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 A B S T R A C T

Early detection of osteoporosis has increasingly focused on ultrasonic methods, particularly guided waves in 
axial transmission to assess cortical bone properties. This study demonstrates the potential of low-frequency 
measurements (<500 kHz) for accurately inferring cortical mechanical and geometrical properties. A custom 
ultrasonic transducer centered at 350 kHz was used to acquire data, processed via a 2D fast Fourier transform 
to obtain dispersion curves. These were compared with simulations generated using the semi-analytical iso-
geometric analysis (SAIGA) method, modeling a quasi-cylindrical bone geometry in void or immersed in 
olive oil. By incorporating an excitability parameter into the inversion algorithm, the proposed method 
achieved a less than 5% discrepancy between bone phantom properties determined via SAIGA inversion 
and bulk wave pulse-echo measurements, demonstrating its accuracy and potential for in vivo applications. 
Results also showed that high-wavenumber modes predominantly reflect material properties, whereas low-
wavenumber modes below 100 kHz are sensitive to the overall bone geometry, highlighting the importance 
of low frequencies for a global bone characterization.
1. Introduction

Osteoporosis is a bone disease characterized by a reduction in bone 
strength which increases the risk of fracture [1,2]. Early identification 
is essential, as it facilitates prompt treatment and fracture prevention. 
Bone mineral density (BMD) assessment using dual-X-ray absorptiom-
etry (DEXA) has been used as the gold standard for the diagnostics of 
this pathology. However, BMD alone is not sufficient to assess the risk 
of fracture [3], and often family history is a more reliable method [4]. 
A thorough assessment of an individual’s bone quality should take into 
account additional factors, including bone rigidity, cortical thickness, 
and bone volume fraction [3,5].

Quantitative ultrasound (QUS) techniques have emerged as nonin-
vasive and nonionizing methods in various biomedical applications. 
This technique is particularly well-suited for evaluating bone quality 
by measuring ultrasonic wave speed and attenuation [6,7]. Moreover, 
QUS methods are easy to use and not expensive, which may facilitate 
the monitoring of the disease.

The use of ultrasonic guided waves is a popular technique employed 
in nondestructive testing, particularly for analyzing and characterizing 
materials such as composite or bonded plates [8]. In recent years, this 
technique has been adapted for examining long cortical bone such as 
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the tibia, radius, and femur [9,10]. Early research on axial propaga-
tion mainly concentrated on determining the time-of-flight (TOF) of 
the earliest detected signal, known as the first-arriving signal (FAS). 
Subsequently, the speed of the quickest waveform was determined and 
often linked to the fundamental symmetric mode of a plate [11,12]. 
Several clinical studies have shown that the FAS velocity can be used 
to differentiate between healthy individuals and those with osteoporo-
sis [13,14]. Another way to use axial transmission technique is to 
focus on the dispersive trajectories of the mode propagating in the 
waveguide. However, these methods involve solving a complex multi-
parameter problem to access the mechanical and geometrical properties 
of the bone [15,16]. Inversion algorithms or deep learning analysis can 
be used in an attempt to match experimental and simulated data. In this 
context, two approaches can be distinguished: using a simplified model 
at high frequencies (> 1 MHz), due to high attenuation and limited 
penetration depth [17], or using a bone representative model at lower 
frequencies (< 500 kHz), which allows for the estimation of the overall 
geometry.

At high frequencies, ultrasonic guided waves exhibit a reduced 
depth of penetration within the medium [17], enabling the approx-
imation of long bone to a plate-like structure. This approximation 
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facilitates the analysis and interpretation of wave propagation by treat-
ing the cortical layer as a thin plate, reducing the model’s complexity. 
Due to the large number of modes propagating at these frequencies, 
several parameters of the bone cortex can be retrieved through inver-
sion analysis. Foiret et al. [18] proposed an inverse characterization 
technique to determine the thickness and bulk wave velocities of ex 
vivo cortical bone samples, utilizing a transversely isotropic free plate 
model integrated with a parameter-sensitive algorithm. Following this, 
the same group applied genetic algorithm-based inversion schemes 
to interpret multimodal datasets, circumventing the need for prior 
assumptions about mode order [19]. However, the presence of soft 
tissues in the model adds a significant number of modes and a greater 
attenuation [20], increasing its complexity when extracting dispersion 
curves [21,22]. Deep neural networks were introduced as an alternative 
to inversion algorithms. They overcome the complexity introduced by 
the bi-layer model, providing better estimates of cortical thickness and 
properties [23]. While the bone can be approximated as a plate at high 
frequencies and so simplifying the model, the important number of 
propagating modes makes the inverse problem a complex endeavor. 
Additionally, a plate model fails to capture the overall shape of the 
bone, which is crucial for assessing its structural strength.

Using low frequencies allows the wave to penetrate deeper into 
the bone cortex, enabling a comprehensive assessment of its entire 
cross-section. This characteristic makes the use of guided waves at 
low frequencies particularly useful for diagnosing osteoporosis, which 
primarily affects the inner part of the structure [24]. However, due 
to a lower number of modes propagating at low frequencies, less 
information and bone parameters are likely to be obtained through the 
axial propagation of guided waves. Previous studies have shown the 
capability of low-frequency ultrasonic guided waves to estimate the 
cortical thickness of free isotropic plates, which was later applied to 
tubular structure and ex-vivo bones [25]. Likewise, another research 
group employed a hollow isotropic cylinder filled with a viscous liquid 
to assess the thickness of bovine tibia specimens by manually corre-
lating experimental velocities with the phase velocities of simulated 
modes [26]. Peirera et al. [15] have shown that very low frequencies 
(under 60 kHz) can accurately retrieve the shape of cadaveric radius 
specimens by using mode amplitudes in the dispersion curves. Using 
this principle of amplitude, Chaboty et al. further demonstrated the ca-
pability of low-frequency axial transmission technique (under 500 kHz) 
to precisely measure the thickness and velocities of a bi-layer bone 
phantom plate with an overlaying soft tissue layer [27]. The dispersive 
properties of ultrasonic guided wave modes combined with the mode 
amplitude can compensate for the lack of information encountered 
when using low-frequencies, providing an accurate estimation of the 
bone health.

