sessions across multiple devices, enabling users
to execute parallel tests on different devices without
waiting for prior sessions, which improves productivity.

• Remote Testing: Incorporates a remote access feature
that enables certification engineers to perform certifi-
cation tasks and do their tests without being physically
present in the lab. This is especially relevant in hybrid
work environments, which provide more flexibility.

• Optimized Test Execution Architecture: The solution
introduces a session-based initialization process that
pre-loads required libraries and Appium configurations
on both mobile devices and testing PCs. This signifi-
cantly reduces redundant setup time acrossmultiple tests
and reduces execution time.

• Accessible Interface: Offers a user interface specifically
engineered to accommodate users with different tech-
nical skill levels, lowering the difficulty of certification
workflows.

III. PRELIMINARY: PROCEDURE OF MOBILES DEVICES
CERTIFICATION
A. INTRODUCTION TO MOBILES DEVICES CERTIFICATION
To ensure quality services and adhere to legal regulations,
telecommunications operators mandate certification for each
new mobile device and software version update. This

certification encompasses tests to validate device-network
compatibility and the device’s ability to perform basic and
advanced functions. The tests range from assessing signal
strength, call quality, and data transmission rates to battery
life across various network conditions. Basic tests, for
example, involve making calls, sending texts, and accessing
emergency services (e.g., 911), whereas advanced tests
include performing a conference call with multiple devices
and verifying if the mobile device is transmitting in the
correct frequency band combinations.

These certification tests are grouped into specific test
plans, each targeting different technologies (Device, LTE,
Voice over LTE (VoLTE), Voice over Wi-Fi (VoWi-Fi), 5G,
etc). The four categories of test plans are:

1) Basic Test Plan: Encompasses essential telephony
functions (voice calls, messaging, emergency calls) and
mobile data (internet browsing, email) across various
mobile technologies.

2) High-level Test Plan: Extends the Basic category to
include advanced telephony functions like call forward-
ing and conference calls, along with non-telephony
functions such as Wi-Fi connectivity and internet
browsing.

3) Regression Test Plan: Builds upon High-level testing
with thorough coverage of most functions. Primar-
ily utilized following significant software updates
(e.g., Operating System upgrades).

4) Complete Test Plan: This exhaustive testing phase
evaluates all device features and functionalities, includ-
ing the user interface, connectivity, battery perfor-
mance, audio and video quality, roaming behaviour,
Wi-Fi APN settings, and more. Conducting complete
test plans ensures that both the device and its initial
software iterations comply with company standards
and governmental regulations.

Figure 1 shows the structure for the test categories and how
each category contains the previous one plus other tests.

The aim of having different test plans is to cover each
certification scenario with different technologies like LTE,
5G, VoLTE, and VoWi-fi, as well as device testing scenarios.
For instance, the launch of a new device requires the
Complete test category for each technology, while software
updates are certified with Regression, High-level or Basic.

B. CERTIFICATION PROCESS AND PREREQUISITES
The certification process starts with the reception of a new
device or software from the device manufacturers. The
certification engineers prepare the devices before creating a
ticket in a test management tool (e.g., Jira) with the relevant
information about the task, adding the test list based on
technology types and levels of certifications, and then start
conducting manual certification tests. Certain functions, such
as network connectivity and telephony functions, must pass
testing with success to obtain certification approval. The
process involves the following steps:

VOLUME 13, 2025 99865



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

FIGURE 1. Tests categories.

1) Receive new units of device models, label them and
document their details in inventory.

2) Review the handset requirements form previously filled
out by the manufacturer.

3) Evaluate the level of testing required based on the
software Release Notes.

4) Update the software version of the devices.
5) Create the test campaign in the test management tool.
6) Retest and update previously reported anomalies.
7) Execute the tests and analyze the results. In case of new

urgent anomalies or issues discovered, manufacturers
are contacted immediately.

8) Prepare the certification report to determine whether
the device has passed the certification test process.
If accepted, the new device and software are docu-
mented in the certification database.

This process takes a few days. Certification engineers
perform all these steps manually, which costs time and effort.
This explains the need for a tool or platform that can save
time, cost and effort while maintaining the efficiency and
accuracy of the certification process.

C. CERTIFICATION TESTS EXAMPLES
Before automating the certification tests, it is important
to note that they follow the same sequence as manual
executions. Verifying that each step is completed as expected
before going to the next. For instance, to test the Call Function
(Figure 2), the corresponding steps are given by:

• Preparation:

– Update the DUT (Device Under Test) with the
correct software version.

– Insert a valid SIM card into DUT.

• Execution:

– Initiate an Outgoing Voice call.
– Verify that the call can be connected successfully.

– Verify that the radio technology corresponds to SIM
and DUT capabilities.

– Verify that the call stays connected for 60 seconds.
– Verify that the call termination completes correctly.
– Repeat with an Incoming Voice Call.

• End of the Test
Another exemple is testing the Email Application,

(Figure 2), the corresponding steps are given by:
• Preparation:

– Update the DUT with the correct software version.
– Insert a valid SIM card into DUT.
– Activate Mobile data.
– Turn Wi-Fi off.

• Execution:
– Open the email application.
– Create a new email.
– Set destination address and subject.
– Attach a file to the new email.
– Send the email.
– Wait for a reply email.
– Open reply email.
– Verify the attached file.

• End of the Test
If a test step fails, the test is declared Failed, and the event

is documented as an anomaly reported in the test management
tool and communicated to the mobile device manufacturer.

IV. PROPOSED AUTOMATED CERTIFICATION SOLUTION
The previous section mentioned that network operators must
certify mobile devices to meet various requirements and
specifications. The certification process can include more
than 400 tests, leading to long execution times for each
certification. ODACE’s solution discussed reducing the time
and effort spent on mobile device certification.

