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 A B S T R A C T

Traffic Signal Control (TSC) is a crucial component in Intelligent Transportation Systems (ITS) for optimizing 
traffic flow. Deep Reinforcement Learning (DRL) techniques have emerged as leading approaches for TSC 
due to their promising performance. Most existing DRL-based approaches typically use discrete action spaces 
to predict the next action phase, without specifying the signal duration. In contrast, some studies employ 
continuous action spaces to determine signal phase timing within a fixed light cycle. To address the limitations 
of both approaches, we propose a flexible framework that predicts both the appropriate traffic light phase 
along with its associated duration. Our approach utilizes a Parameterized-action based deep reinforcement 
learning architecture to handle the combination of discrete-continuous actions. We evaluate our method 
using the Simulation of Urban MObility (SUMO) environment, comparing its efficiency against state-of-the-
art techniques. Results demonstrate that our approach significantly outperforms traditional and learning-based 
methods.
1. Introduction

The increasing population size and the growing number of vehicles 
in urban areas have led to a substantial rise in traffic volume, result-
ing in severe traffic congestion. This congestion has had significantly 
undesirable impacts, including prolonged travel time delays and con-
siderable economic losses each year (INRIX Scoreboard, 2022). One 
of the primary objectives of Intelligent Transportation Systems (ITS) 
is to alleviate congestion and optimize traffic flow within cities. Within 
this framework, Traffic Signal Control (TSC) systems play a critical 
role in managing traffic flow at signalized intersections (Haydari and 
Yilmaz, 2022). Numerous researchers have proposed various architec-
tures to enhance traffic flow and reduce congestion by developing more 
intelligent Traffic Signal Control (TSC) systems (Bouktif et al., 2023; 
Genders and Razavi, 2016; Vidali et al., 2019). These approaches often 
utilize optimization techniques such as machine learning frameworks 
and meta-heuristic algorithms. In the scope of machine learning, TSC 
systems primarily rely on the Reinforcement Learning (RL) and Deep 
Reinforcement Learning (DRL) decision making techniques to optimize 
the traffic flow and to reduce congestion, in contrast to traditional 
TSCs controlling methods (Casas, 2017; Kolat et al., 2023; Khamis and 
Gomaa, 2014). One significant advantage of RL techniques is their 
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flexibility and ability to handle dynamic and non-uniform traffic flow 
patterns, unlike manually designed standard methods. Indeed, DRL-
based traffic signal control systems have been shown to outperform 
traditional TSC methods (Kolat et al., 2023; Rasheed et al., 2020; Wei 
et al., 2019). In DRL-based TSC approaches, the agent perceives the 
surrounding traffic environment and makes decision based on either 
discrete or continuous action spaces. In the discrete approach, mainly 
using Deep Q-networks (DQN) (Mnih et al., 2013) and its extensions, 
the action space includes two options: the agent either maintain the cur-
rent traffic signal phase of TSC or transitions to the next signal phase in 
a predefined cycle of phases (Liu et al., 2023). In a more flexible action 
space, the agent can choose any specific phase from the set of phases 
without adhering to the sequence order (Kolat et al., 2023). In the con-
tinuous approach, other research proposals employ the continuous DRL 
architecture (e.g., Deep Deterministic Policy Gradient (DDPG) (Lillicrap 
et al., 2019)) where the agent’s actions are continuous. In this strategy, 
the agent predicts the next phase’s duration with a fixed sequence of 
phases (Casas, 2017). Indeed, forecasting the subsequent phase without 
determining its duration, or predicting the duration of the next phase 
within a fixed sequence is insufficient for optimal traffic control. Hence, 
being motivated by this research gap, we propose leveraging a hybrid 
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deep reinforcement learning (DRL) approach that combines discrete 
and continuous architectures to further optimize traffic signal control 
performance. This hybrid DRL approach allows to concurrently predict 
the forthcoming Traffic Signal Control (TSC) phase and its associated 
duration. This architecture belongs to the domain of the parameterized 
action space Deep Reinforcement Learning (DRL); specifically, DRL 
with parameterized action space (Masson et al., 2015). In particular, 
we use a variant of this architecture known as the Parameterized-
DQN, or P-DQN (Xiong et al., 2018). The P-DQN framework, hence, 
predicts the optimal traffic phase while simultaneously determining its 
corresponding duration, providing a cohesive solution for traffic signal 
control optimization. We experimentally demonstrate the effectiveness 
of our approach using the SUMO simulator on the proposed framework. 
The proposed framework, along with the benchmark approaches are 
evaluated and compared based on standard metrics for Traffic Signal 
Control (TSC) evaluation, namely, the average travel time, the queue 
length and the average vehicular waiting time (Liu et al., 2023; Kolat 
et al., 2023). The results demonstrate that our framework remark-
ably enhances TSC performance compared to the benchmarks. The 
contributions of this research are summarized as follows:

• We present an innovative parameterized action space framework 
for traffic signal control, enabling the simultaneous optimization 
of traffic phase selection and its duration. This approach addresses 
a critical limitation in current methodologies by integrating dis-
crete and continuous action spaces, offering greater flexibility and 
control in traffic management.

• We evaluate our framework under varying and dynamic traffic 
conditions, including non-uniform and dynamic scenarios.

• We compare the proposed method against traditional, learning-
based, and meta-heuristic approaches (e.g., Fixed-Time, Discrete, 
Continuous, GA, PSO) using multiple evaluation metrics such 
as average travel time (ATT), average waiting time (AWT), and 
queue length (QL). Results consistently demonstrate superior per-
formance across diverse traffic scenarios.

The structure of this paper is organized as follows: Section 2 pro-
vides a review of related literature. Section 3 outlines the theoreti-
cal background and preliminaries. Section 5 describes our proposed 
methodology. Section 6 presents the empirical validation of our ap-
proach, including a discussion of the results compared to state-of-the-
art approaches. Finally, Section 8 concludes the paper and suggests 
directions for future research.

2. Related work

Recent research efforts in the transportation field have increasingly 
focused on the application of artificial intelligence techniques to ad-
dress various challenges in transportation systems. Notably, these tech-
niques include: (i) deep reinforcement learning, and (ii) meta-heuristic 
algorithms.

2.1. Deep reinforcement learning for TSC

Typically, DRL-based traffic signal control systems perceive the 
traffic conditions at an intersection to learn optimal control policy and 
determine the suitable traffic signal phase and its duration. Research 
on DRL-based traffic signal control primarily varies across four key as-
pects: state representation, reward design, action selection, and agent’s 
architecture. In this study, we focus specifically on analyzing action 
selection and agent architecture within the DRL-based framework.
2 
2.1.1. Action space selection
In reinforcement learning, the agent observes the current state of 

the environment and takes the optimal action leading to the desired 
behavior. Specifically, in traffic light control, action selection varies 
according to the desired application. For instance, the action space can 
be formulated as a binary action, where the agent decides whether to 
maintain the current phase of traffic lights or to advance to the next 
phase (Liu et al., 2023). A more flexible approach allows the agent to 
select the next appropriate phase from a list of permitted phases at each 
time step (Kolat et al., 2023). A third form of action space belongs to the 
continuous domain, where the agent allocates time durations to each 
phase within the total cycle (Casas, 2017). Beyond the action spaces 
found in the literature, in this work, we propose an action space that 
combines discrete and continuous domains, allowing the agent to select 
both the next phase of the traffic light and its accompanying duration 
simultaneously (see Table  1).

2.1.2. Agent’s architecture
A crucial component in deep reinforcement learning is the network 

architecture chosen for the agent. This network takes the environment’s 
state as input and predicts the appropriate action accordingly. During 
the training process, the network learns the optimal action policy 
through interaction with the environment. Various network architec-
tures have been developed depending on the type of action space 
selected. 

