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A B S T R A C T

Sustainable bioenergy production is essential for mitigating greenhouse gas emissions and reducing dependence 
on fossil fuels. The logistics of managing dispersed and low-value biomass from forestry, agricultural, and 
municipal solid waste value chains pose significant challenges, including high transportation costs, seasonal 
availability, and storage limitations. This systematic literature review examines the critical operations, including 
collection, transportation, and preprocessing, necessary to optimize bioenergy supply chains. A central contri
bution of this paper is an analysis of integrating biomass value chains through collaborative models that leverage 
shared infrastructure and adaptive logistics to enhance cost efficiency and resource utilization. It also identifies 
critical gaps in optimization models, particularly the lack of comprehensive multi-biomass value chain inte
gration frameworks and limited consideration of uncertainties in logistics planning. The analysis highlights that 
while mixed integer linear programming models dominate, they often overlook cross-chain synergies and lo
gistics. By examining 112 articles, we show that integrating forestry, agricultural, and municipal solid waste 
value chains through shared infrastructure and collaborative planning can significantly reduce transportation 
costs, enhance supply stability, and improve resource utilization in bioenergy systems.

1. Introduction

Achieving the objectives set by the United Nations Sustainable 
Development Goals (SDGs), particularly those related to clean energy 
(SDG 7), responsible consumption and production (SDG 12), and climate 
action (SDG 13), requires the development of renewable energy systems, 
including sustainable biomass supply chains (SCs) that support bio
energy production [1]. Biomass value chains (VCs) are pivotal in sup
plying renewable feedstocks for bioenergy production. Among various 
biomass sources, forestry residues, agricultural byproducts, and 
municipal solid waste (MSW) are particularly significant due to their 

abundance, diversity, and potential to support sustainable resource 
utilization. Forestry residues offer high-energy–density feedstocks [2], 
agricultural byproducts are available in large quantities during harvest 
seasons [3], MSW provides a year-round supply while addressing urban 
waste management challenges [4]. These VCs represent a diverse spec
trum of biomass resources with significant potential for bioenergy ap
plications. However, these biomass sources are often studied in isolation 
despite their complementary logistics and supply stability characteris
tics. This systematic literature review explores the potential for inte
gration, identifying synergies to enhance supply chain (SC) efficiency, 
reduce logistic costs, and improve resource utilization in bioenergy 
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systems.
Biorefineries are the key to biomass conversion into bioenergy. 

Bioenergy is an alternative to fossil fuels, helping reduce greenhouse gas 
emissions by utilizing renewable biomass resources that offset carbon 
emissions over their lifecycle. They use different types of biomass 
feedstock, including agricultural residues, forestry byproducts, energy 
crops, and MSW. The refineries produce biofuels and generate high- 
value chemicals, materials, and energy [5]. Biorefineries use many 
conversion technologies for these feedstock materials, including hy
drolysis, fermentation, gasification, and pyrolysis, in contrast to tradi
tional refineries dependent upon petroleum. The advantages of these 
technologies are that they use renewable and affordable feedstock, have 
a lower carbon footprint on products, and contribute to reducing the 
negative impacts [6].

In the use of biomass for energy, due to its cycle in natural carbon, 
the amount of carbon released by biomass combustion can be balanced 
with the amount absorbed in biomass growth. Then, its effect on the 
atmospheric CO2 level is neutral [7,8]. Forests and agricultural streams 
are the main bases of bioenergy supply and are among the primary 
sources of sustainable energy solutions. Up to 50 % of the primary en
ergy supply globally could be derived from woody biomass fuel trans
formation. The sustainable exploitation of this resource is of utmost 
importance and should be efficient [9]. Forest residues, logging resi
dues, and bark from forestry operations are valuable feedstocks for 
bioenergy and biochemical production that contribute to conformance 
with environmental concerns about energy generation [10]. Because the 
agricultural sector has a significant potential for waste biomass, this 
holds the prospect of producing biofuels. Agricultural wastes, including 
corn stover, sugarcane bagasse, and wheat straw, are used for fodder and 
as fuels at biorefineries. Energy crops, such as switchgrass, miscanthus, 
and willow, have been developed to produce high energy yields and 
have a low environmental impact [11].

Urban areas contribute to biomass through MSW. The fast-growing 
urbanization and growing populations in developing countries lead to 
an increase in solid waste generation, contributing to various environ
mental problems. Waste-to-Energy (WtE) technology could provide so
lutions for waste management combined with energy recovery. MSW, 
containing organic residues and other types of MSW, becomes a biomass 
resource. Organic items account for nearly 50 % of the total MSW 
content [12]. WtE technologies utilize this component to derive energy 
that will help control the city’s garbage. Biomass feed-wood, lands, 
farms, and MSW contribute to green fuel generation, and play a role in 
the renewable aspect [13].

There are challenges in using biomass to produce bioenergy, 
including high process costs and unpredictable biomass availability. 
Differences in biomass sources, seasonal availability for agricultural 
biomass, storage stability for forestry residues, and the limited utiliza
tion of MSW in bioenergy production require varied logistic solutions for 
transportation and handling. These differences underscore a logistical 
innovation role in advancing bioenergy production [14].

Recent studies have developed models to evaluate regional produc
tion and distribution network decisions, address logistical challenges, 
and optimize the integration of new products into existing VCs. For 
instance, some studies use mixed integer linear programming (MILP) 
models to assess the integration of new products into the forest value 
chain (VC), incorporating manufacturing processes, distribution nodes, 
and a business-to-business circular economy (CE) approach [15].

Transitioning to sustainable energy requires logistical activities, 
including storage, transportation, and preprocessing activities like 
chipping and drying, which are crucial for transforming diverse biomass 
sources into sustainable energy. These logistical components signifi
cantly influence the bioenergy production process’s efficiency, cost- 
effectiveness, and environmental sustainability [16,17]. Comparing 
forestry, agricultural, and MSW biomass VCs reveals unique and shared 
logistical challenges in advancing renewable energy. These challenges 
include high transportation costs, seasonal feedstock availability, and 

storage limitations, highlighting the importance of innovative logistical 
solutions in overcoming barriers to bioenergy production.

This paper advances the current understanding of bioenergy pro
duction by analyzing the integration of forestry, agricultural, and MSW 
VCs. It addresses four research questions to provide a comprehensive 
review. 

• RQ1: What logistics operations are used and efficient in biomass 
procurement?

• RQ2: What are the analytical tools used for biomass logistics 
planning?

• RQ3: What optimization strategies facilitate the integration of 
forestry, agricultural, and MSW biomass SCs?

• RQ4: What methodological gaps and logistical challenges hinder the 
integration of multiple biomass VCs?

RQ1 examines the operational planning of biomass VCs, focusing on 
logistical operations like collection, storage, transportation, and pre
processing to identify similarities and differences between biomass VCs. 
RQ2 explores planning models for optimizing biomass VCs from diverse 
sources, highlighting effective logistical strategies. RQ3 investigates 
integrating forestry, agricultural, and MSW VCs to create a resilient, 
efficient SC, an underexplored area crucial for sustainable bioenergy 
systems. RQ4 explores challenges and research gaps in the literature 
related to integrating different biomass VCs.

Earlier reviews mainly focused on individual biomass VCs, such as 
forestry residues, agricultural byproducts, and MSW, without consid
ering their potential synergies. A few considered a mix of forestry and 
agricultural biomass VCs and explored the integration, but with varying 
focuses on specific sectors. In 2013, Sharma et al. [18] focused on 
forestry and agricultural biomass SCs, reviewing articles published up to 
2011 in logistical aspects such as storage, preprocessing, and trans
portation within individual SCs. While this review paper briefly 
mentioned the integration between biomass VCs, its main findings and 
core subject revolve around planning models for biomass SC optimiza
tion, addressing strategic, tactical, and operational decisions related to 
logistics and infrastructure. In 2014, Yue et al. [19] primarily examined 
the forestry and agricultural biomass VCs, discussing multi-scale 
modeling to optimize logistics and integrate biofuels into petroleum 
refinery SCs for cost reduction and efficiency improvement. Later, in 
2021, Singh et al. [20] reviewed forestry, agricultural, and MSW 
biomass VCs, highlighting the role of policy and financial mechanisms in 
facilitating cross-sector collaboration and identifying gaps in incentives 
for biomass mobilization and harmonization. However, none of these 
studies investigated the logistical collaboration between forestry, agri
cultural, and MSW VCs. Instead, they addressed integration within 
specific biomass categories or through policy-level coordination rather 
than examining operational synergies and shared infrastructure for 
transportation and processing.

Some reviews, e.g., Wolfsmayr et al. [21], highlighted transportation 
challenges in forestry residue SCs, while others, like Mirkouei et al. [22], 
examined logistical optimizations for agricultural residues, often over
looking how these systems could complement each other. Similarly, 
studies on MSW-to-energy advancements like Chand Malav et al. [13] 
emphasized waste management technologies but did not explore how 
MSW could be integrated with forestry and agricultural residues to 
create more resilient and efficient SCs. These limitations in scope hinder 
the development of comprehensive solutions that leverage the strengths 
of multiple VCs.

Uncertainties in biomass SCs, such as variability in supply, storage 
degradation, market fluctuations, and policy changes, represent another 
significant challenge noted in prior reviews. Advanced modeling tech
niques, including stochastic programming and simulation, are often 
recommended to manage these risks and support more robust SC de
signs. Some reviews, such as those by Awudu et al. [23], Shabani et al. 
[24], and Yue et al. [19], explored these challenges and solutions.
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Existing reviews have extensively analyzed individual VCs and their 
logistical challenges. However, they have not addressed the collabora
tive potential of integrating forestry, agricultural, and MSW VCs. Our 
review focuses on bridging these gaps by investigating strategies for 
collaboration, shared infrastructure, and multi-feedstock optimization. 
By emphasizing synergies and addressing inefficiencies through coor
dinated approaches, this review aims to enhance the sustainability and 
cost-effectiveness of biomass-to-bioenergy systems.

To better contextualize these gaps, Table A-1 in the Appendix pro
vides a structured overview of 19 prior review papers examining the 
logistical aspects of biomass-to-bioenergy SCs. These studies are cate
gorized by key parameters, including the time span of the literature 
reviewed, decision-making levels (strategic, tactical, operational), types 
of biomass VCs analyzed (forestry, agricultural, and MSW), and the 
specific logistical challenges addressed (such as transportation, collec
tion, inventory management, preprocessing, and facility location). 
Additionally, the table outlines whether these reviews incorporate 
environmental, economic, or social dimensions, technological ad
vancements, uncertainty analysis, and optimization approaches. This 
synthesis highlights that most earlier reviews have focused on one or 
two biomass types, often overlooking the complexities of integrating 
logistics across different sectors. This underscores the need for a 
comprehensive analysis emphasizing collaboration between forestry, 
agricultural, and MSW VCs, which is the focus of this study.

The main contribution of this review lies in identifying critical gaps 
in optimization models and collaborative frameworks while offering 
actionable insights into collective infrastructure, adaptive logistics, and 
multi-VC coordination. Additionally, it provides a comprehensive 
assessment of the current state of biomass logistics. It directly addresses 
the four key RQs, offering structured insights into logistics operations, 
analytical tools, optimization strategies, and integration challenges. It 
systematically answers these questions and presents a novel perspective 
on enhancing biomass-to-bioenergy systems through integrated VCs.

