
Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422

A
0
n

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Research paper

Parameterized-action based deep reinforcement learning for intelligent
traffic signal control
Salah Bouktif a ,∗, Abderraouf Cheniki b, Ali Ouni c, Hesham El-Sayed a
a College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
b Institute of Electrical and Electronics Engineering, University of Boumerdes, Algeria
c École de Technologie Supérieure, University of Quebec, Montreal, Canada

A R T I C L E I N F O

Dataset link: https://github.com/abderraouf2c
he/Hybrid-Deep-RL-Traffic-Signal-Control

Keywords:
Reinforcement learning
Parameterized action space
Traffic signal control
Traffic optimization

 A B S T R A C T

Traffic Signal Control (TSC) is a crucial component in Intelligent Transportation Systems (ITS) for optimizing
traffic flow. Deep Reinforcement Learning (DRL) techniques have emerged as leading approaches for TSC
due to their promising performance. Most existing DRL-based approaches typically use discrete action spaces
to predict the next action phase, without specifying the signal duration. In contrast, some studies employ
continuous action spaces to determine signal phase timing within a fixed light cycle. To address the limitations
of both approaches, we propose a flexible framework that predicts both the appropriate traffic light phase
along with its associated duration. Our approach utilizes a Parameterized-action based deep reinforcement
learning architecture to handle the combination of discrete-continuous actions. We evaluate our method
using the Simulation of Urban MObility (SUMO) environment, comparing its efficiency against state-of-the-
art techniques. Results demonstrate that our approach significantly outperforms traditional and learning-based
methods.
1. Introduction

The increasing population size and the growing number of vehicles
in urban areas have led to a substantial rise in traffic volume, result-
ing in severe traffic congestion. This congestion has had significantly
undesirable impacts, including prolonged travel time delays and con-
siderable economic losses each year (INRIX Scoreboard, 2022). One
of the primary objectives of Intelligent Transportation Systems (ITS)
is to alleviate congestion and optimize traffic flow within cities. Within
this framework, Traffic Signal Control (TSC) systems play a critical
role in managing traffic flow at signalized intersections (Haydari and
Yilmaz, 2022). Numerous researchers have proposed various architec-
tures to enhance traffic flow and reduce congestion by developing more
intelligent Traffic Signal Control (TSC) systems (Bouktif et al., 2023;
Genders and Razavi, 2016; Vidali et al., 2019). These approaches often
utilize optimization techniques such as machine learning frameworks
and meta-heuristic algorithms. In the scope of machine learning, TSC
systems primarily rely on the Reinforcement Learning (RL) and Deep
Reinforcement Learning (DRL) decision making techniques to optimize
the traffic flow and to reduce congestion, in contrast to traditional
TSCs controlling methods (Casas, 2017; Kolat et al., 2023; Khamis and
Gomaa, 2014). One significant advantage of RL techniques is their

∗ Corresponding author.
E-mail addresses: salahb@uaeu.ac.ae (S. Bouktif), abderraouf2cheniki@gmail.com (A. Cheniki), Ali.Ouni@etsmtl.ca (A. Ouni), helsayed@uaeu.ac.ae

(H. El-Sayed).

flexibility and ability to handle dynamic and non-uniform traffic flow
patterns, unlike manually designed standard methods. Indeed, DRL-
based traffic signal control systems have been shown to outperform
traditional TSC methods (Kolat et al., 2023; Rasheed et al., 2020; Wei
et al., 2019). In DRL-based TSC approaches, the agent perceives the
surrounding traffic environment and makes decision based on either
discrete or continuous action spaces. In the discrete approach, mainly
using Deep Q-networks (DQN) (Mnih et al., 2013) and its extensions,
the action space includes two options: the agent either maintain the cur-
rent traffic signal phase of TSC or transitions to the next signal phase in
a predefined cycle of phases (Liu et al., 2023). In a more flexible action
space, the agent can choose any specific phase from the set of phases
without adhering to the sequence order (Kolat et al., 2023). In the con-
tinuous approach, other research proposals employ the continuous DRL
architecture (e.g., Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2019)) where the agent’s actions are continuous. In this strategy,
the agent predicts the next phase’s duration with a fixed sequence of
phases (Casas, 2017). Indeed, forecasting the subsequent phase without
determining its duration, or predicting the duration of the next phase
within a fixed sequence is insufficient for optimal traffic control. Hence,
being motivated by this research gap, we propose leveraging a hybrid
https://doi.org/10.1016/j.engappai.2025.111422
Received 27 August 2024; Received in revised form 6 January 2025; Accepted 5 Ju
vailable online 7 July 2025
952-1976/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).
ne 2025

ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
https://orcid.org/0000-0002-8193-0546
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
mailto:salahb@uaeu.ac.ae
mailto:abderraouf2cheniki@gmail.com
mailto:Ali.Ouni@etsmtl.ca
mailto:helsayed@uaeu.ac.ae
https://doi.org/10.1016/j.engappai.2025.111422
https://doi.org/10.1016/j.engappai.2025.111422
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
deep reinforcement learning (DRL) approach that combines discrete
and continuous architectures to further optimize traffic signal control
performance. This hybrid DRL approach allows to concurrently predict
the forthcoming Traffic Signal Control (TSC) phase and its associated
duration. This architecture belongs to the domain of the parameterized
action space Deep Reinforcement Learning (DRL); specifically, DRL
with parameterized action space (Masson et al., 2015). In particular,
we use a variant of this architecture known as the Parameterized-
DQN, or P-DQN (Xiong et al., 2018). The P-DQN framework, hence,
predicts the optimal traffic phase while simultaneously determining its
corresponding duration, providing a cohesive solution for traffic signal
control optimization. We experimentally demonstrate the effectiveness
of our approach using the SUMO simulator on the proposed framework.
The proposed framework, along with the benchmark approaches are
evaluated and compared based on standard metrics for Traffic Signal
Control (TSC) evaluation, namely, the average travel time, the queue
length and the average vehicular waiting time (Liu et al., 2023; Kolat
et al., 2023). The results demonstrate that our framework remark-
ably enhances TSC performance compared to the benchmarks. The
contributions of this research are summarized as follows:

• We present an innovative parameterized action space framework
for traffic signal control, enabling the simultaneous optimization
of traffic phase selection and its duration. This approach addresses
a critical limitation in current methodologies by integrating dis-
crete and continuous action spaces, offering greater flexibility and
control in traffic management.

• We evaluate our framework under varying and dynamic traffic
conditions, including non-uniform and dynamic scenarios.

• We compare the proposed method against traditional, learning-
based, and meta-heuristic approaches (e.g., Fixed-Time, Discrete,
Continuous, GA, PSO) using multiple evaluation metrics such
as average travel time (ATT), average waiting time (AWT), and
queue length (QL). Results consistently demonstrate superior per-
formance across diverse traffic scenarios.

The structure of this paper is organized as follows: Section 2 pro-
vides a review of related literature. Section 3 outlines the theoreti-
cal background and preliminaries. Section 5 describes our proposed
methodology. Section 6 presents the empirical validation of our ap-
proach, including a discussion of the results compared to state-of-the-
art approaches. Finally, Section 8 concludes the paper and suggests
directions for future research.

2. Related work

Recent research efforts in the transportation field have increasingly
focused on the application of artificial intelligence techniques to ad-
dress various challenges in transportation systems. Notably, these tech-
niques include: (i) deep reinforcement learning, and (ii) meta-heuristic
algorithms.

2.1. Deep reinforcement learning for TSC

Typically, DRL-based traffic signal control systems perceive the
traffic conditions at an intersection to learn optimal control policy and
determine the suitable traffic signal phase and its duration. Research
on DRL-based traffic signal control primarily varies across four key as-
pects: state representation, reward design, action selection, and agent’s
architecture. In this study, we focus specifically on analyzing action
selection and agent architecture within the DRL-based framework.
2
2.1.1. Action space selection
In reinforcement learning, the agent observes the current state of

the environment and takes the optimal action leading to the desired
behavior. Specifically, in traffic light control, action selection varies
according to the desired application. For instance, the action space can
be formulated as a binary action, where the agent decides whether to
maintain the current phase of traffic lights or to advance to the next
phase (Liu et al., 2023). A more flexible approach allows the agent to
select the next appropriate phase from a list of permitted phases at each
time step (Kolat et al., 2023). A third form of action space belongs to the
continuous domain, where the agent allocates time durations to each
phase within the total cycle (Casas, 2017). Beyond the action spaces
found in the literature, in this work, we propose an action space that
combines discrete and continuous domains, allowing the agent to select
both the next phase of the traffic light and its accompanying duration
simultaneously (see Table 1).

2.1.2. Agent’s architecture
A crucial component in deep reinforcement learning is the network

architecture chosen for the agent. This network takes the environment’s
state as input and predicts the appropriate action accordingly. During
the training process, the network learns the optimal action policy
through interaction with the environment. Various network architec-
tures have been developed depending on the type of action space
selected.

