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Abstract: Monitoring respiratory parameters is essential in pediatric intensive care
units (PICUs), yet bedside tidal volume (Vt) measurement is rarely performed due to
the need for invasive airflow sensors. We present a real-time, non-contact respiratory
monitoring system using the Azure Kinect DK (Microsoft, Redmond, WA, USA) depth
camera, specifically designed for use in the PICU. The system automatically tracks thoracic
volume variations to derive a comprehensive set of ventilator equivalent parameters: tidal
volume, respiratory rate, minute ventilation, inspiratory/expiratory times, I:E ratio, and
peak flows. Results are displayed via an ergonomic web interface for clinical use. This
system introduces several innovations: real-time estimation of a complete set of respiratory
parameters, a novel infrared-based region-of-interest detection method using YOLO-OBBs,
enabling robust operation regardless of lighting conditions, even in total darkness, making
it ideal for continuous monitoring of sleeping patients, and a pixel-wise 3D volume compu-
tation method that achieves a mean absolute error under 5% on tidal volume. The system
was evaluated on both a healthy adult (compared to spirometry) and a critically ill child
(compared to ventilator data). To our knowledge, this is the first study to validate such a
contactless respiratory monitoring system on a non-intubated child in the PICU. Further
clinical validation is ongoing.

Keywords: depth sensor; intensive care; respiratory monitoring; spirometry; automatic; real-time

1. Introduction
1.1. Motivation

In intensive care units (ICUs), patients have critical conditions that require careful
medical care involving monitoring of vital signs to prevent possible dangerous situations [1].
These patients are admitted to the unit after surgery or when they have multiple organ
damage and/or severe respiratory infection [2].

In PICUs, the main cause of hospitalization before the age of one year is bronchiolitis,
representing a major challenge [3]. It is characterized by an increase in respiratory frequency,
signs of respiratory distress, and the presence of crepitating rales, symptoms which may
progress to respiratory depression [3]. According to data from the Centre Hospitalier
Universitaire Sainte-Justine (CHUSJ), 60% of the 1000 children admitted to intensive care
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each year show signs of respiratory depression, a condition defined by reduced respiratory
frequency and amplitude, often accompanied by snoring or periods of apnea, with a notable
drop in oxygen saturation.

Because of their high metabolic rate, children consume more oxygen, requiring in-
creased cardiac output and ventilation. Before the age of 8 years, their gas exchange surface
area is reduced and lung dead space is greater, exposing them to rapid deoxygenation in
the event of insufficient ventilation [4–6]. Early detection of low lung volumes is therefore
crucial for prompt initiation of non-invasive ventilation or intubation [7,8]. In this context,
monitoring, measurement and optimal management of respiratory function are crucial.
There are two categories of patients: those on ventilators, whose respiratory function is
closely monitored, and those on spontaneous ventilation, for whom assessment of respira-
tory function remains complex [9]. “Although experienced healthcare professionals can
obtain accurate spirometry on children aged five years and upwards, the ability to perform
consistently is from age eight onwards” [10].

This increases the importance of having a system capable of monitoring the respiratory
function of non-ventilated patients in real time, to anticipate deterioration and avoid
delayed intubation, which could lead to severe complications or even be life-threatening.

The aim of this article is to propose a non-invasive monitoring system based on the
use of a depth camera and an integrated infrared imaging system. The system is designed
to observe thoracic movements during breathing [11]. The estimation method is based on
the following assumption, which has been adopted by a number of existing studies [12–15]:
when the patient is lying motionless in bed and there is no occlusion on the surface of the
torso, changes in respiratory volume can be reflected by deformation of the thorax and
abdomen. This system needs to be precise and mobile, which will enable it to be used
directly at the patient’s bedside, facilitating its adoption in the clinical environment.

Ultimately, this innovative system could not only improve monitoring of respiratory
function in pediatric intensive care but also reduce hospitalization time for patients and
offer a non-invasive spirometry testing method, thus contributing to reliable and rapid
management of children in respiratory distress.

1.2. Current State of the Research Field

A variety of techniques have been proposed in the literature for assessing chest wall
motion. These approaches can be classified into two broad categories: contact methods
(such as magnetometers and respiratory inductive plethysmography) and non-contact
methods (such as inductive plethysmography) [16–18]. The focus here is on the second
category, particularly those using RGB-D cameras such as the Intel® RealSense™ D435I
(manufactured by Intel Corporation, Aloha, OR, USA; Hillsboro, OR, USA).

Depth cameras have revolutionized computer vision for respiratory assessment. They
can be used to extract various respiratory parameters in real time or post-processed. As
illustrated in Table 1, some studies measure basic signals, such as respiratory motion or the
respiratory airflow waveforms. Others calculate respiratory rate (RR) or tidal volume (Vt).

In addition to respiratory motion and volume estimation, imaging systems, particu-
larly RGB and RGB-D cameras, have also been used to extract other physiological signals
such as heart rate and oxygen saturation. Recent works have demonstrated the feasibility
of remote photoplethysmography (rPPG) using RGB images [37,38], while hybrid sys-
tems using RGB-D data have enabled multi-parameter monitoring in neonatal intensive
care settings [36]. Several studies have evaluated the accuracy of respiratory volume es-
timation using image-based techniques. For instance, in [36] the proposed method was
evaluated on a cohort of three neonates, yielding a mean absolute error (MAE) of 12.81%
for tidal volume estimation. In contrast, the study presented in [20] tested the approach
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on a larger cohort of 44 intensive care unit (ICU) patients, reporting a tidal volume error
of −0.5 ± 8.1%.

Table 1. Comparison of measured parameters and their real-time capability in respiratory
assessment methods.

