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ABSTRACT The rising demand for compute-intensivemobile applications challenges the limited energy and
processing power of user equipment (UE). While Mobile Edge Computing (MEC) enables task offloading
to nearby servers, deploying fixed MEC infrastructure is often impractical in settings like disaster zones or
temporary high-density events. Furthermore, challenges such as high task delays, limited UE battery life,
and unfair load distribution persist. To address these issues, we propose a system where Unmanned Aerial
Vehicles (UAVs) serve as mobile relays between UEs and MEC servers. This results in a joint optimization
framework combining 1) a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm for
UAV trajectory control to enhance service coverage and energy efficiency, with 2) a low-complexity task
offloading algorithm for UEs. The framework is explicitly designed to minimize UE energy consumption
while promoting fairness in task allocation and data rates. Simulations demonstrate that our approach
significantly outperforms state-of-the-art benchmarks, reducing UE energy consumption by 25–30% and
improving fairness indices by up to 90%. The proposed system proves scalable and robust, making it suitable
for real-time deployment in resource-constrained environments with dynamic workloads.

INDEX TERMS Mobile edge computing, task offloading, trajectory design, unmanned aerial vehicle.

I. INTRODUCTION
The number of connected devices is steadily rising, with
forecasts predicting over 9 billion mobile subscriptions and
more than 40 billion Internet of Things (IoT) devices by
2030 [1]. These devices are expected to support a wide
range of services demanding intensive computations—such
as augmented reality [2] and machine learning [3]—that
challenge their portability and energy efficiency. To address
this gap, task offloading has emerged [4], allowing mobile
and IoT devices to transfer computational tasks to ded-
icated infrastructure. Meanwhile, networking architectures
are evolving to bring computing closer to users through
paradigms like mobile edge computing (MEC) [5] and fog
computing [6]. Integrating task offloading withMEC is thus a
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natural fit [4], offering a viable solution for services requiring
high computational power, low latency, and energy efficiency.

However, in many scenarios, deploying fixed computing
and communication infrastructure near the UE is impractical
or prohibitively expensive. Examples include large-scale
IoT deployments [7], disaster response [8], and tactical
networks [9], where offloading capacity is often lim-
ited by the absence of MEC infrastructure or poor UE
connectivity. A promising solution is to use unmanned
aerial vehicles (UAVs) to bridge this gap. By forwarding
computational burdens from resource-constrained mobile
devices to infrastructure-mounted servers, the mobility and
proximity of UAVs enhance processing efficiency and reduce
latency. Moreover, UAVs support dynamic task allocation by
adapting toworkload variations and geographic changes. This
synergy with MEC enhances resource utilization and enables
applications in fields like disaster response, surveillance,
agriculture, and smart cities [10].
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For instance, in post-disaster scenarios, first responders’
UEs must handle intensive tasks like real-time imaging and
sensor data analysis while conserving energy. Offloading
these tasks to nearby servers saves energy and extends device
lifetime. Similarly, in smart agriculture, energy-constrained
IoT devices can offload tasks like soil analysis and crop
monitoring, enabling longer operation in remote areas.

In these situations, the fixed infrastructure is often far
from UEs due to sparse deployment. This highlights a second
dimension of energy saving: using UAVs as relays1 between
UEs and fixed computing infrastructure.

In the context of UAV-assisted task offloading, some
studies [11] have proposed mounting computation servers
directly on UAVs. However, UAVs face significant energy
constraints that are heavily influenced by payload weight.
As a result, carrying powerful servers onboard is currently
impractical. In this work, we therefore consider UAVs solely
as communication devices that enhance UE connectivity and
support task offloading process.

When integrating UAVs as relays into MEC systems, chal-
lenges such as path planning, radio resource allocation [12],
interference management [13], and optimal positioning [14]
have been explored. These studies, mostly from the UAV
research community, often prioritize UAV-centricmetrics like
energy usage, coverage, and offloading delays. In contrast,
we argue that UE energy consumption is the most critical
metric. While UAVs do consume energy, we treat them as
controllable, replaceable relays—unlike UEs in large-scale
IoT or first-responder deployments, where device autonomy
must be preserved. Accordingly, our focus is on minimizing
UE energy consumption in UAV-assistedMEC systems while
ensuring fair UE-UAV associations.

UAVs are particularly advantageous for MEC integration.
Their unmatched flexibility and mobility enable rapid
deployment in areas lacking fixed infrastructure, such as
disaster zones or remote regions. This ensures continuous
connectivity and computational support, which is vital
for emergency response. Furthermore, unlike stationary
infrastructure, UAVs can dynamically adjust their positions
to optimize network coverage and data transfer rates. This
mobility enables on-demand connectivity and access to com-
puting resources, improving the efficiency of task offloading.
For example, in high-density settings like festivals, UAVs can
reposition to balance the load and reduce congestion.