This paper demonstrates the potential of low-frequency ultrasonic 
guided waves (50–500 kHz) to retrieve the cortical mechanical proper-
ties and geometry of a quasi-cylindrical phantom filled with soft tissue. 
The frequency range enables the determination of velocity parame-
ters and geometrical properties, while the excitability of propagating 
modes enhances the inversion accuracy. Using the semi-analytical iso-
geometric analysis (SAIGA) method, a parameterized cortical bone 
cylinder was simulated to estimate experimental bone phantom prop-
erties. Dispersion curves, derived from 2D fast Fourier transform pro-
cessing of measurements made with a proprietary transducer, were 
compared with semi-analytical predictions. The inversion algorithm es-
timated five parameters: longitudinal and shear wave velocities, corti-
cal thickness, mean radius, and density. The manuscript is organized as 
follows: Section 2 outlines the model, inversion algorithm, and experi-
mental protocols; Section 3 present the sensitivity analysis, dispersion 
curve fitting, and property estimations; Section 4 interprets the find-
ings, and finally the Conclusion summarizes the study’s contributions 
to ultrasonic guided wave-based bone characterization.
2 
2. Material and methods

2.1. Models and simulations models

A model consisting of a bone phantom cylinder filled with soft 
tissue, representative of the experimental bone phantom cylinders, 
was employed for the inversion of experimental dispersion curves. An 
outer layer of viscous fluid was added to the model to reflect the 
immersed case. Section 2.1.1 outlines the cylindrical model for the 
forward simulation in this study. Section 2.1.2 subsequently provides 
an overview of the SAIGA method for solving the forward problem and 
details the formulation of the mode excitability employed [28,29].

2.1.1. Numerical model
The model was based on the experimental bone phantom cylinders 

and assumes a homogeneous, isotropic, cylinder-like structure (𝛺𝑆 ) of 
infinite length and constant cross-section of thickness ℎ𝑆 and outer 
radius 𝑟𝑆 along the direction of propagation (𝑒3). While it does not 
represent a perfect cylinder to account for the asymmetry of the ex-
perimental phantoms, the term ‘‘cylinder’’ will be used throughout the 
text for the sake of simplicity. This simulated cylinder is filled with soft 
tissue material (𝛺𝑓𝑖). In the second part of the study (Section 3.3.2), 
this cylinder is then embedded in a viscous fluid (𝛺𝑓𝑜) of minimum 
thickness ℎ𝑓𝑜, square-shaped to reflect the experimental container. Fig. 
1 shows a description of the model geometry as well as a photograph 
of both cylinder phantoms and their cross-section. As it can be seen 
on Fig.  1(c), phantom cylinders are not perfectly cylindrical with 
some irregularities in their cross section. Unlike an ideal cylinder, the 
osteoporotic phantom has a radius ratio (𝑚𝑎𝑥(𝑟𝑆 )∕𝑚𝑖𝑛(𝑟𝑆 ) along the axis 
of the bone phantom) of 1.106, compared to 1.097 for the healthy bone 
phantom.

The phantom models only represented the cross-section, with the 
wave assumed to propagate harmonically along the bone axis (refer to 
2.1.2 in the SAIGA method). Consequently, throughout this manuscript, 
we will refer to this model type as a ‘‘2.5D model’’. In general, 2.5D 
modeling applies to cases that are two-dimensional in one plane (here, 
the (𝑒1) and (𝑒2) axes) but exhibit some level of variation or complexity 
in the third dimension (typically the (𝑒3) axis). This third dimension 
is often treated in a simplified or approximate way, often by making 
assumptions regarding its behavior [29,30]. For example, in the context 
of guided wave propagation in a cylindrical structure, a 2.5D model 
represents the cross-section of the cylinder in the (𝑒1-𝑒2) plane, while 
the axial direction (𝑒3) is modeled using an exponential term function 
of the wavenumber in the wave propagation direction: exp[𝑖(𝑘3𝑥3−𝜔𝑡)]
in Eq. (3). This approach allows capturing the essential physics of the 
problem while reducing computational complexity compared to a full 
3D model.

The cortical layer of the model was defined as homogeneous and vis-
coelastic with a density (𝜌), and longitudinal (𝑐𝑃 ) and shear (𝑐𝑆 ) wave 
velocities. Two attenuation coefficients 𝛼𝑃  and 𝛼𝑆 of longitudinal and 
shear waves respectively were added to the model for defining the vis-
coelastic tensor. A ratio 𝛼𝑃 ∕𝛼𝑆 at 1 MHz was fixed at 1.5 [31,32], with 
𝛼𝑃 = 2.9 dB/cm at this frequency, in accordance with the manufacturer 
properties. The viscosity coefficients were calculated as [20,33]:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜂11 =
𝛼𝑃

8.686
× 2𝑐𝑃 ×

𝐶11

(𝜔𝑟𝑒𝑓 )2

𝜂66 =
𝛼𝑆

8.686
× 2𝑐𝑆 ×

𝐶66

(𝜔𝑟𝑒𝑓 )2

𝜂13 = 𝜂11 − 2 × 𝜂66

(1)

where 𝜔𝑟𝑒𝑓 = 2𝜋𝑓𝑟𝑒𝑞 with 𝑓𝑟𝑒𝑞 = 1 MHz the reference frequency used 
for the calculation of the viscosity tensor. The values of 𝜂11, 𝜂13, and 
𝜂66 are kept constant within the frequency bandwidth of interest and 
determined by the value of the attenuation coefficients at frequency 
𝑓 . The complex elasticity tensor is then expressed as 𝐶∗ = 𝐶+ 𝑖𝜂𝜔 .
𝑟𝑒𝑞 𝑟𝑒𝑓
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Fig. 1. (a) Geometrical description of the numerical model with and without the outer fluid domain. (b) Experimental bone phantom cylinders measuring 150 mm in length. (c) 
Cross section of the healthy «H» and osteoporotic «O» bone phantoms.
The inner and outer layers were modeled as linear acoustic fluids 
of density (𝜌𝑓𝑖) and (𝜌𝑓𝑜) respectively, with their corresponding wave 
velocities (𝑐𝑓𝑖𝑃 ) and (𝑐

𝑓𝑜
𝑃 ). As the phantoms were provided by the same 

manufacturer as the plates used in Chaboty et al. [27], the properties 
of the inner soft tissue were assumed to be the same as the properties 
of the soft tissue layer used in [27]. Therefore 𝜌𝑓𝑖 = 977 kg∕m3 and 
𝑐𝑓𝑖𝑃 = 1390 m∕s, with an attenuation coefficient 𝛼𝑓𝑖 = 0.6 dB/cm at 
1 MHz. For the outer layer, olive oil was used as viscous fluid for 
experiments. This choice was made to provide a greater attenuation 
in comparison with water, while keeping the celerity and the density 
close to those of soft tissue [34]. As a result, the outer layer’s properties 
were defined with a density of 𝜌𝑓𝑜 = 913 kg∕m3, a speed of sound 
of 𝑐𝑓𝑜𝑃 = 1455 m∕s, and an attenuation of 𝛼𝑓𝑜 = 0.05 dB/cm at 1 
MHz [35–37]. The viscoelastic coefficient of both fluids was calculated 
as follows: 
⎧