Author Name, Year Measured Parameters Real-Time

Xia and Siochi, 2012 [19] Respiratory motion Yes
L’Her, Nazir, Pateau, and Visvikis, 2022 [20] RR and Vt Yes

Addison et al., 2023 [21] RR Yes
Seppänen, Kananen, Noponen, Alho, and Seppänen, 2015 [12] Respiratory airflow waveforms No
Aoki, Nakamura, Fumoto, Nakahara, and Teraoka, 2015 [22] TV No

Martínez and Stiefelhagen, 2012 [23] RR Yes
Addison et al., 2022 [24] RR and Vt No

Addison, Smit, Jacquel, and Borg, 2020 [25] RR No
Yang, Han, andBolic, 2020 [26] Respiratory airflow waveforms No

Nakajima, Matsumoto, and Tamura, 2001 [27] RR Yes
Bernacchia et al., 2014 [28] RR No

Imano et al., 2020 [29] RR and Vt No
Yu, Liou, Kuo, Lee, and Hung, 2012 [30] Respiratory airflow waveforms Yes

Wijenayake and Park, 2017 [31] Respiratory airflow waveforms Yes
Benetazzo, Freddi, Monteriù, and Longhi, 2014 [32] RR Yes

Addison, Antunes, Montgomery, Smit, and Borg, 2023 [33] RR Yes
Penne, Schaller, Hornegger, and Kuwert, 2008 [34] Respiratory airflow waveforms Yes

Rehouma, Noumeir, Masson, Essouri, and Jouvet, 2019 [35] RR and Vt Yes
Estévez et al., 2024 [36] RR, Vt, HR, SpO2 Yes

RR: respiratory rate; Vt: tidal volume, HR: heart rate, SpO2: oxygen saturation.

Both methods rely on extracting a one-dimensional signal from the acquired image
data by spatially averaging the pixels within the region of interest (ROI). The resulting
volume–time curve is derived by estimating the volume of the ROI over time, using the
following relationship:

V(k) = D(k)× S

where D(k) denotes the average depth variation for the kth image frame, and S represents
the surface area of the ROI.

1.3. Summary of Contributions

We have developed a complete, real-time, contactless respiratory monitoring system
capable of estimating a full set of ventilator-equivalent parameters: respiratory rate, tidal
volume, minute ventilation, inspiratory and expiratory times, inspiratory-to-expiratory
ratio, and peak inspiratory and expiratory flows. The system captures depth video using
the Azure Kinect camera and automatically processes the data to generate live respira-
tory signals and parameter estimates, all displayed through an ergonomic web interface
designed for ease of use by medical staff, without requiring prior training.

This work introduces several key innovations. First, the system performs real-time
estimation of multiple respiratory parameters, going beyond the limited metrics often
found in previous studies. Second, it includes a novel region-of-interest detection method
based on YOLO-OBBs trained on infrared images, allowing robust and reliable detection of
the thorax regardless of ambient lighting, an essential feature for continuous monitoring in
intensive care units, including during nighttime. Third, the system employs a pixel-wise
3D volume estimation algorithm, enabling precise tidal volume measurement with a mean
absolute error below 5%. Finally, this study presents the first clinical validation of such a
system on a non-intubated, critically ill child in the PICU, confirming its clinical feasibility
and practical relevance.
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2. Materials and Methods
The system consists of an RGB-D camera and a laptop for real-time data acquisition and

processing. In terms of camera selection, the Kinect Azure (Microsoft, Redmond, WA, USA)
appears to be an appropriate choice over its competitors such as stereoscopy and structured
light for the study of respiration. This preference is due to its affordability, comprehensive
documentation, availability of a Software Development Kit (SDK) and compatibility with
Windows 11 software. In addition, its widespread adoption in the scientific community
guarantees a substantial knowledge base and support for the development of our system.
Acquisition and interaction with camera data is carried out using the open-source Azure
Kinect SDK 1.4.1 and NuGet packages K4AdotNet 1.4.17 [39].

The accuracy of the camera’s depth sensor varies according to the distance to the object,
over a range from 0.50 m to 3.86 m [40]. At a distance of one meter, the Kinect Azure has
an average error of 1.1 mm. [40]. However, the closer you are, the smaller the error is. The
resolution of the Kinect Azure’s depth camera depends on the mode selected. For our study,
the narrow field of view (NFOV) unbinned (640 × 576) mode [41] was used. In this mode, no
pixel binning is applied, meaning that each pixel is preserved without averaging neighboring
pixels. This ensures maximum detail in depth measurements. Additionally, the narrow field
of view of 75◦ horizontally and 65◦ vertically is enough to observe patients. The device is
placed arbitrarily above the bed, as long as the camera’s field of view covers the area where
the subjects will position themselves, from head to toe. There is no strict requirement for a
fixed distance. However, the closer the camera is, the higher the resolution is in the region
of interest, which improves measurement precision. This flexibility is possible because the
camera is mounted on a mobile stand with an articulated arm, allowing for easy positioning,
as illustrated in Figure 1. The camera is generally oriented with an angle close to 90◦ to remain
approximately perpendicular to the patient’s torso. No correction is required for off-center
camera position, as the method relies solely on temporal variations in depth. Each pixel’s area
contribution is calculated independently, making the system robust to moderate off-center
positioning. For replication purposes, we noted afterward that the camera was positioned at
a height of 1.1 m above the bed for adults and at 80 cm for the child. Given the hypothesis
made, a single camera placed perpendicular to the plane of this movement to ensure that
the depth changes captured correspond to vertical displacements was used to measure the
breathing movement. The study protocol was approved by the CHUSJ ethics committee
(number 2024-6457 & number 2016-1242).

The methodology can be broken down into 4 main parts: detection of the region
of interest, calculation of the area and volume within the ROI, calculation of respiratory
parameters, and real-time communication between components.
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2.1. Detection of the ROI

To detect the region of interest (thorax) using the camera, there are several methods
with different advantages. The Kinect camera has a body tracking algorithm, which locates
the position of the person by estimating the 3D coordinates of key points such as the head,
chest, hands, and knees. However, it does not work in many situations, such as lying in
bed or in the presence of occlusions such as those encountered in intensive care (ventilation
masks, bedsheets, vital sensors, etc.). Moreover, this solution is very costly in terms of
computer resources and is not customizable. It is therefore essential to choose a system that
is fast, accurate, customizable, and open source. Artificial intelligence algorithms are the
best way to meet these requirements for thorax detection. Among them, you only look once
(YOLO) [42] stands out for its increased precision and faster execution times. In addition, it
runs on GPU-less devices and is easy to install and train.