The remainder of this paper is organized as follows: Section 2 de
scribes the systematic literature review methodology and criteria for 
selecting articles. Section 3 examines research trends and findings on 
biomass VCs and decision-making levels, categorizing articles by 
biomass VC types, geographical distribution, published year, optimiza
tion models, solution approaches, and uncertainty considerations. Sec
tions 4–6 focus on strategic, tactical, and operational planning in 
forestry, agricultural, and mixed VCs, respectively, with Section 7 
addressing the combination of decision-making levels. Section 8 men
tions essential notes in the MSW VC. Section 9 discusses findings, 
emphasizing innovative logistical solutions for bioenergy logistics and 
the challenges of integrating different biomass types. Finally, Section 10 
concludes with key findings. Moreover, tables in the Appendix show all 
articles investigated in this systematic literature review.

2. Systematic literature review methodology

The systematic literature review (SLR) method forms the basis of 
literature review research [17]. This structured approach can provide a 
comprehensive and focused review to help systematically categorize and 
analyze the literature using essential keywords, fundamental concepts, 
and relevant topics. For instance, a review paper in 2022 used the SLR 
approach to study energy conversion efficiency by biomass-based plants 
[25]. This paper presents an SLR of the complexity of biomass VC 
integration to increase biomass SC performance efficiency. Emphasis is 
placed on the nature of integration for efficiency. Forestry, agriculture, 
and MSW are the three primary biomass VCs selected for their critical 
role in providing abundant, diverse, and complementary feedstocks 
essential for advancing sustainable bioenergy solutions.

We followed a three-step search and screening process to ensure 
comprehensiveness and relevance. The review focuses on scientific peer- 
reviewed journal articles and conference proceedings in English pub
lished between 1997 and 2024. This timeframe begins with the first 

study in this field, focusing on agricultural biomass in the United States 
[26]. Critical issues in optimizing herbaceous biomass delivery systems, 
such as switchgrass, were addressed using linear programming (LP). 
This foundational work marked the start of systematic research in bio
energy logistics and serves as a fitting starting point for our review [26]. 
Book chapters, technical reports, and non-peer-reviewed studies were 
excluded to ensure consistency in peer-review standards and to avoid 
variability in methodological depth, quality control, and data accessi
bility. This decision supports the review’s objective of analyzing models 
that meet recognized academic benchmarks regarding transparency, 
reproducibility, and scientific rigor. Our review was guided by four RQs 
designed to examine logistical operations, planning tools, and integra
tion strategies across biomass VCs.

We searched Scopus, Web of Science, and ScienceDirect using the 
terms: “Bioenergy systems,” “Biorefinery,” and “Biomass-to-bioenergy 
SCs.” These terms were applied across the “Title,” “Abstract,” and 
“Keywords” fields in scientific databases, yielding an initial pool of 
94,508 articles. To narrow the scope, we added keywords “Forest 
biomass,” “Agriculture biomass,” and “Municipal solid waste biomass,” 
which were specific to our focus on different biomass VCs, reducing the 
results to 1,526 articles. Studies focusing solely on feedstock conversion 
without logistical implications were excluded to refine the results 
further. Articles were included if they explicitly addressed logistics 
planning for biomass SCs or optimization models for bioenergy pro
duction. So, we incorporated additional terms related to logistics, inte
gration, and collaboration, such as “Logistics,” “Integrated,” 
“Collaboration,” and “Coordination,” which led to 306 articles. A com
bination of Boolean operators (“or” and “and”) was used to ensure 
precision in the search. For example, we searched for “Collaboration 
AND Forestry Value Chain” or “Biomass Logistics OR Bioenergy Logistics 
Optimization” combinations to identify relevant studies. This approach 
allowed us to refine the search results by including studies that specif
ically addressed collaboration within forestry VCs and broader studies 
focused on logistical and optimization aspects of biomass and bioenergy. 
By strategically combining keywords, we could cover various topics 
while excluding irrelevant results, ensuring a wide-ranging, focused 
literature review. A thorough screening process identified 112 articles 
deemed most relevant to our investigation. These include 93 articles 
focused on logistical operations, planning tools, and biomass optimiza
tion models, and 19 review articles offering insights into the broader 
context of biomass logistics and integration.

To categorize our analysis, we classify decision-making levels into 
strategic (long-term), tactical (mid-term), and operational (short-term), 
focusing on logistical and optimization models. This classification pro
vides a structured understanding of SCs and their dynamics in biomass- 
to-bioenergy conversion. We explore decisions on SC structure, location 
planning, capacity, technology adoption, and market positioning at the 
strategic level. The tactical level bridges strategy and daily operations 
through logistics, risk management, distribution planning, and resource 
allocation. At the operational level, we focus on immediate actions, such 
as vehicle routing, scheduling, inventory control, and maintenance.

3. Descriptive analysis of reviewed literature

Research trends and findings on biomass VCs and decision-making 
levels are categorized based on biomass types, geographical distribu
tion, publication years, optimization models, solution approaches, and 
methods for handling uncertainty.

3.1. Description of the identified VCs

Forest biomass VCs focus on forestry by-product residues from 
traditional harvesting, such as branches, treetops, low-quality logs, 
wood chips, and other residues [2]. Transporting diverse materials in
troduces logistical complexities, requiring innovative strategies like 
chipping to enhance economic efficiency and reduce environmental 
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impact by less fuel consumption due to the decreasing biomass bulkiness 
and fewer truckloads. Chipping and pelletizing increase biomass energy 
density, requiring specialized logistics for efficient storage and trans
portation [27].

The Agricultural biomass VC focuses on producing, processing, and 
transforming agricultural biomass into energy and bio-based products, 
distinct from traditional agricultural VCs centered on food, feed, fiber, 
and industry materials [28]. It includes crop residues like straw and 
husks, energy crops like miscanthus and switchgrass, and by-products 
like animal manure and organic waste, offering energy production po
tential that supports renewable energy and CE goals [29].

MSW is valuable in biomass VCs, significantly influencing energy 
production and reducing greenhouse gas (GHG) emissions. Eco-centers, 
where MSW is collected and categorized into sets like wood, can be 
logistics’ starting points in MSW biomass VC. Integrating MSW with 
forestry and agricultural biomass instead of considering it as a sole 
source of bioenergy demonstrates a growing trend toward multi- 
feedstock solutions. This integration underscores the complexity of 
optimizing biomass-to-bioenergy SCs while highlighting the potential of 
combining diverse biomass sources to enhance bioenergy systems [30].

Fig. 1 provides a detailed representation of biomass VCs, illustrating 
biomass flow from its sources, forests, farms, and eco-centers to its final 
conversion into bioenergy and bioproducts at biorefineries. It highlights 
key logistics operations such as biomass gathering, storage at different 
locations (e.g., source sites or terminals), and preprocessing steps like 
chipping and drying. The diagram also depicts alternative pathways, 
where biomass can be sent directly to the biorefinery or undergo pre
processing and storage before delivery. This visual emphasizes the 

interconnected stages and logistics required to manage biomass within 
SCs efficiently.

Logistical operations for biomass collection and harvesting differ 
based on the type of biomass. Agricultural residues are typically 
collected in bales or chopped forms, while forestry residues are trans
ported either as unprocessed material or as wood chips directly from 
harvest sites. Implementing efficient methods in these processes ensures 
maximum utility and reduces logistical inefficiencies [31]. The unpre
dictable nature of biomass harvesting, such as seasonality, quality, and 
quantity of biomass, impacts storage strategies. Agricultural biomass 
requires timely storage on farms due to harvesting seasons, while 
forestry residues benefit from on-site open-air drying over several 
months to reduce moisture content. Intermediate storage facilities 
(terminals) can help balance supply and demand, but add transportation 
and handling costs, increasing overall logistics expenses [32,33].

Transportation, one of the most significant costs in biomass logistics, 
is mainly influenced by transport mode, distance, biomass volume, and 
type. The flexibility needed to handle different biomass types further 
adds complexity to the process, requiring careful planning to optimize 
efficiency and cost [34,35] Preprocessing steps such as sorting, chip
ping, drying, and densification prepare biomass for energy conversion 
by reducing its size, compacting it, and controlling its moisture content. 
These processes enhance logistics performance by improving transport 
efficiency, reducing storage space requirements, and ensuring consis
tency in biomass quality for conversion [36,37].

Fig. 1. Key logistics operations in the biomass value chains.
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3.2. Distribution of articles based on the types of biomass VCs and 
decision-making levels

This analysis shows that the forest biomass VC has the highest 
literature share, with 44 articles, the agricultural biomass VC has 22 
articles, and the MSW biomass VC has 5 articles. Notably, 22 studies 
discuss integrating different VCs, including MSW. MSW VC has not been 
considered as a separate SC in logistics optimization. It has always been 
considered with other biomass from forest and agricultural biomass VCs. 
The research on MSW, with 5 articles introducing the role of MSW in 
bioenergy production, underscores the need for further study on inte
grating MSW into broader bioenergy VCs. In addition to these 93 arti
cles, 19 review papers were considered in this study.

Fig. 2 highlights the distribution of research across different 
decision-making levels in bioenergy logistics. Strategic and mixed levels 
dominate the focus, with 26 and 30 articles emphasizing long-term 
planning and integrated strategies to optimize SCs. The tactical level, 
represented by 20 articles, underscores the importance of process-driven 
solutions that enhance intermediate SC efficiency. With 12 articles, the 
operational level addresses short-term logistics challenges, reflecting its 
targeted and context-driven nature.

3.3. Distribution of articles based on the geography of the case study

Countries for articles are assigned based on the location of the case 
study. The United States and Canada lead research on forest biomass 
VCs, with 10 and 13 articles, respectively. This focus is driven by their 
vast forested areas, which provide abundant feedstock, and their 
commitment to sustainable forestry practices. The United States also 
shows strong interest in agricultural biomass, with 7 studies reflecting 
its large agricultural sector and the potential to repurpose residues for 
bioenergy, reducing waste, and promoting rural sustainability. The 
focus for MSW VCs spans multiple countries, including the United States, 
Iran, and China. In Iran, integrating MSW with forestry and agricultural 
biomass helps address environmental challenges, such as waste accu
mulation, while creating jobs and supporting rural economies. China’s 
focus on MSW reflects its efforts to manage growing urban waste and 
support renewable energy goals. The United States leads with 26 arti
cles, followed by Canada and Finland, illustrating a global attempt to use 
different types of biomass VCs together. Each country’s emphasis re
flects its unique resources and priorities, whether leveraging forests, 
agriculture, or urban waste to advance bioenergy systems (Fig. 3).

3.4. Distribution of articles based on the published year

The evolution of research on biomass-to-bioenergy logistics, as 
shown in Fig. 4, began with a 1997 USA study using an LP model to 
address uncertainties in agricultural biomass production, optimizing 
transportation and storage. LP models, valued for simplicity and effi
ciency, laid the groundwork for bioenergy SC research [26]. In 2004, 

Sweden advanced the field with a MILP model for forest biomass lo
gistics, integrating terminal logistics and preprocessing with heuristic 
approaches for near-optimal solutions. This reflects the shift to more 
sophisticated models [38].