By serving as relays, UAVs also help lower data trans-
mission latency by reducing the distance data must travel,
which accelerates the processing of critical information.
This is particularly useful for real-time applications such as
augmented reality and time-sensitive IoT tasks. Furthermore,
their ability to carry various sensors makes them versatile
platforms for surveillance, environmental monitoring, and
agricultural assessment.

1The term relay is used in this paper simply to designate an intermediate
node in the network, not in the sense used in the cooperative communications
community.

Compared to technologies like satellite communication or
fixed terrestrial infrastructure, UAVs are more cost-effective
and deployable without major groundwork. Satellites offer
wide coverage but suffer from high latency and deployment
costs, while fixed infrastructure lacks the responsiveness of
UAVs. Therefore, UAV-MEC integration offers a robust and
efficient solution for delivering computation and connectivity
in diverse environments, improving the performance of
modern networked applications.

While several studies have explored UAV-assisted MEC
systems to enhance coverage and enable offloading, most
focus on optimizing isolated aspects such as UAV path
planning or UE-specific offloading. These approaches, how-
ever, often overlook the combined impact of UE fairness,
energy efficiency, and scalable UAV control under dynamic
task distributions. In contrast, our approach integrates a
fairness-aware offloading mechanism with energy-efficient
UAV coordination using a Multi-Agent Deep Deterministic
Policy Gradient (MADDPG) framework. This combination
enables UAVs to adapt their trajectories to better serve diverse
UE demands and ensure equitable task distribution. For this
work, we assume the UEs are static; in our target scenarios,
user mobility is often limited, making this a reasonable
simplification that allows for a more tractable analysis of
the core, learning-based coordination. To the best of our
knowledge, this is the first work to jointly optimize UAV
trajectories and UE offloading with explicit fairness and
energy objectives in a fully decentralized, learning-based
setting.

The main contributions of this work are as follows:
• We propose a joint optimization framework for MEC
task offloading using UAV relays, targeting both UE
energy minimization and fairness in task distribution.

• We design a UAV trajectory control algorithm based
on MADDPG that allows each UAV to manage its path
autonomously, enabling flexible and efficient resource
allocation.

• We introduce a low-complexity UE offloading method
that leverages UAV trajectory data to allocate tasks
efficiently with minimal overhead.

• Our framework ensures geographical fairness by
evenly distributing the UE load across UAVs, which
prevents bottlenecks and improves system performance.

• We focus on UE energy minimization by optimizing
UAV movement and balancing offloaded workloads.

• We demonstrate that our approach outperforms exist-
ing methods in UE energy consumption, offloading
efficiency, and fairness, and is scalable to varying UAV
and UE densities.

• We present a comparative analysis showing our system’s
superior performance in resource allocation fairness
and computational efficiency, supporting its use in
dynamic, real-time environments.

The rest of this article is organized as follows. Section II
discusses the motivation and problem scope. Section III
reviews related work. Section IV presents the system model.
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Section V discusses the problem formulation. Section VI
describes the proposed algorithm. Section VII shows evalua-
tion results. Conclusions are given in Section VIII.

II. MOTIVATION AND PROBLEM SCOPE
Task offloading becomes necessary in scenarios where
computationally intensive tasks must be executed with lim-
ited on-device resources. A compelling example is disaster
management, where UAVs can act as relays to offload real-
time imaging and sensor data to MEC servers for damage
assessment and victim location. In such contexts, UAVs
are vital for establishing immediate connectivity, bypassing
damaged infrastructure, and enabling coordinated responses.
For instance, they can facilitate secure communication in
conflict zones, support flood relief with real-timemonitoring,
and assist in rescue operations by guiding resource allocation
to affected areas.

This capability is critical across various emergencies.
During earthquakes, UAVs can survey structural damage,
locate trapped victims, and deliver medical supplies to
inaccessible regions. In wildfires, they are essential for
monitoring fire spread and providing real-time thermal
imaging to firefighting teams. A recent example is their
deployment during the January 2025 wildfires in Southern
California, where UAVs supported evacuation efforts and
firefighting strategies with real-time data. This adaptability
underscores their importance in ensuring a timely and
efficient disaster response.

We focus on UAVs as relays because this role maximizes
their operational endurance and mobility. Unlike hosting
onboard computational servers, which would quickly deplete
a UAV’s battery, relaying data to ground-based MEC servers
enables longer flight times and greater scalability. This
distinction is crucial for real-world deployments where
energy constraints significantly limit UAV operation time.