YOLO offers to perform various tasks with their models, such as object detection,
segmentation, image classification, pose estimation, or oriented bounding boxes (OBBs). In
our experiments, the YOLO11n-OBB model was selected, as it is the fastest and lightest.
In this system, the precise location of the joints is not necessary, as only the position of
the oriented box is required to perform the calculations. An oriented bounding box is a
rectangular box that can rotate to fit the orientation of the object. In fact, since the objective
is to analyze volume variations in space rather than the total volume occupied, it is possible
to select an area that includes part of the bed. As long as these remain motionless, they will
not introduce additional volume variations.

We needed to train the model so that it could function in the intensive care environ-
ment. Two solutions are available for this. The first, more traditional one, is to perform
ROI detection on a color image. The second is to use the infrared image captured by the
Azure Kinect camera. To make the best choice, we compared the performance of one model
trained on color images and another on infrared images. To do this, a dataset was collected
consisting of 36 color and infrared (grayscale) images with 640 × 576 px resolution. The
images were taken under intensive care conditions at CHUSJ and included data from
six healthy adult participants and from 6 pediatric patients hospitalized in the PICU, dif-
ferent from those used for the evaluation of the tidal volume estimation system. For each
adult, five images were captured, both clothed and with their torso exposed. No medi-
cal equipment (such as electrodes or leads) occluded the torso region of interest in these
images. However, for the pediatric patients, standard monitoring equipment may have
been present, reflecting typical clinical conditions. To avoid over-fitting, random image
processing, including variations in tint, saturation, brightness, scaling, flipping, combining,
deleting, and cropping, was applied by YOLO, promoting artificial data augmentation and
enriching the diversity of training data [43].

Table 2 presents a comparison of the model’s performance on RGB and infrared (IR)
images based on three key metrics: mAP50-95, accuracy, and prediction speed. The results
indicate a clear advantage of infrared imaging in terms of both detection performance
and processing efficiency. The results of mAP50-95 suggest that infrared data provides
more distinguishable features, allowing the model to detect objects with greater reliability.
Similarly, the accuracy of the model follows the same trend. Moreover, the system can be
used without constraints of ambient lighting conditions [44]. This is an advantage in the
PICU environment, where illumination levels vary depending on the time of day or when
the patient is sleeping. In addition to its robustness to lighting variation, the use of infrared
(IR) images instead of RGB offers a significant privacy advantage. IR imagery conveys
fewer facial features and identifiable visual details than RGB, reducing the risk of patient
identification. This makes IR particularly suitable for clinical environments such as PICUs,
where continuous video monitoring must comply with strict privacy and ethical standards.
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Table 2. Comparison of different metrics depending on the modality studied (traditional color (RGB)
vs. infrared (IR) images).

Metrics RGB IR

mAP50-95 (Mean Average
Precision) 0.77 0.93

Accuracy 0.7 1
Prediction speed (in ms) 213 179

Accuracy in the ROI segmentation task is defined as the proportion of correctly predicted oriented bounding
boxes (OBBs), where a prediction is considered correct if the intersection over union (IoU) with the ground truth
is greater than 0.5. Predicted speeds are based on an Intel Core i5-135H processor.

The trained model is able to make correct predictions even when the human body
does not appear entirely in the camera’s field of view, or when several people are present
in front of the camera. In this case, the algorithm chooses to observe the area on which the
prediction task has given the highest confidence score. The confidence score in the case
of an OBB inference represents the model’s certainty about the presence and orientation
of the object within the predicted bounding box. A higher confidence score indicates that
the model is more certain about the object’s position, shape, and orientation. Figure 2
shows an example of an IR image with a blue rectangle representing the predicted OBB.
The confidence score is also displayed.
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2.2. Area and Volume

Retrieving depth data measured by the Kinect Azure camera is a step made easier
using the SDK. However, knowledge of how to use these depth measurements to calculate
the volume variation is still needed. The idea is to multiply the depth variation (in mm)
by the surface area of the region of interest (in mm2) on each image to obtain the volume
variation (in mm3 converted to mL) between the camera and the region of interest.

Since the system needed to be fully autonomous, it must be able to determine this
area without requiring direct measurements on the patient. To achieve this, one solution
was to use the tools provided by the Kinect SDK, which enabled transformations between
different coordinate systems. Indeed, the color and depth cameras are associated with an
independent 2D coordinate system and are also associated with a 3D coordinate system.
Taking this information into account, two methods can be used to calculate the area of the
region of interest.

The simplest method was to calculate the area considering the four corners, then
multiply by the average depth in the zone. However, there were several problems with
this method. The first is the effect of distortion caused by the lens placed in front of the
sensor [40]. However, the SDK provides a calibration matrix to reduce this distortion effect,
inherent to the pinhole camera model. The second problem occurred because not all pixels
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are at the same sensor depth, creating barrel distortion. This phenomenon means that each
pixel does not have an identical area in 3D.

The other method was the one used in the system, as it had the potential to provide a
more accurate estimate of volume. This method involves calculating the area of each pixel
contained in the ROI. The idea here is that, to estimate the area of a pixel in a depth map,
we use the pixel’s immediate neighbors and transform them into 3D using Kinect SDK. By
observing the difference in position between these pixels, we estimate the surface area of
each of them. The system detects and calculates the ROI area in a single frame for the entire
acquisition. This results in a signal that is less affected by variations in surface area.

For each frame captured by the sensor, the depth of the pixel measured is multiplied
by its associated area. Each individual volume is summed up to obtain the total volume
between the thorax and the camera at a given time t.