In 2009, a USA study introduced a MILP model integrating forestry 
and agricultural biomass VCs, marking a breakthrough in optimizing 
multi-biomass SCs [39]. This pivotal moment prompted increased 
research activity, peaking in 2021 with 14 articles, possibly influenced 
by the COVID-19 pandemic’s focus on bioenergy. The pandemic may 
have heightened interest in bioenergy by emphasizing the importance of 
resilient and sustainable energy systems, as disruptions to traditional 
energy SCs and increased environmental awareness could have drawn 
attention to renewable energy sources like bioenergy. During this 
pandemic, research shifted towards agricultural and MSW biomass, with 
fewer forest biomass studies, highlighting the growing need for diverse 
biomass sources to improve SC resilience and sustainability.

Since 2019, research on agricultural and mixed biomass VCs has 
doubled compared to forestry-focused studies, reflecting a shift toward 
integrating multiple biomass sources to optimize bioenergy systems and 
enhance sustainability. This trend aligns with goals to reduce GHG 
emissions and fossil fuel reliance. However, a decline in publications 
post-2021, from 8 in 2022 to 3 in 2023, with a slight rebound to 4 in 
2024, indicates a possible shift in research focus within the energy 
sector, influenced by evolving policies and technological advancements.

Fig. 2. Distribution of articles by biomass value chain type and decision- 
making level.

Fig. 3. Distribution of articles by biomass value chain type across countries.

Fig. 4. Distribution of articles by publication year.

Fig. 5. Distribution of articles by programming model across biomass 
value chains.
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3.5. Distribution of articles based on the modeling approach

The distribution of optimization models in biomass-to-bioenergy 
systems (Fig. 5) reflects the complexity of biomass SC modeling. MILP 
is widely used in 26 forestry, 12 agricultural, and 14 combined VC 
studies. Its popularity stems from its ability to handle continuous and 
discrete decision variables, making it suitable for addressing complex 
logistics like facility location, harvesting schedules, transportation 
planning, and seasonal variations. LP, used in 12 forestry and 7 agri
cultural VC studies, is often applied in large-scale problems, focusing on 
continuous decision variables such as transportation flows or resource 
allocation and offering computational efficiency. non-linear program
ming (NLP) [40] and mixed-integer non-linear programming (MINLP) 
[41] are less commonly applied, mainly in forestry and agricultural VCs. 
These approaches are used for cases with non-linear constraints. Still, 
their computational intensity limits their practicality for medium to 
large-scale studies. Researchers favor MILP and LP for their ability to 
balance model complexity, computational efficiency, and applicability 
to real-world SC challenges [42,43].

3.6. Distribution of articles based on the solution approach

The distribution of solution approaches in biomass VC optimization 
(Fig. 6) highlights the diverse methods used to tackle the varying com
plexities and data sizes of forestry, agricultural, and combined biomass 
systems. Exact methods dominate the research in 34 forestry, 19 agri
cultural, and 19 combined biomass studies. Often paired with optimi
zation models like LP and MILP, these methods effectively solve 
problems with clearly defined parameters and constraints [41,44]. They 
excel in optimizing logistics such as facility location, transportation 
planning, and resource allocation when computational requirements 
remain manageable.

Meta-heuristic methods (7 forestry, 4 agricultural, 3 combined) and 
heuristic methods (7 forestry, 1 agricultural, 7 combined) are preferred 
for larger and more complex problems where exact methods become 
computationally infeasible. These approaches suit large datasets such as 
vehicle routing, scheduling, or integrating diverse biomass types with 
varying logistical needs. Meta-heuristics, such as genetic algorithms or 
simulated annealing, are effective for exploring large solution spaces in 
complex problems [45,46]. Heuristics, by contrast, follow simplified 
rule-based methods and offer quick, near-optimal solutions. These ap
proaches are practical when computational efficiency is more important 
than achieving exact solutions [32]. Some studies combine multiple 
solution methods to address the complexities of biomass VCs more 
effectively. In 2024, Yunusoglu et al. [47] proposed a two-stage 
approach combining a heuristic and an exact method to optimize the 
location of facilities in the biomass-to-bioenergy SC. The first stage ap
plies k-means clustering to group candidate sites based on ecological 
characteristics, reducing problem complexity. The second stage employs 
pre-emptive goal programming, prioritizing environmental and eco
nomic objectives by minimizing their negative environmental impact on 
nearby populations while maximizing profitability. This hybrid 

approach enhances efficiency in handling large datasets and conflicting 
objectives in biomass logistics. The model was implemented on a real- 
world biomass SC network in Izmir, Turkey, demonstrating its effec
tiveness in optimizing facility location while balancing economic and 
environmental concerns.

Simulation methods (3 studies in each VC) are primarily used for 
problems with high uncertainty, such as seasonal supply variations or 
fluctuating demand, regardless of dataset size. While they do not 
directly optimize, simulations allow researchers to test strategies and 
evaluate system performance under various scenarios. They are partic
ularly valuable for analyzing large-scale systems with dynamic variables 
that are difficult to model deterministically. For example, a 2020 study 
used a MILP model to address logistical aspects, including facility 
location, transportation planning, and biomass flows. Additionally, it 
integrates a discrete event simulation (DES) model to account for un
certainties, such as machine availability, productivity, and weather- 
related delays, ensuring the feasibility and practicality of the proposed 
solutions [48].

3.7. Distribution of articles based on the uncertainty status

Fig. 7 highlights stochastic programming and robust optimization to 
address uncertainties in biomass VCs. In forest biomass VCs, 9 articles 
employ stochastic programming to model uncertainties in biomass 
availability, transportation costs, and market demand, incorporating 
probabilistic scenarios to improve decision-making under variability. 
Additionally, 4 articles use robust optimization to account for worst-case 
disruptions, particularly transportation. This approach ensures resil
ience by optimizing feasible decisions across a defined range of uncer
tainty in critical parameters, such as transportation costs. For instance, 
in transportation disruptions, robust optimization considers trans
portation costs as uncertain parameters within predefined bounds, 
identifying solutions that maintain feasibility under all potential varia
tions within the specified uncertainty set [43,49]. In 2016, Shabani et al. 
[50] combined both methods to address supply and quality uncertainties 
for a forest-based biomass power plant. Stochastic programming models 
scenarios like seasonal supply variations, enabling flexible decisions, 
while robust optimization ensures resilience by focusing on parameters 
like moisture content and heating value within defined ranges.

In agricultural biomass VCs, 7 articles utilize stochastic program
ming to tackle uncertainties such as weather-dependent feedstock sup
ply and fluctuating market prices. These models enable more resilient SC 
planning by considering variable yields and market volatility. Although 
less common (applied in 3 articles for agricultural biomass and 2 for 
combined biomass VCs), robust optimization effectively handles dis
ruptions, such as delayed transportation, by ensuring that solutions 
remain feasible under worst-case parameter variations [15,51].

Deterministic models dominate biomass SC studies, with 31 forestry- 
focused, 11 agricultural, and 12 combined biomass articles. However, 
the increasing use of stochastic programming and robust optimization 
underscores the importance of managing logistics uncertainties, 

Fig. 6. Distribution of articles by solution approaches across biomass 
value chains.

Fig. 7. Distribution of articles by uncertainty considerations across biomass 
value chains.
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particularly in fluctuating biomass availability and market conditions.
This study systematically compiles and analyzes optimization-based 

approaches for managing biomass SCs, focusing on logistical operations 
and decision-making frameworks. To support this analysis, Tables A-2 to 
A-4 in the Appendix summarize 93 optimization-focused studies 
reviewed in this paper. These tables categorize the studies based on key 
parameters, including logistical operations (such as facility location, 
transportation, preprocessing, storage, and inventory management), 
decision-making levels (strategic, tactical, operational), objective func
tions (single or multiple), modeling approaches, solution methods, and 
geographic regions.

Specifically, Table A-2 compiles studies related to forestry biomass 
VCs, Table A-3 focuses on agricultural biomass VCs, and Table A-4 ex
amines studies involving the integration of forestry, agricultural, and 
MSW biomass VCs, offering insights into collaborative SC strategies. 
These tables provide a comprehensive reference for identifying research 
trends, methodological gaps, and opportunities for advancing biomass 
SC optimization across different biomass sectors.

Sections 4 through 8 extend on these classifications, discussing 
representative studies from Tables A-2 to A-4, organizing them accord
ing to decision-making levels (strategic, tactical, operational) and 
biomass types (forestry, agricultural, MSW, and multi-biomass), and 
highlighting key logistical operations and modeling approaches within 
each category.

4. Strategic decision-making level

4.1. Forest biomass value chain

Early strategic models for forest biomass VCs primarily addressed 
facility location and basic SC configurations. For example, in 2010, 
Leduc et al. [52] contributed a foundational framework that integrated 
feedstock availability, transportation costs, and energy demands to 
optimize methanol plant location in Sweden. This approach laid the 
groundwork for coupling biofuel production with district heating in 
biomass logistics. Extending the system boundary, Rauch et al. [53] 
changed the focus from production plant locations to the intermediate 
steps in the biomass SC. Their work introduced a MILP model to opti
mize terminal locations for storing and chipping forest biomass before 
delivery to energy plants. It emphasized the importance of including 
intermediate nodes and multi-actor coordination, a notable advance
ment in handling seasonal supply fluctuations.

As research progressed, models incorporated multi-period planning 
to capture long-term dynamics of biomass availability, market fluctua
tions, and technology deployment. Cambero et al. [54] introduced a 
dynamic multi-period MILP model that optimized bioenergy and biofuel 
SCs over a 20-year horizon, demonstrating the scientific contribution of 
adaptive SC design in response to uncertain market conditions. The 
model determined when and where to install technologies, how to 
allocate biomass, and the best mix of heat, electricity, pellets, and bio- 
oil. Similarly, Campanella et al. [55] advanced the field by integrating 
multiple facilities into cohesive networks, including sawmills, ethanol 
plants, and pellet production. The model determined the optimal loca
tion, capacity, and material flows between these facilities to enhance 
economic feasibility. Instead of explicitly modeling uncertainties, the 
study evaluated different production scenarios to assess the impact of 
facility configurations and material allocation strategies. Their work 
emphasized resource efficiency and residue valorization, showcasing 
how production clustering can improve economic and environmental 
performance.

More recent studies addressed uncertainty management and 
national-scale planning. In 2016, Marufuzzaman et al. [56] integrated 
supply and cost uncertainties into a syngas SC, applying sensitivity 
analysis to evaluate system robustness, an essential step toward resilient 
SC design. This study optimized the location and capacity of bio- 
gasification facilities and chipping terminals, minimizing costs across 

the Southeast U.S. The model considered uncertainty in biomass supply, 
transportation costs, and operational efficiency, using sensitivity anal
ysis to assess how fluctuating factors impact system viability. Imple
mented in a real-world case study, the model incorporated data from a 
bio-gasification facility at Mississippi State University, showing how 
logistical efficiency affects the economic feasibility of syngas. Expanding 
the geographical scope, Calderón et al. [57] introduced a geospatially 
explicit model for the BioSNG SC, integrating policy incentives and 
scenario analysis. Their multi-period MILP model integrated geo
spatially explicit data, optimizing feedstock procurement, facility loca
tion, and product distribution. This framework accounted for 
government incentives, such as feed-in tariffs and Renewable Obligation 
Certificates, showing their impact on economic viability. Uncertainty in 
energy prices, feedstock availability, and demand growth was incorpo
rated through scenario analysis, revealing the role of policy support in 
driving investment. The model was implemented using real-world data 
from UK government reports, demonstrating how domestic resources 
could meet the projected gas demand under specific conditions.