We design ODACE to enable certification engineers (CEs)
to quickly configure and start automation processes for each
DUT. The solution streamlines test execution, allowing CEs
to focus on other tasks during the process. ODACE also
simplifies the repetition of tests for performance testing.
Moreover, we design the tool to be user-friendly, and
accessible to all users, requiring no programming or technical
skills.

A. AUTOMATION DESIGN
The automated certification testing process aims to enhance
the efficiency of mobile device testing. This process involves
the following key components:

1) Automated Test Script Development and Software
Environment: Scripts are developed to automate repet-
itive and standardizable tests. These scripts simulate
user interactions with the device, such as navigating
menus, initiating calls, or sending messages. The
automation framework requires a stable software
environment (like Appium).

99866 VOLUME 13, 2025



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

FIGURE 2. Flow chart of testing the ‘‘Call’’ function and the ‘‘Email’’ function.

VOLUME 13, 2025 99867



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

2) Hardware Setup for Automated Testing: This includes
setting up devices in a controlled environment where
they can be remotely accessed and tested.

3) User Interface for Test Execution: A user-friendly inter-
face developed for testers to easily initiate, monitor, and
analyze test runs. This interface also allows for manual
intervention when necessary.

4) Reporting and Analytics: Post-test execution, the
system automatically generates detailed reports and
analytics, providing insights into test coverage, defect
trends, and other key metrics.

ODACE is based on Android Debug Bridge (ADB) and
Appium, an HTTP server that interacts with Android clients
using frameworks like Google’s UiAutomator or could be
run across iOS devices [28]. Additionally, ODACE employs
Scrcpy, a screen mirroring tool that enables test monitoring
and recording on a PC.

B. AUTOMATABILITY OF TESTS
The testing process for mobile devices encompasses a
variety of tests, some of which can be automated, while
others require manual/human intervention. For instance, the
Emergency Call test necessitates human interaction with
Public Safety Answering Point (PSAP) agents, making
automation infeasible. Likewise, tests involving Google
Maps and Voice Messaging systems resist automation due to
the need for dynamic responses to voice instructions.

Additionally, the Factory Reset test requires manual
reactivation of the USB debugger mode. Furthermore, both
video call and audio tone tests require human supervision
to verify audio and image quality. Most tests are performed
under live commercial cellular coverage, requiring control
only over the tested device. However, a subset of tests must
be executed under controlled radio environments, such as
lab Radio Frequency (RF) boxes, preventing automation.
Additionally, certain physical actions, like swapping SIM
cards or connecting headphones, are manual by nature
and thus resistant to automation. There are also tests that
remain unautomated due to their infrequent use and the
lack of substantial benefits that automation would bring.
In addition, some tests can be partially automated to reduce
manual interactions. Therefore, we propose an automatability
percentage that indicates if the test can be automated or not.

C. HARDWARE ARCHITECTURE
The ODACE platform has developed significantly to improve
efficiency and scalability. The original ODACE hardware
architecture comprised three main components:

1) Personal Computer (PC): Serving as the system’s
server, the PC ran the required software and supported
any operating system to execute the certification
processes.

2) Device Under Test (DUT): The DUT is the primary
component. The certified engineer (CE) connects it to
the PC via a USB cable to initiate the certification

process. It requires an active internet connection
through both aWi-Fi access point and mobile data over
a cellular network to perform the tests.

3) Bots: We propose the concept of Bots, which are
Android mobile phones dedicated to executing the
tests and interacting with the DUT autonomously,
eliminating the need for manual intervention.
In the exemple of call testing, an additional device other
than the DUT is required. ODACE-RMS implements a
novel solution to test telephony functions based on the
‘bot’ phones instead of relying on other DUTs.
The bots are programmed to execute various tasks
using the Automate Android application. Custom-
made automated ‘‘flows’’ handle tasks like receiving
and sending SMS and MMS, initiating and answering
calls, etc. For example, when a bot receives a call,
it searches for the correct Automate flow and follows
the designed steps automatically. As shown in Figure 3,
the Bot will wait for 2s and then answer the call.
Bots are available in a pool and are listed with their
MSISDN (phone number) and capabilities - radio
technology, voice codec and services - in a shared
document. ODACE selects bots randomly and updates
their success/fail counters to automatically eliminate
those that are not working correctly from the pool.

4) Server: The server hosts the database, which stores
the necessary data for user profiles and other required
data and manages the DUT information. This enables
ODACE to efficiently handle multiple sessions both
locally when running on a single PC and remotely
across multiple users.

5) USB-Over-IP Server: This component is the core for
the remote testing feature in our solution. It enables
devices connected to physical USB ports to be accessed
over the network as if locally connected.

Figure 4 shows the hardware architecture components.

D. SOFTWARE ARCHITECTURE
The ODACE-RMS platform is composed of several software
components, each of which plays a critical role in automating
the certification process for Android devices. This Architec-
ture introduces additional capabilities to support scalability,
multi-session management, and remote accessibility. Follow-
ing, we outline the key components:

1) Device Under Test (DUT) Software: Device manufac-
turers regularly release new software or new updates
for their software, which could be a major update,
a fault fixing, or a security edit. These updates some-
times necessitate adaptations within the ODACE-RMS
software architecture to maintain compatibility with
new versions. Consequently, DUT software is a crucial
component of the platform.
For a PC to control DUT via USB, Android security
mandates that USB access permission is allowed from

99868 VOLUME 13, 2025



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

FIGURE 3. Incoming call flow chart - Bot.

the device via an on-screen pop-up, as shown in
Figure 5.
Remote access to the device is blocked until that
is granted, which was a big challenge for us when
implementing the remote feature. This solution is intro-
duced to solve that challenge and complete that step
without manual intervention. An Automate application
program which automatically clicks ‘‘Allow’’ upon the
appearance of the ‘‘Allow USB debugging?’’ message.
The automated workflow is shown in Figure 6.