2.3. Calculation of Respiratory Parameters

The aim of the application was to perform non-invasive spirometry and thus to
calculate a set of respiratory parameters. All these parameters were calculated from the
change in volume measured by the camera. A zero setting based on the first value was
performed, as the aim was to analyze the volume variation rather than the static volume
between the camera and the patient’s thorax. The signal was filtered using a finite impulse
response (FIR) filter to remove high-frequency noise unrelated to respiratory motion, such
as frame-specific pixel fluctuations. The filter cut-off frequency was defined based on
known maximum respiratory rate values reported in physiological studies and reference
tables [45]. Specifically, an order of 10 and a cut-off frequency of 2 Hz (corresponding
to 120 breaths per minute) were chosen. This value ensures attenuation of frequencies
higher than the maximum expected respiratory rate and accommodates both pediatric and
adult subjects, as children can exhibit significantly higher respiratory rates than adults.
These parameters were selected to preserve the morphology of the respiratory signal while
attenuating artifacts introduced by system noise. The filtering step also facilitates robust
peak and trough detection, which is essential for accurate computation of respiratory cycles.
Moreover, it ensures that the derived flow signal is smooth and physiologically coherent,
enabling reliable estimation of peak inspiratory and expiratory flow. Before processing
the signal, the volume variation must be inverted, as it evolves in the opposite direction
to reality. As the volume in the lungs increases, the volume between the camera and the
thorax decreases.

A function from the SciPy library (scipy.signal.find_peaks) [46] was used to identify
peaks and troughs in the respiratory signal. This function detects local maxima by com-
paring neighboring samples and allows fine-tuning via parameters such as peak height,
prominence, and minimum distance between peaks. Based on the known maximum res-
piratory rate (RR), we set a minimum distance of 15 frames between consecutive peaks.
This corresponds to a maximum RR of 120 breaths per minute (i.e., one peak every 0.5 s),
which, at 30 FPS, means a minimum of 15 frames. This setting helps to avoid the detection
of multiple successive peaks due to small variations in volume.

From these markers, respiratory frequency was determined by dividing the number
of complete cycles by the total duration measured, from the start of the first cycle to the
end of the last. It defines the speed of breathing. The tidal volume of each cycle was
obtained by calculating the difference between the peak volume and the corresponding
trough volume. Next, the expired volume per minute was calculated by summing all
tidal volumes, then dividing by the acquisition time, normalized to one minute. Tidal
volume is the amount of air exhaled during each respiratory cycle. Inspiratory time and
expiratory time correspond respectively to the duration of inspiration and expiration
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during a respiratory cycle. Another respiratory parameter displayed by the ventilator is
the inspiratory to expiratory (I:E) ratio, which is expressed according to the convention of
setting the inspiratory time at 1. To obtain the value of the relative expiratory time, simply
divide the average expiratory time by the average inspiratory time. The I:E ratio indicates
the proportions of each respiratory cycle devoted to inspiratory and expiratory phases.
These parameters can be seen in Figure 3.
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Finally, the last parameter to be calculated was the variation in flow rate as a function
of time. Flow rate is defined as the derivative of volume with respect to time. In this way,
the peak and trough detection steps were applied again. The peak expiratory flow (PEF)
was determined by measuring the difference in flow between a peak and the following
trough, while the peak inspiratory flow (PIF) was obtained in the opposite direction. Flow
rate provides information on the speed at which the air volume is moving.

2.4. Real-Time Communication Between Components

To ensure communication between the application retrieving data from the camera and
another application in charge of post-processing, a socket connection has been implemented.

To display the results for users, a web application was developed. This type of
application has several advantages, such as accessibility and interactivity. The development
of such an application requires the rigorous selection of a framework for the backend and
another for the frontend. To ensure consistency with CHUSJ’s other applications and to
favor open-source solutions, React.js 18.3.1 [47] was chosen for the frontend. Real-time data
display was based on Chart.js 4.4.7 [48], an open-source library renowned for its ability
to generate responsive, interactive charts with excellent visual rendering. Furthermore, a
screen capture function has been integrated directly from the browser, allowing users to
export a PNG image of the current visualization. This feature is intended for documentation
purposes, such as archiving visualizations or including snapshots in patient reports or
medical records.

For the backend, we chose Flask 3.1.0 [49], an open-source Python 3.9.12 micro-
framework. The main reasons for this choice were its lightness and ease of integration.
Unlike heavier frameworks such as Django 5.2.1 [50], Flask enabled rapid implementation
while offering the flexibility needed to manage real-time data flows.

One of the major challenges of the project was to efficiently transmit the respiratory
data captured by the Kinect to the web interface, ensuring a continuous, low-latency flow.
To achieve this, a Server-Sent Events (SSEs) [51] flow was implemented. SSEs offers several
advantages over alternatives such as WebSockets 15.0.1 [52], including optimized one-way
communication, and connections treated as conventional HTTP traffic, which can improve
the efficiency of server resourcing.

In addition to the main stream of respiratory volumes, other application programming
interface (API) routes can be used to send the image of the detected ROI, as well as
parameters such as respiratory rate, minute expiratory volume (MEV), tidal volume, I:E,
and peak flow.
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The application’s ergonomics were validated in collaboration with doctors, its future
users. The interface was directly inspired by those used by ventilators in intensive care.
This visual consistency reduces the learning curve and may facilitate adoption of the tool
in the hospital environment.

3. Results
The development of the application enabled us to create a responsive interface,

i.e., adaptable to different screen sizes, to keep the placement of all elements visible and
coherent. The proposed system is a distributed one, with the emphasis on efficiency and
ease of use. A distributed system is ideally suited to the medical environment. The camera
can be placed in the room and the results visible from the nurse’s computer without the
need to leave their workstation. The clinician can follow all the steps and understand
what is going on to check that no inconsistencies occur during execution. In particular,
the ROI detection performed is displayed in the web application to visualize the area
observed by the algorithm. Several checkboxes are available to access measurements of
individual respiratory cycles to verify that no inconsistencies are present. A rendering
of the web application is shown in Figure 4. Two sections are displayed: the volume
variation graph and the flow graph. These graphs highlight the detected peaks and
troughs. Below them, a section presents the calculated respiratory statistics along with the
identified ROI.