In a discrete action space, the Deep Q-Network (DQN) (Mnih et al., 
2013) is the most common agent architecture. It maps the state space 
input to Q-values of the target actions. However, DQN can suffer from 
overestimation bias, leading to suboptimal learning. To address this, 
Double-DQN (van Hasselt et al., 2015) was introduced, which uses two 
separate networks – one to select actions and another to evaluate them 
– thereby reducing overestimation. Another extension, Dueling-DQN, 
incorporates two separate streams in the network: one for estimating 
the state value and another for estimating the advantage of each 
action, improving learning in environments with many similar-valued 
actions. Additionally, the Normalized Advantage Function (NAF) (Gu 
et al., 2016) extends DQN to continuous domains by approximating the 
Q-value function using quadratic advantage terms.

For continuous action spaces, Actor-Critic-based architectures are 
commonly used. For instance, Deep Deterministic Policy Gradient 
(DDPG) (Lillicrap et al., 2019) combines an Actor network to predict 
continuous actions and a Critic network to evaluate the Q-values 
of state–action pairs. Soft Actor–Critic (SAC) (Haarnoja et al., 2018) 
improves upon DDPG by incorporating an entropy term in the objec-
tive function, encouraging exploration and resulting in more robust 
learning.

However, real-world application scenarios often present more com-
plex action spaces where discrete and continuous spaces coexist. Recent 
research has explored the potential of composite action spaces us-
ing DRL with parameterized action space, which consists of a set 
of discrete actions, each parameterized by a continuous parameter. 
For instance, Hausknecht and Stone (2016) proposed an extension 
of DDPG for parameterized action spaces, enabling agents to select 
discrete actions while simultaneously predicting associated continuous 
parameters.

This approach was further improved by Xiong et al. through the de-
velopment of the Parameterized Deep Q-Network (P-DQN) (Xiong et al., 
2018), which combines the benefits of DQN and DDPG. However, P-
DQN faces challenges related to joint-action representation. To address 
this, Bester et al. introduced the Multi-Pass DQN (MP-DQN) (Bester 
et al., 2019), which decouples the discrete actions and their con-
tinuous parameters by performing separate forward passes for each 
action-parameter pair, leading to better training stability and improved 
performance. Table  2 summarizes the key attributes, advantages, and 
limitations of these architectures.
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Table 1
Comparison of action space selection techniques in DRL for traffic signal control.
 Action space Description Advantages Limitations References  
 Binary Maintain or switch phases Simple and computationally 

efficient
Limited flexibility Liu et al. (2023)  

 Discrete Select next phase from predefined 
options

Suitable for static applications May lack granularity for dynamic 
needs

Kolat et al. (2023)  

 Continuous Allocate time duration for each 
phase

High flexibility for dynamic 
scenarios

Computationally expensive Casas (2017)  

 Hybrid Combines discrete and continuous 
action spaces

Combines flexibility with 
feasibility

Requires more complex 
architecture

Hausknecht and Stone 
(2016), Xiong et al. (2018) 
and Bester et al. (2019)

 

Table 2
Comparison of DRL agent architectures for TSC.
 Attribute Deep Q-Network (DQN) Double-DQN DDPG P-DQN  
 Action space Discrete Discrete Continuous Hybrid  
 Advantages Simple and widely adopted Reduces overestimation of 

Q-values
Works for continuous action 
spaces

Handles parameterized 
actions effectively

 

 Limitations Not suitable for continuous action 
spaces

Similar limitations as DQN Susceptible to instability during 
training

Computational complexity  

 References Mnih et al. (2013) van Hasselt et al. (2015) Lillicrap et al. (2019) Xiong et al. (2018)  
Table 3
Comparison of meta-heuristic algorithms for TSC.
 GA PSO SA ABC  
 Key feature Evolutionary optimization Swarm intelligence Probabilistic hill climbing Collective behavior of bees  
 Advantages Robust to local minima Fast convergence Effective for discrete optimization Balances exploration and 

exploitation
 

 Limitations Computationally expensive Susceptible to premature 
convergence

Slow convergence Sensitive to parameter 
tuning

 

 References Tan et al. (2016) García-Nieto et al. (2012) Oda et al. (1997) Dell’Orco et al. (2014)  
2.2. Meta-heuristic algorithms for TSC

Meta-heuristic algorithms are approximate search techniques devel-
oped for solving complex optimization problems (Osman and Kelly, 
1996). The most common meta-heuristic techniques include the Ge-
netic Algorithm (GA) (Holland, 1992), Particle Swarm Optimization 
(PSO) (Eberhart and Kennedy, 1995), Simulated Annealing (SA) (Kirk-
patrick et al., 1983), and Artificial Bee Colony (ABC) optimization 
algorithms (Karaboga and Basturk, 2007). Over the past three decades, 
meta-heuristic algorithms have been widely applied to optimize trans-
portation systems, including traffic signal control at intersections (Hus-
sain et al., 2019; Shi et al., 2021). For example, Tan et al. (2016) 
developed a GA-based approach to optimize signal green timing cycle 
ratios at a crossed intersection under oversaturated conditions. Their 
results demonstrate improved signal timing and minimized average 
delay at the intersection as optimized by the GA algorithm.  García-
Nieto et al. (2012) proposed a PSO approach to find effective cycle 
programs for traffic lights. The solutions obtained by PSO were evalu-
ated in two large and heterogeneous metropolitan areas and compared 
with cycle programs predefined by experts. The comparison results 
show significant benefits in terms of the number of vehicles reaching 
their destinations on time and the average travel time. Oda et al. 
(1997) adopted an SA-based approach to optimize TSC behavior at 
intersections, resulting in superior performance compared to the con-
ventional method. Finally, Dell’Orco et al. (2014) proposed the ABC 
algorithm for finding the optimal setting of traffic signals in coordi-
nated signalized networks. Results, which were compared with two 
other meta-heuristic algorithms (GA and Hill Climbing), showed a 
slightly better performance (see Table  3).

3. Background and preliminaries

This section provides the necessary background and prerequisites to 
better understand our contribution.
3 
3.1. Reinforcement learning

Reinforcement learning decision making problems are generally 
formulated as a Markovian Decision Process (MDP), characterized by 
the terms ⟨ , ,,, 𝛾⟩. The term  stands for the state space,  is the 
Markov probability of transition,  is the action space,  is the reward 
and 𝛾 is the discount factor. The agent interacts with the environment 
through a ‘‘trial and error’’ kind of learning. At each time step 𝑡, the 
agent produces an action 𝑎𝑡 based on its action-selection policy 𝜋 and 
according to the perceived state of the environment 𝑠𝑡. Afterwards, 
the agent obtains an immediate reward 𝑟𝑡 evaluating the performed 
action, and simultaneously, observes the next state 𝑠𝑡+1 for upcoming 
decisions. In the learning process, the main objective of the agent is 
to learn a policy 𝜋 so to maximize the cumulative discounted reward 
𝐺𝑡 =

∑𝑛
𝑘=0 𝛾

𝑘𝑡+𝑘 by taking optimal actions each time step 𝑡.