⎪

⎨

⎪

⎩

𝜂𝑓 (𝑖,𝑜) = 𝛼𝑓 (𝑖,𝑜)

8.686
× 2𝑐𝑓 (𝑖,𝑜)𝑃 × 𝐾𝑓 (𝑖,𝑜)

(𝜔𝑟𝑒𝑓 )2

𝐾𝑓 (𝑖,𝑜) = 𝜌𝑓 (𝑖,𝑜)
(

𝑐𝑓 (𝑖,𝑜)𝑃

)2
(2)

2.1.2. SAIGA method and excitability formulation
Based on the principles of the semi-analytical finite element method 

(SAFE) [30,38,39], the SAIGA method is used to compute simulated dis-
persion curves. The method assumes harmonic wave propagation along 
the propagation direction (𝑒3), which corresponds to the cylinder’s axial 
direction. The displacement field u for the solid layer and pressure field 
in inner and outer fluids p𝑖,𝑜 can be expressed as: 
{

𝐮(𝑥1, 𝑥2, 𝑥3, 𝑡) = 𝐔(𝑥1, 𝑥2) exp[𝑖(𝑘3𝑥3 − 𝜔𝑡)]

𝐩𝑖,𝑜(𝑥1, 𝑥2, 𝑥3, 𝑡) = 𝐏𝑖,𝑜(𝑥1, 𝑥2) exp[𝑖(𝑘3𝑥3 − 𝜔𝑡)]
(3)

where 𝑖2 = 1; 𝜔 ∈ R is the angular frequency; 𝑘3 is the wavenumber 
in the direction of propagation (𝑒3); the vector 𝐔(𝑥1, 𝑥2) = (𝑈1, 𝑈2, 𝑈3)𝑇

and 𝐏𝑖,𝑜(𝑥1, 𝑥2) = 𝑃𝑖,𝑜 are the amplitudes of the displacement vector 
in (𝛺𝑆 ) and of the pressures in (𝛺𝑓 (𝑖,𝑜)), respectively. The use of the 
SAIGA method results in a quadratic eigenvalue problem that must be 
solved to determine the relationship between the wavenumber 𝑘  and 
3

3 
the angular frequency 𝜔. This relationship can be obtained with respect 
to 𝑘3 as follows: 
(−𝜔2𝐌 +𝐊0 + 𝑖𝑘3𝐊1 + 𝑘23𝐊2)𝐕 = 𝟎 (4)

where 𝐕 = (𝐏,𝐔)𝑇  denotes the global eigenvector, comprising the 
pressure eigenvector (P) and the displacement eigenvector (U), while 
𝐌,𝐊0,𝐊1,𝐊2 represent the global matrices of the system and are not 
dependent on 𝑘3. The global matrix formulation was detailed by Sey-
faddini et al. [28,29]. For every instance of the angular frequency 𝜔, 
solving Eq. (4) yields the eigenvalues 𝑘3, along with their corresponding 
eigenvectors denoted as 𝐕(𝜔, 𝑘3). These values represent the charac-
teristics of the guided modes. Additionally, the frequency-dependent 
phase velocity (𝑐𝑝ℎ) and attenuation (𝑎𝑡𝑡) of a particular guided mode 
can be calculated using these parameters. 
𝑐𝑝ℎ = 𝜔∕ℜ(𝑘3) 𝑚∕𝑠 𝑎𝑡𝑡(𝜔) = ℑ(𝑘3) 𝑁𝑝∕𝑚 (5)

NURBS basis functions of order 3 were used for SAIGA analysis. The 
model was divided into 4 patches as shown in Fig.  1(a). Every patch 
was then divided to ensure acceptable precision in the calculation of 
dispersion curves. Therefore, the number of degrees of freedom for the 
model accounts for 𝑁𝐷𝑜𝑓 = 361. The dispersion curves were calculated 
over a frequency range spanning from 50 kHz to 500 kHz, in increments 
of 5 kHz.

To ensure that the inversion of the experimental dispersion curves 
was targeting the most significant modes, the excitability 𝐸𝑥 for a 
specific mode was calculated according to its mode shape. Using the 
same formulation as presented in Chaboty et al. [27] and based on 
previous works [15,40], the excitability value can be formulated in 
cylindrical coordinates as: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸𝑥(𝑘3, 𝜔) =
ℜ(𝑘3, 𝜔)
ℑ(𝑘3, 𝜔)

× 𝑈2
𝑛𝑜𝑟𝑚(𝑘3, 𝜔)

𝑈𝑛𝑜𝑟𝑚(𝑘3, 𝜔) =
𝑎𝑏𝑠(𝑈𝑟,𝑓𝑜)
𝑚𝑎𝑥(𝑈𝑟,𝜃,𝑧)

(6)

where 𝑈𝑟, 𝑈𝜃 , 𝑈𝑧 are respectively the radial, angular and axial (along 
(𝑒3)) displacement through all the layers. 𝑈𝑟,𝑓𝑜 is the radial displace-
ment at the top surface of the outer fluid. In the case where no outer 
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Fig. 2. (a) Guided modes dispersion curves with their frequency-dependent excitability computed by SAIGA for a 3D cortical bone cylinder (𝜌 = 2310 kg∕m3, 𝑐𝑃 = 2900 m∕s, 
𝑐𝑆 = 1600 m∕s, ℎ𝑆 = 2 mm, 𝑟𝑆 = 7 mm) filled with soft tissue (𝜌𝑓𝑖 = 1010 kg∕m3, 𝑐𝑓𝑖𝑃 = 1400 m∕s) and immersed in 2 mm of water. The color scale shows the excitability of each 
mode in dB normalized to the mode with the highest excitability at each frequency. (b) Mode shape of a selected mode (𝑓 = 200 kHz and 𝑘 = 127 m−1).
fluid is present in the model, 𝑈𝑟,𝑓𝑜 is replaced by 𝑈𝑟,𝑆 , the radial 
displacement at the top surface of the solid layer. Fig.  2(a) illustrates 
an example of the excitability of guided wave modes in a cylindrical 
model with the presence of the outer fluid layer model as a function 
of frequency. The color of each circle indicates the amplitude of the 
mode excitability for each corresponding mode. Meanwhile, Fig.  2(b) 
presents the mode shapes associated with a selected mode shown in Fig. 
2(a), highlighting the various displacements utilized in the calculation 
of excitability.