2) ODACE-RMS Frontend and Backend: It includes the
following parts:

a) Backend: The backend is implemented using the
Spring Boot Java framework, offering a scalable
and robust architecture. This design enables the
management of multiple devices and processes
simultaneously. Additionally, we use ADB com-
mands to execute various device actions.

b) Frontend: The frontend is developed using jQuery
and HTMX, enabling dynamic web interfaces
for enhanced user experience. These technologies
simplify the creation of responsive and interactive
interfaces for engineers managing the certifica-
tion process.

FIGURE 4. ODACE-RMS hardware architecture.

FIGURE 5. USB debugging notification.

3) Appium-based Testing Tool: Appium is the core
testing tool within ODACE-RMS, chosen for its
superior features compared to alternative tools, as we
explained previously. Appium supports a wide range
of programming languages, excels in black-box test-
ing, and offers extensive compatibility with differ-
ent devices, as highlighted by da Silva and de
Souza Santos [29]. This tool allows ODACE-RMS
to execute test scripts that simulate user interactions,
validating both the functionality and performance
of DUT.

4) Bots Automation Application: ODACE-RMS employs
bot devices to perform some tests that require

VOLUME 13, 2025 99869



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

FIGURE 6. ODACE-RMS USB connection workflow.

interaction with DUT. At each Bot, we develop a flow
of the ‘‘Automate’’ Android application (developed
by LlamaLab) that controls these devices, which
uses a customized automation program (flowchart)
for specific tasks and functions such as answering
incoming calls or initiating calls to particular numbers
without human interaction.

5) Database Integration: ODACE-RMS integrated Post-
greSQL for managing and storing data related to bots,
devices, test results, and user profiles. Integrated with
the Spring Boot backend, this database mainly ensures
efficient management of session data and supports
multi-session operations.

6) Digi RemoteManager: ODACE-RMSuseDigi Remote
Manager to ensure remote device management and
connectivity. This component provides functionalities

FIGURE 7. Example implementations of ASCII text handling in ODACE
code.

FIGURE 8. ODACE-RMS software architecture.

such as streamlined deployment, asset management,
automated updates, and real-time alerts [30]. It con-
nects with the DIGI hub that provides USB over IP
technology, facilitating remote device management and
connectivity.

7) ODACE-RMS Scripts: ODACE-RMS execution is
driven by script files that define the actions to be per-
formed. Script files are provided with ODACE-RMS
to cover defined test sets (Plans), others are used
to execute each specific test (Tests), and a set of
command files provide manipulations (Manipulations)
like activating Wi-Fi, managing Plane mode, restarting
the DUT, etc.
Script files are in plain ASCII text format. Users
can view, edit, and create them, providing flexibility
and modularity. These script files are parsed by the
dedicated LineScript class. Each line in these files is a
combination of a command and predefined parameters
in LineScript, which calls the required text execution
methods as shown in Figure 7.
Script files make the interaction between the user and
the tool more user-friendly and easier to understand and
allow for test and manipulation customization without
the need to edit the source code ODACE-RMS.

Figure 8 explains the software architecture and the
connection between them.

99870 VOLUME 13, 2025



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

FIGURE 9. ODACE-RMS user interface (translated from French).

V. REMOTE AND MULTI-SESSION CAPABILITIES
ODACE-RMS is a solution built upon the ODACE platform.
The old platform faces challenges like being limited to
automation only and single-device testing, which restricts
engineer productivity, and the need for physical presence to
manage devices that can’t leave the operator’s premises for
confidentiality. This limitation is significant under remote
working conditions post-COVID-19, motivating us to a trans-
formative approach to mobile Android device certification,
leveraging automation to enhance efficiency, flexibility, and
scalability in certification testing by improving the solution
to be a remotely multi-device platform.

A. MULTI-SESSION USER INTERFACE
The user interface (UI) is designed to reflect the certification
context and be user-friendly for certification engineers
without the need for special training or prior programming
expertise.

In ODACE-RMS UI, the main sections and layout have
been preserved to ensure an easy transition for certification
engineers who are used to using the previous ODACE
interface. This approach minimizes the need for additional
training and ensures that users can easily adopt the new UI.

We redesigned using Spring Boot’s capabilities, transi-
tioning from the previous FXML interface, as shown in
Figure 10, to an HTML-based web interface accessible
through a browser. This redesign enhances the user experi-
ence by making the system more user-friendly and flexible.
The web-based interface allows users to open multiple
tabs simultaneously when they run multiple ODACE-RMS
sessions.

FIGURE 10. ODACE user interface.

As shown in Figure 9, the redesigned UI is organized into
several key top and middle parts. The top part includes:

• Tools and Device Status: Located in the top left corner,
this section provides real-time updates on critical system
components, including the ADB connection, the status
of the Appium server (PC), the Appium client (device),
and the device normalization status (e.g., language and
other settings required for automation).

• Test Results Counters (Summary): The second part of
the top row displays counters summarizing the results
of the executed tests, which provide users with a quick
overview of progress.

• Device Information: The third section on the top
row presents detailed information about the connected
device, such as brand, model, software version, and
network connection status.

VOLUME 13, 2025 99871



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

• Status and Actions: The rightmost section of the
top row includes buttons for executing basic device
functions, enabling quick interaction and control.