In a discrete action space, the Deep Q-Network (DQN) (Mnih et al.,
2013) is the most common agent architecture. It maps the state space
input to Q-values of the target actions. However, DQN can suffer from
overestimation bias, leading to suboptimal learning. To address this,
Double-DQN (van Hasselt et al., 2015) was introduced, which uses two
separate networks – one to select actions and another to evaluate them
– thereby reducing overestimation. Another extension, Dueling-DQN,
incorporates two separate streams in the network: one for estimating
the state value and another for estimating the advantage of each
action, improving learning in environments with many similar-valued
actions. Additionally, the Normalized Advantage Function (NAF) (Gu
et al., 2016) extends DQN to continuous domains by approximating the
Q-value function using quadratic advantage terms.

For continuous action spaces, Actor-Critic-based architectures are
commonly used. For instance, Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al., 2019) combines an Actor network to predict
continuous actions and a Critic network to evaluate the Q-values
of state–action pairs. Soft Actor–Critic (SAC) (Haarnoja et al., 2018)
improves upon DDPG by incorporating an entropy term in the objec-
tive function, encouraging exploration and resulting in more robust
learning.

However, real-world application scenarios often present more com-
plex action spaces where discrete and continuous spaces coexist. Recent
research has explored the potential of composite action spaces us-
ing DRL with parameterized action space, which consists of a set
of discrete actions, each parameterized by a continuous parameter.
For instance, Hausknecht and Stone (2016) proposed an extension
of DDPG for parameterized action spaces, enabling agents to select
discrete actions while simultaneously predicting associated continuous
parameters.

This approach was further improved by Xiong et al. through the de-
velopment of the Parameterized Deep Q-Network (P-DQN) (Xiong et al.,
2018), which combines the benefits of DQN and DDPG. However, P-
DQN faces challenges related to joint-action representation. To address
this, Bester et al. introduced the Multi-Pass DQN (MP-DQN) (Bester
et al., 2019), which decouples the discrete actions and their con-
tinuous parameters by performing separate forward passes for each
action-parameter pair, leading to better training stability and improved
performance. Table 2 summarizes the key attributes, advantages, and
limitations of these architectures.

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
Table 1
Comparison of action space selection techniques in DRL for traffic signal control.
 Action space Description Advantages Limitations References
 Binary Maintain or switch phases Simple and computationally

efficient
Limited flexibility Liu et al. (2023)

 Discrete Select next phase from predefined
options

Suitable for static applications May lack granularity for dynamic
needs

Kolat et al. (2023)

 Continuous Allocate time duration for each
phase

High flexibility for dynamic
scenarios

Computationally expensive Casas (2017)

 Hybrid Combines discrete and continuous
action spaces

Combines flexibility with
feasibility

Requires more complex
architecture

Hausknecht and Stone
(2016), Xiong et al. (2018)
and Bester et al. (2019)

Table 2
Comparison of DRL agent architectures for TSC.
 Attribute Deep Q-Network (DQN) Double-DQN DDPG P-DQN
 Action space Discrete Discrete Continuous Hybrid
 Advantages Simple and widely adopted Reduces overestimation of

Q-values
Works for continuous action
spaces

Handles parameterized
actions effectively

 Limitations Not suitable for continuous action
spaces

Similar limitations as DQN Susceptible to instability during
training

Computational complexity

 References Mnih et al. (2013) van Hasselt et al. (2015) Lillicrap et al. (2019) Xiong et al. (2018)
Table 3
Comparison of meta-heuristic algorithms for TSC.
 GA PSO SA ABC
 Key feature Evolutionary optimization Swarm intelligence Probabilistic hill climbing Collective behavior of bees
 Advantages Robust to local minima Fast convergence Effective for discrete optimization Balances exploration and

exploitation

 Limitations Computationally expensive Susceptible to premature
convergence

Slow convergence Sensitive to parameter
tuning

 References Tan et al. (2016) García-Nieto et al. (2012) Oda et al. (1997) Dell’Orco et al. (2014)
2.2. Meta-heuristic algorithms for TSC

Meta-heuristic algorithms are approximate search techniques devel-
oped for solving complex optimization problems (Osman and Kelly,
1996). The most common meta-heuristic techniques include the Ge-
netic Algorithm (GA) (Holland, 1992), Particle Swarm Optimization
(PSO) (Eberhart and Kennedy, 1995), Simulated Annealing (SA) (Kirk-
patrick et al., 1983), and Artificial Bee Colony (ABC) optimization
algorithms (Karaboga and Basturk, 2007). Over the past three decades,
meta-heuristic algorithms have been widely applied to optimize trans-
portation systems, including traffic signal control at intersections (Hus-
sain et al., 2019; Shi et al., 2021). For example, Tan et al. (2016)
developed a GA-based approach to optimize signal green timing cycle
ratios at a crossed intersection under oversaturated conditions. Their
results demonstrate improved signal timing and minimized average
delay at the intersection as optimized by the GA algorithm. García-
Nieto et al. (2012) proposed a PSO approach to find effective cycle
programs for traffic lights. The solutions obtained by PSO were evalu-
ated in two large and heterogeneous metropolitan areas and compared
with cycle programs predefined by experts. The comparison results
show significant benefits in terms of the number of vehicles reaching
their destinations on time and the average travel time. Oda et al.
(1997) adopted an SA-based approach to optimize TSC behavior at
intersections, resulting in superior performance compared to the con-
ventional method. Finally, Dell’Orco et al. (2014) proposed the ABC
algorithm for finding the optimal setting of traffic signals in coordi-
nated signalized networks. Results, which were compared with two
other meta-heuristic algorithms (GA and Hill Climbing), showed a
slightly better performance (see Table 3).

3. Background and preliminaries

This section provides the necessary background and prerequisites to
better understand our contribution.
3
3.1. Reinforcement learning

Reinforcement learning decision making problems are generally
formulated as a Markovian Decision Process (MDP), characterized by
the terms ⟨ , ,,, 𝛾⟩. The term  stands for the state space,  is the
Markov probability of transition,  is the action space,  is the reward
and 𝛾 is the discount factor. The agent interacts with the environment
through a ‘‘trial and error’’ kind of learning. At each time step 𝑡, the
agent produces an action 𝑎𝑡 based on its action-selection policy 𝜋 and
according to the perceived state of the environment 𝑠𝑡. Afterwards,
the agent obtains an immediate reward 𝑟𝑡 evaluating the performed
action, and simultaneously, observes the next state 𝑠𝑡+1 for upcoming
decisions. In the learning process, the main objective of the agent is
to learn a policy 𝜋 so to maximize the cumulative discounted reward
𝐺𝑡 =

∑𝑛
𝑘=0 𝛾

𝑘𝑡+𝑘 by taking optimal actions each time step 𝑡.

3.1.1. RL for discrete action space
For a RL with discrete-action space, Q-learning (Watkins and Dayan,

1992) is commonly the most used method to derive the optimal action-
taking policy 𝜋 of the agent. Q-learning is a value-based RL algorithm
that employs a Q-function defined as:
𝑄𝜋 (𝑠, 𝑎) = E[𝐺𝑡|𝑠, 𝑎, 𝜋]. (1)

The Q-values evaluate how good are the state–action pairs and are com-
puted recursively using dynamic programming to solve the following
equation:
𝑄𝜋 (𝑠, 𝑎) = E𝑠𝑡+1 [𝑅𝑡 + 𝛾E𝑎𝑡+1∼𝜋(𝑠𝑡+1)[𝑄

𝜋 (𝑠𝑡+1, 𝑎𝑡+1)]|𝑠, 𝑎, 𝜋]. (2)

The optimal policy 𝜋∗ can be found from 𝑄∗(𝑠, 𝑎) = max𝜋𝑄𝜋 (𝑠, 𝑎) by
computing the optimal action 𝑎∗ for each state 𝑠, where 𝑄∗(𝑠, 𝑎) obeys
the Bellman optimality equation:
𝑄∗ (𝑠, 𝑎) = E𝑠 [𝑅𝑡 + 𝛾 max 𝑄∗(𝑠𝑡+1, 𝑎𝑡+1)|𝑠, 𝑎], (3)
𝑡+1 𝑎𝑡+1∈

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
𝑎∗ = argmax
𝑎∈

𝑄∗ (𝑠, 𝑎). (4)

We also define the state-value function 𝑉 (𝑠) which evaluates the
value of being in a given state 𝑠𝑡 as following

𝑉 𝜋 (𝑠) = E𝑎∼𝜋(𝑠)[𝑄𝜋 (𝑠, 𝑎)], and 𝑉 ∗(𝑠) = max𝑎𝑉 𝜋 (𝑠). (5)

In the finite state space , the values of 𝑄(𝑠, 𝑎) are stored in a
table during the training process where the Q-function is updated
iteratively. However, when the state space dimension is considerably
large, a tabular storage is no longer feasible. Therefore, to solve the
dimensionality-complexity problem, Deep Q-Networks (DQN) (Mnih
et al., 2013) is adopted to approximate the Q-function using neural
networks where the term 𝑄(𝑠, 𝑎;𝜽) is used, and 𝜽 refers to the weights or
parameters of the neural network. In Deep Q-Networks, the objective
is to learn a Q-network which precisely predicts 𝑄(𝑠, 𝑎) values. Thus,
at the 𝑡th iteration, the learning algorithm’s goal is to minimize the
following loss function:
𝑡(𝜽) = E[(𝑄(𝑠𝑡, 𝑎𝑡;𝜽) − 𝑅𝑡 + 𝛾 max

𝑎𝑡+1∈
𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1))

2]. (6)

where 𝑅𝑡 + 𝛾max𝑎𝑡+1∈𝑄
𝜋 (𝑠𝑡+1, 𝑎𝑡+1) denoted the temporal difference

target 𝑦𝑡.