In terms of computer resource usage. In our tests, carried out on an Intel Core
i5-135H processor, the prediction algorithm had an execution time of 179 ms. The pro-
cessor’s maximum power consumption is 10% of its capacity, and RAM usage is 1.5 GB
during calculations.

As a proof of concept, an experiment was carried out to assess the system’s accuracy.
The aim was to compare the results obtained by the system with a reference method
for volume measurement. To this end, one adult man (23 years old) performed three
acquisitions through a spirometer, which is considered the gold standard in the clinical
field. Additionally, one critically ill child (one year old) under non-invasive ventilation
was included in the study, with the ventilation system serving as the reference. The adult
participant, shirtless, laid on a bed in an intensive care room at CHUSJ. He breathed for
30 s through the spirometer, while the camera, positioned approximately 1.10 m above him,
recorded the data.

For the child, the camera was placed at a height of 80 cm. In terms of accuracy assess-
ment, Figure 5 shows that the raw volume signal calculated from the Kinect (blue curve)
is highly correlated with the signal from the spirometer (orange curve), with a Pearson
correlation index of 0.995 for the adult using the spirometer. For accurate measurement
of respiratory parameters for the adult, a scatter diagram for respiratory frequency and a
Bland–Altman diagram for tidal volume are shown in Figure 6. In Figure 6a, a correlation
coefficient of 0.98 is observed between the measurements provided by our system and
those of the spirometer for respiratory rate. In Figure 6b, the central line (solid red line)
represents systematic bias, while the two other lines indicate the limits of agreement. Re-
garding tidal volume, the error remains relatively contained, with a dispersion ranging from
5 to 82 mL.

For the critically ill child, only respiratory rate, expiratory minute volume and tidal
volume were available for comparison, as the ventilator provided these parameters. The
system demonstrated high accuracy, with an error of 1.5% for the expiratory minute volume,
2% for the tidal volume, and no error for the respiratory rate.
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4. Discussion
The system demonstrated strong accuracy for this specific healthy adult and critically

ill child in intensive care. This study was conceived as a technical proof-of-concept to assess
the feasibility of using a Kinect-based system in both controlled and clinical environments.
The small sample size was a deliberate design choice to focus on technical validation.
A larger ethics-approved clinical study involving a broader pediatric cohort is currently
ongoing to evaluate the generalizability, robustness, and clinical performance of the system.

The observed differences between the Kinect-based measurements and the reference
spirometer are likely due to the unidirectional nature of depth sensing. Specifically, the sys-
tem captures thoracic motion only along the optical axis of the camera, potentially missing
lateral expansion of the rib cage and other multidirectional breathing movements. This
limitation may result in underestimation of respiratory volumes, particularly in patients
with more complex breathing mechanics.

In future clinical evaluations within the PICU, additional sources of error are expected,
including patient motion and occlusions in the field of view (such as bed sheets, monitoring
cables, bandages, or medical devices), which may interfere with accurate signal extraction.
Moreover, thoracic morphology and respiratory dynamics vary significantly between infants,
children, and adolescents (from 0 to 18 years old), which may affect the reliability of the method
across age groups. To address these limitations, improvements such as occlusion-resilient ROI
tracking, multi-angle acquisition, and adaptive calibration techniques are planned.

The system’s architecture makes it easy to maintain, as one step, such as ROI detection,
can be replaced by another to keep up with advances in the field. Moreover, a similar RGB-D
model can replace the camera. Indeed, with Microsoft ending production of the Kinect in August
2023, the system will have to evolve. CHUSJ plans to acquire Orbbec Femto cameras, which are
considered clones of the Kinect Azure, developed in partnership with Microsoft. The system will
therefore require some minor code modifications to ensure compatibility with these new cameras.

The use of our system to calculate several respiratory parameters is a useful solution
for detecting respiratory pathologies such as asthma or chronic obstructive pulmonary
diseases (COPDs).

5. Conclusions
The results obtained demonstrate that the developed system is optimized for real-time

operation while minimizing computational resource requirements. One of the key contribu-
tions of this work is the design of an autonomous solution requiring only a Kinect (or Orbbec)
camera and a Windows computer. This simplicity in hardware allows for rapid deployment
across multiple hospitals, making the solution both accessible and practical for clinical use.

Beyond its accessibility, the system introduces several technical innovations that signifi-
cantly advance non-contact respiratory monitoring. It performs real-time estimation of a full
set of ventilator-level respiratory parameters, enabling continuous bedside assessment. It
also includes a novel infrared-based region-of-interest detection using YOLO-OBBs, ensuring
robust performance regardless of ambient lighting, which is crucial in intensive care, espe-
cially for nighttime monitoring. Furthermore, the system relies on a pixel-wise 3D volume
estimation method, which achieves high accuracy in tidal volume measurement (MAE < 5%).

This work presents the first reported clinical validation of a depth camera-based system
on a non-intubated, critically ill child in the PICU, confirming its feasibility and clinical
potential. In summary, the proposed system represents a significant advancement in real-time,
non-invasive respiratory monitoring, paving the way for broader clinical adoption.



Sensors 2025, 25, 3069 12 of 14

Author Contributions: Conceptualization, F.C., K.A., H.V.H. and S.R.; methodology, F.C. and K.A.;
software, F.C.; formal analysis, F.C. and K.A.; investigation, F.C. and K.A.; data curation, F.C.;
writing—original draft preparation, F.C.; writing—review and editing, P.J. and R.N.; supervision, P.J.
and R.N.; project administration, P.J. and R.N.; funding acquisition, P.J. and R.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Fonds de Recherche Quebec-Santé, Ministry of Health Quebec,
Sainte-Justine hospital, and the AIRS Research network.

Institutional Review Board Statement: The study was conducted in accordance with the Research
Centre of Sainte-Justine University Hospital and approved by the Research Ethics Board of CHU
Sainte-Justine (protocol code 2024-6457 approved on 19 January 2024 and protocol code 2016-1242
approved on 31 March 2016).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The database generated during the current study is not publicly available
due to institutional restrictions on data sharing and privacy concerns. However, it is accessible for research
purposes given the approval from the Research Ethics Board of CHU Sainte-Justine is obtained.