3.1.1. RL for discrete action space
For a RL with discrete-action space, Q-learning (Watkins and Dayan, 

1992) is commonly the most used method to derive the optimal action-
taking policy 𝜋 of the agent. Q-learning is a value-based RL algorithm 
that employs a Q-function defined as: 
𝑄𝜋 (𝑠, 𝑎) = E[𝐺𝑡|𝑠, 𝑎, 𝜋]. (1)

The Q-values evaluate how good are the state–action pairs and are com-
puted recursively using dynamic programming to solve the following 
equation: 
𝑄𝜋 (𝑠, 𝑎) = E𝑠𝑡+1 [𝑅𝑡 + 𝛾E𝑎𝑡+1∼𝜋(𝑠𝑡+1)[𝑄

𝜋 (𝑠𝑡+1, 𝑎𝑡+1)]|𝑠, 𝑎, 𝜋]. (2)

The optimal policy 𝜋∗ can be found from 𝑄∗(𝑠, 𝑎) = max𝜋𝑄𝜋 (𝑠, 𝑎) by 
computing the optimal action 𝑎∗ for each state 𝑠, where 𝑄∗(𝑠, 𝑎) obeys 
the Bellman optimality equation:
𝑄∗ (𝑠, 𝑎) = E𝑠 [𝑅𝑡 + 𝛾 max 𝑄∗(𝑠𝑡+1, 𝑎𝑡+1)|𝑠, 𝑎], (3)
𝑡+1 𝑎𝑡+1∈
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𝑎∗ = argmax
𝑎∈

𝑄∗ (𝑠, 𝑎). (4)

We also define the state-value function 𝑉 (𝑠) which evaluates the 
value of being in a given state 𝑠𝑡 as following 

𝑉 𝜋 (𝑠) = E𝑎∼𝜋(𝑠)[𝑄𝜋 (𝑠, 𝑎)],  and 𝑉 ∗(𝑠) = max𝑎𝑉 𝜋 (𝑠). (5)

In the finite state space , the values of 𝑄(𝑠, 𝑎) are stored in a 
table during the training process where the Q-function is updated 
iteratively. However, when the state space dimension is considerably 
large, a tabular storage is no longer feasible. Therefore, to solve the 
dimensionality-complexity problem, Deep Q-Networks (DQN) (Mnih 
et al., 2013) is adopted to approximate the Q-function using neural 
networks where the term 𝑄(𝑠, 𝑎;𝜽) is used, and 𝜽 refers to the weights or 
parameters of the neural network. In Deep Q-Networks, the objective 
is to learn a Q-network which precisely predicts 𝑄(𝑠, 𝑎) values. Thus, 
at the 𝑡th iteration, the learning algorithm’s goal is to minimize the 
following loss function: 
𝑡(𝜽) = E[(𝑄(𝑠𝑡, 𝑎𝑡;𝜽) − 𝑅𝑡 + 𝛾 max

𝑎𝑡+1∈
𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1))

2]. (6)

where 𝑅𝑡 + 𝛾max𝑎𝑡+1∈𝑄
𝜋 (𝑠𝑡+1, 𝑎𝑡+1) denoted the temporal difference 

target 𝑦𝑡.

3.1.2. RL for continuous action space
In continuous action space, maximizing over a continuous (infinite) 

set of actions  is computationally intractable, which makes directly 
applying value-based RL algorithms ineffective for continuous space. 
Thus the policy-based RL turns out to be useful in continuous action 
space by considering the second policy type (i.e., the deterministic 
policy 𝜋(𝑎|𝑠)). Deterministic Policy Gradient (DPG) (Silver et al., 2014) 
is known as the standard algorithm for the policy-based RL. It follows 
the actor-critic approach by having a parameterized actor function 𝜇𝜽
that identifies the current policy by deterministically mapping states 
into specific actions 𝜇 ∶  →  (Lillicrap et al., 2019). The critic 
Q-function makes use of the recursive relationship similar to Bellman 
equation (3) with the difference that the inner expectation is replaced 
by the state–action mapping 𝜇𝜽: 

𝑄𝜇𝜽 (𝑠, 𝑎) = E𝑠𝑡+1 [𝑅𝑡 + 𝛾[𝑄𝜇𝜽 (𝑠𝑡+1, 𝜇𝜽(𝑠𝑡+1))]|𝑠, 𝑎]. (7)

The actor is updated by the gradient of the policy’s performance 𝐽
using the DPG policy gradient theorem which states that 

∇𝜽𝐽 (𝜇𝜽) = E
𝑠∼𝜌𝜇𝜽

[

∇𝜽𝜇𝜽(𝑠)∇𝑎𝑄
𝜇𝜽 (𝑠, 𝑎)|𝑎=𝜇𝜽(𝑠)

]

. (8)

A variant of the DPG, namely the Deep DPG (DDPG), is proposed 
by Lillicrap et al. (2019). DDPG provides a modification of the DPG by 
introducing a neural network as function approximators to learn over 
large state and action space.

3.1.3. RL for parameterized action space
In hybrid RL, the action space is a hybridization of both discrete and 

continuous action spaces. More precisely, we will consider the parame-
terized action space type of hybrid RL. The parameterized action space 
is composed of a set of discrete actions, each discrete action is attached 
(parameterized) by a continuous parameter value (Xiong et al., 2018). 
In this paper, we will formulate our problem as an MDP with a 
parameterized action space as proposed in P-DQN architecture (Xiong 
et al., 2018). The action space  is given as: 
 = {(𝑘, 𝑥𝑘)|𝑥𝑘 ∈ 𝑘for all 𝑘 ∈ [𝐾]}, (9)

where (𝑘, 𝑥𝑘) stands for the discrete action and continuous parameter 
respectively, following a hierarchical structure of actions. Thus, we 
have firstly a main discrete action selected from the set 𝐾 (𝑘 ∈ 𝐾 =
{1,… , 𝐾}), and a continuous sub-action 𝑥𝑘 ∈ 𝑘 selected from the 
action space 𝑘. The 𝑄-function notation becomes 𝑄(𝑠, 𝑘, 𝑥𝑘), where 𝑠 ∈
, 𝑎 ∈ , 𝑘 ∈ [𝐾] and 𝑥𝑘 ∈ 𝑘. To compute the continuous parameter 
𝑥 , we use a mapping function 𝑥𝑄 ∶  →   as in DDPG (Lillicrap 
𝑘 𝑘 𝑘

4 
Fig. 1. Structure of MP-DQN architecture.

et al., 2019) which maps the state space to specific continuous action 
parameters. Hence, the 𝑄-function becomes: 

𝑄
(

𝑠𝑡, 𝑘𝑡, 𝑥𝑘𝑡
)

= E𝑠𝑡+1 [𝑅𝑡 + 𝛾max
𝑘∈[𝐾]

𝑄(𝑠𝑡+1, 𝑘, 𝑥
𝑄
𝑘 (𝑠𝑡+1))|𝑠𝑡 = 𝑠]. (10)

In a similar way as in DQN and DDPG, we use deep neural net-
works to approximate both discrete and continuous mapping functions 
𝑄(𝑠, 𝑘, 𝑥𝑘) and 𝑥𝑄𝑘 . Therefore, the mapping 𝑄(𝑠, 𝑘, 𝑥𝑘) is approximated 
by 𝑄(𝑠, 𝑘, 𝑥𝑘;𝝎) with weights 𝝎, and the mapping 𝑥𝑄𝑘  is approximated 
by 𝑥𝑘(⋅;𝜽) with weights 𝜽. Similar to DQN, the target value 𝑦𝑡 is given 
by: 
𝑦𝑡 = 𝑅𝑡 + 𝛾max

𝑘∈[𝐾]
𝑄(𝑠𝑡+1, 𝑘, 𝑥𝑘(𝑠𝑡+1;𝜽𝑡);𝝎𝑡), (11)

Finally, the parameters 𝝎 and the 𝜽 respectively updated using the 
following loss functions: 

𝓁𝑄
𝑡 (𝝎) =

1
2
[𝑄(𝑠𝑡, 𝑘, 𝑥𝑘);𝝎𝑡 − 𝑦𝑡]2, and (12)

𝓁𝜣
𝑡 (𝜽) = −

𝐾
∑

𝑘=1
𝑄(𝑠𝑡, 𝑘, 𝑥𝑘(𝑠𝑡;𝜽);𝝎𝑡)

Furthermore, as an extension to P-DQN architecture, Bester et al. 
(2019) proposed a modification of the P-DQN architecture, called 
Multi-Pass DQN (MP-DQN). MP-DQN comes to fix the joint-action issue 
found in P-DQN. Loosely speaking, the joint action issue appears since 
the 𝑄-network receives as an input all action-parameters (𝑥1,… , 𝑥𝐾 )
of all discrete actions together, instead of having a separate each 
action-parameter 𝑥𝑘 with its related discrete action 𝑘. The MP-DQN 
architecture solves this issue  where each action-parameter 𝑥𝑘 will be 
associated with the related discrete action 𝑘. The MP-DQN performs 
one forward pass per action 𝑘, where the input of the 𝑄-network 
includes the state 𝑠 and the action-parameter vector 𝒙𝒆𝑘. The vector 
𝒙𝒆 = (0,… , 0, 𝑥 , 0,… , 0) stands for the standard basis for dimension 𝑘
𝑘 𝑘
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Fig. 2. Four-lane four-armed traffic intersection.