3.1.2. RL for continuous action space
In continuous action space, maximizing over a continuous (infinite)

set of actions  is computationally intractable, which makes directly
applying value-based RL algorithms ineffective for continuous space.
Thus the policy-based RL turns out to be useful in continuous action
space by considering the second policy type (i.e., the deterministic
policy 𝜋(𝑎|𝑠)). Deterministic Policy Gradient (DPG) (Silver et al., 2014)
is known as the standard algorithm for the policy-based RL. It follows
the actor-critic approach by having a parameterized actor function 𝜇𝜽
that identifies the current policy by deterministically mapping states
into specific actions 𝜇 ∶  →  (Lillicrap et al., 2019). The critic
Q-function makes use of the recursive relationship similar to Bellman
equation (3) with the difference that the inner expectation is replaced
by the state–action mapping 𝜇𝜽:

𝑄𝜇𝜽 (𝑠, 𝑎) = E𝑠𝑡+1 [𝑅𝑡 + 𝛾[𝑄𝜇𝜽 (𝑠𝑡+1, 𝜇𝜽(𝑠𝑡+1))]|𝑠, 𝑎]. (7)

The actor is updated by the gradient of the policy’s performance 𝐽
using the DPG policy gradient theorem which states that

∇𝜽𝐽 (𝜇𝜽) = E
𝑠∼𝜌𝜇𝜽

[

∇𝜽𝜇𝜽(𝑠)∇𝑎𝑄
𝜇𝜽 (𝑠, 𝑎)|𝑎=𝜇𝜽(𝑠)

]

. (8)

A variant of the DPG, namely the Deep DPG (DDPG), is proposed
by Lillicrap et al. (2019). DDPG provides a modification of the DPG by
introducing a neural network as function approximators to learn over
large state and action space.

3.1.3. RL for parameterized action space
In hybrid RL, the action space is a hybridization of both discrete and

continuous action spaces. More precisely, we will consider the parame-
terized action space type of hybrid RL. The parameterized action space
is composed of a set of discrete actions, each discrete action is attached
(parameterized) by a continuous parameter value (Xiong et al., 2018).
In this paper, we will formulate our problem as an MDP with a
parameterized action space as proposed in P-DQN architecture (Xiong
et al., 2018). The action space  is given as:
 = {(𝑘, 𝑥𝑘)|𝑥𝑘 ∈ 𝑘for all 𝑘 ∈ [𝐾]}, (9)

where (𝑘, 𝑥𝑘) stands for the discrete action and continuous parameter
respectively, following a hierarchical structure of actions. Thus, we
have firstly a main discrete action selected from the set 𝐾 (𝑘 ∈ 𝐾 =
{1,… , 𝐾}), and a continuous sub-action 𝑥𝑘 ∈ 𝑘 selected from the
action space 𝑘. The 𝑄-function notation becomes 𝑄(𝑠, 𝑘, 𝑥𝑘), where 𝑠 ∈
, 𝑎 ∈ , 𝑘 ∈ [𝐾] and 𝑥𝑘 ∈ 𝑘. To compute the continuous parameter
𝑥 , we use a mapping function 𝑥𝑄 ∶  →  as in DDPG (Lillicrap
𝑘 𝑘 𝑘

4
Fig. 1. Structure of MP-DQN architecture.

et al., 2019) which maps the state space to specific continuous action
parameters. Hence, the 𝑄-function becomes:

𝑄
(

𝑠𝑡, 𝑘𝑡, 𝑥𝑘𝑡
)

= E𝑠𝑡+1 [𝑅𝑡 + 𝛾max
𝑘∈[𝐾]

𝑄(𝑠𝑡+1, 𝑘, 𝑥
𝑄
𝑘 (𝑠𝑡+1))|𝑠𝑡 = 𝑠]. (10)

In a similar way as in DQN and DDPG, we use deep neural net-
works to approximate both discrete and continuous mapping functions
𝑄(𝑠, 𝑘, 𝑥𝑘) and 𝑥𝑄𝑘 . Therefore, the mapping 𝑄(𝑠, 𝑘, 𝑥𝑘) is approximated
by 𝑄(𝑠, 𝑘, 𝑥𝑘;𝝎) with weights 𝝎, and the mapping 𝑥𝑄𝑘 is approximated
by 𝑥𝑘(⋅;𝜽) with weights 𝜽. Similar to DQN, the target value 𝑦𝑡 is given
by:
𝑦𝑡 = 𝑅𝑡 + 𝛾max

𝑘∈[𝐾]
𝑄(𝑠𝑡+1, 𝑘, 𝑥𝑘(𝑠𝑡+1;𝜽𝑡);𝝎𝑡), (11)

Finally, the parameters 𝝎 and the 𝜽 respectively updated using the
following loss functions:

𝓁𝑄
𝑡 (𝝎) =

1
2
[𝑄(𝑠𝑡, 𝑘, 𝑥𝑘);𝝎𝑡 − 𝑦𝑡]2, and (12)

𝓁𝜣
𝑡 (𝜽) = −

𝐾
∑

𝑘=1
𝑄(𝑠𝑡, 𝑘, 𝑥𝑘(𝑠𝑡;𝜽);𝝎𝑡)

Furthermore, as an extension to P-DQN architecture, Bester et al.
(2019) proposed a modification of the P-DQN architecture, called
Multi-Pass DQN (MP-DQN). MP-DQN comes to fix the joint-action issue
found in P-DQN. Loosely speaking, the joint action issue appears since
the 𝑄-network receives as an input all action-parameters (𝑥1,… , 𝑥𝐾)
of all discrete actions together, instead of having a separate each
action-parameter 𝑥𝑘 with its related discrete action 𝑘. The MP-DQN
architecture solves this issue where each action-parameter 𝑥𝑘 will be
associated with the related discrete action 𝑘. The MP-DQN performs
one forward pass per action 𝑘, where the input of the 𝑄-network
includes the state 𝑠 and the action-parameter vector 𝒙𝒆𝑘. The vector
𝒙𝒆 = (0,… , 0, 𝑥 , 0,… , 0) stands for the standard basis for dimension 𝑘
𝑘 𝑘

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
Fig. 2. Four-lane four-armed traffic intersection.

(see Fig. 1 where the input state 𝑠 is spread over the action-parameters
vectors 𝒙𝒆𝑘 then the MP 𝑄-network performs multi passes over these
tuples (𝑠,𝒙𝒆𝑘), once per each. This MP-DQN trick fixes the P-DQN issue
and lets 𝑄𝑘 depending only on its associated 𝑥𝑘, where:

𝑄(𝑠, 𝑘,𝒙𝒆𝑘) ≊ 𝑄(𝑠, 𝑘, 𝑥𝑘). (13)

4. Problem definition

To formulate our problem, we consider the following elements.
Environment E is defined as a four-direction (i.e., East ‘E’, West

‘W’, North ‘N’, South ‘S’) and four-lane intersection. There are 8 distinct
vehicle movements with a green signal for each (e.g., straight East-
West ‘EW’, East-West-left ‘EW-L’). Restricted by road safety measures,
we combine non-conflicting green signals forming 4 phases. Left-turn
movements are considered separately, and right-turns are jointed to
‘going-straight’ movements. Fig. 2 shows the environment structure
with phase East-West activated.

Phase of signals P is defined as a set of signals (‘G’ for green, ‘r’
for red and ‘y’ for yellow) at an intersection. For instance, the phase
‘GrGr’ means green for north and south directions and red for east and
west directions. For safety restrictions, green signals must be set such
as no conflicting movements occur and must be followed by a yellow
phase for a short period of time (e.g., ‘yryr’ after ‘GrGr’).

Agent G The agent G is the main component which observes the
state of the environment E (intersection), takes an action 𝑎𝑡 according
to its policy and receives an immediate reward 𝑡 at each time step 𝑡.

Travel Time for a vehicle can be defined as the time it takes for the
vehicle to accomplish its planned route starting from an origin location
until it reaches its destination.

Travel Time = 𝑡𝑗_𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑗_𝑒𝑛𝑑 (14)

where 𝑡𝑗_𝑠𝑡𝑎𝑟𝑡 is the time the vehicle 𝑗 enters the environment and 𝑡𝑗_𝑒𝑛𝑑
is the time the vehicle 𝑗 exited the environment.

Problem Definition Given a traffic signal intersection as the environ-
ment E, the agent G receives a state 𝑠 ∈ , performs a joint action 𝑎 ∈ 
and collects rewards 𝑅 from the environment. The goal of the agent
is to decide the optimal joint action 𝑎 = (𝑃 , 𝑑𝑃) for both phase 𝑃 and
its associated duration 𝑑𝑃 in order to minimize the average vehicular
travel time by maximizing the expected return, where the discounted
return is given as follows (see Table 4):
𝑛
∑

𝛾𝑘𝑡+𝑘 (15)

𝑘=0

5
Table 4
Notations.
 Notation Description
 𝑠 State
 𝑎 Action
 𝑅 Reward
 𝐺 Agent
 𝐸 Environment
 𝐿 Number of lanes
 𝑃 Phase of signals
 𝑑𝑃 duration of phase 𝑃
 EW East–West movement
 NS North–South movement
 EW-L East–West-Left movement
 NS-L North–South-Left movement
 𝑣𝑙 Number of vehicles on lane 𝑙

5. Parameterized action based deep reinforcement learning for
TSC

Here in this section, we describe our approach which adopts the
Parameterized action space Deep Reinforcement Learning. This frame-
work allows to predict the proper phase 𝑃 along with its associated
duration 𝑑𝑃 .