2.2. Inversion algorithm

This study hypothesizes that aligning experimental dispersion
curves with the simulated ones generated via the SAIGA method can 
effectively evaluate the properties of the cortical bone layer (𝑐𝑃 , 𝑐𝑆 , 
ℎ𝑆 and 𝑟𝑆 ). To do so, an inversion algorithm was developed using a 
cost function as a metric to determine the optimal alignment between 
the experimental dispersion curves and specific instances within the 
simulated dataset. It is worth mentioning that the accuracy of the 
method depends on several factors, including the quality of exper-
imental dispersion curves, the accuracy of the phantom geometry 
and mechanical properties in the model, and of parameters used for 
numerical simulations such as the order of the NURBS basis function, 
grid steps of the simulated dataset and the overall precision of the 
model.

2.2.1. Formulation of the cost function
By definition, a cost function is a metric to gauge the difference 

between predicted values from a model, and experimental observations. 
The minimization of the cost function typically leads to the best fit 
between the numerical and experimental data. However, the formula-
tion of the cost function may alter the output result and influence the 
algorithm’s performance. Here, dispersive trajectories and excitability 
of ultrasonics guided waves modes were used and we employed the 
same cost function as Chaboty et al. used in [27]. The robustness of 
this function has been successfully validated on a bi-layer plate model. 
Therefore, the cost function quantifies the difference in magnitude 
between actual and simulated dispersive curves.

Considering a set of parameters 𝛬=(𝜌, 𝑐𝑃 , 𝑐𝑆 , ℎ𝑆 , 𝑟𝑆 ) and 𝛬=(𝜌, 𝑐𝑃 , 
𝑐𝑆 , ℎ𝑆 , 𝑟𝑆 , ℎ𝑓𝑜) in the case of the phantom in a free-field and of an 
immersed phantom respectively, the difference of amplitude for each 
simulated frequency was calculated as follows: 
𝑑𝑛(𝛬, 𝑓 ) = |

|

𝐸𝑥(𝑘𝑛(𝛬), 𝑓 ) − 𝐴(𝑘𝑛, 𝑓 )|| , (7)

where 𝐸𝑥(𝑘𝑛(𝛬), 𝑓 ) represents the simulated excitability of a particular 
mode at wavenumber 𝑘  and frequency 𝑓 for a given set of parameter 
𝑛

4 
𝛬. Similarly, 𝐴(𝑘𝑛, 𝑓 ) is the experimental amplitude observed for the 
couple (𝑘𝑛, 𝑓 ).

To prioritize higher-amplitude modes in the inversion process, a 
weighting factor was introduced. This factor ensured that modes with 
amplitudes below a user-defined threshold 𝜉, were discarded from the 
cost function, while those with the highest amplitudes contributed 
fully, with a weight of 1. The weighting factor was defined as: 

𝜒𝑛(𝛬, 𝑓 ) =
𝐸𝑥(𝑘𝑛(𝛬), 𝑓 ) − 𝜉

−𝜉
(8)

Using these two indicators, 𝑑𝑛(𝛬, 𝑓 ) and 𝜒𝑛(𝛬, 𝑓 ), the cost function 
for a particular set of parameters 𝛬 was defined as: 

𝐽 (𝛬) =
∑

𝑓

√

√

√

√

𝑁
∑

𝑛=1
(𝑑𝑛(𝛬, 𝑓 ).𝜒𝑛(𝛬, 𝑓 ))2 (9)

where 𝑁 is the total number of simulated modes for a given frequency. 
This cost function thus emphasizes high-amplitude modes while disre-
garding those below the threshold, reducing the risk of incorporating 
irrelevant information into the inversion. In this study the threshold 𝜉
was fixed at −15 dB. In summary, this cost function calculates the accu-
mulation of errors between the model predictions (for a parameters set 
(𝛬)) and the experimental observations: 𝑑𝑛(𝛬, 𝑓 ), weighted by 𝜒𝑛(𝛬, 𝑓 ). 
The objective is to minimize the value of 𝐽 (𝛬) by adjusting the set of 
parameters (𝛬).

To ensure compliance with thermodynamic principles and to avoid 
obtaining results lacking physical meaning or deviating significantly 
from values reported in the literature [27,41–43], the Poisson’s ratio 
was calculated for each parameter set 𝛬. Based on reference wave ve-
locity values for the two bone phantoms (see Table  2), the experimental 
Poisson’s ratios for the healthy and osteoporotic cylinders were 0.2365 
and 0.2475, respectively. Consequently, a condition was imposed on 
the Poisson’s ratio 𝜈(𝛬) for each parameter set. If 0.22 < 𝜈(𝛬) < 0.26, the 
set was included in the inversion process; otherwise, it was excluded.

2.2.2. Dataset generation
The cost function was calculated for all sets of simulated properties. 

Each parameter was systematically swept across a multidimensional 
grid. The range of each parameter was chosen to be large enough 
to incorporate both properties of the healthy and osteoporotic bone 
phantom cylinder. Each parameter range was defined large enough to 
ensure that the measured bone phantom cylinder properties were far 
enough from the limit values.

Two sets of data were generated. One represented the scenario 
of free-field bone phantom cylinders, while the other depicted those 
immersed in olive oil. To reduce computation time, the decision was 
made to maintain the mechanical properties of both inner and outer 
fluids constant. The inner portion of the bone phantom cylinder is made 
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Table 1
Range of model parameters and their respective step used to create the datasets.
 Parameters range Step 
 𝜌 (kg/m3) [1900 – 2500] 200  
 𝑐𝑃  (m/s) [2450 – 3150] 100  
 𝑐𝑆 (m/s) [1400 – 1900] 100  
 𝑟𝑆 (mm) [9 – 10.5] 0.5  
 ℎ𝑆 (mm) [2.7 – 3.3] 0.2  
 ℎ𝑓𝑜 (mm) [2.5 – 3.5] 0.5  

of soft tissue-mimicking material. Both phantoms were manufactured 
by the same company that makes the plates in [27]. It was assumed that 
the properties of the soft tissue mimicking material remain identical. 
Therefore, 𝜌𝑓𝑖 = 977 kg∕m3 and 𝑐𝑓𝑖𝑃 = 1390 m∕s. Properties of the 
outer fluid correspond to those of olive oil and will remain constant: 
𝜌𝑓𝑜 = 913 kg∕m3 and 𝑐𝑓𝑖𝑃 = 1455 m∕s. Table  1 depicts the parameters 
grid.

Parameter steps were chosen by balancing resolution and computa-
tional efficiency. Concerning the free-field model, a single simulation 
took approximately 45 s, whereas in the immersed model, it took nearly 
70 s. The server used for calculations was a high-performance GPU-
based system, 256 GB of RAM, with dual Xeon Silver 4215 processors 
(16 cores, 32 threads) which enabled parallelization of the calculus. 
For both datasets, the total number of cases was 3072 and 9216, 
respectively. Emphasizing the importance of including all modes, a 
frequency resolution step size of 5 kHz was chosen, allowing for 90 
frequencies to be measured within the 50–500 kHz frequency range. 
Two comprehensive databases regrouping all the possible cases of 
both scenarios were created during an extended, continuous modeling 
session. The free-field database required 36 h to complete, while the 
immersed database took 180 h (7.5 days) for simulations. Generating 
datasets for 2.5D models requires a much higher cost compared to 1.5D 
problems. In our previous study [27], generating 72,600 cases for a 
1.5D bi-layer plate model took less than 48 h for computation without 
using the parallelization.