Acknowledgments: Thanks to the R-SADC team for their multidisciplinary support.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PICU pediatric intensive care unit
MAE mean absolute error
ICU intensive care unit
CHUSJ Centre Hospitalier Universitaire Sainte Justine
RR respiratory rate
Vt tidal volume
ROI region of interest
SDK software development kit
OBBs oriented bounding boxes
IR infrared
I:E inspiratory-to-expiratory ratio
PEF peak expiratory flow
PIF peak inspiratory flow

References
1. Publication: Modes D’organisation des Services de Soins Intensifs: Etat de Connaissances et Indicateurs de Qualité. Available

online: https://www.inesss.qc.ca/ (accessed on 2 March 2025).
2. Soins Intensifs. Available online: https://yperman.net/fr/offre-de-soins-de-sante/sp%C3%A9cialisations/intensieve-zorgen

(accessed on 2 March 2025).
3. Société Canadienne de Pédiatrie. La Bronchiolite: Recommandations Pour le Diagnostic, la Surveillance et la Prise en Charge

des Enfants de un à 24 Mois|Société Canadienne de Pédiatrie. Available online: https://cps.ca/fr/documents/position/
bronchiolitis1 (accessed on 2 March 2025).

4. Trachsel, D.; Erb, T.O.; Hammer, J.; von Ungern-Sternberg, B.S. Developmental Respiratory Physiology. Paediatr. Anaesth. 2022, 32,
108–117. [CrossRef] [PubMed]

5. Yartsev, A. Age-Related Changes in Respiratory Physiology|Deranged Physiology. Available online: https://derangedphysiology.com/
main/cicm-primary-exam/respiratory-system/Chapter-923/age-related-changes-respiratory-physiology (accessed on 2 March 2025).

6. Saikia, D.; Mahanta, B. Cardiovascular and Respiratory Physiology in Children. Indian J. Anaesth. 2019, 63, 690–697. [CrossRef]
7. Atag, E.; Krivec, U.; Ersu, R. Non-Invasive Ventilation for Children With Chronic Lung Disease. Front. Pediatr. 2020, 8, 561639.

[CrossRef] [PubMed]

https://www.inesss.qc.ca/
https://yperman.net/fr/offre-de-soins-de-sante/sp%C3%A9cialisations/intensieve-zorgen
https://cps.ca/fr/documents/position/bronchiolitis1
https://cps.ca/fr/documents/position/bronchiolitis1
https://doi.org/10.1111/pan.14362
https://www.ncbi.nlm.nih.gov/pubmed/34877744
https://derangedphysiology.com/main/cicm-primary-exam/respiratory-system/Chapter-923/age-related-changes-respiratory-physiology
https://derangedphysiology.com/main/cicm-primary-exam/respiratory-system/Chapter-923/age-related-changes-respiratory-physiology
https://doi.org/10.4103/ija.IJA_490_19
https://doi.org/10.3389/fped.2020.561639
https://www.ncbi.nlm.nih.gov/pubmed/33262959


Sensors 2025, 25, 3069 13 of 14

8. Available online: https://respiratory-therapy.com/disorders-diseases/chronic-pulmonary-disorders/copd/pediatric-
noninvasive-ventilation/ (accessed on 2 March 2025).

9. Donoso, A.; Arriagada, D.; Contreras, D.; Ulloa, D.; Neumann, M. Respiratory Monitoring of Pediatric Patients in the Intensive
Care Unit. Bol. Méd. Hosp. Infant. México Engl. Ed. 2016, 73, 149–165. [CrossRef] [PubMed]

10. Bastin, A.; Starling, L.; Ahmed, R.; Dinham, A.; Hill, N.; Stern, M.; Restrick, L. High Prevalence of Undiagnosed and Severe Chronic
Obstructive Pulmonary Disease at First Hospital Admission with Acute Exacerbation. Chron. Respir. Dis. 2010, 7, 91–97. [CrossRef]

11. Anatomie de la Respiration. Available online: https://www.kenhub.com/fr/library/anatomie/anatomie-de-la-respiration
(accessed on 2 March 2025).

12. Seppänen, T.M.; Kananen, J.; Noponen, K.; Alho, O.-P.; Seppänen, T. Accurate Measurement of Respiratory Airflow Waveforms
Using Depth Data. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7857–7860.

13. Wang, J.; Sun, R.; Yu, S.; Zhang, F.; Lining, S. An Improved Correlation Model for Respiration Tracking in Robotic Radiosurgery
Using Essential Skin Surface Motion. IEEE Robot. Autom. Lett. 2021, 6, 7885–7892. [CrossRef]

14. Sun, C.; Li, W.; Chen, C.; Wang, Z.; Chen, W. An Unobtrusive and Non-Contact Method for Respiratory Measurement With
Respiratory Region Detecting Algorithm Based on Depth Images. IEEE Access 2019, 7, 8300–8315. [CrossRef]

15. Yu, S.; Li, B.; Wang, J.; Sun, R.; Sun, L. Characteristics Study on Respiratory Movement of Chest and Abdominal Surface Area for
Respiration Tracking in Radiosurgical Robots. In Proceedings of the 2021 IEEE 11th Annual International Conference on CYBER
Technology in Automation, Control, and Intelligent Systems (CYBER), Jiaxing, China, 27–31 July 2021; pp. 437–441.