Framework Overview. Fig. 3 illustrates the essential components
of our framework to control the traffic lights at signalized intersections.
Initially, the agent perceives the state of the intersection at time-step
𝑡. According to the perceived state and based on its policy 𝜋, the
agent predicts a joint action (𝑃 , 𝑑𝑃), where 𝑃 is the selected phases
from the set of phases, and 𝑑𝑃 stands for the corresponding phase
duration. Consequently, at the time-step 𝑡+1, the environment rewards
the agent by a reward signal 𝑡 evaluating the performed joint action
𝑎 = (𝑃 , 𝑑𝑃). Finally, the agent receives the state 𝑠𝑡+1 for the next
action selection procedure. In the learning process, the agent stores the
resulting experiences ⟨𝑠𝑡, 𝑎𝑡 = (𝑃𝑡, 𝑑𝑃 𝑡),𝑡, 𝑠𝑡+1⟩ in its memory 𝑀 from
which the agent learns and updates its policy 𝜋.

In the next paragraphs, we describe the essential elements in our
framework, namely, (1) the state space, (2) the action space, (3) the
reward function, and (4) the agent architecture.

5.1. State space

The state space is defined as a simple and straightforward vector
instead of complicated definitions. Hence, the state vector 𝒔𝑡 repre-
sents the current traffic conditions where each element of the vector
counts ‘the incoming vehicles’ in each lane 𝑙 towards the traffic lights
intersection. The detection horizon of ‘number of vehicles’ 𝑣 is limited
to a given range 𝐻 counting only the vehicles within the detection
horizon 𝐻 . Moreover, the state vector includes the current phase of
traffic signals 𝑃𝑡 ∈ {0, 1, 2, 3}. In a four-lane four-road intersection, the
total number of lanes is 𝐿 = 16, thus the state vector 𝑠𝑡 ∈ R𝐿+1, is given
as follows:

𝑠𝑡(𝑣) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣0𝑡
𝑣1𝑡
.
.

𝑣𝐿−1𝑡
𝑃𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

5.2. Reward function

For the reward signal 𝑡, and similar to the pressure based reward
definition as advocated by Wei et al. (2019), we define the reward
function as follows:

𝑡 = −𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = −|
𝐿−1
∑

𝑞𝑙 −
𝐿−1
∑

𝑣𝑂𝑢𝑡𝑙 | (17)

𝑙=0 𝑙=0

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
Fig. 3. The overall structure of our framework for optimizing the Phase selection and the time duration prediction in TSC system.
where ∑𝐿−1
𝑙=0 𝑞𝑙 gives the sum of queuing vehicles in front of the in-

tersection and ∑𝐿−1
𝑙=0 𝑣𝑂𝑢𝑡𝑙 is the sum of outgoing vehicles from the

intersection. Loosely speaking, minimizing the 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 will eventually
optimize the degree of equilibrium between vehicles on the incoming
and outgoing lanes and thus the vehicular throughput is boosted.

The agent’s main objective is to maximize the total rewards in the
long term starting from the time-step 𝑡 i.e., the return. The return 𝐺 is
given as the total sum of discounted rewards starting from time-step 𝑡,

𝐺 =
𝑛
∑

𝑘=0
𝛾𝑘𝑡+𝑘 (18)

where 𝑛 is the total time steps, 𝛾 is the discount factor and  is the
reward signal.

5.3. Action space

In our framework, the action space is unlike the previous proposed
action spaces discussed in the literature, where the agent either per-
forms a discrete action (i.e., phase selection) or a continuous action
(i.e., phase timing prediction). Instead, the action space is in the form of
parameterized hierarchical action space. In parameterized action space,
we define one sub-space for the possible finite traffic phases and the
other is an interval for predicting the timing as a parameter associated
with the selected phase. Hence, the first sub-space include four possible
traffic phases represented by integers 𝑃 ∈ {0, 1, 2, 3}, and the second
continuous sub-space as a bounded time interval for associated phase,
where 𝑑𝑃 ∈ [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]. Consequently, the total action space is given
by  = {{0, 1, 2, 3} ∪ {[𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]}}. An example of the joint action
is illustrated in Fig. 4 where the phase 𝑃 constitutes a set of non-
conflicting signals (‘G’ for green, ‘r’ for red and ‘y’ for yellow) to control
each traffic movement, and the duration 𝑑𝑃 falls in the interval [0 s,
45 s].

5.4. Agent’s architecture

The most crucial part in the framework consists in the architecture
of the agent. The agent’s role is to learn an optimized policy that maps
the observed states into specific actions. According to the parameter-
ized action space defined earlier, most suitable architectures include
parameterized DQN (P-DQN) (Xiong et al., 2018) and Multi-Pass-DQN
(MP-DQN) (Bester et al., 2019) as describe in Section 3. Basically,
6
Fig. 4. Example of the agent’s action that is applied to the traffic light.

MP-DQN is an improved version of P-DQN which notably performs
better than p-DQN and allows the implementation of parameterized
action space proposed in our framework. We adopt and customize
the MP-DQN agent architecture implementation available online1 to
fit in our TSC framework. MP-DQN architecture exploits two neural
networks according to the dual action spaces. The first, which is the
Actor network, approximates the 𝑄-values of the finite primary actions
in order to select optimal phase 𝑃 . The Actor network is denoted as
𝑄(𝑠, 𝑃 , 𝑑𝑃 ;𝝎). The second network, named the ParamActor network, is
used to approximate the policy mapping 𝑥𝑑𝑃 so to predict the associ-
ated continuous parameters, denoted by 𝑥𝑑𝑃 (𝑠;𝜽). Both networks come
with target networks which improve the convergence performance and
stability of the agent. The Actor network 𝑄(𝝎) consists of an input
layer of size (21), (16) inputs for the number of lanes at the intersection,
(1) input for phase state and (4) inputs for the number of associated
parameters of primary actions. The hidden layer of the Actor has (256)
neurons with a 𝑅𝑒𝑙𝑢 activation function, and the output layer is of 4
neurons representing 𝑄-values for the four discrete primary actions.
The ParamActor is of a similar structure except that the input layer is
of size 16+ 1 and the output is dedicated for predicting the continuous
action-parameters.

The pseudo-code of our proposed framework is described in Algo-
rithm 1. At first, the training and simulation settings ({𝑙𝑟𝑄, 𝑙𝑟𝑥}, 𝜖, 𝐵, 𝜁 ,

1 https://github.com/cycraig/MP-DQN.

https://github.com/cycraig/MP-DQN

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
𝝎0,𝜽0) are set in order to start interaction with simulation environment
and begin training operation of the agent. In each episode of the
training episodes, the agent interacts with the environment as a TSC
by perceiving the intersection’s traffic state 𝑠𝑡, and applying the dual
action 𝑎𝑡 = (𝑃𝑡, 𝑑𝑃 𝑡) to the traffic settings based on 𝜖-greedy policy,
where 𝑎𝑡 = (𝑃𝑡, 𝑑𝑃 𝑡) is selected as:

𝑎𝑡 =

⎧

⎪

⎨

⎪

⎩

a sample from 𝜁 with probability 𝜖,

(𝑃𝑡, 𝑑𝑃 𝑡), 𝑃𝑡 = argmax
𝑃

𝑄(𝑠𝑡, 𝑃 , 𝑑𝑃 𝑡;𝝎𝑡), 1 − 𝜖. (19)

Algorithm 1 Traffic Signal Control Using DRL with Parameterized
Action Space
1: Initialize: Stepsizes {𝛼𝑡, 𝛽𝑡}𝑡≥0, exploration parameter 𝜖, minibatch
size 𝐵, a probability distribution 𝜁 , flow configurations, network
weights 𝝎0 and 𝜽0.

2: for episode 𝑒 = 1,…𝐸 do
3: Start Simulation.
4: Observe the initial state 𝑠0 and take an initial joint action 𝑎0.
5: for 𝑡 = 1,… 𝑇 do
6: Compute action parameters 𝑑𝑃 𝑡 → 𝑥𝑑𝑃 (𝑠𝑡;𝜽𝑡).
7: Choose action 𝑎𝑡 = (𝑃𝑡, 𝑑𝑃 𝑡) following the 𝜖 -greedy policy.

𝑎𝑡 =

⎧

⎪

⎨

⎪

⎩

a sample from 𝜁with probability𝜖,
(𝑃𝑡, 𝑑𝑃 𝑡), 𝑃𝑡 = argmax

𝑃
𝑄(𝑠𝑡, 𝑃 , 𝑑𝑃 𝑡;𝝎𝑡), 1 − 𝜖.