2.3. Experimental protocols

2.3.1. Bone phantom cylinders and reference values
In this study, two bone phantom cylinders filled with soft tissue-

mimicking material were used: one with properties considered as 
healthy, and the other simulating an osteoporotic state with degraded 
properties. These cylindrical specimens were made by True Phantom 
Solutions (Windsor, ON, Canada), are 150 mm long and have a di-
ameter of 20 mm, with a cortical layer thickness of around 3 mm. 
Additionally, two small blocks representing healthy and osteoporotic 
cortical layers were provided. Pulse-echo measurements were con-
ducted on these blocks to establish baseline sound velocity values. The 
sample thicknesses were measured 20 times, followed by an equivalent 
number of pulse-echo measurements. For these pulse-echo measure-
ments, a longitudinal probe (V125-RM) and a shear probe (V124-RM) 
from Olympus centered at 2.25 MHz were employed. An Omniscan-X3 
from the same company was used to perform the measures. Densities 
were also calculated based on these samples by weighting them and 
measuring their volume with a 3D laser scanner (Absolute Arm 85) 
from Hexagon (Stockholm, Sweden), with uncertainties for each pa-
rameter derived from the measurements. To precisely determine the 
thickness of the cortical phantom layer of each cylinder, 36 mea-
surements were taken across all the phantoms using the longitudinal 
probe. The baseline velocity values obtained with the block specimens 
were used to determine the actual thickness of the cortical layer 
of the cylinders. It was assumed that the cortical layer has nearly-
isotropic behavior and was homogeneous. However, the cross-section’s 
geometry of the phantoms were not uniform along their length. In fact, 
a variation of around 10% was observed in the cortical thickness and 
diameters. As a result, the mean values will be used for comparison 
with the inversion results.
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2.3.2. Axial transmission setup
A probe was specifically designed and built to perform the ul-

trasonic excitation. The components have been chosen to provide a 
central frequency of 350 kHz with −6 dB bandwidth between 150 kHz 
and 550 kHz. The selected frequency range enables the extraction of 
the bone mechanical properties as well ass the geometry, making it 
suitable for a 4 mm thick cylinder. This range can be adjusted based 
on the target site. Low frequencies are interesting for capturing the 
full cross-section and retrieving both thickness and radius, while the 
upper frequency limit can be adapted to obtain the desired number of 
modes for the inverse process to converge. A combination of specific 
piezoelectric and matching layer components was used to maximize the 
transmission of the waves through the bone phantom. Hann windowed 
tonebursts with a maximum amplitude of 12 V were used to excite the 
piezoelectric element, with central frequencies varying from 50 kHz 
to 500 kHz with a step of 50 kHz. The number of cycles was chosen 
specifically to ensure each toneburst has a bandwidth at −3 dB of ±
50 kHz. The probe has a dimension of 20 × 4 mm with a flat front 
surface.

For the free-field measurements, where cylinders are not immersed 
in fluid, the probe was placed in contact with the outer perimeter 
of the cylinders and coupled with an ultrasonic gel Ultragel® II. A 
guide ensures the probe is placed normal to the surface with the 
20 mm dimension perpendicular to the axis of the cylinders. For the 
immersed case, a constant outer fluid layer of approximately 3 mm was 
maintained, with the sensor positioned slightly below the top surface 
of the fluid. For this, a 3 mm-thick spacer was placed between the 
cylinder’s surface and the probe’s face. Positioning is done using the 
same guide as for the case in air. Once the probe is in place, it is 
held by a clamp, and the spacer is carefully removed. The probe is 
therefore positioned 3 mm above the cylinder’s surface, perpendicular 
to the fluid’s surface.

Four consecutive acquisitions were realized on the cylinders for 
both scenarios. After each acquisition, the probe was repositioned 
and slightly shifted aside for averaging the impact of its position. 
Acquisitions were carried out along the bone phantom axis at 60 
equally spaced positions, 1 mm apart, using a Doppler laser vibrometer 
(Polytech OFV-505). Two of the four acquisitions were conducted in 
one direction, with the remaining two measurements performed in 
the opposite direction, to minimize the effect of possible thickness 
variations within the fluid layer. In the immersed configuration, the 
laser was focused on the fluid’s surface. The reflective properties of 
olive oil, attributed to its green hue, facilitated effective signal detec-
tion. Conducting the experiments in a darkened environment further 
enhanced the signal quality.

A TiePie® Handyscope HS3 was used to send the emitting signals 
to the probe and to acquire the data measured by the laser vibrometer. 
Experimental data were processed with a 2D fast Fourier transform 
to obtain experimental dispersion curves [44]. Fig.  3 represents a 
photograph of the experimental setup along with representative time 
trace signals recorded in the immersed configuration. These signals 
represent ultrasonic guided waves measured on the healthy bone phan-
tom immersed in olive oil at points 1, 30, and 60. The waveform 
evolution during propagation is clearly observed. Despite being the 
least favorable case, a satisfactory SNR of 30 dB was obtained.

3. Results

3.1. Bone phantom cylinder properties

Pulse-echo measurements were conducted to establish the reference 
values that will be used in the inversion process. As explained in 
Section 2.3.1, the geometric cross-section of the cortical layer of both 
cylinders is not uniform along their length, with a variation of about 
10%. Nonetheless, the cortical synthetic material is assumed to be 
isotropic and homogeneous throughout the phantoms. Reference values 
of the cortical layer for both the healthy phantom and the osteoporotic 
one are depicted in Table  2.
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Fig. 3. (a) Experimental setup used for the axial transmission measurements with bone phantom cylinder immersed in fluid. (b) Representative signals for the immersed case at 
measurement points 1, 30 and 60.
Table 2
Reference property values for the healthy and osteoporotic bone phantom cylinders.
 Healthy bone Osteoporotic bone 
 phantom phantom  
 𝜌 (kg/m3) 2295 ± 35 2085 ± 20  
 𝑐𝑃  (m/s) 2945 ± 65 2650 ± 35  
 𝑐𝑆 (m/s) 1730 ± 25 1535 ± 15  
 𝑟𝑆 (mm) 9.77 ± 0.50 9.96 ± 0.53  
 ℎ𝑆 (mm) 3.00 ± 0.23 2.97 ± 0.29  

3.2. Parameters sensitivity

A study was conducted to evaluate how different parameters affect 
the dispersive trajectories of the ultrasonic guided wave modes. To this 
end, a variation of ±10% was applied to each parameter to assess its 
influence. The reference chosen parameters correspond to the central 
value of each parameter’s range presented in Table  1. The variations 
were applied to 𝑐𝑃  while keeping 𝜈 constant and equal to 0.24 (thus 
causing 𝑐𝑆 to vary accordingly), as well as to 𝑟𝑆 , ℎ𝑆 , and ℎ𝑓𝑜. The re-
sults are presented in Fig.  4. To observe the effect of each parameter on 
the dispersion curve trajectories, only mode points with an excitability 
value greater than −3 dB are retained.