The central section includes:
• Script Management: The middle row includes an
accordion menu, which gives access to the different
script categories, including Plans, Tests, and Manipula-
tions. Users can select scripts for execution. The selected
scripts are displayed in the Scripts Selected section
below.

• Execution Log:Occupying the rest part of the interface,
this section displays real-time progress and detailed logs
of ongoing tests.

This structured layout improves the overall efficiency of
device certification tasks and ensures that it is easy to use for
both novice and experienced users.

However, we face challenges with multi-session testing.
Specifically, CPU usage becomes 100% when running two
or more sessions simultaneously, which causes significant
delays. We addressed this challenge by optimizing the code.
The significant improvement was minimizing the number
of ADB shell commands opened and closed during the
tests. This optimization significantly reduced CPU usage and
resolved the delays in multi-session scenarios.

B. REMOTE DEVICE TESTING USING USB-OVER-IP
The need for remote features has become more important,
especially with the growing trend of hybrid work in
companies. This need encouraged us to find a solution
that allows certification engineers to interact with devices
remotely, improving flexibility and efficiency.

To implement this remote feature, we explored technolo-
gies that can share USB connections over the network. After
evaluating different options, we decided to use USB-over-
IP technology, which allows remote access to physical USB
devices as if they were connected locally.

In our ODACE-RMS solution, we chose the DIGI Any-
whereUSB Plus server,1 which supports USB-over-IP and is
reliable for multi-device environments. This server acts as a
bridge between the DUTs and remote engineers. We connect
the devices to the DIGI server using USB cables. Then, from
the engineer’s PC, the corresponding ports can be mapped
through the DIGI software.

Once connected, ODACE-RMS interacts with the devices
as if they are physically attached to the engineer’s PC. For
example, running the ‘adb devices‘ command will list both
local and remotely connected Android devices, allowing
seamless integration into the testing workflow. The number
of users who can test at the same time depends on the number
of server ports. Each port can also support multiple devices
using USB hubs, which gives the platform more scalability
and allows parallel testing across many devices and users.
Figure 11 shows the design of the remote feature components
and the connection between them.

1More details available at https://www.digi.com

FIGURE 11. ODACE-RMS remote components management design.

C. ODACE-RMS WORKFLOW
1) Device Connection: The ODACE-RMS testing pro-

cess begins when a user connects a DUT to the PC and
starts the application. For the local version, the DUT
is connected directly to the PC via USB. In the remote
scenario, the DUT is already connected to a USB-over-
IP server in the lab.

2) Device Detection and Info Collection: ODACE-
RMS monitors the PC’s USB ports and uses ADB
commands to detect connected devices automatically.
Once detected, the platform collects the main details
(model, OS version, software version, etc.) and then
stores them in a database.

3) Device Selection and Reservation: If only one device
is detected, ODACE-RMS automatically assigns it to
the active UI tab. If multiple devices are connected, the
user manually selects one. The selected device is then
reserved in the database and disabled in other tabs to
avoid conflicts.

4) Appium Configuration: To minimize delays,
ODACE-RMS collects necessary information from
shared files, such as bot data, to prepare for the tests
efficiently.

5) Test Preparation:

a) To save time, ODACE-RMS retrieves supporting
information (e.g., bot data, Clippy Phone) from
shared files before starting tests.

b) Whether using USB or USB-over-IP, ODACE-
RMS behaves the same. All data collection
and actions are performed using ADB, ensuring
consistency in both local and remote setups.

c) When started, ODACE-RMS displays all avail-
able devices (local and remote). If a user selects
a remote DUT, the platform reserves the device
until the user releases it. By default, the system
supports up to eight parallel devices per user.
This limit can be changed by modifying the
ADB_LOCAL_TRANSPORT_MAX_PORT. How-
ever, the default limit is practical for our solution
since users typically test three to four devices
simultaneously. For remote testing, the maximum

99872 VOLUME 13, 2025



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

number of users depends on the port numbers of
the hub.

6) Test Plan Execution: ODACE-RMS offers users vari-
ous test execution options. Users can select predefined
test Plan scripts, which consist of a set of tests and
manipulations corresponding to specific test types
(e.g., VoLTE, VoWi-Fi, 5G) and levels (e.g., Basic,
High-level, Regression, or Complete) as detailed in
Section III-A. For example, users can choose plans to
test LTE Basic, VoLTE Complete, or Wi-Fi Calling
Basic. Alternatively, users can execute specific actions
by selecting individual Test and Manipulation scripts.

7) Real-Time Monitoring: Every three seconds,
ODACE-RMS checks for new devices, disconnections,
or status changes. It also verifies radio tech, call status,
mobile data, and Wi-Fi. Additionally, the proposed
solution verifies the status of the Appium server,
ensuring that it remains active and that the DUT’s
Appium client is connected during the test execution.

8) Script Execution and Reporting: Upon script selec-
tion, the user clicks ‘‘Execute.’’ ODACE-RMS per-
forms required tasks by using the appropriate methods.
Upon completion, it exports a report summarizing the
outcome. The system then returns to wait for new
commands and tests to execute.

Figure 12 presents the process of the platform.

D. CASE STUDY-MOBILE ORIGINATING CALL
One of the most important functions that need to be verified
is The Mobile Originating (MO) call test. This test verifies a
device’s ability to initiate and complete outgoing calls. This
fundamental test ensures proper network registration, call
setup, voice transmission, and call termination functionality
from the device under test.

To validate theMO call function on a new software version,
the CE performs the following steps:

1) Preparation of DUT: Update the DUT with the new
software version, insert an operator SIM card, activate
USB debugging, and connect the device to the PC.

2) LaunchingODACE-RMS: Start ODACE-RMSon the
PC to initiate theAppium server and verify the presence
of the DUT.