8: Apply the 𝑎𝑡 action, Obtain next state 𝑠𝑡+1 and get 𝑡.
9: Store the experience< 𝑠𝑡, 𝑎𝑡,𝑡, 𝑠𝑡+1 > in memory 𝑀 .
10: Randomly sample 𝐵 experiences from 𝑀 .
11:

𝑦𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑡 if 𝑡 = 𝑇 ,
𝑡 +max𝑃

𝛾𝑄(𝑠𝑡+1, 𝑃 , 𝑥𝑑𝑃 (𝑠𝑡+1;𝜽);𝝎𝑡) otherwise.

12: Compute ∇𝝎𝓁
𝑄
𝑡 (𝝎𝑡) and ∇𝜽𝓁

𝑄
𝑡 (𝜽) using {𝑦𝑡, 𝑠𝑡, 𝑎𝑡}.

13: update weights 𝝎𝑡+1 ←←← 𝝎𝑡 − 𝛼∇𝝎𝓁
𝑄
𝑡 (𝝎𝑡) and 𝜽𝑡+1 ←←← 𝜽𝑡 −

𝛽∇𝜽𝓁
𝑄
𝑡 (𝜽).

14: end for
15: end for

where 𝜁 is a uniform random distribution over a continuous interval
[𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]. Upon performing an action to the TSC, the agent gets a
reward 𝑡 and the new state of traffic 𝑠𝑡+1 is observed. The undergone
experience is saved in a memory 𝑀 as a tuple (⟨𝑠𝑡, (𝑃𝑡, 𝑑𝑃𝑡),𝑡, 𝑠𝑡+1⟩)
for the training purpose. The agent remains in its current state until the
predicted duration 𝑑𝑃𝑡 elapses, after which it proceeds to observe the
next state 𝑠𝑡+1 predict the next action 𝑎𝑡+1. When the size of the memory
reaches an initial memory threshold, the agent randomly samples a
batch of size 𝐵 that is used for training the agent and update its policy.
The gradients ∇𝝎𝓁

𝑄
𝑡 (𝝎𝑡) and ∇𝜽𝓁

𝑄
𝑡 (𝜽) are computed and used besides

the learning rates {𝑙𝑟𝑄, 𝑙𝑟𝑥} to update 𝝎 and 𝜽 weights. For time com-
plexity, the dominant computational cost in the proposed framework
arises from the two neural networks the Actor network 𝑄(𝑠, 𝑃 , 𝑑𝑃 ;𝝎)
and the ParamActor network 𝑥𝑑𝑃 (𝑠;𝜽). The forward passes contribute
𝑂(𝑚𝝎 × 𝑛𝝎 + 𝑚𝜽 × 𝑛𝜽), where 𝑚𝝎 and 𝑚𝜽 are the number of layers,
and 𝑛𝝎 and 𝑛𝜽 are the number of neurons per layer in the Actor and
ParamActor networks, respectively.

During training, backpropagation adds additional computational
cost due to gradient computations and weight updates for both net-
works. The backward passes scale with the batch size 𝐵, adding 𝑂(𝐵 ×
(𝑚𝝎 × 𝑛𝝎 + 𝑚𝜽 × 𝑛𝜽)). Hence, the overall computational complexity can
be expressed and simplified as:
𝑂(𝐸 × 𝑇 × (𝐵 × (𝑚 × 𝑛 + 𝑚 × 𝑛)))
𝝎 𝝎 𝜽 𝜽

7
6. Experiments

In this section, we begin by presenting the research questions we
aim to answer and the hypotheses we seek to validate. We then intro-
duce the simulation environment setup, the different parameters used
and the evaluation metrics upon which we assess the performance of
the framework. We evaluate the overall performance of the proposed
approach for managing the traffic signal control systems based on
the obtained results. Further evaluations are made by comparing our
framework to other benchmarks reported in the literature including
DRL based approaches and meta-heuristic based algorithms. At the end,
we discuss the results obtained from various experimentation scenarios
as well as the results of benchmarks comparison.

6.1. Hypotheses

By conducting the set of upcoming experiments using our approach
and the benchmarks, we aim to address the following research ques-
tions. (1) How does the proposed approach perform compared to
fixed-time approach and deep learning based approaches? (2) How ef-
ficient is our approach compared to meta-heuristic based approaches?.
To answer these research questions, we have formulated to two hy-
potheses:

• H1: Based on travel time, our hybrid approach is more perfor-
mant than both fixed time methods and the deep learning-based
approaches, namely, discrete approach (DQN) and continuous
approach (DDPG).

• H2: Based on travel time, our hybrid approach is more performant
than metaheuristic Based Approaches, namely GA and PSO.

6.2. Experimental setup

The evaluations of our framework are based on simulations made
using the popular open source SUMO traffic simulator2 to simulate the
intersection environment (Behrisch et al., 2011).

For the signalized intersection, we have 4 lanes for each incom-
ing/outgoing road all are 750 m long and a maximum speed of
13.89 m/s. Three right-most lanes in each road are devoted for going
straight and right turn movements of vehicles, and the left lane is kept
for the turning left vehicles.

Using custom scripts, the traffic flow of vehicles is generated prior
to each simulation episode. The traffic flow is generated such that
it mimics the real traffic flow. In real traffic scenario for instance,
the traffic flow starts with low vehicular density, and it keeps rising
until the peak value traffic, finally the traffic starts to relief by lower
vehicular densities. We generate such a traffic flow (i.e., low, high then
low) by assigning one hour for low traffic, one hour for high traffic and
one hour for low traffic again, a total of 10800 s of generated traffic. The
vehicle routes (i.e., the trip from origin to destination) are generated
such that a portion of 25% of vehicles turn left or right, and a portion
of 75% decide to go straight. Table 5 describes the generated traffic
flow scenarios with different configurations.

6.3. Parameters tuning and setting

Various training parameters and settings have to be carefully ad-
justed and correctly tuned so to fit the customized MP-DQN architec-
ture in our framework. We set the training parameters and settings after
a number of simulation experiments as following, the agent is trained
on 𝑁 = 301 episodes with each episode lasts for 3800 s. During the
training, the action selection of the agent is based on 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 for

2 https://www.eclipse.org/sumo.

https://www.eclipse.org/sumo

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
Table 5
Simulated traffic flow.
 Distribution Scenario Generated flow Start time End time
 Type (veh/h) (s) (s)
 Weibull Dist SC1

SC2
SC3

1500
4000
SC1-SC2-SC1

0 s
0 s
0 s

3800 s
3800 s
11 000 s

 Normal Dist SC4
SC5
SC6

1500
4000
SC4-SC5-SC4

0 s
0 s
0 s

3800 s
3800 s
11 000 s

Table 6
Values used for training parameters.
 Parameter Description Value
 𝑁 Number of training episodes 451
 𝑀 Replay Memory 20000
 𝑏 Mini-batch size 64
 𝑙𝑟𝑄 Actor Learning rate 0.001
 𝑙𝑟𝑥 ParamActor Learning rate 0.00001
 𝛾 Gamma factor 0.95
 𝑒𝑝𝑠_𝑚𝑖𝑛 Minimum value of epsilon 0.01
 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 Number of epsilon episodes 300
 𝑦𝑒𝑙𝑙𝑜𝑤 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 Yellow phase duration 3 s

the discrete actions and random uniform selection for the continuous
parameters. The exploration parameter 𝜖 is annealed from 1 down
to 0.01 for a period of 270 episodes. The agent’s memory size is set
to 20,000 experiences, and the agent starts training and updating its
policy if the number of stored experiences exceeds 128. After each time-
step, the agent randomly samples a mini-batch of 𝑏 = 64 experiences to
learn from and update its networks’ weights. Both Actor and ParamAc-
tor networks weights are updated using the RMSProp (Tieleman and
Hinton, 2012) stochastic gradient decent method where the learning
rates are set to 𝑙𝑟𝑄 = 0.001 and 𝑙𝑟𝑥 = 0.00001 respectively. To keep
the continuous action parameters inside the bounded interval, we use
the inverting gradients method as proposed in Hausknecht and Stone
(2016). The gradient clipping method is also applied with a value of
1 in order to speed up the training process. Different used parameters’
values are summarizes in Table 7 (see Table 6).

6.4. Performance evaluation metrics

To evaluate the performance of our approach, we use three common
evaluation metrics for traffic signal control approaches (1) Average
Travel Time, (2) the queue length and (3) the average waiting time
of vehicles (Liu et al., 2023; Kolat et al., 2023). In the following, we
describe of these performance metrics.

6.4.1. Average Travel Time (ATT)
Travel time of a vehicle is the time it spends to arrive to its desti-

nation starting form its origin point. Average travel time of vehicles is
the sum of travel time of all vehicles divided by the total number of
vehicles, defined as:

𝐴𝑇𝑇 = 1
𝑁𝑣𝑒ℎ

𝑁𝑣𝑒ℎ
∑

𝑗=0
(𝑡𝑗,𝑠𝑡𝑎𝑟𝑡 − 𝑡𝑗,𝑒𝑛𝑑), (20)

where 𝑁𝑣𝑒ℎ is the total number of vehicles.

6.4.2. Average Waiting Time (AWT)
The waiting time of a vehicle over an episode is computed by

summing up all times its speed was less than 0.1 m∕s. The Average
Waiting Time is then calculated by summing waiting time of all vehicles
divided by the total number of vehicles.