Fig.  4 shows that variations of 𝑐𝑃 , 𝑐𝑆 and 𝑟𝑆 globally influence 
the trajectories of dispersion curves, while ℎ𝑆 primarily affects low 
frequencies and ℎ𝑓𝑜 impacts higher frequencies emphasizing the im-
portance of using low frequency to minimize the impact of soft tissue 
layer. However, the variations presented in Fig.  4 are the result of 
modifying only one parameter at a time. Osteoporosis likely induce a 
simultaneous decrease of cortical thickness and wave velocities [24], 
further amplifying the differences between healthy and osteoporotic 
bone. This emphasizes the necessity of assessing all bone parameters 
simultaneously rather than each one independently.

3.3. Dispersion curves fitting

Experimental acquisitions were carried out with both phantoms 
under two conditions: with and without the outer fluid. Four measure-
ments were taken for each case along the axis of the bone cylinders to 
extract experimental dispersion curves. The inversion procedure was 
then applied to both the healthy and osteoporotic phantoms in each 
scenario.

3.3.1. Dispersion curve fitting for free-field bone phantom cylinders
The experimental results shown in Fig.  5 are obtained by averaging 

the 2D-FFT plots for the corresponding four separate axial transmission 
measurements obtained for each cylinder. Averaging allows to consol-
idate spatial frequency information across multiple measurements to 
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enhance clarity of the visual analysis. The semi-analytical points pre-
dictions are superimposed on the experimental dispersion curves with 
a −3 dB threshold applied to improve clarity. All values below −3 dB 
are automatically discarded to enhance visibility. As shown in Fig.  5, 
the alignment between experimental and simulated dispersion curves 
shows a good agreement for both phantoms, especially concerning the 
tangential slope of the curves, despite some differences that will be 
discussed in the next section.

3.3.2. Dispersion curve fitting for immersed bone phantom cylinders
In order to be closer to in-vivo conditions, the cylinders were im-

mersed in a viscous fluid. The rationale is that the immersed setup 
provides a more accurate representation of real-world conditions. Olive 
oil was found to be a good candidate for this. In line with Mast’s 
empirical study [34] and other relevant research [45], the suggested 
range for soft tissue density is between 900 kg/m3 and 1200 kg/m3. As 
mentioned in Section 2.2.1, olive oil was chosen thanks to its higher 
attenuation relative to water, while having similar sound speed and 
density to soft tissue. A layer of fluid was established atop the bone 
phantom cylinders, measuring 3 mm in thickness. The probe was posi-
tioned slightly below the fluid’s surface, ensuring partial immersion. 
Results are presented similarly to Section 3.3.1. The semi-analytical 
point predictions are superimposed on the experimental dispersion 
curves with a −3 dB threshold. Fig.  6 corresponds to the best-fitting 
scenario for both cylinders. Due to the presence of olive oil surrounding 
the bone phantom cylinder, measurements were noisier in comparison 
with the free field scenario. Therefore, horizontal perturbations can be 
seen on the experimental dispersion curves for the immersed case.

3.4. Estimation of bone phantoms’ properties

The average inverse characteristics for the four axial transmission 
measurements, optimized for each cylinder, are presented in Tables 
3 and 4 for the free-field and immersed scenario, respectively, along 
with reference properties and their relative errors. Results demonstrate 
a close alignment of the mechanical property values, with errors below 
3.0% for both scenarios. However, a larger discrepancy was obtained 
for the thickness and radius of the cortical shell for the free field case, 
which may be due to the fact that these parameters are inconsistent 
along the bone phantoms, and that their variations were averaged out 
during pulse-echo measurements.

In the free-field case, as shown in Fig.  5, the simulated disper-
sion curves align closely with the high-wavenumber modes across 
all frequencies. Consequently, the slope of the experimental curves 
is accurately captured, leading to precise predictions of the inverted 
properties such as wave velocities.

In contrast, for the immersed case in Fig.  6, the simulated dispersion 
curves align better at low frequencies with the low-wavenumber modes. 
This results in more accurate estimations of the geometrical parameters, 
emphasizing the critical role of low-frequency modes in determining 
bone geometry.
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Fig. 4. Effect of parameter variations on ultrasonic guided waves dispersion curves. The blue lines represent the reference curves, the green lines correspond to the −10% variation, 
and the orange line to the +10% variation. Parameter influences are shown for: (a) 𝑐𝑃  with 𝜈 held constant, (b) 𝑟𝑆 , (c) ℎ𝑆 , and (d) ℎ𝑓𝑜. Arrows and rectangles highlight the key 
areas where changes take place.
Fig. 5. Optimal fit between experimental and simulated dispersion curves for (a) healthy phantom, and (b) osteoporotic phantom. SAIGA-computed best fit are depicted by the 
red points atop experimental curves.
Table 3
Average inverse properties of phantom cylinders with their relative errors for the free-
field scenario.
 Healthy cylinder Osteo. cylinder

Ref. Inv. Err.% Ref. Inv. Err.% 
𝑐𝑃  (m/s) 2945 ± 65 2950 ± 141 0.17 2650 ± 35 2650 ± 115 0.00  
𝑐𝑆 (m/s) 1730 ± 25 1725 ± 95 0.29 1535 ± 15 1550 ± 58 0.98  
𝑟𝑆 (mm) 9.77 ± 0.50 10.13 ± 0.75 3.63 9.96 ± 0.53 9.25 ± 0.29 7.13  
ℎ𝑆 (mm) 3.00 ± 0.23 2.90 ± 0.23 3.63 2.97 ± 0.29 3.3 ± 0.0 11.11 
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Table 4
Average inverse properties of phantom cylinders with their relative errors for the fluid-
immersed scenario.
 Healthy cylinder Osteo. cylinder
 Ref. Inv. Err.% Ref. Inv. Err.% 
 𝑐𝑃  (m/s) 2945 ± 65 3025 ± 95 2.72 2650 ± 35 2700 ± 100 1.89  
 𝑐𝑆 (m/s) 1730 ± 25 1750 ± 58 1.16 1535 ± 15 1575 ± 50 2.61  
 𝑟𝑆 (mm) 9.77 ± 0.50 9.75 ± 0.65 0.20 9.96 ± 0.53 9.75 ± 0.65 2.11  
 ℎ𝑆 (mm) 3.00 ± 0.23 2.90 ± 0.28 3.33 2.97 ± 0.29 3.1 ± 0.28 4.38  
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Fig. 6. Optimal fitting results between experimental and simulated dispersion curves for (a) healthy phantom cylinder, and (b) osteoporotic phantom cylinder immersed in olive 
oil. SAIGA-computed best fit are depicted by the red points atop experimental curves.
3.4.1. Estimated bulk-wave velocities
According to Tables  3 and 4, the average predicted values for 