4.2. Agricultural biomass value chain

Strategic planning models for agricultural biomass SCs have pro
gressively evolved to incorporate sustainability, risk management, and 
uncertainty considerations. One of the early advancements in this area 
was introduced in 2012 by Čuček et al. [28], who developed a multi- 
criteria optimization model balancing economic, environmental, and 
social impacts in regional bioenergy SCs. By integrating total footprint 
metrics, including carbon, energy, water, land, and pollution, and a 
food-to-energy footprint to address food competition concerns, this 
model contributed a sustainability-focused framework to SC design. 
Formulated as a MINLP, it optimized biomass collection, processing, and 
distribution under various scenarios, demonstrating that incorporating 
environmental trade-offs leads to more sustainable outcomes than 
purely economic approaches.

As the field matured, stochastic modeling emerged as a key contri
bution to address supply and market uncertainties. Kazemzadeh et al. 
[58] advanced SC resilience by introducing a two-stage stochastic pro
gramming model that optimized biorefinery locations, capacities, and 
transportation flows under feedstock yields, fuel prices, and fluctuations 
in logistics costs. Their use of Conditional Value at Risk (CVaR) provided 
a structured approach to managing supply shortage risks, contributing a 
risk-aware framework that balanced profit maximization with long-term 
SC stability. This model, applied to the Iowa biomass SC, highlighted 
how stochastic approaches can mitigate fuel shortages and enhance 
economic performance over time.

Building on these advancements, Serrano et al. [59] refined strategic 
planning by incorporating probabilistic supply variations into bio
refinery location models. Using a stochastic MILP formulation, their 
model considered the impacts of climate variability, competition, and 
alternative uses on biomass availability, representing these factors 
through triangular and uniform probability distributions. This risk- 
based planning approach contributed to robust facility location de
cisions, ensuring SC resilience against fluctuating resource conditions. 
Their application across 94 candidate sites in Navarre, Spain, identified 
the most stable biorefinery location under various risk scenarios. This 
marked a shift towards scenario-based decision-making in agricultural 
biomass SCs.

4.3. Multi-biomass value chains

In deterministic models addressing multi-biomass systems, one of the 
key strategic challenges is coordinating diverse feedstock sources with 
varying geographical availability, seasonal patterns, and logistical re
quirements. While models such as those developed by Ekșioğlu et al. 
[39] and Huang et al. [60] optimize long-term decisions like facility 
location and capacity planning, they often assume feedstocks can be 
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centrally planned and substituted without fully capturing the 
complexity of feedstock-specific constraints, such as harvest timing, 
moisture content, or preprocessing compatibility. This becomes 
increasingly problematic when integrating agricultural residues, 
forestry biomass, and MSW within a single infrastructure plan. 
Furthermore, strategic models tend to simplify or exclude institutional 
fragmentation across sectors, which presents a real barrier to joint 
planning and investment decisions. Another limitation lies in the 
models’ limited capacity to assess the interdependency between infra
structure design and future flexibility, for instance, how choices made 
about depot placement or blending configurations may lock the system 
into rigid logistics paths, hindering long-term resilience. While models 
like Roni et al. [61] account for feedstock diversification, few offer 
mechanisms to prioritize infrastructure investments based on the joint 
evolution of supply availability, demand growth, and regional devel
opment constraints.

Uncertainty-based models for multi-biomass systems have advanced 
strategic planning by incorporating variability in feedstock supply, de
mand, and policy conditions. However, challenges remain in how these 
models handle strategic infrastructure decisions under uncertainty. A 
key limitation lies in the reliance on scenario-based representations that 
may not fully capture the dynamic evolution of SCs over long horizons. 
For instance, while models by Chen and Fan [62] and Gebreslassie et al. 
[63] integrate uncertainties in supply and demand, their frameworks 
typically assume a static set of facility options and do not explore how 
infrastructure can adapt as uncertainties unfold over time. This restricts 
their capacity to support flexible investment strategies, such as phased 
expansions or modular facility designs. Furthermore, while robust 
optimization approaches, as seen in Razm et al. [64], they can hedge 
against worst-case scenarios but often do so without incorporating cross- 
sectoral coordination mechanisms at the strategic level. The absence of 
frameworks for shared infrastructure planning across biomass sectors 
limits the models’ ability to optimize multi-biomass integration holis
tically. Additionally, most models lack mechanisms to evaluate long- 
term policy risks or regulatory shifts, which are critical for investment 
planning in multi-sectoral biomass systems. This gap reduces the rele
vance of such models for guiding resilient infrastructure development 
that aligns with evolving market and policy landscapes.

Resource assessment and multi-criteria decision-making (MCDM) 
studies provide critical support for early-stage strategic planning in 
multi-biomass SCs, particularly by identifying feedstock availability and 
prioritizing resource utilization across regions. However, these ap
proaches face limitations when transitioning from resource evaluation 
to actionable infrastructure planning. For instance, the GIS-based as
sessments by Pande et al. [65] map biomass distribution across agri
cultural, forestry, and wasteland sectors, but do not link these spatial 
insights to infrastructure design decisions such as facility locations or 
capacity allocations. Without integrating logistical or investment 
models, such assessments offer limited guidance for strategic location or 
scaling of biorefinery networks. Similarly, while Firouzi et al. [66] apply 
hybrid MCDM methods to rank biomass feedstocks based on environ
mental and economic criteria; these rankings remain disconnected from 
SC design models and do not account for system-wide trade-offs such as 
transport feasibility or preprocessing requirements. This disconnect 
creates challenges for aligning resource prioritization with infrastruc
ture investments in multi-biomass systems. Furthermore, these studies 
often overlook cross-sectoral integration dynamics, failing to assess how 
combining different biomass types might influence long-term infra
structure flexibility or investment sequencing.

Strategic planning models for multi-biomass SCs, whether based on 
deterministic optimization, stochastic programming, or resource 
assessment frameworks, have advanced the design of infrastructure and 
supply integration across biomass types. Yet, these models consistently 
overlook how infrastructure decisions can adapt alongside evolving 
feedstock landscapes and sectoral interactions. Cross-sector collabora
tion mechanisms, such as shared infrastructure investment or joint 

capacity planning, remain largely absent from strategic formulations. 
Moreover, few models embed long-term policy uncertainty or institu
tional fragmentation into infrastructure decisions, leaving gaps in sup
porting robust, integrated multi-biomass systems.

5. Tactical decision-making level

5.1. Forest biomass value chain

Tactical planning for forest biomass SCs initially focused on opti
mizing procurement, storage, and transportation decisions to ensure a 
steady supply for energy production. Early contributions, such as a study 
in 2004 by Gunnarsson et al. [38], introduced one of Sweden’s first 
tactical models, applying a MILP framework to plan biomass procure
ment and logistics over a yearly horizon. Their integration of monthly 
planning periods captured seasonal supply variations, while a heuristic 
rolling-horizon approach improved computational efficiency in large- 
scale problems. This study marked an essential step in aligning tactical 
decisions with seasonal dynamics in biomass availability.

Subsequent models refined regional supply networks by incorpo
rating infrastructure configurations and operational trade-offs. Gronalt 
et al. [32] expanded the tactical framework by modeling Austria’s forest 
fuel supply network, comparing centralized industrial chipping with 
mobile chippers at regional terminals. Their iterative heuristic approach 
contributed valuable insights into balancing terminal investments, 
transport distances, and supply reliability, highlighting the importance 
of terminal operations in tactical decision-making.

Advancements in model complexity emerged by introducing 
nonlinear constraints to capture operational realities. In 2013, Shabani 
et al. [41] developed a MINLP model for a forest biomass power plant in 
Canada, integrating energy production constraints, biomass mixing ef
fects, and ash management. A key contribution was the explicit 
consideration of biomass quality factors, such as moisture content and 
ash levels, improving tactical coordination between procurement and 
energy production. This model, implemented in a real-world case, 
demonstrated the operational benefits of fuel blending strategies.

As the need for handling uncertainty grew, models evolved toward 
stochastic programming. In 2014, Shabani et al. [67] transitioned from 
MINLP to MILP to improve computational efficiency, introducing a two- 
stage stochastic model that managed supply uncertainties in biomass 
availability. Integrating bi-objective risk management and balancing 
profit maximization with SC stability marked a key scientific contribu
tion to resilient tactical planning.

Further refinement came with the development of hybrid stochastic- 
robust models. In 2016, Shabani et al. [50] extended their framework by 
incorporating both biomass quantity and quality uncertainties, 
including moisture content and energy value fluctuations. Using a sce
nario tree structure enabled dynamic adjustments in procurement and 
scheduling, enhancing resilience in energy supply operations. This 
hybrid approach demonstrated the benefits of integrating robust opti
mization into stochastic planning for forest biomass systems.

Attention to biomass quality dynamics and infrastructure flexibility 
continued with Gautam et al. [68], who assessed the tactical role of 
terminals between forests and biorefineries in Quebec in 2017. Their 
multi-period MILP model accounted for moisture content tracking, 
seasonality, and weather-related restrictions. It shows that terminals 
could act as decoupling points to reduce transportation inefficiencies 
and stabilize supply–demand mismatches. This study emphasized the 
strategic role of terminals in improving SC resilience, although their 
benefits were sensitive to infrastructure and operational costs.

In recent years, robust optimization has gained prominence for 
managing SC uncertainties. In 2022, Ahmadvand et al. [69] applied a 
robust model to forest-based biomass SCs in British Columbia, inte
grating uncertainties across procurement, transportation, storage, and 
preprocessing. Using Monte Carlo simulations and sensitivity analyses, 
this work identified transportation costs as the dominant logistical 
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expense, reinforcing the critical role of transport decisions in tactical 
planning. Their model enhanced supply risk management under un
certainty, offering a comprehensive framework for stable biomass 
logistics.

5.2. Agricultural biomass value chain

Tactical planning models for agricultural biomass remain relatively 
limited, with few studies addressing short-to medium-term logistics 
coordination in this sector. In 2024, Ogunrewo et al. [70] made a 
notable recent contribution by presenting an LP model to optimize 
biomass SCs for bioethanol and bio-digestate production in Southwest 
Nigeria. Their model focused on multiple agricultural residues, 
including cassava peel, maize husk, rice straw, and sorghum bran, of
fering a rare tactical-level analysis of multi-feedstock logistics in agri
cultural systems. The model optimized biomass procurement, 
transportation, storage, and energy conversion planning to maximize 
revenue and minimize production costs.

A key scientific contribution was the integration of single and multi- 
feedstock strategies, allowing the exploration of feedstock blending 
options within tactical decision-making, a topic often underexplored in 
agricultural biomass chains. Additionally, sensitivity analysis assessed 
the influence of feedstock availability, transport costs, and market prices 
on profitability, providing insights into operational flexibility and risk 
factors.