16. Bar-Yishay, E.; Putilov, A.; Einav, S. Automated, Real-Time Calibration of the Respiratory Inductance Plethysmograph and Its
Application in Newborn Infants. Physiol. Meas. 2003, 24, 149. [CrossRef]

17. Gilbert, R.; Auchincloss, J.H.; Peppi, D. Relationship of Rib Cage and Abdomen Motion to Diaphragm Function During Quiet
Breathing. Chest 1981, 80, 607–612. [CrossRef]

18. Sharp, J.T.; Goldberg, N.B.; Druz, W.S.; Danon, J. Relative Contributions of Rib Cage and Abdomen to Breathing in Normal
Subjects. J. Appl. Physiol. 1975, 39, 608–618. [CrossRef]

19. Xia, J.; Siochi, R.A. A Real-Time Respiratory Motion Monitoring System Using KINECT: Proof of Concept. Med. Phys. 2012, 39,
2682–2685. [CrossRef]

20. L’Her, E.; Nazir, S.; Pateau, V.; Visvikis, D. Accuracy of Noncontact Surface Imaging for Tidal Volume and Respiratory Rate
Measurements in the ICU. J. Clin. Monit. Comput. 2022, 36, 775–783. [CrossRef] [PubMed]

21. Addison, P.S.; Cohen, C.; Borg, U.R.; Antunes, A.; Montgomery, D.; Batchelder, P. Accurate and Continuous Respiratory Rate
Using Touchless Monitoring Technology. Respir. Med. 2023, 220, 107463. [CrossRef]

22. Aoki, H.; Nakamura, H.; Fumoto, K.; Nakahara, K.; Teraoka, M. Basic Study on Non-Contact Respiration Measurement during
Exercise Tolerance Test by Using Kinect Sensor. In Proceedings of the 2015 IEEE/SICE International Symposium on System
Integration (SII), Nagoya, Japan, 11–13 December 2015; pp. 217–222.

23. Martínez, M.; Stiefelhagen, R. Breath Rate Monitoring during Sleep Using Near-Ir Imagery and PCA. In Proceedings of the 21st
International Conference on Pattern Recognition ICPR2012, Tsukuba, Japan, 11–15 November 2012; pp. 3472–3475.

24. Addison, P.S.; Smit, P.; Jacquel, D.; Addison, A.P.; Miller, C.; Kimm, G. Continuous Non-contact Respiratory Rate and Tidal
Volume Monitoring Using a Depth Sensing Camera. J. Clin. Monit. Comput. 2022, 36, 657–665. [CrossRef] [PubMed]

25. Addison, P.S.; Smit, P.; Jacquel, D.; Borg, U.R. Continuous Respiratory Rate Monitoring during an Acute Hypoxic Challenge
Using a Depth Sensing Camera. J. Clin. Monit. Comput. 2020, 34, 1025–1033. [CrossRef]

26. Yang, F.; Han, Z.; Bolic, M. Detection of Respiratory Signal Based on Depth Camera Body Tracking. In Proceedings of the 2020
42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada,
20–24 July 2020; pp. 481–484.

27. Nakajima, K.; Matsumoto, Y.; Tamura, T. Development of Real-Time Image Sequence Analysis for Evaluating Posture Change
and Respiratory Rate of a Subject in Bed. Physiol. Meas. 2001, 22, N21–N28. [CrossRef] [PubMed]

28. Bernacchia, N.; Scalise, L.; Casacanditella, L.; Ercoli, I.; Marchionni, P.; Tomasini, E.P. Non Contact Measurement of Heart and
Respiration Rates Based on KinectTM. In Proceedings of the 2014 IEEE International Symposium on Medical Measurements and
Applications (MeMeA), Lisboa, Portugal, 11–12 June 2014; pp. 1–5. [CrossRef]

29. Imano, W.; Kameyama, K.; Hollingdal, M.; Refsgaard, J.; Larsen, K.; Topp, C.; Kronborg, S.H.; Gade, J.D.; Dinesen, B. Non-Contact
Respiratory Measurement Using a Depth Camera for Elderly People. Sensors 2020, 20, 6901. [CrossRef]

30. Yu, M.; Liou, J.-L.; Kuo, S.-W.; Lee, M.-S.; Hung, Y. Noncontact Respiratory Measurement of Volume Change Using Depth Camera.
In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego,
CA, USA, 28 August–1 September 2012; pp. 2371–2374. [CrossRef]

31. Wijenayake, U.; Park, S.-Y. Real-Time External Respiratory Motion Measuring Technique Using an RGB-D Camera and Principal
Component Analysis. Sensors 2017, 17, 1840. [CrossRef]

https://respiratory-therapy.com/disorders-diseases/chronic-pulmonary-disorders/copd/pediatric-noninvasive-ventilation/
https://respiratory-therapy.com/disorders-diseases/chronic-pulmonary-disorders/copd/pediatric-noninvasive-ventilation/
https://doi.org/10.1016/j.bmhimx.2016.02.006
https://www.ncbi.nlm.nih.gov/pubmed/29421202
https://doi.org/10.1177/1479972310364587
https://www.kenhub.com/fr/library/anatomie/anatomie-de-la-respiration
https://doi.org/10.1109/LRA.2021.3097250
https://doi.org/10.1109/ACCESS.2018.2890082
https://doi.org/10.1088/0967-3334/24/1/311
https://doi.org/10.1378/chest.80.5.607
https://doi.org/10.1152/jappl.1975.39.4.608
https://doi.org/10.1118/1.4704644
https://doi.org/10.1007/s10877-021-00708-x
https://www.ncbi.nlm.nih.gov/pubmed/33886075
https://doi.org/10.1016/j.rmed.2023.107463
https://doi.org/10.1007/s10877-021-00691-3
https://www.ncbi.nlm.nih.gov/pubmed/33743106
https://doi.org/10.1007/s10877-019-00417-6
https://doi.org/10.1088/0967-3334/22/3/401
https://www.ncbi.nlm.nih.gov/pubmed/11556682
https://doi.org/10.1109/MeMeA.2014.6860065
https://doi.org/10.3390/s20236901
https://doi.org/10.1109/EMBC.2012.6346440
https://doi.org/10.3390/s17081840


Sensors 2025, 25, 3069 14 of 14

32. Benetazzo, F.; Freddi, A.; Monteriù, A.; Longhi, S. Respiratory Rate Detection Algorithm Based on RGB-D Camera: Theoretical
Background and Experimental Results. Healthc. Technol. Lett. 2014, 1, 81–86. [CrossRef]