3) Device Profile and Status Collection: ODACE-RMS
continually collects and displays the DUT’s profile and
status on its user interface, logging this information
simultaneously.

4) Activation of AppiumClient:ODACE-RMS prepares
the DUT for testing by activating the Appium client.

5) Test File Selection and Execution: The user selects
the necessary test files, adds them to the script list and
initiates the testing process.

6) Call Test Procedure: ODACE-RMS conducts the call
test by randomly selecting a BOT (Breakout Tester) and
controlling the DUT to initiate a call. It monitors the
time and waits for the call to be established.

FIGURE 12. ODACE-RMS workflow.

7) Handling Failed Call Attempts: If a call setup fails
due to BOT unavailability or malfunction, ODACE-
RMS tries with another BOT. Three unsuccessful
attempts with different BOTs resulted in a test failure.

8) Successful Call Handling: Upon successful call con-
nection, ODACE-RMS checks the Voice technology on
the DUT and then terminates the call.

VOLUME 13, 2025 99873



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

9) Test Outcome Determination: The test is declared a
PASS if the call setup, voice technology verification,
and call termination are successful; otherwise, it is
marked as FAIL.

This process ensures that the call function is thoroughly
tested and malfunctions are detected for investigation by
engineers who will create anomaly documents and report
to the manufacturer when necessary. The test cases in the
remote testing feature remain the same as those in local
testing. The only difference between local and remote testing
is the method of connection. Local devices are connected
directly via USB, while remote devices are connected using
USB-over-IP technology from the DIGI hub. Despite this
difference in connection methods, the execution process is
exactly the same for both scenarios.

Figure 13 describes the testing process.

FIGURE 13. Case study: Mobile originating call test flow chart -
ODACE-RMS.

FIGURE 14. Quarterly numbers of certification tests at Vidéotron.

VI. EXPERIMENTAL RESULTS
A. AUTOMATION RESULTS
To assess the proposed automation solution in the cer-
tification process, we evaluate its performance through
a series of benchmarks, comparing its execution times,
accuracy, and reliability against manual testing processes
in previous certification scenarios. This evaluation focuses
on the automated solution through the ODACE platform.
We, therefore, tracked the number of tests executed by
the Certification team in Vidéotron during each quarter
from Q1 2022, before ODACE introduction, until Q3 2023.
Automated tests were gradually introduced from Q2-2022
to Q1-2023. During the total period, 39135 tests were
performed, of which 13406 were with ODACE. On average,
5528 tests are performed every quarter, of which, since
the complete introduction of ODACE, 2815 are automated.
Figure 14 shows the number of tests performed quarterly;
during the last quarters of 2023, ODACE succeeded in
automating 52% of all tests executed.

To evaluate ODACE, we compare the test execution
durations of manual testing with automated testing. The time
required for preparation steps has been excluded since it is
always the same. Table 1 shows the manual and automated
time of ODACE quarterly. We clearly show that the time
required for automated tests is less than for manual testing
execution by 19% to 23%. The average test execution time
is 16.7h/month for each certification engineer and is reduced
to 12.9h/month when the same tests are done by ODACE.
This reflects the time-saving by the tool even if we ignore
the engagement time (defined as the time when the CE is
engaged in the testing process) and assume that the user
should monitor the devices, whether manually or through
automation.

TABLE 1. Manual time vs. Automated time.

99874 VOLUME 13, 2025



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

FIGURE 15. Quarterly time of certification tests with user engagement.

Figure 15 shows the times elapsed to execute predefined
‘automatable’ tests when performed manually or using
ODACE during the period covered.

Another evaluation presented by Figure 15 compares the
user engagement time, which is one of the most important
aspects of evaluating the solution. As discussed previously
in Table 1, ODACE cuts test execution time by 21.8%, but
it also allows the certification engineer to do other tasks
while ODACE executes the tests. In fact, the certification
engineer engagement time for manual testing is 100%, while
automated execution cuts that to 11%, meaning a reduction
of 89% in terms of engagement time.

B. REMOTE AND MULTI-SESSION RESULTS
In this part of the evaluation, we focus on determining how the
remote multi-session feature impacts time efficiency, opera-
tional flexibility, and CPU usage among various browsers.

To evaluate ODACE-RMS’s performance, we designed
different scenarios to highlight improvements in process
times, remote capabilities, and overall efficacy. Figure 16
presents these scenarios, each based on more than 50 test
cases. We then collected the average execution time in
seconds for comparison. All tests were conducted in the same
environment while varying the number of devices to test the
multi-session capability. The results for the classic ODACE
curve were obtained by multiplying the execution time of
a single device by the number of devices, as the classic
version does not support parallel testing (test sequentially)
For example, the test locally takes approximately 81.7 sec.
to complete. Without multi-session support, testing four
devices sequentially would require around 326.8 seconds in
total. In contrast, with ODACE-RMS’s multi-session feature,
the same tests can be executed in parallel, reducing the
total execution time to 86–91.7 second. Which is significant
time-saving. To further evaluate the remote feature, we test
ODACE-RMS under different connectivity conditions. First,
direct the USB connection to the PC. In the second case,
remote access through a DIGI hub on the same network
(geographically close). Finally, remote access from outside
Montréal while the devices remained in the lab (over 20 km
away). These scenarios covered various aspects, including

FIGURE 16. Test execution time for ODACE vs. ODACE-RMS across
different scenarios.

testing Appium, ADB commands, calling features, SMS,
network performance, and other test cases relevant to the
certification process.