While real-world implementation was not explicitly detailed, the 
framework offered practical decision-making support for industry 
stakeholders and policymakers, highlighting the economic benefits of 
coordinated multi-feedstock SCs in agricultural biomass logistics. This 
study fills the tactical-level gap in agricultural biomass SC research, 
where models frequently focus on strategic planning or resource as
sessments, but rarely on operational logistics coordination.

5.3. Multi-biomass value chains

Integrating multiple biomass types at the tactical level introduces 
several challenges, including coordinating logistics across heteroge
neous feedstocks, synchronizing harvest and transport schedules, and 
aligning supplier incentives. While Wang et al. [71] addressing multi- 
biomass logistics for forest residues, willow, switchgrass, and Mis
canthus. The MILP model optimizes cost minimization without incor
porating interdependencies between feedstocks, such as joint transport 
or preprocessing synergies, leaving gaps in cross-sectoral logistics inte
gration. Fan et al. [72] introduce contract coordination mechanisms 
involving farmers, middlemen, and manufacturers to manage supply 
uncertainty in solid biomass fuels. However, their model focuses on 
single-sector coordination (agricultural residues) without extending 
contractual frameworks to integrate the forestry or MSW sectors. This 
limits the applicability of their approach in multi-biomass settings, 
where sectoral diversity requires harmonized risk-sharing mechanisms.

Salehi et al. [15] contribute by integrating robust optimization for 
demand uncertainty and disruption resilience. Still, their focus remains 
at a network design level and does not address tactical logistics adjust
ments such as adaptive transport routing or harvest scheduling across 
biomass types. This leaves a gap in operationalizing resilience strategies 
at the mid-term tactical layer. Finally, Mirkouei et al. [22] explore 
mobile versus stationary bio-refineries for mixed biomass systems, of
fering tactical flexibility in facility deployment. However, their model 
emphasizes economic and environmental trade-offs without integrating 
real-time logistics coordination across feedstocks or addressing multi- 
modal transport planning.

Overall, these studies highlight that while tactical models manage 
biomass-specific logistics flows and supplier coordination, they seldom 
address the complexities of integrating logistics networks across 
different biomass types. The absence of joint routing and preprocessing 
strategies, which could harmonize transport modes, storage 

requirements, and processing constraints for forestry, agricultural resi
dues, and MSW, remains a key limitation. Additionally, dynamic 
contractual mechanisms that adapt to fluctuating supply availability and 
sector-specific risks are rarely extended beyond single biomass sectors, 
leaving inter-sectoral coordination frameworks underdeveloped. 
Furthermore, while models optimize for cost, environmental, or resil
ience objectives independently, they often lack mechanisms for priori
tizing or balancing these objectives across biomass types in real-time. 
This disconnect between logistics coordination, supplier engagement, 
and risk mitigation strategies reduces the system’s ability to respond 
flexibly to disruptions, seasonal variations, or market shifts in multi- 
biomass SCs at the tactical level.

6. Operational decision-making level

6.1. Forest biomass value chain

Operational planning models for forest biomass SCs have evolved 
from transport scheduling to addressing biomass quality dynamics and 
real-time adaptability. Early efforts concentrated on optimizing truck 
operations to reduce costs and improve delivery efficiency. In 2012, Han 
and Murphy [46] developed a MILP-based truck scheduling model for 
woody biomass transport in Oregon, incorporating fleet allocation, 
routing, and load distribution under time-window and working-hour 
constraints. Their integration of a Simulated Annealing heuristic 
addressed computational complexity, enhancing scheduling efficiency 
across multiple truck types and destinations. Implemented with real- 
world data, this model demonstrated significant cost and time re
ductions, showcasing the impact of route optimization in operational 
logistics.

Beyond transport coordination, biomass quality management 
emerged as a key operational focus. Also, Acuna et al. [73] introduced 
an LP model that integrated moisture dynamics into harvesting sched
ules, storage durations, and delivery plans for various biomass assort
ments in Finland. Their approach contributed by linking moisture 
content to logistics decisions, revealing that optimized drying and 
storage strategies can reduce harvesting volumes and improve cost ef
ficiency in bioenergy SCs. This marked a shift toward quality-driven 
operational planning.

Expanding this focus in 2018, Marques et al. [74] advanced opera
tional models by incorporating energy content variability as a central 
decision factor. Their MILP framework synchronized chipping and 
transportation operations while optimizing biomass allocation based on 
energy yield rather than volume. Tracking moisture variation over time 
and aligning chip production with delivery targets ensured consistent 
energy content in biomass supply, a critical requirement for energy 
conversion efficiency.

More recently, operational planning has integrated real-time adapt
ability and uncertainty management. In 2020, Panoutsou et al. [75] 
introduced a hybrid optimization-simulation framework combining 
MILP with DES to address dynamic SC disruptions, seasonal variability, 
and market fluctuations. Their use of Benders decomposition enabled 
efficient large-scale optimization, while DES provided the flexibility to 
test performance under real-world uncertainties. This model contributed 
by balancing operational efficiency with resilience, emphasizing adap
tive storage, flexible sourcing, and synchronized logistics in volatile 
bioenergy markets.

6.2. Agricultural biomass value chain

Operational planning in agricultural biomass SCs has predominantly 
focused on transport logistics optimization and coordination mecha
nisms to improve efficiency in residue collection and energy production. 
In 2014, Gracia et al. [76] contributed one of the early operational 
models targeting fleet routing and vehicle scheduling for pruning resi
dues in Mediterranean agricultural systems. Their approach, formulated 
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as a Vehicle Routing Problem (VRP) with capacity constraints, inte
grated Hybrid Genetic Algorithms with local search methods, optimizing 
the collection routes for chippers, trucks, and tractors. Applied to a case 
study in Valencia, Spain, this model significantly reduced travel distance 
and transportation costs, marking a key advancement in cost-effective 
biomass transport at the operational level.

Beyond routing optimization, coordination between SC actors has 
emerged as a critical area of research. In 2021, Vazifeh et al. [77] 
introduced a game-theoretic framework to optimize SC coordination 
among suppliers, hubs, and energy converters in remote Canadian 
communities. Their bi-level NLP model incorporated wholesale pricing, 
procurement quantities, and energy generation decisions, accounting for 
leadership structures and incentive mechanisms such as quantity dis
counts and side payments. This approach highlighted the economic 
benefits of community-led coordination, demonstrating that collabora
tive structures can reduce energy costs and increase biomass-based 
electricity generation, especially in remote or isolated regions.

Operational planning for synchronized logistics and machine 
scheduling was further advanced with the work of An [78], who 
developed an MILP model to optimize biomass transportation from 
satellite storage to bioenergy plants in 2022. This model integrates truck 
and loader routing, addressing multi-trips, synchronized operations, and 
workload balancing, features often overlooked in earlier frameworks. By 
combining closed routes for trucks with open routes for loaders, the 
study introduced a novel synchronized multi-vehicle routing method
ology. Implemented in Southwestern Ontario, Canada, the model 
demonstrated practical feasibility and cost efficiency for large-scale 
operations, supported by a heuristic-based solution approach tailored 
for complex, real-world logistics networks.

Despite these advancements, a critical gap remains in operational 
planning for multi-biomass integration. No existing model has unified 
forestry, agricultural, and MSW biomass within a single short-term lo
gistics framework, limiting opportunities for cost reduction, supply 
stability, and infrastructure utilization across sectors. Moreover, while 
routing, storage, and preprocessing decisions are often modeled, they 
are typically treated as isolated layers, preventing system-wide syn
chronization. Although studies acknowledge potential disruptions such 
as equipment failures, weather variability, and dynamic routing needs, 
few apply robust or resilient optimization frameworks capable of man
aging these uncertainties effectively. This highlights the need for inte
grated, adaptive operational models coordinating biomass types and SC 
layers.

7. Combination of decision-making levels

7.1. Forest biomass value chain

Integrating strategic, tactical, and operational decisions in forest 
biomass SCs has improved logistics coordination, facility investment 
decisions, and SC resilience. Early efforts to connect these levels focused 
on network design and logistics integration. In 2017, Abasian et al. [79] 
contributed a MILP framework that addressed strategic facility location 
(e.g., sorting yards and biorefineries) and tactical-level logistics im
provements, such as fiber allocation and backhaul transportation. Their 
Newfoundland case study demonstrated how shared terminals and 
backhauling strategies could improve profitability, marking an impor
tant step toward multi-level SC coordination.

Building on this in 2018, Palander et al. [80] explored the integration 
of larger and heavier vehicles (LHVs) into forest SCs, aligning tactical 
vehicle selection with strategic energy-efficiency and carbon-neutrality 
goals. Their multi-objective dynamic biofuel cycle model optimized 
transport distances and fuel choices, demonstrating that vehicle in
novations can significantly reduce emissions and logistics costs. How
ever, this contribution highlighted regulatory and infrastructure 
constraints limiting the adoption of such integrated solutions.

Recognizing the impact of market uncertainties in 2019, Abasian 

et al. [2] expanded their earlier work by introducing demand and price 
fluctuations into forest bioenergy network design. Their two-stage sto
chastic optimization model incorporated risk management techniques, 
allowing flexible coordination between strategic investments and 
tactical logistics decisions under uncertain conditions. This contribution 
underscored the importance of adaptive decision-making frameworks 
that can respond to market volatility, reinforcing the need for flexible 
integration across decision levels.

Further advancing the integration of preprocessing, transportation, 
and facility investment decisions, Zamora-Cristales et al. [45] applied a 
MILP-simulation approach to optimize preprocessing locations, equip
ment configurations, and transport strategies. Their model connected 
strategic facility selection with tactical equipment utilization by struc
turing biomass sites as network nodes. Tested in Oregon and Washing
ton, this study revealed operational barriers, such as high preprocessing 
costs and machine underutilization due to road constraints, emphasizing 
the need for SC designs that account for operational realities.

Incorporating environmental assessment into SC integration in 2020, 
Raghu et al. [81] combined life cycle assessment (LCA) with agent-based 
modeling (ABM) and GIS tools to evaluate GHG emissions in forest 
biomass logistics. This model contributed a multi-layered analytical 
framework that assessed how imported biomass and real-time fuel 
quality monitoring influenced emissions and logistics efficiency. Their 
findings highlighted the trade-offs between local and imported biomass 
sourcing, demonstrating how real-time monitoring can optimize fuel 
selection and reduce unnecessary transport.

A more comprehensive integration of decision levels and simulation 
feedback was introduced in 2020 by Akhtari et al. [48], who developed a 
hybrid optimization-simulation model linking strategic, tactical, and 
operational planning. Their recursive optimization-simulation approach 
combined an MILP model with DES to iteratively adjust biomass flows, 
facility selection, and inventory strategies based on operational feed
back. Tested in British Columbia, this framework revealed that short- 
term operational variations could significantly influence long-term in
vestment profitability, favoring smaller-scale, flexible production facil
ities capable of adapting to supply fluctuations.

7.2. Agricultural biomass value chain

Finding optimal locations for bioenergy facilities is crucial for 
improving SC efficiency in rural areas. In 2019, Laasasenaho et al. [82] 
developed a GIS-based approach to identify suitable sites for farm and 
centralized biogas plants and terminals by minimizing transportation 
needs. The study applied hierarchical clustering and location optimi
zation for biogas plants and kernel density estimation in ArcGIS for 
wood terminals. The solution approach used route optimization and 
spatial clustering to allocate biomass efficiently. The model was tested in 
Finland, identifying viable locations for distributed bioenergy 
production.