𝐴𝑊 𝑇 = 1
𝑁𝑣𝑒ℎ

𝑁𝑣𝑒ℎ
∑

𝑗=0
𝑊 𝑇𝑗 , (21)

where 𝑊 𝑇𝑗 represents the waiting time of each vehicle 𝑗 over a
simulation episode.
8
Table 7
Training parameters for Meta-Heuristics.
 Parameter Value
 Genetic algorithm
 Population size 10
 Number of generations 30
 Mutation probability 0.1
 cross-over probability 0.5
 PSO algorithm
 Population size 10
 Number of generations 30
 Number of particles 0.01
 c1 & c2 coefficients 300

6.4.3. Queue Length (QL)
This metric corresponds to the total number of vehicles queuing on

all lanes. A vehicle is in queuing state if its speed is less than 0.1 m∕s
on a particular lane. We consider the average queue length over all
recorded values during the training episodes as well.

6.5. Benchmarks

For a practical validation of our proposed framework, we com-
pare it to state-of-the-art approaches, the Fixed-time approach (Gordon
and Tighe, 2005), the DQN discrete approach (van Hasselt et al.,
2015), the DDPG continuous approach (Lillicrap et al., 2019) and two
meta-heuristic approaches: genetic algorithm (GA) (Holland, 1992) and
particle swarm optimization (PSO) (Eberhart and Kennedy, 1995).

6.5.1. Fixed time approach
Fixed-time approach is a static approach where we have a fixed

sequence order of phases with each phase duration is fixed (Gordon
and Tighe, 2005). In the experiment, We set the green phase to 30 s,
and 3 s for the yellow phase.

6.5.2. Discrete approach
In the discrete DQN approach for TSC, the agent is trained to pick a

proper phase from the list of phases without any particular order, but
the phase duration is fixed. In this approach, for the agent architecture
we use the Double-DQN with Prioritized Experience Replay Memory.
The formulae of state and reward are both based on the queue length
as in our proposed framework.

6.5.3. Continuous approach
In contrast with the discrete approach, the continuous approach

only predicts the next phase’s duration within a fixed order of phases.
To implement this approach, we leverage the DDPG continuous archi-
tecture for the agent, and the rest is similar to the discrete approach.

6.5.4. Meta-heuristics
We also compare our framework to two meta-heuristic benchmarks,

the Genetic Algorithm (GA) and the Particle Swarm Optimization al-
gorithm (PSO) which have been discussed in Section 3. In both algo-
rithms, we set the size of population to 10 individuals, and the number
of generations to be 30 generations. The GA mutation probability is
set to 0.1 and the cross-over is based on the discrete recombination
with probability of 0.5. For the PSO, each swarm encloses 4 particles,
and the acceleration coefficients c1, and c2 are set to 0.5. The resulting
solutions of both algorithms represent the phase timing of traffic lights,
bounded from 5 s to 45 s. These phase durations are integrated into
each traffic simulation episode to be tested and the fitness function is
obtained as a result to evaluate the candidate solutions and update the
population over iterations/generations.

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
Fig. 5. Training curves of the proposed framework based on queue length, waiting
time and travel time metrics with respect to episodes.

Fig. 6. Comparison of training curves of our proposal against discrete and continuous
benchmarks during C2 scenario based on travel time metric.

6.6. Results and discussion

In this section, we demonstrate the results of the experiments ac-
cording to the performance evaluation metrics and different flow con-
figurations mentioned earlier. The training performance curves of the
agent are shown in Fig. 5. A comparison of training performance of the
proposed framework versus the Discrete and Continuous approaches is
illustrated in Fig. 6. Notably during the training, the Discrete approach
(cyan colored curve) initially learns faster (since it already maintains
fixed phase durations and its objective is only to select the most
suitable phase) but converges to a sub-optimal solution. Furthermore,
the Continuous approach (black colored curve) seems to be less stable
and oscillates at the beginning then it reaches a better performance but
still worse than the rest. Both the discrete and continuous approaches
have been trained longer for 501 episodes as they took more time
to converge and stabilize. On the other side, our framework (the
parameterized approach curve in red color) is linearly decaying until
it outperforms the Discrete and the Continuous curves. This happens
due to the fact that the parameterized framework is more flexible and
strives to optimize both the phase selection and the timing associated.

6.6.1. Comparison with fixed time and deep learning based approaches
In this comparison we target to statistically verify the following

hypothesis H1 stating that ‘‘Based on travel time, our hybrid approach
is more performant than both fixed time methods and the deep learning
9
Fig. 7. Queue length performance comparison of our proposal against discrete and
continuous approaches.

based approaches, namely discrete approach (DQN) and continuous ap-
proach (DDPG)’’. Our approach as well as the Fixed-Time, the discrete
and the continuous algorithms were run using six simulation scenarios
(SC1, . . . , SC6) and repeated several times. Each run time is an episode
of 200 time steps (the value 200 is determined empirically). The
average of travel time as well as the standard deviation are recorded
and depicted in Table 8 for our approach as well as the aforementioned
benchmarks.

Remarkably, we observe from the table that the Fixed Time method
scores far behind the competition since its static behavior cannot
handle perfectly the dynamic traffic flow situations. However, the deep
reinforcement learning based approaches perform clearly better due
to the fact that they can effectively handle the dynamic traffic flow
conditions. Out of the deep reinforcement learning approaches, our
parameterized framework surpasses the benchmarks in all experiments.
t-Test is performed to assess the evidence supporting our hypothesis
𝐻1. The computed p-values recorded in Table 8 show the significant
out-performance of our approach over the benchmarks in all scenarios.
The null hypothesis stating that there is no difference between our
approach and the benchmarks is rejected with a confidence of 99%
(𝑝-value < 0.01).

This is an interesting feature of our proposal, since our framework
can efficiently control both the phase selections and predict the as-
sociated timing of the selected phase which makes the parameterized
framework more flexible than others.

In Fig. 7, we present the queue length performance of the Dis-
crete, Continuous and the proposed parameterized approaches during
one episode simulation. The illustrated resulting curves show that the
performance of our framework outperforms the benchmarks as it by
maintaining a lower and more steady queue length during the traffic
simulation episode.

6.6.2. Comparison with meta-heuristics
In this comparison, we statistically verify the following hypothesis

(H2). Table 9 presents the comparison results between PSO, GA and
our approach under multiple simulation scenarios (i.e., SC1-SC6). The
comparison reveals that while both meta-heuristic approaches, namely,
PSO and GA, perform relatively close to each other, they remain
significantly behind the proposed parameterized framework across all
scenarios. This highlights the limitations of meta-heuristic algorithms
in handling the highly dynamic and complex nature of traffic signal
control. t-Test is conducted to evaluate the evidence supporting our
hypothesis 𝐻2. When compared with alternatives from meta-heuristics,
the computed p-values demonstrate that our approach Substantially
outperforms the GA and PSO algorithms in all scenarios. Thus the null

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
Table 8
Mean and STD of average travel time (s) performance comparison of proposed framework to others.
 Scenarios
 Alternative approaches SC1 SC2 SC3 SC4 SC5 SC6
 Fixed-Time: Mean (Std) 164.4 (2.2) 260.6 (16) 220.6 (5.4) 161.4 (0.5) 217.3 (8.7) 197.1 (5.0)
 (𝑝-value, One tail t-Test) (7.27086e−15) (1.918e−9) (2.291e−12) (1.472e−27) (2.723e−10) (1.620e−11)
 Discrete approach: Mean (Std) 138.5 (1.2) 145.7 (0.9) 142.4 (0.7) 135.9 (0.5) 143.7 (0.8) 141.3 (0.6)
 (𝑝-value, One tail t-Test) (2.246e−8) (1.459e−10) (3.462e−11) (1.963e−14) (6.340e−11) (1.489e−12)
 Continuous approach: Mean (Std) 136.8 (0.9) 153.8 (4.2) 146.6 (1.9) 134.7 (0.6) 148.0 (3.1) 144.0 (1.9)
 (𝑝-value, One tail t-Test) (6.061e−7) (2.365e−6) (5.319e−8) (2.080e−11) (3.384e−6) (1.849e−7)
 Parameterized approach: Mean 133.3 140.6 137.9 130.7 138.3 136.5
 (Std) (1.1) (0.8) (0.4) (0.5) (0.75) (0.5)
Table 9
Performance comparison of the proposed framework against meta-heuristic algorithms based on average travel time metric.
 Scenarios
 Metaheuristics SC1 SC2 SC3 SC4 SC5 SC6
 Genetic algorithm:Mean 144.9 150.9 148.7 143.2 149.1 147.5
 (Std) (0.74) (1.46) (0.67) (0.52) (1.12) (0.66)
 (𝑝-value, One tail t-Test) (1.80e−14) (1.44e−11) (1.74e−17) (5.50e−21) (6.84e−14) (1.66e−18)
 PSO algorithm: Mean 143.1 149.3 146.8 141.2 147.4 145.6
 (Std) (0.85) (2.24) (0.84) (0.63) (1.61) (0.71)
 (𝑝-value, One tail t-Test) (1.15e−13) (1.20e−7) (1.10e−13) (1.50e−18) (1.05e−9) (2.22e−16)
 Parameterized approach: Mean 133.3 140.6 137.9 130.7 138.3 136.5
 (Std) (1.1) (0.8) (0.4) (0.5) (0.75) (0.5)
Fig. 8. Training curves of PSO and GA algorithms over generations/iterations.

hypothesis stating that there is no difference between our approach
and the PSO and GA algorithms is rejected with a confidence of 99%
(𝑝-value < 0.01). Further evidence of this performance gap can be
observed in Fig. 9, which illustrates the queue length performance
during a single episode of simulation. The results clearly demonstrate
the superiority of the proposed framework, as it consistently minimizes
vehicle queue lengths compared to the PSO and GA approaches.