(see Fig.  1 where the input state 𝑠 is spread over the action-parameters 
vectors 𝒙𝒆𝑘 then the MP 𝑄-network performs multi passes over these 
tuples (𝑠,𝒙𝒆𝑘), once per each. This MP-DQN trick fixes the P-DQN issue 
and lets 𝑄𝑘  depending only on its associated 𝑥𝑘, where: 

𝑄(𝑠, 𝑘,𝒙𝒆𝑘) ≊ 𝑄(𝑠, 𝑘, 𝑥𝑘). (13)

4. Problem definition

To formulate our problem, we consider the following elements.
Environment E is defined as a four-direction (i.e., East ‘E’, West 

‘W’, North ‘N’, South ‘S’) and four-lane intersection. There are 8 distinct 
vehicle movements with a green signal for each (e.g., straight East-
West ‘EW’, East-West-left ‘EW-L’). Restricted by road safety measures, 
we combine non-conflicting green signals forming 4 phases. Left-turn 
movements are considered separately, and right-turns are jointed to 
‘going-straight’ movements. Fig.  2 shows the environment structure 
with phase East-West activated.

Phase of signals P is defined as a set of signals (‘G’ for green, ‘r’ 
for red and ‘y’ for yellow) at an intersection. For instance, the phase 
‘GrGr’ means green for north and south directions and red for east and 
west directions. For safety restrictions, green signals must be set such 
as no conflicting movements occur and must be followed by a yellow 
phase for a short period of time (e.g., ‘yryr’ after ‘GrGr’).

Agent G The agent G is the main component which observes the 
state of the environment E (intersection), takes an action 𝑎𝑡 according 
to its policy and receives an immediate reward 𝑡 at each time step 𝑡.

Travel Time for a vehicle can be defined as the time it takes for the 
vehicle to accomplish its planned route starting from an origin location 
until it reaches its destination. 

Travel Time = 𝑡𝑗_𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑗_𝑒𝑛𝑑 (14)

where 𝑡𝑗_𝑠𝑡𝑎𝑟𝑡 is the time the vehicle 𝑗 enters the environment and 𝑡𝑗_𝑒𝑛𝑑
is the time the vehicle 𝑗 exited the environment.

Problem Definition Given a traffic signal intersection as the environ-
ment E, the agent G receives a state 𝑠 ∈ , performs a joint action 𝑎 ∈ 
and collects rewards 𝑅 from the environment. The goal of the agent 
is to decide the optimal joint action 𝑎 = (𝑃 , 𝑑𝑃 ) for both phase 𝑃  and 
its associated duration 𝑑𝑃  in order to minimize the average vehicular 
travel time by maximizing the expected return, where the discounted 
return is given as follows (see Table  4): 
𝑛
∑

𝛾𝑘𝑡+𝑘 (15)

𝑘=0

5 
Table 4
Notations.
 Notation Description  
 𝑠 State  
 𝑎 Action  
 𝑅 Reward  
 𝐺 Agent  
 𝐸 Environment  
 𝐿 Number of lanes  
 𝑃 Phase of signals  
 𝑑𝑃 duration of phase 𝑃  
 EW East–West movement  
 NS North–South movement  
 EW-L East–West-Left movement  
 NS-L North–South-Left movement  
 𝑣𝑙 Number of vehicles on lane 𝑙 

5. Parameterized action based deep reinforcement learning for 
TSC

Here in this section, we describe our approach which adopts the 
Parameterized action space Deep Reinforcement Learning. This frame-
work allows to predict the proper phase 𝑃  along with its associated 
duration 𝑑𝑃 .

Framework Overview. Fig.  3 illustrates the essential components 
of our framework to control the traffic lights at signalized intersections. 
Initially, the agent perceives the state of the intersection at time-step 
𝑡. According to the perceived state and based on its policy 𝜋, the 
agent predicts a joint action (𝑃 , 𝑑𝑃 ), where 𝑃  is the selected phases 
from the set of phases, and 𝑑𝑃  stands for the corresponding phase 
duration. Consequently, at the time-step 𝑡+1, the environment rewards 
the agent by a reward signal 𝑡 evaluating the performed joint action 
𝑎 = (𝑃 , 𝑑𝑃 ). Finally, the agent receives the state 𝑠𝑡+1 for the next 
action selection procedure. In the learning process, the agent stores the 
resulting experiences ⟨𝑠𝑡, 𝑎𝑡 = (𝑃𝑡, 𝑑𝑃 𝑡),𝑡, 𝑠𝑡+1⟩ in its memory 𝑀 from 
which the agent learns and updates its policy 𝜋.

In the next paragraphs, we describe the essential elements in our 
framework, namely, (1) the state space, (2) the action space, (3) the 
reward function, and (4) the agent architecture.

5.1. State space

The state space is defined as a simple and straightforward vector 
instead of complicated definitions. Hence, the state vector 𝒔𝑡 repre-
sents the current traffic conditions where each element of the vector 
counts ‘the incoming vehicles’ in each lane 𝑙 towards the traffic lights 
intersection. The detection horizon of ‘number of vehicles’ 𝑣 is limited 
to a given range 𝐻 counting only the vehicles within the detection 
horizon 𝐻 . Moreover, the state vector includes the current phase of 
traffic signals 𝑃𝑡 ∈ {0, 1, 2, 3}. In a four-lane four-road intersection, the 
total number of lanes is 𝐿 = 16, thus the state vector 𝑠𝑡 ∈ R𝐿+1, is given 
as follows: 

𝑠𝑡(𝑣) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣0𝑡
𝑣1𝑡
.
.

𝑣𝐿−1𝑡
𝑃𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

5.2. Reward function

For the reward signal 𝑡, and similar to the pressure based reward 
definition as advocated by Wei et al. (2019), we define the reward 
function as follows: 

𝑡 = −𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = −|
𝐿−1
∑

𝑞𝑙 −
𝐿−1
∑

𝑣𝑂𝑢𝑡𝑙 | (17)

𝑙=0 𝑙=0
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Fig. 3. The overall structure of our framework for  optimizing the Phase selection and the time duration prediction in TSC system.
where ∑𝐿−1
𝑙=0 𝑞𝑙 gives the sum of queuing vehicles in front of the in-

tersection and ∑𝐿−1
𝑙=0 𝑣𝑂𝑢𝑡𝑙  is the sum of outgoing vehicles from the 

intersection. Loosely speaking, minimizing the 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 will eventually 
optimize the degree of equilibrium between vehicles on the incoming 
and outgoing lanes and thus the vehicular throughput is boosted.