longitudinal and shear wave velocities remain within the tolerance 
range of the reference values for both cylinders in all situations. In 
the free-field scenario, the error is found to be lower than 1%, while it 
slightly increases in the immersed scenario, albeit still remaining below 
3%. This increase can be attributed to fluctuations in the surrounding 
fluid’s thickness as well as its material properties due to changes in 
the experimental environment (change in oil temperature for example). 
Moreover, due to the presence of the outside fluid, experimental data 
are found to be much noisier, resulting in slight variation during the 
inversion.

3.4.2. Estimated radius and thickness
The estimated values of the thickness ℎ𝑆 and radius 𝑟𝑆 fall within 

the baseline measurement margins of error. However, the relative 
errors are larger in the free-field case. The curvature of the bone 
phantom cylinders creates nearly point-like contact between the probe 
and the cortical shell, resulting in the generation of numerous cir-
cumferential modes. This complexity increases the challenge of fitting 
the dispersion curves accurately. In this specific case, the dispersion 
curves aligned more effectively with high-wavenumber modes, leading 
to more accurate velocity predictions but less precision in estimating 
the geometry. In contrast, when the cylinders are immersed in the 
fluid, this phenomenon is decreased as wave generation occurs over a 
broader area. Also, the dispersion curves aligned more effectively with 
low-wavenumber modes, which are strongly representative of the bone 
geometry.

Moreover, the osteoporotic cylinder has greater errors in radius 
and thickness measurements in both scenarios. This discrepancy may 
come from the overall geometry of the bone phantom as explained in 
Section 2.1.1. Additionally, reference values for cortical thickness in the 
osteoporotic model carry greater uncertainties. These subtle differences 
cumulatively result in larger percentage deviations during the inverse 
transformation.

3.4.3. Error propagation through the inversion process
The inversion process involves two main sources of uncertainty: grid 

discretization and experimental variability.
The grid resolution sets the precision of the parameter estimates. A 

finer grid improves accuracy but increases computational cost, while 
a larger grid step can introduce systematic errors. In this study, the 
parameter step sizes were chosen to balance these factors (see Sec-
tion 2.2.2). For example, the step size for 𝑐𝑃  is 100 m/s, leading to an 
uncertainty of ±50 m/s due to grid discretization which remain in the 
uncertainties range of the reference values, the same can be observed 
for other parameters. The relative errors for 𝑐𝑃  and 𝑐𝑆 (below 3%) 
confirm that the chosen resolution is appropriate.
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We performed also four independent measurements on each cylin-
der. Each of the four axial transmission measurements was subject to 
experimental uncertainties, including noise, boundary inconsistencies, 
and slight variations in the bone phantom geometry. These uncertain-
ties propagated through the cost function and affected the estimated 
parameters.

The reported standard deviations in Tables  3 and 4 for the inverted 
properties reflect the combined effects of these experimental uncertain-
ties and grid resolution. For instance, the larger discrepancies observed 
for the radius (𝑟𝑆 ) and cortical thickness (ℎ𝑆 ) can be attributed to 
physical variations in the bone phantoms that are averaged out during 
the pulse-echo measurements. This averaging reduces the sensitivity of 
the inversion to localized inconsistencies but increases the relative error 
for these parameters compared to 𝑐𝑃  and 𝑐𝑆 .

3.4.4. Assessment of cortical layer density
Density is not directly assessed through the inversion process, but 

rather with a mathematical model [15,40]. As the model used in the 
simulation is isotropic, the resulting model parameters, which reflect 
the waveguide’s stiffness, consist of two bulk wave velocities 𝑐𝑃  and 𝑐𝑆 , 
incorporating the mass density within the velocity parameters [16,46–
48] and a stiffness ratio of elastic coefficients 𝐶11∕𝐶13 = 1 − 2(𝑐𝑆∕𝑐𝑃 )2. 
Using the reference values for density and bulk wave velocities, a linear 
interpolation can be made to express 𝐶11 = 𝜌𝑐2𝑃  and 𝐶66 = 𝜌𝑐2𝑆 as a 
function of density 𝜌 [27]. As a consequence, 𝑐𝑃  and 𝑐𝑆 can also be 
expressed as a function of density as shown in Fig.  7.

Using inverse properties of both scenarios, density can be deter-
mined for the healthy and osteoporotic cylinder. As a result, for the 
free-field case, the results yield 𝜌 = 2300 ± 10 kg∕m3 and 𝜌 = 2096 ±
12 kg∕m3 for the healthy and osteoporotic cylinder respectively, leading 
to relative errors of 0.17% and 0.53%. For the immersed case, the den-
sity of healthy and osteoporotic cylinders are found to be respectively 
𝜌 = 2343 ± 28 kg∕m3 and 𝜌 = 2120 ± 5 kg∕m3, with relative errors of 
2.09% and 1.68%, which are quite acceptable at this stage.

4. Discussion

The cost function was computed across a multi-dimensional model 
grid, consistently identifying a global minimum for each acquisition. 
While navigating five or six dimensions is computationally demanding, 
SAIGA processes an immersed case in just over a minute but requires 
about eight days for all 9216 scenarios. However, since the dataset 
is generated once, subsequent inversions take only minutes. Using a 
parameter sweep over a finite set ensures a consistent global minimum, 
eliminating optimization concerns. Yet, predefined grid steps may in-
troduce bias, though they were chosen to align with reference value 
uncertainties.
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Fig. 7. Bulk velocities varying with the bulk density of the phantoms cortical material. 
(Blue lines) Inverse values for longitudinal and shear velocities of Osteoporotic phantom 
cylinder. (Red lines) Inverse values for longitudinal and shear velocities of Healthy 
phantom cylinder. Full lines depict the inverse values retrieved in the immersed 
scenario and the dot lines correspond to the free-field case scenario without outside 
fluid.