Designing a resilient bioenergy SC requires optimizing facility loca
tions, production levels, and material flows while accounting for eco
nomic and environmental factors. In 2022. Abdali et al. [83] developed 
a robust optimization model to configure a sugarcane-based bioenergy 
network under uncertainty. The study first employed fuzzy data envel
opment analysis to identify suitable cultivation sites based on climatic, 
ecological, and social criteria. A robust MILP model was applied to 
optimize strategic and tactical decisions, integrating sustainability 
concerns such as CO2 emissions, water consumption, and energy use. 
The model was tested in Iraq, determining optimal facility placements 
and production levels.

7.3. Multi-biomass value chains

Despite the contributions of integrated planning models across 
decision-making levels, critical gaps remain in managing multi-biomass 
SCs. For instance, Fattahi et al. [84] proposed a two-stage stochastic 
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programming model that integrates strategic decisions (facility location, 
capacity, technology selection) with tactical (inventory, transportation) 
and operational (emissions control) layers, accounting for environ
mental risks and social life cycle impacts. However, the model’s 
complexity and reliance on scenario-based uncertainty modeling restrict 
its scalability to larger, more diverse biomass systems, particularly 
where cross-sectoral collaboration and real-time flexibility are essential.

Similarly, Rentizelas et al. [4] employed a deterministic MILP model 
to optimize facility location, fuel mix allocation, and annual fuel use for 
a combined MSW and biomass system. While this multi-level framework 
bridges planning horizons, it remains static, handling variability only 
through sensitivity analysis, which does not fully capture the dynamics 
of biomass supply and demand across sectors or seasons. Machani et al. 
[85] introduced a multi-period MILP framework integrating forest res
idues, agricultural residues, and MSW into pulp and paper mills, coor
dinating investment timing, feedstock allocation, and production 
scheduling. Despite addressing flexibility in feedstock integration and 
facility utilization, the model does not incorporate uncertainty handling 
or adaptive logistics coordination, leaving gaps in responding to market 
fluctuations and supply disruptions.

On the other hand, Väisänen et al. [86] applied a multi-method 
approach, combining LCA and analytical hierarchy process (AHP), to 
evaluate sustainability trade-offs in distributed energy systems. While 
this approach supports qualitative integration of environmental and 
social criteria at the strategic level, it lacks quantitative mechanisms for 
tactical and operational coordination, such as resource allocation, lo
gistics routing, or real-time decision adjustments. Fan et al. [87] 
incorporated clustering and environmental optimization for biomass 
integration in the Tomsk region, managing GHG emissions and land use 
across planning levels. However, their focus remains on environmental 
performance, without embedding economic trade-offs or adaptive lo
gistics adjustments at tactical or operational stages.

These studies collectively demonstrate progress in aligning strategic, 
tactical, and operational decisions within multi-biomass SCs, yet they 
expose persistent limitations in fully synchronizing these layers. Inte
grating diverse biomass types with unique spatial distributions, seasonal 
availabilities, and processing requirements remains a key challenge in 
cohesive SC networks. While models coordinate infrastructure planning 
and feedstock allocation, they frequently operate under fixed or 
scenario-based assumptions, lacking mechanisms for continuous reca
libration as system conditions evolve. The disconnect between long-term 
decisions (e.g., facility location, capacity sizing) and short-term logis
tical adjustments (e.g., transport flows, inventory management) con
strains system adaptability, especially under market volatility or supply 
disruptions. Furthermore, cross-sectoral synchronization remains un
derdeveloped for harmonizing logistics and resource sharing across 
forestry, agriculture, and MSW sectors. Most models do not incorporate 
feedback mechanisms that allow operational data to influence upstream 
planning decisions, limiting the capacity for real-time adjustments 
across decision levels. Additionally, while environmental and economic 
objectives are often integrated, social dimensions, such as labor condi
tions, stakeholder coordination, and community impacts, are rarely 
embedded into tactical or operational planning. These limitations 
collectively hinder the realization of flexible, resilient, and cohesive 
multi-biomass SCs capable of adjusting to the complexities inherent in 
diverse biomass systems.

8. MSW biomass value chain

8.1. MSW biomass characteristics and logistics

MSW logistics are defined by centralized urban collection, variable 
composition, and regulatory complexity, all of which affect their inte
gration into bioenergy systems. WtE technologies, including incinera
tion, gasification, pyrolysis, and anaerobic digestion, present distinct 
logistical demands that differ from those of forestry and agricultural 

biomass.
Thermal WtE systems, such as incineration and RDF production, are 

widely used in the U.S. and Europe. They require dry, energy-dense 
waste streams and robust emission control systems. Gasification and 
pyrolysis, while offering higher energy recovery and lower residues, are 
more sensitive to feedstock uniformity and require sophisticated sorting 
and pretreatment steps. In contrast, anaerobic digestion is suitable for 
the organic, high-moisture fraction of MSW and demands separate 
collection or advanced separation systems [30].

These conversion pathways shape MSW SC design. Collection must 
be frequent and adaptable to urban density and waste generation vari
ability. Transfer stations and preprocessing facilities must accommodate 
a range of material characteristics. Logistics depend on zoning policies, 
vehicle routing constraints, and facility permitting. As noted by Malav 
et al. (2020), up to 70 % of the total cost of MSW management in India 
arises from collection and transportation alone, highlighting the logis
tics intensity of urban waste valorization [13].

Understanding the compatibility between MSW fractions and WtE 
technologies is crucial to planning efficient SCs. Thermal technologies 
require low-moisture content and energy-dense inputs, while biological 
processes depend on high organic content and stable moisture levels. 
These factors must be addressed in logistics modeling for MSW to 
function as a reliable component of integrated biomass systems.

It is essential to highlight that MSW is rarely modeled as a standalone 
logistics system in the reviewed literature. Instead, it is predominantly 
integrated with forestry and agricultural biomass in multi-feedstock 
models to improve supply consistency, diversify input streams, and 
share infrastructure. This integration approach is consistently observed 
across decision-making levels, strategic (Section 4.3), tactical (Section 
5.3), and combined levels (Section 7.3). This modeling trend reflects the 
practical advantages of incorporating MSW as a complementary base- 
load feedstock alongside seasonal or spatially dispersed biomass sour
ces. The following section (8.2) examines a selection of studies that, 
while limited in number, offer unique insights into the role of MSW 
within independent and integrated SCs.

8.2. Optimization models involving MSW biomass: Logistics planning

Research on MSW biomass logistics remains limited but provides 
essential contributions to understanding and optimizing waste-to- 
energy SCs. In 2010, early foundational work by Gregg [88] devel
oped a global modeling framework to estimate national and regional 
MSW biomass availability, using macro-level data such as trade vol
umes, product lifespans, and discard rates. Although not directly focused 
on logistics, this study laid the groundwork for long-term supply as
sessments, providing critical inputs for planning MSW-based energy 
systems.

In 2014, Rentizelas et al. [4] introduced a tactical MILP model that 
combined MSW and agricultural residues to supply a district energy 
system in Greece as interest in biomass co-utilization grew. While 
transportation and collection logistics were not explicitly modeled, their 
approach highlighted MSW’s role as a base-load feedstock, com
plementing the seasonal nature of agricultural biomass. This contribu
tion demonstrated how feedstock blending can stabilize facility 
utilization rates and enhance SC reliability.

Further advancing MSW energy logistics in 2021, Barros et al. [89] 
conducted a techno-economic assessment of two MSW-to-energy path
ways, landfill gas recovery and anaerobic digestion, in Brazil’s Minas 
Gerais region. Although lacking a formal optimization model, their 
study emphasized the importance of shared infrastructure and regional 
coordination in improving logistics efficiency for MSW systems. This 
highlighted the role of collaborative planning in enhancing the feasi
bility of MSW energy projects.

At the process optimization level, Khalilarya et al. [90] developed an 
optimized CHP system using gasified MSW sourced from a university 
campus. Employing Taguchi design and ANOVA analysis, their work 
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focused on gasification conditions to maximize energy output. While not 
addressing broader logistics, this study showcased how decentralized 
MSW conversion systems can support distributed energy networks when 
integrated with flexible logistics and preprocessing infrastructure.

The most comprehensive MSW logistics framework was introduced 
by Xu et al. [91], who developed a multi-objective mixed-integer dy
namic model for reverse logistics of MSW. Integrating soft-path strate
gies (policy-driven waste sorting) and hard-path strategies (technology 
deployment), their model optimized collection routing, preprocessing, 
facility allocation, and cascading technology selection under uncer
tainty. Applied to Shanghai, this framework balanced cost, emissions, 
employment, energy output, and system resilience, offering a flexible 
architecture that, while focused on MSW, provides a potential founda
tion for broader biomass integration across sectors.

9. Discussions

This section synthesizes the findings from the reviewed literature to 
critically address the four research questions guiding this study. The 
discussion integrates insights across planning levels and biomass types 
by building on the analysis of logistics operations, decision-making 
frameworks, and optimization models across forestry, agricultural, and 
MSW biomass VCs. The following subsections explore the distinct 
logistical operations of each biomass sector (RQ1), assess the analytical 
tools and methods employed in biomass logistics planning (RQ2), 
examine the integration strategies and challenges in coordinating mul
tiple biomass VCs (RQ3), and identify methodological gaps that hinder 
effective multi-biomass collaboration (RQ4). This structure ensures a 
comprehensive evaluation of the current state of biomass-to-bioenergy 
logistics, highlighting opportunities for improving efficiency, resil
ience, and integration across sectors.

9.1. Logistics operations in biomass-to-bioenergy SCs

The logistics operations within forestry, agricultural, and MSW 
biomass SCs exhibit distinct characteristics and constraints that shape 
their efficiency and scalability in bioenergy systems. Transportation 
remains a central logistical concern across all biomass types, but oper
ational conditions vary widely. In forestry biomass, transport is chal
lenged by remote locations, requiring route optimization and on-site 
chipping to reduce bulk and minimize costs. In contrast, agricultural 
biomass collection is highly seasonal and dispersed, demanding timely 
routing strategies to align with harvest windows, while MSW biomass 
benefits from consistent year-round availability. However, urban 
transport networks introduce routing complexity linked to waste 
collection schedules and site congestion.

Preprocessing operations similarly reflect biomass-specific con
straints. Forestry residues require moisture management through chip
ping and drying to prevent degradation and improve transportability, 
while agricultural residues rely on baling and drying to maintain quality 
and reduce volume. In MSW systems, preprocessing emphasizes sorting 
and densification to enhance energy recovery and minimize contami
nation risks. However, contamination variability in MSW streams and 
moisture fluctuations in forestry and agricultural feedstocks challenge 
preprocessing consistency, limiting logistics predictability.

Storage practices further differentiate these chains. Forestry biomass 
faces self-ignition and quality degradation risks during long storage 
periods, requiring well-designed storage systems, often proximal to 
harvesting sites. Agricultural biomass, subject to seasonal harvesting 
cycles, depends on covered storage solutions to preserve feedstock 
integrity across collection intervals. In contrast, MSW storage is closely 
tied to preprocessing capacity and urban facility location decisions, 
aiming to balance collection frequency and processing throughput.