The agent’s main objective is to maximize the total rewards in the 
long term starting from the time-step 𝑡 i.e., the return. The return 𝐺 is 
given as the total sum of discounted rewards starting from time-step 𝑡,

𝐺 =
𝑛
∑

𝑘=0
𝛾𝑘𝑡+𝑘 (18)

where 𝑛 is the total time steps, 𝛾 is the discount factor and  is the 
reward signal.

5.3. Action space

In our framework, the action space is unlike the previous proposed 
action spaces discussed in the literature, where the agent either per-
forms a discrete action (i.e., phase selection) or a continuous action 
(i.e., phase timing prediction). Instead, the action space is in the form of 
parameterized hierarchical action space. In parameterized action space, 
we define one sub-space for the possible finite traffic phases and the 
other is an interval for predicting the timing as a parameter associated 
with the selected phase. Hence, the first sub-space include four possible 
traffic phases represented by integers 𝑃 ∈ {0, 1, 2, 3}, and the second 
continuous sub-space as a  bounded time interval for associated phase, 
where 𝑑𝑃 ∈ [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]. Consequently, the total action space is given 
by  = {{0, 1, 2, 3} ∪ {[𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]}}. An example of the joint action 
is illustrated in Fig.  4 where the phase 𝑃  constitutes a set of non-
conflicting signals (‘G’ for green, ‘r’ for red and ‘y’ for yellow) to control 
each traffic movement, and the duration 𝑑𝑃  falls in the interval [0 s, 
45 s].

5.4. Agent’s architecture

The most crucial part in the framework consists in the architecture 
of the agent. The agent’s role is to learn an optimized policy that maps 
the observed states into specific actions. According to the parameter-
ized action space defined earlier, most suitable architectures include 
parameterized DQN (P-DQN) (Xiong et al., 2018) and Multi-Pass-DQN 
(MP-DQN) (Bester et al., 2019) as describe in Section 3. Basically, 
6 
Fig. 4. Example of the agent’s action that is applied to the traffic light.

MP-DQN is an improved version of P-DQN which notably performs 
better than p-DQN and allows the implementation of parameterized 
action space proposed in our framework. We adopt and customize 
the MP-DQN agent architecture implementation available online1 to 
fit in our TSC framework. MP-DQN architecture exploits two neural 
networks according to the dual action spaces. The first, which is the 
Actor network, approximates the 𝑄-values of the finite primary actions 
in order to select optimal phase 𝑃 . The Actor network is denoted as 
𝑄(𝑠, 𝑃 , 𝑑𝑃 ;𝝎). The second network, named the ParamActor network, is 
used to approximate the policy mapping 𝑥𝑑𝑃  so to predict the associ-
ated continuous parameters, denoted by 𝑥𝑑𝑃 (𝑠;𝜽). Both networks come 
with target networks which improve the convergence performance and 
stability of the agent. The  Actor network 𝑄(𝝎) consists of an input 
layer of size (21), (16) inputs for the number of lanes at the intersection, 
(1) input for phase state and (4) inputs for the number of associated 
parameters of primary actions. The hidden layer of the Actor has (256)
neurons with a 𝑅𝑒𝑙𝑢 activation function, and the output layer is of 4
neurons representing 𝑄-values for the four discrete primary actions. 
The ParamActor is of a similar structure except that the input layer is 
of size 16+ 1 and the output is dedicated for predicting the continuous 
action-parameters.

The pseudo-code of our proposed framework is described in Algo-
rithm 1. At first, the training and simulation settings ({𝑙𝑟𝑄, 𝑙𝑟𝑥}, 𝜖, 𝐵, 𝜁 ,

1 https://github.com/cycraig/MP-DQN.

https://github.com/cycraig/MP-DQN
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𝝎0,𝜽0) are set in order to start interaction with simulation environment 
and begin training operation of the agent. In each episode of the 
training episodes, the agent interacts with the environment as a TSC 
by perceiving the intersection’s traffic state 𝑠𝑡, and applying the dual 
action 𝑎𝑡 = (𝑃𝑡, 𝑑𝑃 𝑡) to the traffic settings based on 𝜖-greedy policy, 
where 𝑎𝑡 = (𝑃𝑡, 𝑑𝑃 𝑡) is selected as: 

𝑎𝑡 =

⎧

⎪

⎨

⎪

⎩

a sample from 𝜁 with probability 𝜖,

(𝑃𝑡, 𝑑𝑃 𝑡), 𝑃𝑡 = argmax
𝑃

𝑄(𝑠𝑡, 𝑃 , 𝑑𝑃 𝑡;𝝎𝑡), 1 − 𝜖. (19)

Algorithm 1 Traffic Signal Control Using DRL with Parameterized 
Action Space
1: Initialize: Stepsizes {𝛼𝑡, 𝛽𝑡}𝑡≥0, exploration parameter 𝜖, minibatch 
size 𝐵, a probability distribution 𝜁 , flow configurations, network 
weights 𝝎0 and 𝜽0.

2: for episode 𝑒 = 1,…𝐸 do
3:  Start Simulation.
4:  Observe the initial state 𝑠0 and take an initial joint action 𝑎0.
5:  for 𝑡 = 1,… 𝑇  do
6:  Compute action parameters 𝑑𝑃 𝑡 → 𝑥𝑑𝑃 (𝑠𝑡;𝜽𝑡).
7:  Choose action 𝑎𝑡 = (𝑃𝑡, 𝑑𝑃 𝑡) following the 𝜖 -greedy policy.

𝑎𝑡 =

⎧

⎪

⎨

⎪

⎩

a sample from 𝜁with probability𝜖,
(𝑃𝑡, 𝑑𝑃 𝑡), 𝑃𝑡 = argmax

𝑃
𝑄(𝑠𝑡, 𝑃 , 𝑑𝑃 𝑡;𝝎𝑡), 1 − 𝜖.

8:  Apply the 𝑎𝑡 action, Obtain next state 𝑠𝑡+1 and get 𝑡.
9:  Store the experience< 𝑠𝑡, 𝑎𝑡,𝑡, 𝑠𝑡+1 > in memory 𝑀 .
10:  Randomly sample 𝐵 experiences from 𝑀 .
11:  

𝑦𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑡 if 𝑡 = 𝑇 ,
𝑡 +max𝑃

𝛾𝑄(𝑠𝑡+1, 𝑃 , 𝑥𝑑𝑃 (𝑠𝑡+1;𝜽);𝝎𝑡) otherwise.

12:  Compute ∇𝝎𝓁
𝑄
𝑡 (𝝎𝑡) and ∇𝜽𝓁

𝑄
𝑡 (𝜽) using {𝑦𝑡, 𝑠𝑡, 𝑎𝑡}.

13:  update weights 𝝎𝑡+1 ←←← 𝝎𝑡 − 𝛼∇𝝎𝓁
𝑄
𝑡 (𝝎𝑡) and 𝜽𝑡+1 ←←← 𝜽𝑡 −

𝛽∇𝜽𝓁
𝑄
𝑡 (𝜽).