As mentioned in the previous study from our group [27], incorpo-
rating modal excitability into the cost function was crucial to improve 
the inversion procedure, significantly reducing the number of relevant 
modes. This reduction was achieved by weighting modes according to 
their excitability. By including only a limited number of modes, this 
approach minimizes data misfits during inversion. As demonstrated 
by Chaboty et al. [27], incorporating excitability into the inversion 
process reduces the percentage error by more than 10% compared 
to an inversion without this parameter. This methodology has proven 
effective in a 2.5D case scenario. Excitability ensures that all modes 
exhibiting high amplitudes are taken into account. Without incorpo-
rating excitability, the inversion process may be biased toward modes 
with high amplitudes over a broad frequency spectrum while neglecting 
lower-amplitude modes or those with high amplitudes over a narrow 
frequency range, which are particularly representative of geometry at 
low frequencies. This aspect is crucial as it allows for the inversion of 
the entire bone geometry rather than being limited to thickness estima-
tion, as commonly observed in the literature where higher frequencies 
are employed. Furthermore, the relative errors obtained in our study 
remain within the same range as those reported by Bochud et al. and 
Minonzio et al. consistently below 5% [47,48].

Despite a favorable correlation between experimental and simu-
lated results, especially at low frequencies (< 200 kHz) where curves 
aligned with great accuracy, there are discrepancies in the alignment 
of experimental and SAIGA-reconstructed dispersion curves at higher 
frequencies, as shown in Figs.  5 and 6. Several factors contribute to 
these differences.

Firstly, the accuracy of the SAIGA simulation-based approach hinges 
on the precision of the underlying model. Seyfaddini et al. [29] have 
demonstrated, through a comparison between SAIGA and the DIS-
PERSE analytical model [49], that the number of degrees of freedom 
𝑁𝑑𝑜𝑓  in the model is crucial for obtaining accurate results. While 
SAIGA remains significantly more efficient than the SAFE method, it 
still requires a sufficiently large value of 𝑁𝑑𝑜𝑓  to maintain precision. 
Unfortunately, increasing the accuracy and so the value of 𝑁𝑑𝑜𝑓  ex-
ponentially increases computation time. In the case presented in this 
manuscript, since the region of interest includes low frequencies, the 
number of patches of the model and the order of NURBS basis functions 
are considered acceptable, knowing that a single case takes around 
70 s to compute. Doubling the number of elements would result in a 
simulation time of approximately 15 min. As a consequence, it would 
take around 96 days to process the 9216 cases required for this study, 
given our current computational capabilities. However, the inversion 
of the cortical bone phantom has yielded promising outcomes using 
the selected parameters, potentially indicating improved forecasts if the 
model’s precision is enhanced.
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Secondly, the complex geometry of cortical bone has been approx-
imated by a cylindrical-like structure, making strong assumptions of 
symmetrical conditions. However, as shown in Fig.  1(b,c), the actual 
bone shape is not perfectly symmetric. Therefore, a difference in the 
simulated shape model and the real experimental geometry can explain 
such differences at higher frequencies. Nonetheless, estimated thickness 
and properties are found to be close to the reference ones, as shown in 
Tables  3 and 4.

The quality of experimental measurements is critical to the in-
version process. The curvature of bone phantoms necessitates precise 
probe alignment with laser spots to extract dispersion curves accu-
rately, as misalignment reduces amplitude and introduces variability. 
To mitigate this, multiple acquisitions were performed, though some 
variations persist. The cylindrical shape also supports circumferential 
modes, complicating inversion. However, since the method targets the 
radius, its asymmetry suppresses these modes, simplifying guided wave 
visualization (see Fig.  8). This suggests that the inversion process may 
be less sensitive to measurement fluctuations, particularly in in-vivo
applications.

Finally, the properties of the cortical layer were defined as isotropic 
to match the phantoms used in this study. However, it is well known 
that cortical bones exhibit anisotropic or, at the very least, orthotropic 
behavior. To adapt the proposed method for in vivo bone character-
ization, the model should be further developed to account for the 
complexity of the medium. Future iterations could adopt approaches 
similar to those proposed by Pereira et al. [15,50], where the elastic 
coefficients vary with density based on a homogenization scheme devel-
oped by Vu et al. [40]. Alternatively, the model could include multiple 
layers within the cortical thickness to represent bone degradation from 
the endosteal to the periosteal region [11,17,20,51].

5. Conclusion

Using low frequencies in the context of axial transmission of ultra-
sonic guided waves demonstrated its ability to deduce the properties 
of bone cortex in an in-vivo-like configuration. The implementation of 
excitability requires fewer modes than other inversion techniques used 
at high frequencies. Using a combination of multiple high-excitability 
mode segments, the proposed SAIGA model achieved successful align-
ment with the amplitude of experimental dispersion curves. The study 
presented here builds on the work of Chaboty et al. [27], and offers 
a promising proof of concept for using the method in a clinical as-
sessment of cortical bone properties. However, several limitations must 
be considered. The assumption of a simplified cylindrical bone model, 
while computationally efficient, does not fully capture the anatomical 
variability of real bones, particularly the radius. The current inver-
sion scheme, although effective, remains computationally demanding, 
limiting the size of the dataset. Additionally, the experimental setup 
relies on precise alignment of the probe with laser measurements, 
which may introduce errors in practical in vivo conditions. A multi-
element axial transmission probe must be developed to replace the use 
of laser measurements, as this technique is too sensitive for human body 
measurements.

The model will later evolve into a radius-shape bone, as presented 
in the discussion section. Improvements must be made to the SAIGA 
algorithm to reduce its computation time in order to increase the 
dataset with a smaller step for each parameter. The model will shift 
from an isotropic material to a transversely isotropic medium to better 
represent the bone cortex. Furthermore, the inversion scheme could 
be further improved using artificial intelligence (AI) techniques. This 
would increase its robustness, allowing it to evaluate bone properties 
based on the dispersion trajectories and amplitudes of guided wave 
modes within the waveguide.

The proposed method shows potential for clinical applications by 
providing a non-invasive tool to assess bone quality and detect early-
stage osteoporosis. However, challenges such as patient variability 
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Fig. 8. Differences between a cylindrical geometry and a radius-like geometry. (a,c) Geometry of the two models. (b,d) Corresponding dispersion curves showing that fewer modes 
exist in the radius model.
and device reproducibility must be addressed. Differences in bone 
geometry, such as cortical thickness and outer diameter, require ro-
bust algorithms to ensure consistent results across diverse populations. 
Additionally, variability in device performance necessitates standard-
ized protocols and self-calibrating mechanisms. Large-scale validation 
studies and the development of a comprehensive reference database 
would enhance the method’s sensitivity and reliability. Collaborations 
with clinicians will be key to integrating this approach into clinical 
workflows, ensuring it aligns with practical diagnostic needs.
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