33. Addison, P.S.; Antunes, A.; Montgomery, D.; Smit, P.; Borg, U.R. Robust Non-Contact Monitoring of Respiratory Rate Using a
Depth Camera. J. Clin. Monit. Comput. 2023, 37, 1003–1010. [CrossRef]

34. Penne, J.; Schaller, C.; Hornegger, J.; Kuwert, T. Robust Real-Time 3D Respiratory Motion Detection Using Time-of-Flight Cameras.
Int. J. Comput. Assist. Radiol. Surg. 2008, 3, 427–431. [CrossRef]

35. Rehouma, H.; Noumeir, R.; Masson, G.; Essouri, S.; Jouvet, P. Visualizing and Quantifying Thoraco-Abdominal Asynchrony in
Children From Motion Point Clouds: A Pilot Study. IEEE Access 2019, 7, 163341–163357. [CrossRef]

36. Estévez, S.R.; Grafton, A.; Thomson, L.; Warnecke, J.; Beardsall, K.; Lasenby, J. Continuous Non-Contact Vital Sign Monitoring of
Neonates in Intensive Care Units Using RGB-D Cameras. arXiv 2024, arXiv:2412.06012.

37. Liao, S.; Achille, P.D.; Wu, J.; Borac, S.; Wang, J.; Liu, X.; Teasley, E.; Cai, L.; Yang, Y.; Liu, Y.; et al. Passive Heart Rate Monitoring
During Smartphone Use in Everyday Life. arXiv 2025, arXiv:2503.03783.

38. Buyung, R.A.; Bustamam, A.; Ramazhan, M.R.S. Integrating Remote Photoplethysmography and Machine Learning on Multi-
modal Dataset for Noninvasive Heart Rate Monitoring. Sensors 2024, 24, 7537. [CrossRef] [PubMed]

39. K4a.Net/README.Md at Master ·Bibigone/K4a.Net. Available online: https://github.com/bibigone/k4a.net/blob/master/
README.md (accessed on 2 April 2025).

40. Kurillo, G.; Hemingway, E.; Cheng, M.-L.; Cheng, L. Evaluating the Accuracy of the Azure Kinect and Kinect V2. Sensors 2022, 22,
2469. [CrossRef]

41. Azure Kinect Sensor SDK: Microsoft.Azure.Kinect.Sensor.DepthMode. Available online: https://microsoft.github.io/Azure-
Kinect-Sensor-SDK/master/namespace_microsoft_1_1_azure_1_1_kinect_1_1_sensor_ae1bee72789a1fe39e868e5b39ba62108
.html (accessed on 1 March 2025).

42. Ultralytics Home. Available online: https://docs.ultralytics.com/ (accessed on 13 March 2025).
43. Mikołajczyk, A.; Grochowski, M. Data Augmentation for Improving Deep Learning in Image Classification Problem. In Proceedings of the

2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; pp. 117–122.
44. Mangold, K.; Shaw, J.A.; Vollmer, M. The Physics of Near-Infrared Photography. Eur. J. Phys. 2013, 34, S51. [CrossRef]
45. Available online: https://www.health.ny.gov/professionals/ems/pdf/assmttools.pdf (accessed on 5 March 2025).
46. Find_peaks—SciPy v1.15.2 Manual. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html

(accessed on 2 April 2025).
47. React—A JavaScript Library for Building User Interfaces. Available online: https://legacy.reactjs.org/ (accessed on 2 March 2025).
48. Chart.Js|Chart.Js. Available online: https://www.chartjs.org/docs/latest/ (accessed on 2 March 2025).
49. Welcome to Flask—Flask Documentation (3.1.x). Available online: https://flask.palletsprojects.com/en/stable/ (accessed on

2 March 2025).
50. Django. Available online: https://www.djangoproject.com/ (accessed on 2 March 2025).
51. Server-Sent Events—Les API Web|MDN. Available online: https://developer.mozilla.org/fr/docs/Web/API/Server-sent_events

(accessed on 2 March 2025).
52. The WebSocket API (WebSockets)—Web APIs|MDN. Available online: https://developer.mozilla.org/en-US/docs/Web/API/

WebSockets_API (accessed on 2 March 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1049/htl.2014.0063
https://doi.org/10.1007/s10877-023-01003-7
https://doi.org/10.1007/s11548-008-0245-2
https://doi.org/10.1109/ACCESS.2019.2952740
https://doi.org/10.3390/s24237537
https://www.ncbi.nlm.nih.gov/pubmed/39686079
https://github.com/bibigone/k4a.net/blob/master/README.md
https://github.com/bibigone/k4a.net/blob/master/README.md
https://doi.org/10.3390/s22072469
https://microsoft.github.io/Azure-Kinect-Sensor-SDK/master/namespace_microsoft_1_1_azure_1_1_kinect_1_1_sensor_ae1bee72789a1fe39e868e5b39ba62108.html
https://microsoft.github.io/Azure-Kinect-Sensor-SDK/master/namespace_microsoft_1_1_azure_1_1_kinect_1_1_sensor_ae1bee72789a1fe39e868e5b39ba62108.html
https://microsoft.github.io/Azure-Kinect-Sensor-SDK/master/namespace_microsoft_1_1_azure_1_1_kinect_1_1_sensor_ae1bee72789a1fe39e868e5b39ba62108.html
https://docs.ultralytics.com/
https://doi.org/10.1088/0143-0807/34/6/S51
https://www.health.ny.gov/professionals/ems/pdf/assmttools.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://legacy.reactjs.org/
https://www.chartjs.org/docs/latest/
https://flask.palletsprojects.com/en/stable/
https://www.djangoproject.com/
https://developer.mozilla.org/fr/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

	Introduction 
	Motivation 
	Current State of the Research Field 
	Summary of Contributions 

	Materials and Methods 
	Detection of the ROI 
	Area and Volume 
	Calculation of Respiratory Parameters 
	Real-Time Communication Between Components 

	Results 
	Discussion 
	Conclusions 
	References