14:  end for
15: end for

where 𝜁 is a uniform random distribution over a continuous interval 
[𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]. Upon performing an action to the TSC, the agent gets a 
reward 𝑡 and the new state of traffic 𝑠𝑡+1 is observed. The undergone 
experience is saved  in a memory 𝑀 as a tuple (⟨𝑠𝑡, (𝑃𝑡, 𝑑𝑃𝑡 ),𝑡, 𝑠𝑡+1⟩) 
for the training purpose. The agent remains in its current state until the 
predicted duration 𝑑𝑃𝑡  elapses, after which it proceeds to observe the 
next state 𝑠𝑡+1 predict the next action 𝑎𝑡+1. When the size of the memory 
reaches an initial memory threshold, the agent  randomly samples a 
batch of size 𝐵 that is used for training the agent and update its policy. 
The gradients ∇𝝎𝓁

𝑄
𝑡 (𝝎𝑡) and ∇𝜽𝓁

𝑄
𝑡 (𝜽) are computed and used besides 

the learning rates {𝑙𝑟𝑄, 𝑙𝑟𝑥} to update 𝝎 and 𝜽 weights.  For time com-
plexity, the dominant computational cost in the proposed framework 
arises from the two neural networks the Actor network 𝑄(𝑠, 𝑃 , 𝑑𝑃 ;𝝎)
and the ParamActor network 𝑥𝑑𝑃 (𝑠;𝜽). The forward passes contribute 
𝑂(𝑚𝝎 × 𝑛𝝎 + 𝑚𝜽 × 𝑛𝜽), where 𝑚𝝎 and 𝑚𝜽 are the number of layers, 
and 𝑛𝝎 and 𝑛𝜽 are the number of neurons per layer in the Actor and 
ParamActor networks, respectively.

During training, backpropagation adds additional computational 
cost due to gradient computations and weight updates for both net-
works. The backward passes scale with the batch size 𝐵, adding 𝑂(𝐵 ×
(𝑚𝝎 × 𝑛𝝎 + 𝑚𝜽 × 𝑛𝜽)). Hence, the overall computational complexity can 
be expressed and simplified as:
𝑂(𝐸 × 𝑇 × (𝐵 × (𝑚 × 𝑛 + 𝑚 × 𝑛 )))
𝝎 𝝎 𝜽 𝜽
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6. Experiments

In this section, we begin by presenting the research questions we 
aim to answer and the hypotheses we seek to validate. We then intro-
duce the simulation environment setup, the different parameters used 
and the evaluation metrics upon which we assess the performance of 
the framework. We evaluate the overall performance of the proposed 
approach for managing the traffic signal control systems based on 
the obtained results.  Further evaluations are made by comparing our 
framework to other benchmarks reported in the literature including 
DRL based approaches and meta-heuristic based algorithms. At the end, 
we discuss the results obtained from various experimentation scenarios 
as well as the results of benchmarks comparison.

6.1. Hypotheses

By conducting the set of upcoming experiments using our approach 
and the benchmarks, we aim to address the following research ques-
tions. (1) How does the proposed approach perform compared to 
fixed-time approach and deep learning based approaches? (2) How ef-
ficient is our approach compared to meta-heuristic based approaches?. 
To answer these research questions, we have formulated to two hy-
potheses: 

• H1: Based on travel time, our hybrid approach is more perfor-
mant than both fixed time methods and the deep learning-based 
approaches, namely, discrete approach (DQN) and continuous 
approach (DDPG).

• H2: Based on travel time, our hybrid approach is more performant 
than metaheuristic Based Approaches, namely GA and PSO.

6.2. Experimental setup

The evaluations of our framework are based on simulations made 
using the popular open source SUMO traffic simulator2 to simulate the 
intersection environment (Behrisch et al., 2011).

For the signalized intersection, we have 4 lanes for each incom-
ing/outgoing road all are 750 m long and a maximum speed of
13.89 m/s. Three right-most lanes in each road are devoted for going 
straight and right turn movements of vehicles, and the left lane is kept 
for the turning left vehicles.

Using custom scripts, the traffic flow of vehicles is generated prior 
to each simulation episode. The traffic flow is generated such that 
it mimics the real traffic flow. In real traffic scenario for instance, 
the traffic flow starts with low vehicular density, and it keeps rising 
until the peak value traffic, finally the traffic starts to relief by lower 
vehicular densities. We generate such a traffic flow (i.e., low, high then 
low) by assigning one hour for low traffic, one hour for high traffic and 
one hour for low traffic again, a total of 10800 s of generated traffic. The 
vehicle routes (i.e., the trip from origin to destination) are generated 
such that a portion of 25% of vehicles turn left or right, and a portion 
of 75% decide to go straight. Table  5 describes the generated traffic 
flow scenarios with different configurations.

6.3. Parameters tuning and setting

Various training parameters and settings have to be carefully ad-
justed and correctly tuned so to fit the customized MP-DQN architec-
ture in our framework. We set the training parameters and settings after 
a number of simulation experiments as following, the agent is trained 
on 𝑁 = 301 episodes with each episode lasts for 3800 s. During the 
training, the action selection of the agent is based on 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 for 

2 https://www.eclipse.org/sumo.

https://www.eclipse.org/sumo
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Table 5
Simulated traffic flow.
 Distribution Scenario Generated flow Start time End time  
 Type (veh/h) (s) (s)  
 Weibull Dist SC1

SC2
SC3

1500
4000
SC1-SC2-SC1

0 s
0 s
0 s

3800 s
3800 s
11 000 s

 

 Normal Dist SC4
SC5
SC6

1500
4000
SC4-SC5-SC4

0 s
0 s
0 s

3800 s
3800 s
11 000 s

 

Table 6
Values used for training parameters.
 Parameter Description Value  
 𝑁 Number of training episodes 451  
 𝑀 Replay Memory 20000  
 𝑏 Mini-batch size 64  
 𝑙𝑟𝑄 Actor Learning rate 0.001  
 𝑙𝑟𝑥 ParamActor Learning rate 0.00001 
 𝛾 Gamma factor 0.95  
 𝑒𝑝𝑠_𝑚𝑖𝑛 Minimum value of epsilon 0.01  
 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 Number of epsilon episodes 300  
 𝑦𝑒𝑙𝑙𝑜𝑤 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 Yellow phase duration 3 s  

the discrete actions and random uniform selection for the continuous 
parameters. The exploration parameter 𝜖 is annealed from 1 down 
to 0.01 for a period of 270 episodes. The agent’s memory size is set 
to 20,000 experiences, and the agent starts training and updating its 
policy if the number of stored experiences exceeds 128. After each time-
step, the agent randomly samples a mini-batch of 𝑏 = 64 experiences to 
learn from and update its networks’ weights. Both Actor and ParamAc-
tor networks weights are updated using the RMSProp (Tieleman and 
Hinton, 2012) stochastic gradient decent method where the learning 
rates are set to 𝑙𝑟𝑄 = 0.001 and 𝑙𝑟𝑥 = 0.00001 respectively. To keep 
the continuous action parameters inside the bounded interval, we use 
the inverting gradients method as proposed in Hausknecht and Stone 
(2016). The gradient clipping method is also applied with a value of 
1 in order to speed up the training process. Different used parameters’ 
values are summarizes in Table  7 (see Table  6).

6.4. Performance evaluation metrics

To evaluate the performance of our approach, we use three common 
evaluation metrics for traffic signal control approaches (1) Average 
Travel Time, (2) the queue length and (3) the average waiting time 
of vehicles (Liu et al., 2023; Kolat et al., 2023). In the following, we 
describe of these performance metrics.

6.4.1. Average Travel Time (ATT)
Travel time of a vehicle is the time it spends to arrive to its desti-

nation starting form its origin point. Average travel time of vehicles is 
the sum of travel time of all vehicles divided by the total number of 
vehicles, defined as: 

𝐴𝑇𝑇 = 1
𝑁𝑣𝑒ℎ

𝑁𝑣𝑒ℎ
∑

𝑗=0
(𝑡𝑗,𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑗,𝑒𝑛𝑑 ), (20)

where 𝑁𝑣𝑒ℎ is the total number of vehicles.

6.4.2. Average Waiting Time (AWT)
The waiting time of a vehicle over an episode is computed by 

summing up all times its speed was less than 0.1 m∕s. The Average 
Waiting Time is then calculated by summing waiting time of all vehicles 
divided by the total number of vehicles. 