The results showed consistency in the execution time as
more devices are added with ranging between 81.0 and
84.0 seconds for up to four devices, because of parallel
execution. In remote testing scenarios from within Montreal,
execution times increased slightly due to network overhead
with ranging from 85.6 to 90.0 seconds. Moreover, when
devices are tested from outside Montreal (over 20 km),
execution times increase further to between 86.1 and 95.0 sec-
onds, primarily due to added network latency. Despite these
increases, the delay introduced by remote testing remains
within an acceptable range of 2% to 7% compared to local
execution.

C. QUALITATIVE RESULTS OF ODACE-RMS
In this part of the evaluation, we focus on its impact on
usage. We assess its effectiveness in terms of time efficiency,
resource usage, and overall utility based on engineer feedback
and the survey outcomes.

• Time Efficiency: We assess test completion times in
specific quarters using ODACE-RMS compared to the

VOLUME 13, 2025 99875



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

original ODACE and Manual testing. The results show
reductions due to simultaneous multi-device testing.
Figure 17 illustrates the time savings ODACE-RMS
(2 devices) achieved compared to manual and ODACE
for the same number of tests.

FIGURE 17. ODACE-RMS improvement time.

• Resources Efficiency: We execute a series of tests to
compare resource usage across three major browsers
(Chrome, Edge, and Firefox). We evaluate that for
single-device and multi-device usage. All other appli-
cations and browser tabs were closed to isolate the
resource consumption of the ODACE-RMS system.
A custom Java script collected system resource data
every 20 seconds, measuring CPU (system and process)
and memory usage (reflects overall system consump-
tion). This evaluation was necessary to suggest the best
browser to use. All three browsers show high CPU
usage during the first 50 seconds of startup. After that,
usage drops and stabilizes below 30% for system CPU
and below 5% for process CPU. ODACE-RMS scales
efficiently with minimal overhead, with memory usage
increasing by only around 1.6% for Edge, 3.4% for
Firefox, and 2.5% for Chrome, which consumes slightly
more system memory than other browsers.
Figure 19 shows the results for single-device usage,
where all browsers have good performance with little
distinction for Edge, as it is more stable than the other
browsers. Firefox is the most lightweight in terms of
memory and CPU use, while Chrome is more resource-
intensive initially. All browsers stabilize quickly.
However, in Figure 20, we can see that Edge proved
better results in the multi-device scenario, consuming
the least memory and maintaining a balanced CPU
utilization compared to Chrome and Firefox. Also,
when we add a device, CPU load is negligible after
initialization, regardless of DUT count. Memory usage
grows by 1.6% to 8.8% with the additional DUT.

• Efficacy: ODACE-RMS allows users to complete
certifications without physical device access. We expect
the multi-device feature to boost the number of tests

conducted daily or weekly, enhancing performance
efficiency.
To evaluate the efficacy of ODACE-RMS, we surveyed
certification engineers at Vidéotron. Participation was
voluntary and anonymous, with responses collected
from all engineers in the department.
The questionnaire comprised 10 questions. Results
indicated that engineers rated the difficulty of lab-only
tests (without remote capability) at an average of
3.5 out of 5, which is around 70%. This difficulty
rating explains the unanimous support (100%) for
hybrid certification testing (local and remote). Addi-
tionally, 67% of engineers reported a commute time of
30-60 minutes each way, while 33% exceeded one
hour to arrive at the office, highlighting potential time
savings weekly with remote testing. Furthermore, 90%
agreed that remote capabilities reduce the complexity of
cables/devices.
These results indicate strong preference and flexibility
gains with ODACE-RMS’s remote features.

FIGURE 18. Survey results: Preferences for remote certification with
ODACE-RMS.

VII. DISCUSSION AND FUTURE DIRECTIONS
A. ODACE-RMS AUTOMATION DISCUSSION
While the ODACE-RMS platform has shown clear ben-
efits by reducing user effort, enhancing time efficiency,
and decreasing execution times to save certification time,
certain challenges remain unresolved. For example, achieving
consistency across various device vendors, models, operating
systems, and software versions is particularly challenging,
making it difficult to maintain a universal code base.
As a result, supporting new Android releases oftentimes
requires manual updates to the ODACE-RMS code. Another
challenge is that specific tests, such as emergency call
functionality and audio quality verification, cannot be fully
automated and still require human intervention. Additionally,
the increased complexity introduced by new features makes
platform maintenance more challenging. Although remote
testing offers flexibility, some tests still should be done
in person, and device issues during remote sessions may
necessitate a technician’s presence in the lab. To manage this,

99876 VOLUME 13, 2025



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

FIGURE 19. Resource usage across different browsers - single DUT.

FIGURE 20. Resource usage across different browsers - multi DUT (Two devices).

the Vidéotron lab rotates one CE daily to handle such cases.
Remote testing via USB-over-IP may also cause some delays
from 7.5% to 11% in some cases when we compare the local
execution timewith remote execution time(distention ofmore
than 20km) due to the network latency, which could impact
the overall testing time.

The testing environment and framework infrastructure can
be costly and challenging. Maintaining automation tools and
keeping them up to date can also be complex.

B. FUTURE DIRECTIONS
Some potential options for improving research directions
to enhance ODACE-RMS’s capabilities further include
integrating the operator’s network tracing application into
ODACE-RMS, which would expand testing capabilities.
Furthermore, using AI-powered image recognition presents
a valuable enhancement for managing OS software ver-
sion updates, effectively addressing challenges related to
device compatibility and ensuring consistency across various
vendors and operating system versions. In addition, devel-
oping support to include iOS devices would significantly
extend the platform’s applicability across multiple testing
environments.