Fig. 8 depicts the training curves of the meta-heuristic algorithms,
GA and PSO, based on average travel time over iterations. Both al-
gorithms exhibit similar convergence behavior except that the PSO
algorithm converges to a slightly lower average travel time value.

7. Threats to validity

Similar to any experimental study, the results of our study might
have been impacted by a number of factors. In this section, we discuss
the main threats to validity and how we mitigated them.
10
Fig. 9. Queue length performance comparison of parameterized approach against meta-
heuristic-based algorithms.

7.1. Construct threats to validity

Construct threats to validity are concerned with the relation be-
tween theory and observation. A key point in this regard is related
to the suitability of our evaluation measures. We used three different
performance evaluation measures that are commonly used for evalu-
ating the traffic signal control approaches, namely the average travel
time (ATT), the waiting time (AWT), and the queue length (QL). Thus,
we believe that by using multiple performance measures that reflect
different perspectives, there is negligible threat to construct validity.
Other possible threats with the measurement of the exploited traffic
data, as well as the independent variables, have been mitigated by gen-
erating various dynamic traffic flows that mimic real-world scenarios,
as described in Section 6. These traffic scenarios are simulated using
tools well established in the TSC field, such as SUMO (Behrisch et al.,
2011), which is accurate enough for conducting our study.

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
7.2. Internal threats to validity

Threats to internal validity concern the possible errors in our ex-
periments. We used reliable traffic datasets that are supported by
SUMO (Behrisch et al., 2011), a widely-used open source traffic sim-
ulator. Another possible threat to internal validity could be related
to bias in the replication of the benchmark approaches. We used
the standard implementation of the Multi-Pass Parameterized Deep Q-
networks (MP-DQN) based on the agent architecture implementation
available online3 to fit in our TSC framework. Furthermore, we used
the standard experiment setting for the benchmark approaches (fixed
time, discrete, and continuous approaches). We also double checked
all the experimental setup. Thus, we believe there is negligible threat to
internal validity. To reduce errors in our code, we have double checked
and fully tested our code, still there could be errors that we did not
notice.

7.3. Conclusion threats to validity

Conclusion threats to validity concern the relationship between the
treatment and the outcome. Indeed, in our empirical evaluation, we
statistically analyzed the obtained results using the t-Test statistical
analysis which provided strong evidence for validating our assumptions
and our experimental study. Hence, we believe that there is negligible
threat to the validity of our conclusions.

7.4. External threats to validity

Threats to external validity relate to the quality of our datasets
and generalizability of our findings. While our experiments are based
on a widely used open source tool, Simulation of Urban MObility
(SUMO) simulator (Behrisch et al., 2011) and synthetic traffic datasets,
to efficiently simulate the intersection environment, we are planning
to conduct further experiments on real world traffic data. Indeed,
some constraints may apply when implementing our approach in real
intersections such as the limitations posed by maximum queue length
and the calculated average travel time, which rely on the available
sensors on the road.

8. Conclusion and future work

In this paper, we addressed the challenge of simultaneously control-
ling traffic signal control (TSC) phase selection and predicting the cor-
responding phase duration. To achieve this, we leveraged a state-of-the-
art parameterized deep reinforcement learning architecture, namely,
Multi-Pass Parameterized Deep Q-networks (MP-DQN). We tailored and
adapted the MP-DQN architecture in the TSC environment to effectively
select the appropriate phase and while simultaneously predicting its
duration. To evaluate our framework and demonstrate its performance,
we run multiple simulated experiments with different traffic scenarios
and configurations. Our proposal is further compared with a set of
baselines including traditional and learning-based approaches such as
discrete, continuous, and meta-heuristic (GA and PSO) approaches.
The performance of these approaches is evaluated based on average
travel time (ATT), average waiting time (AWT), and queue length (QL)
evaluation metrics. The results clearly demonstrate that our framework
outperforms all benchmarks across the simulated experiments. This
superior performance is attributed to the framework’s capability to
efficiently handle phase selection while predicting the corresponding
phase timing. Specifically, our approach improves the travel time per-
formance by 33%, 3.5%, and 5.3% over Fixed-Time, Discrete, and
Continuous approaches respectively, and by 7.5% and 6.4% over GA
and PSO approaches respectively.

3 https://github.com/cycraig/MP-DQN.
11
One advantage of the proposed approach is that it integrates phase
selection and phase timing prediction into a single framework, leading
to more adaptive and efficient traffic signal control. This provides
flexibility for dynamic traffic scenarios, contributing to its superior
performance across various evaluation metrics. However, one disadvan-
tage of our approach is the increased computational complexity due to
the parameterized action space, which could affect real-time deploy-
ment in large-scale or multi-intersection scenarios. The limitations of
this work include its reliance on simulated environments, which may
not fully represent real-world traffic conditions. Additionally, the com-
putational demands of the MP-DQN architecture may pose challenges
for scalability in larger networks.

Future works could be dedicated to conducting further experiments
on multi-intersection scenarios and incorporating real-world data from
signalized intersections to improve realism and applicability. Efforts
could also focus on optimizing the computational efficiency of the
architecture, potentially through lightweight neural network designs,
to facilitate real-time deployment in large-scale traffic networks.

CRediT authorship contribution statement

Salah Bouktif: Writing – review & editing, Writing – original draft,
Validation, Supervision, Project administration, Methodology, Funding
acquisition, Conceptualization. Abderraouf Cheniki: Writing – review
& editing, Writing – original draft, Software, Methodology, Formal
analysis, Data curation, Conceptualization. Ali Ouni: Writing – review
& editing, Writing – original draft, Validation, Funding acquisition.
Hesham El-Sayed: Writing – review & editing, Supervision, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the Emirates Center for Mobility Re-
search (ECMR) of the United Arab Emirates University (grant number
31R225) and by Abu Dhabi Department of Education and Knowledge
(ADEK award number AARE18-114 grant 21T052).

Data availability

Synthetic Data and Codes that support the findings of this study are
openly available at https://github.com/abderraouf2che/Hybrid-Deep-
RL-Traffic-Signal-Control.

References

Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D., 2011. SUMO - simulation of urban
mobility: An overview. In: In SIMUL 2011, the Third International Conference on
Advances in System Simulation. pp. 63–68.

Bester, C.J., James, S.D., Konidaris, G.D., 2019. Multi-pass Q-networks for deep
reinforcement learning with parameterised action spaces. arXiv:1905.04388.

Bouktif, S., Cheniki, A., Ouni, A., El-Sayed, H., 2023. Deep reinforcement learning for
traffic signal control with consistent state and reward design approach. Knowl.-
Based Syst. 267, 110440. http://dx.doi.org/10.1016/j.knosys.2023.110440, URL:
https://www.sciencedirect.com/science/article/pii/S0950705123001909.

Casas, N., 2017. Deep deterministic policy gradient for urban traffic light control.
arXiv:1703.09035.

Dell’Orco, M., Başkan, Ö., Marinelli, M., 2014. Artificial bee colony-based algorithm for
optimising traffic signal timings. In: Snáˇ sel, V., Krömer, P., Köppen, M., Schae-
fer, G. (Eds.), Soft Computing in Industrial Applications. Springer International
Publishing, Cham, pp. 327–337.

Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In:
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and
Human Science. pp. 39–43. http://dx.doi.org/10.1109/MHS.1995.494215.

https://github.com/cycraig/MP-DQN
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
https://github.com/abderraouf2che/Hybrid-Deep-RL-Traffic-Signal-Control
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb1
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb1
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb1
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb1
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb1
http://arxiv.org/abs/1905.04388
http://dx.doi.org/10.1016/j.knosys.2023.110440
https://www.sciencedirect.com/science/article/pii/S0950705123001909
http://arxiv.org/abs/1703.09035
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb5
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb5
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb5
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb5
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb5
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb5
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb5
http://dx.doi.org/10.1109/MHS.1995.494215

S. Bouktif et al. Engineering Applications of Artiϧcial Intelligence 159 (2025) 111422
García-Nieto, J., Alba, E., Carolina Olivera, A., 2012. Swarm intelligence for traf-
fic light scheduling: Application to real urban areas. Eng. Appl. Artif. Intell.
25 (2), 274–283. http://dx.doi.org/10.1016/j.engappai.2011.04.011, URL: http:
//www.sciencedirect.com/science/article/pii/S0952197611000777 Special Section:
Local Search Algorithms for Real-World Scheduling and Planning.

Genders, W., Razavi, S., 2016. Using a deep reinforcement learning agent for traffic
signal control. arXiv:1611.01142.