𝐴𝑊 𝑇 = 1
𝑁𝑣𝑒ℎ

𝑁𝑣𝑒ℎ
∑

𝑗=0
𝑊 𝑇𝑗 , (21)

where 𝑊 𝑇𝑗  represents the waiting time of each vehicle 𝑗 over a 
simulation episode.
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Table 7
Training parameters for Meta-Heuristics.
 Parameter Value 
 Genetic algorithm
 Population size 10  
 Number of generations 30  
 Mutation probability 0.1  
 cross-over probability 0.5  
 PSO algorithm
 Population size 10  
 Number of generations 30  
 Number of particles 0.01  
 c1 & c2 coefficients 300  

6.4.3. Queue Length (QL)
This metric corresponds to the total number of vehicles queuing on 

all lanes. A vehicle is in queuing state if its speed is less than 0.1 m∕s
on a particular lane. We consider the average queue length over all 
recorded values during the training episodes as well.

6.5. Benchmarks

For a practical validation of our proposed framework, we com-
pare it to state-of-the-art approaches, the Fixed-time approach (Gordon 
and Tighe, 2005), the DQN discrete approach (van Hasselt et al., 
2015), the DDPG continuous approach (Lillicrap et al., 2019) and two 
meta-heuristic approaches: genetic algorithm (GA) (Holland, 1992) and 
particle swarm optimization (PSO) (Eberhart and Kennedy, 1995).

6.5.1. Fixed time approach
Fixed-time approach is a static approach where we have a fixed 

sequence order of phases with each phase duration is fixed (Gordon 
and Tighe, 2005). In the experiment, We set the green phase to 30 s, 
and 3 s for the yellow phase.

6.5.2. Discrete approach
In the discrete DQN approach for TSC, the agent is trained to pick a 

proper phase from the list of phases without any particular order, but 
the phase duration is fixed. In this approach,  for the agent architecture 
we use the Double-DQN with Prioritized Experience Replay Memory. 
The formulae of state and reward are both based on the queue length 
as in our proposed framework.

6.5.3. Continuous approach
In contrast with the discrete approach, the continuous approach 

only predicts the  next phase’s duration within a fixed order of phases. 
To implement this approach, we leverage the DDPG continuous archi-
tecture for the agent, and the rest is similar to the discrete approach.

6.5.4. Meta-heuristics
We also compare our framework to two meta-heuristic benchmarks, 

the Genetic Algorithm (GA) and the Particle Swarm Optimization al-
gorithm (PSO) which have been discussed in Section 3. In both algo-
rithms, we set the size of population to 10 individuals, and the number 
of generations to be 30 generations. The GA mutation probability is 
set to 0.1 and the cross-over is based on the discrete recombination 
with probability of 0.5. For the PSO, each swarm encloses 4 particles, 
and the acceleration coefficients c1, and c2 are set to 0.5. The resulting 
solutions of both algorithms represent the phase timing of traffic lights, 
bounded from 5 s to 45 s. These phase durations are integrated into 
each traffic simulation episode to be tested and the fitness function is 
obtained as a result to evaluate the candidate solutions and update the 
population over iterations/generations.
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Fig. 5. Training curves of the proposed framework based on queue length, waiting 
time and travel time metrics with respect to episodes.

Fig. 6. Comparison of training curves of our proposal against discrete and continuous 
benchmarks during C2 scenario based on travel time metric.

6.6. Results and discussion

In this section, we demonstrate the results of the experiments ac-
cording to the performance evaluation metrics and different flow con-
figurations mentioned earlier. The training performance curves of the 
agent are shown in Fig.  5. A comparison of training performance of the 
proposed framework versus the Discrete and Continuous approaches is 
illustrated in Fig.  6. Notably during the training, the Discrete approach 
(cyan colored curve) initially learns faster (since it already maintains 
fixed phase durations and its objective is only to select the most 
suitable phase) but converges to a sub-optimal solution. Furthermore, 
the Continuous approach (black colored curve) seems to be less stable 
and oscillates at the beginning then it reaches a better performance but 
still worse than the rest. Both the discrete and continuous approaches 
have been trained longer for 501 episodes as they took more time 
to converge and stabilize. On the other side, our framework (the 
parameterized approach curve in red color) is linearly decaying until 
it outperforms the Discrete and the Continuous curves. This happens 
due to the fact that the parameterized framework is more flexible and 
strives to optimize both the phase selection and the timing associated.

6.6.1. Comparison with fixed time and deep learning based approaches
In this comparison we target to statistically verify the following 

hypothesis H1 stating that ‘‘Based on travel time, our hybrid approach 
is more performant than both fixed time methods and the deep learning 
9 
Fig. 7. Queue length performance comparison of our proposal against discrete and 
continuous approaches.

based approaches, namely discrete approach (DQN) and continuous ap-
proach (DDPG)’’. Our approach as well as the Fixed-Time, the discrete 
and the continuous algorithms were run using six simulation scenarios 
(SC1, . . . , SC6) and repeated several times. Each run time is an episode 
of 200 time steps (the value 200 is determined empirically). The 
average of travel time as well as the standard deviation are recorded 
and depicted in Table  8 for our approach as well as the aforementioned 
benchmarks. 

Remarkably, we observe from the table that the Fixed Time method 
scores far behind the competition since its static behavior cannot 
handle perfectly the dynamic traffic flow situations. However, the deep 
reinforcement learning based approaches perform clearly better due 
to the fact that they can effectively handle the dynamic traffic flow 
conditions. Out of the deep reinforcement learning approaches, our 
parameterized framework surpasses the benchmarks in all experiments. 
t-Test is performed to assess the evidence supporting our hypothesis 
𝐻1. The computed p-values recorded in Table  8 show the significant 
out-performance of our approach over the benchmarks in all scenarios. 
The null hypothesis stating that there is no difference between our 
approach and the benchmarks is rejected with a confidence of 99% 
(𝑝-value < 0.01).

This is an interesting feature of our proposal, since our framework 
can efficiently control both the phase selections and predict the as-
sociated timing of the selected phase which makes the parameterized 
framework more flexible than others.

In Fig.  7, we present the queue length performance of the Dis-
crete, Continuous and the proposed parameterized approaches during 
one episode simulation. The illustrated resulting curves show that the 
performance of our framework outperforms the benchmarks as it by 
maintaining a lower and more steady queue length during the traffic 
simulation episode.