VIII. CONCLUSION
In this paper, we introduce ODACE-RMS, a platform
designed to automate part of the manual mobile phone
certification process. ODACE-RMS further advances the cer-
tification testing process for Android devices by introducing
simultaneous multi-device testing and remote testing capa-
bilities. These new features simplify the testing workflow

and reduce certification process time. ODACE-RMS aligns
with the remote work trend by allowing tests to be performed
without physical device interaction. Our evaluation shows
that these features increase user satisfaction and enhance
the certification process, making ODACE-RMS a timely and
flexible solution.

One of ODACE-RMS’s significant strengths is its user-
friendly design, which makes it accessible to new employees
and interns who may lack technical expertise. By reducing
the time needed for routine tasks, ODACE-RMS improves
the learning experience of interns during their brief training
periods while allowing companies to reallocate resources
toward more critical tasks. This approach improves overall
efficiency. The results showed that ODACE-RMS sig-
nificantly reduces time and effort. Additionally, ODACE
addresses several challenges highlighted in related studies,
including reducing execution time, providing a friendly
interface, and supporting comprehensive history and log files
for retrospective analysis and evaluation.

ACKNOWLEDGMENT
The authors would like to acknowledge the contributions of
the certification laboratory team and interns at Vidéotron,
a Canadian telecom operator. Their collaboration and support
were instrumental in the development of ODACE, encom-
passing both hardware and software components.

An earlier version of this paper was presented in part at
the 7th IEEE Workshop on NEXt Level of Test Automation
(NEXTA 2024) and in part at the IEEE International
Conference on Software Testing, Verification, and Validation
(ICST 2024), Toronto, ON, Canada, in May 2024 [DOI:
10.1109/ICSTW60967.2024.00060].

VOLUME 13, 2025 99877



S. Mojahed et al.: ODACE-RMS: A Remote Web-Based Platform for Automated Multi-Device Android Testing

REFERENCES
[1] S. Mojahed, R. Drouin, and L. Sboui, ‘‘ODACE: An appium-based testing

automation platform for Android mobile devices certification,’’ in Proc.
IEEE Int. Conf. Softw. Test., Verification Validation Workshops (ICSTW),
May 2024, pp. 301–308.

[2] A. Bertolino, ‘‘Software testing research: Achievements, challenges,
dreams,’’ in Proc. Future Softw. Eng. (FOSE), May 2007, pp. 85–103.

[3] N. G. Berihun, C. Dongmo, and J. A. Van der Poll, ‘‘The applicability of
automated testing frameworks for mobile application testing: A systematic
literature review,’’ Computers, vol. 12, no. 5, p. 97, May 2023.

[4] S. Godboley, D. Dalei, R. Sadam, and D. P. Mohapatra, ‘‘Agile GUI testing
by computing novel mobile app coverage using appium tool,’’ inProc. 38th
ACM/SIGAPP Symp. Appl. Comput., Mar. 2023, pp. 1026–1029.

[5] We Are Social Hootsuite. (2024). DIGITAL 2024: October Global
Statshot. Accessed: Oct. 30, 2024. [Online]. Available: https://
datareportal.com/reports/digital-2024-october-global-statshot

[6] S.W. G. AbuSalim, R. Ibrahim, and J. A.Wahab, ‘‘Comparative analysis of
software testing techniques for mobile applications,’’ J. Phys., Conf. Ser.,
vol. 1793, no. 1, Feb. 2021, Art. no. 012036.

[7] A. Li and C. Li, ‘‘Research on the automated testing framework for
Android applications,’’ in Proc. Int. Conf. Comput. Eng. Netw., Jan. 2022,
pp. 1056–1064.

[8] D. Vajak, R. Grbic, M. Vranješ, and D. Stefanović, ‘‘Environment for
automated functional testing of mobile applications,’’ in Proc. Int. Conf.
Smart Syst. Technol. (SST), Oct. 2018, pp. 125–130.

[9] A. M. Sinaga, Y. Pratama, and F. O. Siburian, ‘‘Comparison of graphical
user interface testing tools,’’ J. Comput. Netw., Archit. High Perform.
Comput., vol. 3, no. 2, pp. 123–134, Jul. 2021.

[10] L. C. Chaves, F. C. M. Oliveira, L. A. Tiago, and R. G. V. Castro, ‘‘Robert:
An automated tool to perform mobile application test,’’ in Proc. 10th Int.
Conf. Comput. Technol. Appl., May 2024, pp. 33–36.

[11] K. R. Halani, Kavita, and R. Saxena, ‘‘Critical analysis of manual versus
automation testing,’’ in Proc. Int. Conf. Comput. Perform. Eval. (ComPE),
Dec. 2021, pp. 132–135.

[12] K. Thant and H. Tin, ‘‘The impact of manual and automatic testing on
software testing efficiency and effectiveness,’’ Indian J. Sci. Res., vol. 3,
no. 3, pp. 88–93, 2023.

[13] H. Kim, B. Choi, and S. Yoon, ‘‘Performance testing based on test-driven
development for mobile applications,’’ in Proc. 3rd Int. Conf. Ubiquitous
Inf. Manage. Commun., Feb. 2009, pp. 612–617.

[14] M. A. Salam, S. Taha, and M. G. Hamed, ‘‘Advanced framework for
automated testing of mobile applications,’’ in Proc. 4th Novel Intell. Lead.
Emerg. Sci. Conf. (NILES), Oct. 2022, pp. 233–238.

[15] N. Verma,Mobile Test AutomationWith Appium. Birmingham, U.K.: Packt
Publishing Ltd, 2017.

[16] S. Singh, R. Gadgil, and A. Chudgor, ‘‘Automated testing of mobile
applications using scripting technique: A study on appium,’’ Int. J. Current
Eng. Technol. (IJCET), vol. 4, no. 5, pp. 3627–3630, Jan. 2014.