At the coordination level, aligning tactical and operational planning 
remains a critical yet unresolved challenge, particularly given feedstock 
variability and distinct logistical frameworks across these chains. 

Tactical decisions, such as facility utilization rates and transport 
network configurations, must contend with operational realities, 
including real-time scheduling and supply fluctuations. While advances 
in stochastic and hybrid models have improved planning under uncer
tainty, the fragmented infrastructure, regulatory divergence, and data 
gaps across sectors hinder broader coordination.

This lack of coordination is further compounded by the absence of 
integrated operational models synchronizing short-term logistics de
cisions across biomass sectors. Despite extensive strategic and tactical 
planning research, no existing framework unifies routing, storage, and 
preprocessing operations for forestry, agricultural, and MSW biomass 
within a single real-time logistics system. Current models typically focus 
on single-biomass chains or treat operational layers in isolation, 
restricting system-wide synchronization and cross-sector efficiency. 
Additionally, although SC disruptions, such as weather variability, 
equipment failures, and dynamic routing needs, are frequently 
acknowledged, few models incorporate robust or resilient optimization 
frameworks capable of adapting to these uncertainties in real-time.

Overall, logistical challenges arise from biomass heterogeneity, 
spanning moisture content, bulk density, and contamination levels, and 
are compounded by transportation costs, particularly in remote or 
dispersed regions. The seasonality of agricultural residues, the compo
sition variability of MSW, and the remote sourcing of forestry biomass 
require flexible logistics strategies, including adaptive procurement, 
feedstock blending, and localized infrastructure investments. Address
ing these operational distinctions demands region-specific logistics 
planning and enhanced cross-sector collaboration to unlock the full 
potential of biomass-to-bioenergy SCs.

Despite advances in modeling logistics operations across forestry, 
agricultural, and MSW biomass SCs, a significant gap remains in the 
practical validation of these models. While several studies incorporate 
real-world datasets (e.g., California, Quebec, Kansas), reflecting actual 
transport routes, facility locations, and feedstock characteristics, their 
applications are typically scenario-based rather than validated through 
long-term operational deployment. This limits the ability to assess 
model robustness under dynamic, real-world conditions such as policy 
shifts, market volatility, and supply disruptions. Future research should 
prioritize pilot-scale implementations and industry collaborations to 
validate logistics strategies in operational environments. This step is 
crucial for refining models, enhancing their credibility, and supporting 
effective decision-making in integrated biomass-to-bioenergy systems.

9.2. Planning tools and methods in biomass logistics

Early biomass logistics models primarily used LP to optimize 
fundamental operations such as transportation and facility location. 
However, as SC complexity increased, MILP models became the domi
nant approach, representing 57 % of reviewed studies. In contrast, 
nonlinear models (MINLP, NLP) account for only 12 %, reflecting the 
computational challenges of solving such models, particularly for large- 
scale and multi-biomass systems.

Since 2020, MILP has been the preferred method for mixed biomass 
VCs, with only one LP and one MINLP model published in this period. 
This trend underscores MILP’s flexibility and scalability in addressing 
diverse logistical challenges, including transportation, preprocessing, 
and facility location decisions. Despite their potential, multi-objective 
models remain less common due to the complexity of modeling and 
solving trade-offs, such as balancing economic and environmental goals. 
WtE systems integrating multi-objective programming are scarce but 
crucial for addressing sustainability concerns.

Researchers have explored alternative solution methods to tackle the 
computational intensity of large-scale problems. Exact methods, such as 
branch-and-bound algorithms, are the most prevalent, appearing in 65 
% of studies. While they provide optimal solutions, their computational 
burden limits their applicability to large and complex problems. Heu
ristic (15 %) and metaheuristic (13 %) approaches have gained traction, 

S.R. Ebrahimi et al.                                                                                                                                                                                                                             Energy Conversion and Management: X 27 (2025) 101105 

12 



particularly for large-scale and mixed biomass systems. Metaheuristic 
techniques, including Genetic Algorithms and Particle Swarm Optimi
zation, offer near-optimal solutions within reasonable computational 
times, making them suitable for practical implementation.

8 % of studies use simulation methods to capture dynamic system 
behaviors and uncertainties in biomass logistics. These approaches are 
beneficial for modeling real-time transportation and storage dynamics 
where SC conditions fluctuate. The increasing adoption of heuristics, 
metaheuristics, and simulation-based approaches reflects their growing 
importance in solving large-scale, complex optimization problems.

Despite the inherent variability in biomass SCs, 68 % of reviewed 
models remain deterministic, with only 32 % incorporating uncertainty 
factors such as moisture content fluctuations, crop yield variations, and 
seasonal waste generation. Scenario analysis and stochastic program
ming have been the primary tools for capturing probabilistic uncer
tainty, allowing planners to model yield, price, or demand variations 
through scenario-based frameworks. For instance, two-stage [51] and 
multi-stage [50] stochastic models have improved adaptability in SCs 
with seasonal supply shifts or market fluctuations. However, the 
computational burden of scenario generation and expansion in multi- 
period models limits their scalability.

In contrast, robust optimization offers an alternative by handling 
uncertainty within bounded sets, without relying on probability distri
butions. This method ensures solution feasibility across uncertain pa
rameters, such as biomass availability or quality ranges, but often leads 
to conservative solutions prioritizing feasibility over cost-efficiency. 
Studies have applied uncertainty budgets within robust frameworks to 
balance performance and conservatism [69].

Some recent contributions have explored hybrid models, combining 
stochastic and robust optimization to capture probabilistic and bounded 
uncertainties. While offering flexibility, these models increase compu
tational complexity and remain challenging to implement in large-scale, 
multi-biomass systems. ABM has also emerged as a complementary tool 
for simulating dynamic disruptions, but its integration with optimiza
tion frameworks remains limited [81].

While deterministic models remain prevalent due to their computa
tional efficiency, they fail to capture the real-world volatility of biomass 
SCs. Stochastic programming suits systems with quantifiable un
certainties, whereas robust optimization is preferred in data-scarce en
vironments where feasibility under worst-case scenarios is critical. The 
choice between these approaches should be guided by data availability, 
risk tolerance, and computational capacity, with hybrid models offering 
potential for systems facing both uncertainties.

The selection of planning tools and methods varies across decision- 
making levels in biomass logistics, reflecting differences in time hori
zons, problem complexity, and uncertainty management: 

• Strategic planning primarily employs MILP, GIS, and MCDM 
methods (e.g., TOPSIS, AHP, WASPAS) for biorefinery and terminal 
location, long-term feedstock allocation, and policy evaluation.

• Tactical planning integrates MILP, MINLP, and heuristic methods to 
optimize biomass procurement, storage, blending, and trans
portation. Game theory models support contractual coordination, 
while GIS-based decision support systems enhance logistics network 
design.

• Operational planning addresses real-time fleet routing, truck sched
uling, and preprocessing, using VRP hybrid simulation–optimization 
approaches, and metaheuristic techniques (e.g., Genetic Algorithms, 
Simulated Annealing) to minimize transportation costs and improve 
SC efficiency. Monte Carlo simulation and Bender’s decomposition 
are also employed to assess SC disruptions and enhance logistics 
resilience.

9.3. Integration and collaboration in biomass value chains: Challenges 
and opportunities

Integrating forestry, agricultural, and MSW biomass VCs offers 
notable opportunities to enhance feedstock availability, logistics effi
ciency, and conversion flexibility. However, realizing these opportu
nities is constrained by systemic barriers arising from the distinct 
characteristics of each biomass sector. These barriers manifest differ
ently across individual VCs and become more complex in integrated, 
multi-biomass systems. Fig. 8 provides a comparative overview of key 
challenges, including seasonal availability, moisture variability, pre
processing compatibility, and contamination risk, and assesses their 
severity (low, medium, or high) across various sectors. While some 
challenges, like spatial alignment in forestry or contamination risk in 
MSW, are sector-specific, integrating multiple biomass sources amplifies 
medium-level challenges across categories, reflecting the compounded 
complexity in logistics coordination, quality management, and infra
structure planning.

This comparative assessment also highlights the critical trade-offs 
and synergies that arise from combining these biomass sources. For 
example, MSW provides a continuous, year-round supply, but it in
troduces high contamination risks that require specialized preprocess
ing. In contrast, forestry biomass offers stable quality with low 
contamination; however, it is constrained by seasonality and spatial 
dispersion. Similarly, agricultural residues are abundant post-harvest 
but suffer from moisture variability and limited storage stability. 
Despite these trade-offs, synergistic opportunities arise from blending 
feedstocks (e.g., pairing high-energy–density forestry residues with 
MSW to improve fuel quality) and shared logistics infrastructures that 
stabilize feedstock flows across sectors. These interlinked challenges and 
synergies underscore the need for adaptive logistics, blending-aware 
optimization, and coordinated infrastructure planning, which are 
further explored in Section 9.4.

The following challenges, synthesized from the literature, represent 
key obstacles to effective integration: 

• Feedstock heterogeneity and incompatible logistics systems

The inherent differences in feedstock characteristics, including 
moisture content, bulk density, particle size, and contamination levels, 
necessitate sector-specific logistics and preprocessing infrastructures. 
Forestry residues demand specialized harvesting and chipping equip
ment, agricultural residues require seasonal collection systems, and 
MSW relies on urban waste networks. This divergence in logistics design 
impedes shared infrastructure utilization, reinforcing operational ter
minals and complicating the alignment of transport and preprocessing 
activities across sectors. 

• Temporal and spatial supply mismatch

The asynchronous availability patterns of biomass sources exacer
bate SC coordination. Forestry residues are tied to logging seasons and 
road access windows, agricultural residues follow crop harvest cycles, 
and MSW is continuously produced but exhibits quality variability. 
These seasonal and spatial disparities make it difficult to maintain 
consistent feedstock flows, particularly for blended SCs. Simple storage 
solutions are insufficient due to feedstock degradation risks, such as 
moisture-induced spoilage and microbial activity, demanding more so
phisticated coordination mechanisms. 

• Institutional fragmentation and sectoral terminals

Each biomass sector operates under regulatory frameworks, market 
structures, and stakeholder networks. Forestry, agriculture, and urban 
waste management follow different governance protocols, with little 
incentive to pursue collaborative logistics or shared investments. This 
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institutional separation obstructs the formation of joint strategies and 
coordinated infrastructure planning, leaving each sector to optimize 
independently. 

• Quality control and feedstock compatibility issues

Integrating biomass types requires meeting strict quality standards 
across the SC, but inconsistent feedstock properties pose substantial 
barriers. Contamination risks are particularly acute with MSW, where 
non-biomass materials (e.g., plastics, metals) can compromise conver
sion processes and regulatory compliance. Meanwhile, forestry and 
agricultural residues vary in energy content, ash levels, and moisture 
content, complicating blending strategies. Cross-sector blending re
mains risky and inefficient without harmonized preprocessing protocols, 
real-time quality monitoring, and contamination mitigation measures. 

• Lack of data integration and real-time coordination

Biomass sectors maintain isolated data systems, independently 
tracking supply volumes, logistics schedules, and quality metrics. The 
absence of standardized, interoperable data platforms hinders real-time 
visibility and coordination, resulting in misaligned forecasts, inefficient 
logistics, and delayed responses to disruptions. Data-sharing hesitations 
due to trust and confidentiality concerns further exacerbate these issues, 
stalling collaborative efforts. 