6.6.2. Comparison with meta-heuristics
In this comparison, we statistically verify the following hypothesis 

(H2). Table  9 presents the comparison results between PSO, GA and 
our approach under multiple simulation scenarios (i.e., SC1-SC6). The 
comparison reveals that while both meta-heuristic approaches, namely, 
PSO and GA, perform relatively close to each other, they remain 
significantly behind the proposed parameterized framework across all 
scenarios. This highlights the limitations of meta-heuristic algorithms 
in handling the highly dynamic and complex nature of traffic signal 
control. t-Test is conducted to evaluate the evidence supporting our 
hypothesis 𝐻2. When compared with alternatives from meta-heuristics, 
the computed p-values demonstrate that our approach Substantially 
outperforms the GA and PSO algorithms in all scenarios. Thus the null 
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Table 8
Mean and STD of average travel time (s) performance comparison of proposed framework to others.
 Scenarios
 Alternative approaches SC1 SC2 SC3 SC4 SC5 SC6  
 Fixed-Time: Mean (Std) 164.4 (2.2) 260.6 (16) 220.6 (5.4) 161.4 (0.5) 217.3 (8.7) 197.1 (5.0)  
 (𝑝-value, One tail t-Test) (7.27086e−15) (1.918e−9)  (2.291e−12) (1.472e−27) (2.723e−10) (1.620e−11) 
 Discrete approach: Mean (Std) 138.5 (1.2) 145.7 (0.9) 142.4 (0.7) 135.9 (0.5) 143.7 (0.8) 141.3 (0.6)  
 (𝑝-value, One tail t-Test) (2.246e−8) (1.459e−10) (3.462e−11) (1.963e−14) (6.340e−11) (1.489e−12) 
 Continuous approach: Mean (Std) 136.8 (0.9) 153.8 (4.2) 146.6 (1.9) 134.7 (0.6) 148.0 (3.1) 144.0 (1.9)  
 (𝑝-value, One tail t-Test) (6.061e−7) (2.365e−6) (5.319e−8) (2.080e−11) (3.384e−6) (1.849e−7)  
 Parameterized approach: Mean 133.3 140.6 137.9 130.7 138.3 136.5  
 (Std) (1.1) (0.8) (0.4) (0.5) (0.75) (0.5)  
Table 9
Performance comparison of the proposed framework against meta-heuristic algorithms based on average travel time metric.
 Scenarios
 Metaheuristics SC1 SC2 SC3 SC4 SC5 SC6  
 Genetic algorithm:Mean 144.9 150.9 148.7 143.2 149.1 147.5  
 (Std) (0.74) (1.46) (0.67) (0.52) (1.12) (0.66)  
 (𝑝-value, One tail t-Test) (1.80e−14) (1.44e−11) (1.74e−17) (5.50e−21) (6.84e−14) (1.66e−18) 
 PSO algorithm: Mean 143.1 149.3 146.8 141.2 147.4 145.6  
 (Std) (0.85) (2.24) (0.84) (0.63) (1.61) (0.71)  
 (𝑝-value, One tail t-Test) (1.15e−13) (1.20e−7) (1.10e−13) (1.50e−18) (1.05e−9) (2.22e−16) 
 Parameterized approach: Mean 133.3 140.6 137.9 130.7 138.3 136.5  
 (Std) (1.1) (0.8) (0.4) (0.5) (0.75) (0.5)  
Fig. 8. Training curves of PSO and GA algorithms over generations/iterations.

hypothesis stating that there is no difference between our approach 
and the PSO and GA algorithms is rejected with a confidence of 99% 
(𝑝-value < 0.01). Further evidence of this performance gap can be 
observed in Fig.  9, which illustrates the queue length performance 
during a single episode of simulation. The results clearly demonstrate 
the superiority of the proposed framework, as it consistently minimizes 
vehicle queue lengths compared to the PSO and GA approaches.

Fig.  8 depicts the training curves of the meta-heuristic algorithms, 
GA and PSO, based on average travel time over iterations. Both al-
gorithms exhibit similar convergence behavior except that the PSO 
algorithm converges to a slightly lower average travel time value.

7. Threats to validity

Similar to any experimental study, the results of our study might 
have been impacted by a number of factors. In this section, we discuss 
the main threats to validity and how we mitigated them.
10 
Fig. 9. Queue length performance comparison of parameterized approach against meta-
heuristic-based algorithms.

7.1. Construct threats to validity

Construct threats to validity are concerned with the relation be-
tween theory and observation. A key point in this regard is related 
to the suitability of our evaluation measures. We used three different 
performance evaluation measures that are commonly used for evalu-
ating the traffic signal control approaches, namely the average travel 
time (ATT), the waiting time (AWT), and the queue length (QL). Thus, 
we believe that by using multiple performance measures that reflect 
different perspectives, there is negligible threat to construct validity. 
Other possible threats with the measurement of the exploited traffic 
data, as well as the independent variables, have been mitigated by gen-
erating various dynamic traffic flows that mimic real-world scenarios, 
as described in Section 6. These traffic scenarios are simulated using 
tools well established in the TSC field, such as SUMO (Behrisch et al., 
2011), which is accurate enough for conducting our study.



S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422 
7.2. Internal threats to validity

Threats to internal validity concern the possible errors in our ex-
periments. We used reliable traffic datasets that are supported by 
SUMO (Behrisch et al., 2011), a widely-used open source traffic sim-
ulator. Another possible threat to internal validity could be related 
to bias in the replication of the benchmark approaches. We used 
the standard implementation of the Multi-Pass Parameterized Deep Q-
networks (MP-DQN) based on the agent architecture implementation 
available online3 to fit in our TSC framework. Furthermore, we used 
the standard experiment setting for the benchmark approaches (fixed 
time, discrete, and continuous approaches). We also double checked 
all the experimental setup. Thus, we believe there is negligible threat to 
internal validity. To reduce errors in our code, we have double checked 
and fully tested our code, still there could be errors that we did not 
notice.

7.3. Conclusion threats to validity

Conclusion threats to validity concern the relationship between the 
treatment and the outcome. Indeed, in our empirical evaluation, we 
statistically analyzed the obtained results using the t-Test statistical 
analysis which provided strong evidence for validating our assumptions 
and our experimental study. Hence, we believe that there is negligible 
threat to the validity of our conclusions.

7.4. External threats to validity

Threats to external validity relate to the quality of our datasets 
and generalizability of our findings. While our experiments are based 
on a widely used open source tool, Simulation of Urban MObility 
(SUMO) simulator (Behrisch et al., 2011) and synthetic traffic datasets, 
to efficiently simulate the intersection environment, we are planning 
to conduct further experiments on real world traffic data. Indeed, 
some constraints may apply when implementing our approach in real 
intersections such as the limitations posed by maximum queue length 
and the calculated average travel time, which rely on the available 
sensors on the road.

8. Conclusion and future work

In this paper, we addressed the challenge of simultaneously control-
ling traffic signal control (TSC) phase selection and predicting the cor-
responding phase duration. To achieve this, we leveraged a state-of-the-
art parameterized deep reinforcement learning architecture, namely, 
Multi-Pass Parameterized Deep Q-networks (MP-DQN). We tailored and 
adapted the MP-DQN architecture in the TSC environment to effectively 
select the appropriate phase and while simultaneously predicting its 
duration. To evaluate our framework and demonstrate its performance, 
we run multiple simulated experiments with different traffic scenarios 
and configurations.  Our proposal is further compared with a set of 
baselines including traditional and learning-based approaches such as 
discrete, continuous, and meta-heuristic (GA and PSO) approaches. 
The performance of these approaches is evaluated based on average 
travel time (ATT), average waiting time (AWT), and queue length (QL) 
evaluation metrics. The results clearly demonstrate that our framework 
outperforms all benchmarks across the simulated experiments. This 
superior performance is attributed to the framework’s capability to 
efficiently handle phase selection while predicting the corresponding 
phase timing. Specifically, our approach improves the travel time per-
formance by 33%, 3.5%, and 5.3% over Fixed-Time, Discrete, and 
Continuous approaches respectively, and by 7.5% and 6.4% over GA 
and PSO approaches respectively.

3 https://github.com/cycraig/MP-DQN.
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One advantage of the proposed approach is that it integrates phase 
selection and phase timing prediction into a single framework, leading 
to more adaptive and efficient traffic signal control. This provides 
flexibility for dynamic traffic scenarios, contributing to its superior 
performance across various evaluation metrics. However, one disadvan-
tage of our approach is the increased computational complexity due to 
the parameterized action space, which could affect real-time deploy-
ment in large-scale or multi-intersection scenarios.  The limitations of 
this work include its reliance on simulated environments, which may 
not fully represent real-world traffic conditions. Additionally, the com-
putational demands of the MP-DQN architecture may pose challenges 
for scalability in larger networks.

Future works could be dedicated to conducting further experiments 
on multi-intersection scenarios  and incorporating real-world data from 
signalized intersections to improve realism and applicability. Efforts 
could also focus on optimizing the computational efficiency of the 
architecture, potentially through lightweight neural network designs, 
to facilitate real-time deployment in large-scale traffic networks.
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