[17] A.Motwani, A. Agrawal, N. Singh, and A. Shrivastava, ‘‘Novel framework
for browser compatibility testing of aWeb application using selenium,’’ Int.
J. Comput. Sci. Inf. Technol., vol. 6, no. 6, pp. 5159–5162, 2015.

[18] H. Minh Tran, T. Duc Ninh, T. Duc Tran, V. Van Ngo, and L. Duc
Nguyen, ‘‘Automation testing with appium framework in IP multimedia
subsystem,’’ in Proc. 14th Int. Conf. Inf. Commun. Technol. Converg.
(ICTC), Oct. 2023, pp. 579–582.

[19] J. Cui, W. Chen, Q. Wan, Z. Gan, and Z. Ning, ‘‘Design and analysis of a
mobile automation testing framework: Evidence and AI enhancement from
Chinese Internet technological companies: A case study,’’ Frontiers Bus.,
Econ. Manage., vol. 14, no. 2, pp. 163–170, Apr. 2024.

[20] A. A. Alotaibi and R. J. Qureshi, ‘‘Novel framework for automation testing
of mobile applications using appium,’’ Int. J. Modern Educ. Comput. Sci.,
vol. 9, no. 2, pp. 34–40, Feb. 2017.

[21] A. K. Rao, S. Prasad, and E. Rao, ‘‘Quality benefit analysis of software
automation test protocol,’’ Int. J. Mod. Eng. Res., vol. 2, no. 5,
pp. 3930–3933, 2012.

[22] A. Jain and S. Sharma, ‘‘An efficient keyword driven test automation
framework for Web applications,’’ Int. J. Eng. Sci. Adv. Technol, vol. 2,
no. 3, pp. 600–604, 2012.

[23] N. Lukić, S. Talebipour, and N. Medvidović, ‘‘Remote control of iOS
devices via accessibility features,’’ in Proc. ACM Workshop Forming
Ecosystem Around Softw. Transformation, Nov. 2020, pp. 35–40.

[24] Automated Testing Framework (ATF), SEGRON, Bratislava, Slovakia,
2024.

[25] J. Yoon, R. Feldt, and S. Yoo, ‘‘Autonomous large language model agents
enabling intent-driven mobile GUI testing,’’ 2023, arXiv:2311.08649.

[26] S. Yu, C. Fang, M. Du, Z. Ding, Z. Chen, and Z. Su, ‘‘Practical, automated
scenario-basedmobile app testing,’’ IEEE Trans. Softw. Eng., vol. 50, no. 7,
pp. 1949–1966, Jul. 2024.

[27] Z. Liu, C. Chen, J. Wang, M. Chen, B.Wu, X. Che, D.Wang, and Q.Wang,
‘‘Make LLM a testing expert: Bringing human-like interaction to mobile
GUI testing via functionality-aware decisions,’’ in Proc. IEEE/ACM 46th
Int. Conf. Softw. Eng., Apr. 2024, pp. 1–13.

[28] J. Li and H. Cao, ‘‘Design and implementation of API automation testing
system for mobile hybrid mode based on appium technology,’’ in Proc. 7th
Int. Conf. Electron. Inf. Technol. Comput. Eng., Oct. 2023, pp. 1478–1484.

[29] G. da Silva and R. de Souza Santos, ‘‘Comparingmobile testing tools using
documentary analysis,’’ in Proc. ACM/IEEE Int. Symp. Empirical Softw.
Eng. Meas. (ESEM), Oct. 2023, pp. 1–6.

[30] Digi Remote Manager User Guide, Digi Int., Hopkins, MN, USA, 2023.

SUNDOS MOJAHED (Student Member, IEEE)
received the Diplôme degree in computer science
from Palestine Polytechnic University (PPU),
Hebron, Palestine, in 2017. She is currently pur-
suing the master’s degree in software engineering
with École de Technologie Supérieure (ÉTS),
Montreal, Canada. From 2017 to 2019, she was
a Laboratory Supervisor with the College of IT
and Computer Engineering and as a Lecturer in
applied professions with PPU. She completed an

internshipwithVidéotron,Montreal, from 2021 to 2024. Her current research
interests include software engineering, mobile and web development, and
software automation.

RÉJEAN DROUIN received the Baccalauréat
en Génie Électrique (B.Sc.A.es) degree from
Université Laval, Canada, in 1993. He practiced
as a Telecommunication Engineer with a major
cellular telephony equipment provider and oper-
ator in Q&A and technical support, providing
emergency resolution, network planning, commis-
sioning, optimization, and tool development. Since
2021, he has pioneered and led the development
of Automated Device Certification (ODACE)

with Vidéotron, Montreal, Canada. His current research interest includes
networking and automation.

LOKMAN SBOUI (Senior Member, IEEE)
received the Diplôme d’Ingénieur degree (Hons.)
from École Polytechnique de Tunisie (EPT),
La Marsa, Tunisia, in 2011, the M.Sc. and Ph.D.
degrees from the King Abdullah University of
Science and Technology (KAUST), in 2013 and
2017, respectively. He was a Certification Analyst
for mobile devices with Vidéotron and a Canadian
Telecom Operator located in Québec City,
from 2020 to 2021. He is currently an Associate

Professor with École de Technologie Supérieure (ÉTS), Montreal, Canada,
in the Department of System Engineering. His current research interests
include energy-efficient wireless communications, LEO satellites for the
IoT, automation, urban air mobility (UAM), edge computer vision, cognitive
radio, industrial digital twins, and VoIP protocols. He has been with IEEE
WIRELESS COMMUNICATIONS LETTERS Editorial Board, since 2021.

99878 VOLUME 13, 2025