• Economic misalignment and contractual barriers

Divergent economic priorities across sectors discourage joint in
vestments and shared logistics operations. While forestry and agricul
ture often prioritize cost minimization for their feedstock streams, MSW 
management focuses on waste diversion mandates. The lack of coordi
nated contractual mechanisms, such as revenue-sharing, risk-pooling, or 
performance-based agreements, prevents incentive alignment, under
mining collaboration on shared infrastructure or integrated logistics 

systems. 

• Underrepresentation of environmental and social integration 
metrics

Although models frequently optimize for economic or logistical ef
ficiency, they rarely comprehensively integrate environmental and so
cial sustainability metrics across sectors. GHG emissions, land use 
impacts, labor conditions, and community engagement are often 
considered secondary or external factors, weakening the sustainability 
case for multi-biomass integration and limiting stakeholder buy-in. 

• Model complexity and limited scalability:

Efforts to integrate the logistical, environmental, and economic di
mensions of multi-biomass systems into comprehensive models often 
lead to high computational complexity. These models, which attempt to 
handle feedstock variability, uncertainty, and cross-sector coordination, 
can become data-intensive and challenging to scale, restricting their 
applicability to real-world scenarios. As a result, many models remain 
theoretical exercises, validated on simplified case studies, rather than 
operational tools adaptable to the complex dynamics of biomass SCs.

9.4. Modeling strategies and logistics recommendations for multi-biomass 
integration

Integrating forestry, agricultural, and MSW biomass VCs has been 
extensively modeled using a range of strategic, tactical, and operational 
techniques. As highlighted in Section 9.3, these models address key 
integration challenges arising from the distinct characteristics of each 
biomass type and the complexity of coordinating their respective lo
gistics systems. To address these issues, prior studies have employed 
MILP for facility location and logistics coordination, stochastic and 
robust optimization for uncertainty management, and multi-method 
frameworks such as LCA and AHP for evaluating sustainability trade- 

Fig. 8. Comparative overview of integration challenges across forestry, agricultural, and MSW biomass value chains.
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offs. Additional contributions include contractual coordination models 
and spatial clustering techniques designed to align actors across biomass 
sectors.

While these frameworks provide valuable insights, they often 
address individual barriers in isolation and fall short of capturing the 
broader, systemic synergies required for multi-biomass integration. 
Effective integration requires a holistic approach that balances sector- 
specific limitations with shared opportunities across logistics, infra
structure, and governance. To illustrate this, Fig. 9 synthesizes a set of 
synergistic elements that enable integration across forestry, agricultural, 
and MSW SCs. These elements, ranging from complementary seasonality 
and multimodal transport to coordinated preprocessing and terminal 
infrastructure, are categorized based on their feasibility and impact, 
offering a conceptual foundation for developing cohesive, cross-sector 
integration strategies.

Achieving effective integration across forestry, agricultural, and 
MSW biomass VCs requires coordinated logistics, shared infrastructure, 
and stakeholder alignment. The following synergy strategies outline key 
elements that can enable such integration in practice. 

• Flexible preprocessing infrastructure

In multi-biomass systems, feedstocks such as forestry residues, 
agricultural byproducts, and MSW differ significantly in moisture 

content, particle size, contamination levels, and energy density. Con
figurable machinery, capable of adjusting drying rates, chipping sizes, or 
densification pressures, is essential to ensure that preprocessing opera
tions are compatible with these varying characteristics. Without such 
flexibility, processing infrastructure becomes feedstock-specific, leading 
to underutilization or increased downtime when switching between 
biomass types. For instance, agricultural residues may require different 
drying conditions than forest biomass, while MSW introduces contami
nation risks requiring specialized handling. 

• Coordinated multimodal transportation networks

The spatial dispersion of biomass sources poses significant logistical 
challenges. MSW is concentrated in urban areas, agricultural residues 
are distributed across rural landscapes, and forestry residues are often 
located in remote regions. Multimodal transport systems, combining 
road, rail, and waterways, can optimize cost-efficiency and reduce the 
environmental footprint of biomass transport. These networks must 
account for feedstock-specific logistics, such as moisture-related weight 
penalties for wet biomass or contamination risks during transit. Coor
dinated transport scheduling also enables backhauling opportunities, 
where empty vehicles returning from deliveries transport other biomass 
types, enhancing overall system efficiency. 

Fig. 9. Comparative assessment of synergy enablers in multi-biomass value chains.
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• Adaptive storage management

Storage requirements vary widely among biomass types; forestry 
residues can be stored for longer periods with minimal degradation, 
while agricultural residues and MSW can degrade rapidly due to their 
sensitivity to moisture and microbial activity. Adaptive storage systems 
must therefore accommodate varying storage durations, ventilation re
quirements, and moisture control measures. Integrated inventory 
models can dynamically allocate biomass to storage locations that best 
match its preservation needs, minimizing energy content and quality 
losses across the SC. 

• Blending-aware optimization frameworks

Biomass blending is crucial for feedstock standardization prior to 
conversion, particularly when integrating low-quality MSW with high- 
energy–density forestry biomass or agricultural residues. Optimization 
models must explicitly account for blending constraints, such as 
achieving target moisture content or contamination thresholds. Without 
blending-aware frameworks, SCs risk delivering heterogeneous feed
stocks that reduce conversion efficiency or increase processing costs at 
biorefineries. 

• Scenario-based decision-making across scales

The variability in biomass supply, driven by seasonality (e.g., agri
cultural harvest cycles), market dynamics, and policy shifts (e.g., MSW 
regulations), necessitates robust scenario planning. Incorporating sto
chastic and robust optimization techniques allows SC models to assess 
multiple uncertain conditions while maintaining coordination across 
strategic, tactical, and operational levels. This approach ensures SCs 
remain resilient and adaptive, even as conditions fluctuate across spatial 
regions and time horizons. 

• Shared infrastructure and contractual coordination

Integrating multiple biomass sectors requires shared logistics assets 
(e.g., transport fleets, preprocessing hubs) and coordinated contractual 
agreements that align incentives across forestry, agriculture, and urban 
waste management stakeholders. Without such frameworks, sector- 
specific terminals persist, which prevents resource sharing and in
creases system costs. Shared infrastructure reduces capital expenditures 
and fosters synergistic planning, while contractual models (e.g., revenue 
sharing, risk pooling) stabilize supply flows and distribute uncertainty 
burdens equitably among participants. 

• Integrated data sharing platforms

Fragmented data systems hinder the coordination of forestry, agri
culture, and MSW biomass VCs, each tailored to sector-specific needs 
such as harvest schedules, yield patterns, or collection rates. The lack of 
standardized, interoperable data exchange mechanisms leads to mis
aligned supply forecasts, inefficient logistics, and delays in resource 
allocation. Establishing integrated data platforms, leveraging cloud- 
based technologies or blockchain frameworks, can facilitate real-time 
visibility of feedstock availability, quality parameters (e.g., moisture 
content, contamination), and logistics status across all sectors. This en
ables dynamic procurement, transport, and inventory coordination, 
ensuring efficient biomass flows across geographically dispersed re
gions. Implementing standardized data protocols and confidentiality 
agreements is crucial to ensure data integrity, foster stakeholder trust, 
and facilitate collaborative decision-making, thereby reducing trans
action costs and enhancing system-wide integration.

10. Concluding remarks

This review presents a novel and comprehensive synthesis of logistics 
planning and optimization strategies across forestry, agricultural, and 
MSW biomass VCs, with a focus on collaboration and multi-biomass 
integration. Earlier review papers have primarily focused on individ
ual biomass types or limited logistical aspects; this study addresses that 
gap by examining the operational synergies, infrastructure needs, and 
decision-making frameworks required for cohesive biomass-to- 
bioenergy systems.

The study analyzes 112 articles, including 19 prior reviews, to 
identify trends in optimization approaches, decision levels, modeling 
tools, and integration challenges. Shared infrastructure, such as co- 
located preprocessing facilities and multimodal transportation net
works, emerges as a key enabler for collaborative logistics. These sys
tems can leverage the complementary characteristics of forestry 
residues, agricultural byproducts, and MSW to reduce costs, improve 
supply resilience, and enhance system efficiency.

Despite these opportunities, integration remains limited by several 
persistent challenges. These include variability in biomass quality, 
contamination risks in mixed streams, the complexity of synchronizing 
SCs with different seasonality and logistics profiles, and limited scal
ability of shared systems. Preprocessing compatibility, adaptive trans
portation planning, and better coordination across stakeholders remain 
critical for advancement.

The findings also emphasize the importance of advanced modeling 
approaches, such as MILP and scenario-based analysis, to support lo
gistics decisions under uncertainty. While spatial and temporal con
straints have been addressed in some models, uncertainty related to 
biomass availability, degradation, and policy shifts remains insuffi
ciently explored. Future work should expand stochastic and robust 
optimization frameworks, ideally supported by GIS and life-cycle 
assessment tools.

In parallel, policy and institutional mechanisms must support inte
gration efforts. Incentives for shared infrastructure, grants for pre
processing innovation, and cross-sector partnerships between industry, 
municipalities, and academia can accelerate adoption.

Key future research directions include: 

• Developing flexible preprocessing systems that accommodate 
diverse biomass properties,

• Designing adaptive, multimodal transportation systems to manage 
dispersed biomass flows and seasonal variability,

• Expanding stakeholder collaboration models to manage operational 
complexity across sectors,

• Enhancing uncertainty modeling through robust and stochastic 
optimization methods,

• Supporting integration with regional and national policy tools,
• Building integrated operational frameworks that enable real-time 

coordination of routing, storage, and preprocessing across forestry, 
agricultural, and MSW biomass VCs,

• Validating optimization models through real-world pilot projects 
and collaborative implementation with industry, municipalities, and 
bioenergy producers,

Developing interoperable data-sharing platforms (e.g., cloud-based 
or blockchain-enabled) is essential to support dynamic logistics coor
dination, real-time supply visibility, and quality tracking across forestry, 
agricultural, and MSW sectors. In parallel, the integration of emerging 
technologies such as the Internet of Things (IoT) and Explainable Arti
ficial Intelligence (XAI) presents a promising avenue for advancing 
operational responsiveness and transparency. IoT-enabled sensors and 
tracking systems can provide continuous data on biomass availability, 
location, and quality (e.g., moisture content, contamination), forming 
the basis for real-time decision-making. Meanwhile, XAI can enhance 
the interpretability of complex optimization models, enabling decision- 
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makers to better understand the underlying trade-offs and model logic. 
Future research should explore how the combination of IoT for data 
acquisition and XAI for model transparency can bridge the gap between 
theoretical models and practical implementation in integrated multi- 
biomass logistics systems.

This review highlights the opportunities and limitations of current 
biomass logistics systems and outlines a path toward more integrated, 
cost-effective, and resilient SCs that support sustainable bioenergy goals.
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[79] Abasian F, Rönnqvist M, Ouhimmou M. Forest fibre network design with multiple 
assortments: A case study in newfoundland. Can J For Res 2017;47:1232–43. 
https://doi.org/10.1139/cjfr-2016-0504.
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