Gordon, R., Tighe, W., 2005. Traffic control systems handbook (2005 edition).
Gu, S., Lillicrap, T., Sutskever, I., Levine, S., 2016. Continuous deep Q-learning with

model-based acceleration. arXiv:1603.00748.
Haarnoja, T., Zhou, A., Abbeel, P., Levine, S., 2018. Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor. arXiv:
1801.01290.

van Hasselt, H., Guez, A., Silver, D., 2015. Deep reinforcement learning with double
Q-learning. arXiv:1509.06461.

Hausknecht, M., Stone, P., 2016. Deep reinforcement learning in parameterized action
space. arXiv:1511.04143.

Haydari, A., Yilmaz, Y., 2022. Deep reinforcement learning for intelligent transportation
systems: A survey. IEEE Trans. Intell. Transp. Syst. 23 (1), 11–32. http://dx.doi.
org/10.1109/TITS.2020.2999526.

Holland, J.H., 1992. Genetic algorithms. Sci. Am. 267 (1), 66–73, URL: http://www.
jstor.org/stable/24939139.

Hussain, K., Mohd Salleh, M.N., Cheng, S., Shi, Y., 2019. Metaheuristic research: a
comprehensive survey. Artif. Intell. Rev. 52 (4), 2191–2233. http://dx.doi.org/10.
1007/s10462-017-9605-z.

INRIX Scoreboard, P.R., 2022. URL: https://inrix.com/scorecard/.
Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical

function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39
(3), 459–471. http://dx.doi.org/10.1007/s10898-007-9149-x.

Khamis, M.A., Gomaa, W., 2014. Adaptive multi-objective reinforcement learning
with hybrid exploration for traffic signal control based on cooperative multi-
agent framework. Eng. Appl. Artif. Intell. 29, 134–151. http://dx.doi.org/10.1016/
j.engappai.2014.01.007.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing.
Sci. 220, 671–680.

Kolat, M., Kővári, B., Bécsi, T., Aradi, S., 2023. Multi-agent reinforcement learning for
traffic signal control: A cooperative approach. Sustain. 15 (4), http://dx.doi.org/
10.3390/su15043479, URL: https://www.mdpi.com/2071-1050/15/4/3479.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D., 2019. Continuous control with deep reinforcement learning. arXiv:
1509.02971.

Liu, X.-Y., Zhu, M., Borst, S., Walid, A., 2023. Deep reinforcement learning for traffic
light control in intelligent transportation systems. arXiv:2302.03669 URL: https:
//arxiv.org/abs/2302.03669.
12
Masson, W., Ranchod, P., Konidaris, G., 2015. Reinforcement learning with
parameterized actions. arXiv:1509.01644.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M., 2013. Playing atari with deep reinforcement learning. arXiv:1312.
5602.

Oda, T., Otokita, T., Tsugui, T., Mashiyama, Y., 1997. Application of simulated
annealing to optimization of traffic signal timings. IFAC Proc. Vol. 30 (8),
733–736. http://dx.doi.org/10.1016/S1474-6670(17)43908-5, URL: http://www.
sciencedirect.com/science/article/pii/S1474667017439085 8th IFAC/IFIP/IFORS
Symposium on Transportation Systems 1997 (TS ’97), Chania, Greece, 16-18 June.

Osman, I.H., Kelly, J.P., 1996. Meta-heuristics: An overview. In: Osman, I.H., Kelly, J.P.
(Eds.), Meta-Heuristics: Theory and Applications. Springer US, Boston, MA, pp.
1–21. http://dx.doi.org/10.1007/978-1-4613-1361-8_1.

Rasheed, F., lim Alvin Yau, K., Noor, R.M., Wu, C., Low, Y.C., 2020. Deep reinforcement
learning for traffic signal control: A review. IEEE Access 8, 208016–208044, URL:
https://api.semanticscholar.org/CorpusID:227221242.

Shi, Y., Qi, Y., Lv, L., Liang, D., 2021. A particle swarm optimisation with linearly
decreasing weight for real-time traffic signal control. Mach. 9 (11), URL: https:
//www.mdpi.com/2075-1702/9/11/280.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M., 2014.
Deterministic policy gradient algorithms. In: Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume 32. ICML
’14, JMLR.org, pp. I–387–I–395.

Tan, M.K., Chuo, H.S.E., Chin, R.K.Y., Yeo, K.B., Teo, K.T.K., 2016. Genetic algorithm
based signal optimizer for oversaturated urban signalized intersection. In: 2016
IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). pp. 1–4.
http://dx.doi.org/10.1109/ICCE-Asia.2016.7804762.

Tieleman, T., Hinton, G., 2012. Lecture 6.5 - rmsprop: Divide the gradient by a running
average of its recent magnitude.

Vidali, A., Crociani, L., Vizzari, G., Bandini, S., 2019. A deep reinforcement learning
approach to adaptive traffic lights management. In: WOA.

Watkins, C.J.C.H., Dayan, P., 1992. Q-learning. Mach. Learn. 8 (3), 279–292. http:
//dx.doi.org/10.1007/BF00992698.

Wei, H., Chen, C., Zheng, G., Wu, K., Gayah, V., Xu, K., Li, Z., 2019. PressLight:
Learning max pressure control to coordinate traffic signals in arterial network.
In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. KDD ’19, Association for Computing Machinery, New
York, NY, USA, pp. 1290–1298. http://dx.doi.org/10.1145/3292500.3330949.

Xiong, J., Wang, Q., Yang, Z., Sun, P., Han, L., Zheng, Y., Fu, H., Zhang, T., Liu, J.,
Liu, H., 2018. Parametrized deep Q-networks learning: Reinforcement learning with
discrete-continuous hybrid action space. arXiv:1810.06394.

http://dx.doi.org/10.1016/j.engappai.2011.04.011
http://www.sciencedirect.com/science/article/pii/S0952197611000777
http://www.sciencedirect.com/science/article/pii/S0952197611000777
http://www.sciencedirect.com/science/article/pii/S0952197611000777
http://arxiv.org/abs/1611.01142
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb9
http://arxiv.org/abs/1603.00748
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1511.04143
http://dx.doi.org/10.1109/TITS.2020.2999526
http://dx.doi.org/10.1109/TITS.2020.2999526
http://dx.doi.org/10.1109/TITS.2020.2999526
http://www.jstor.org/stable/24939139
http://www.jstor.org/stable/24939139
http://www.jstor.org/stable/24939139
http://dx.doi.org/10.1007/s10462-017-9605-z
http://dx.doi.org/10.1007/s10462-017-9605-z
http://dx.doi.org/10.1007/s10462-017-9605-z
https://inrix.com/scorecard/
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1016/j.engappai.2014.01.007
http://dx.doi.org/10.1016/j.engappai.2014.01.007
http://dx.doi.org/10.1016/j.engappai.2014.01.007
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb20
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb20
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb20
http://dx.doi.org/10.3390/su15043479
http://dx.doi.org/10.3390/su15043479
http://dx.doi.org/10.3390/su15043479
https://www.mdpi.com/2071-1050/15/4/3479
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/2302.03669
https://arxiv.org/abs/2302.03669
https://arxiv.org/abs/2302.03669
https://arxiv.org/abs/2302.03669
http://arxiv.org/abs/1509.01644
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1016/S1474-6670(17)43908-5
http://www.sciencedirect.com/science/article/pii/S1474667017439085
http://www.sciencedirect.com/science/article/pii/S1474667017439085
http://www.sciencedirect.com/science/article/pii/S1474667017439085
http://dx.doi.org/10.1007/978-1-4613-1361-8_1
https://api.semanticscholar.org/CorpusID:227221242
https://www.mdpi.com/2075-1702/9/11/280
https://www.mdpi.com/2075-1702/9/11/280
https://www.mdpi.com/2075-1702/9/11/280
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb30
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb30
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb30
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb30
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb30
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb30
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb30
http://dx.doi.org/10.1109/ICCE-Asia.2016.7804762
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb32
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb32
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb32
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb33
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb33
http://refhub.elsevier.com/S0952-1976(25)01424-1/sb33
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1145/3292500.3330949
http://arxiv.org/abs/1810.06394

	Parameterized-action based deep reinforcement learning for intelligent traffic signal control
	Introduction
	Related Work
	Deep Reinforcement learning for TSC
	Action Space Selection
	Agent's architecture

	Meta-heuristic algorithms for TSC

	Background and Preliminaries
	Reinforcement Learning
	RL for Discrete Action Space
	RL for Continuous Action Space
	RL for Parameterized Action Space

	Problem Definition
	Parameterized Action Based Deep Reinforcement Learning for TSC
	State Space
	Reward Function
	Action Space
	Agent's Architecture

	Experiments
	Hypotheses
	Experimental Setup
	Parameters Tuning and Setting
	Performance Evaluation Metrics
	Average Travel Time (ATT)
	Average Waiting Time (AWT)
	Queue Length (QL)

	Benchmarks
	Fixed Time approach
	Discrete approach
	Continuous approach
	Meta-Heuristics

	Results and Discussion
	Comparison with Fixed Time and Deep Learning based Approaches
	Comparison with Meta-Heuristics

	Threats to validity
	Construct threats to validity
	Internal threats to validity
	Conclusion threats to validity
	External threats to validity

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