This study explicitly addresses task offloading in UAV-
assisted MEC systems where UAVs function as com-
munication relays, not as data collectors or processors.
Our approach aims to minimize UE energy consumption,
improve offloading efficiency, and ensure fairness in UAV-
UE associations. To simplify the system model and reduce
control complexity, we assume that UEs are static. This
assumption reflects realistic deployments, such as smart
agriculture, disaster recovery, or industrial monitoring, where
user devices are typically stationary. By targeting these goals
under this well-defined scope, we enhance the real-world
feasibility of our proposed UAV-assisted MEC framework.

III. RELATED WORK
The integration of UAVs into MEC systems—particularly
for task offloading—has been widely studied. One line of
research considers UAVs as carriers of computing infras-
tructure. For instance, the authors in [15] optimized the
3D placement of server-equipped UAV base stations (UAV-
BSs) to maximize user coverage while minimizing transmit
power for given Quality of Service (QoS) requirements. Their

TABLE 1. Notations and definitions (part 1).

method decouples placement into vertical and horizontal
components, but its reliance on a simplified path loss model
without accounting for user mobility or variable channels
limits its real-world applicability.

Similarly, the authors in [16] used a multi-agent reinforce-
ment learning approach for task offloading in UAV- and
satellite-assisted IoT systems. They employed a MADDPG
framework to jointly optimize trajectories and offloading
decisions, aiming to reduce latency and energy consumption.
However, the computational demands of the multi-agent
environment may challenge its real-time deployment in
dynamic networks. In [17], a cooperative multi-agent deep
reinforcement learning (MADRL) framework was also pro-
posed to jointly optimize UAV trajectories, task allocation,
and resource management to reduce latency and energy
use. While effective, this framework may face scalability
challenges in large-scale scenarios.

From a similar perspective, [18] proposed a cooperative
DRL algorithm for UAV-assisted crowd-sensing systems to
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TABLE 2. Notations and definitions (part 2).

maximize system utility by jointly optimizing data sensing
and task offloading. The framework’s robustness, however,
may be offset by scalability issues and high computational
overhead. The work in [19] also introduced a reinforcement
learning strategy using Proximal Policy Optimization (PPO)
to optimize offloading decisions by considering UAV and
UE mobility. Despite its fast convergence, the method’s
computational complexity could limit its scalability in large-
scale deployments.

However, due to their inherent energy limitations, we argue
that equipping UAVs with powerful computation servers is
impractical. Our approach is thus distinguished from these
previous works by considering UAVs solely as communica-
tion relays, which offers a more practical and energy-efficient
solution.

In this context, [20] integrated game theory with
multi-agent reinforcement learning (MARL) to improve
UAV-assisted offloading. Their method combines potential
games for service assignment with a MADDPG-based
trajectory optimization to balance energy use and reduce
delays. This hybrid approach, however, increases com-
putational complexity, potentially limiting its real-time
applicability.

Trajectory planning is a key challenge, and various studies
have addressed it. The authors in [21] proposed a matching-
based DRL approach that integrates matching theory with
MADDPG to enhance secure data transmission. In [22],
a strategy combining game theory and Deep Deterministic
Policy Gradient (DDPG) was presented to reduce offloading
delays and improve energy efficiency. A framework for fixed-
wing UAVs was proposed in [23] that minimizes completion
time using successive convex approximation. While these
methods are effective, their added complexity or reliance
on precise environmental modeling can hinder real-time
deployment and adaptability.

Several works have focused on communication challenges.
The studies in [24], [25], and [26] explored enhancing com-
munication efficiency by optimizing for data rates through
NOMA, reducing interference via altitude and power control,
and jointly optimizing scheduling, power, and trajectory,
respectively. Furthermore, the works in [27] and [28] used
DRL to dynamically control trajectories for task offloading,
offering practical strategies to improve energy efficiency and
fairness.

Focusing specifically on fairness, [29] introduced energy-
aware trajectory optimization for UAV-mounted reconfig-
urable intelligent surfaces (RIS), while [30] examined the
trade-off between energy efficiency and service fairness in
UAV swarm orchestration. These studies form a foundation
for the expanded fairness evaluation in our framework.

Other recent works have explored different optimiza-
tion techniques. The authors in [31] used Ant Colony
Optimization (ACO) to balance task completion time and
operational cost, while [32] used Lyapunov optimization
for joint trajectory, caching, and migration management.
To handle complex, dependent tasks, the work in [33] used
a twin-delayed deep deterministic (TD3)-based algorithm.
To address dense networks, [34] used Adaptive Particle
Swarm Optimization (APSO) in a multi-layer MEC architec-
ture, and [35] combined a matching algorithm with K-means
for urban IoT environments.

Several studies have also explicitly addressed user mobil-
ity. In [36], a multi-agent soft actor-critic (MSAC) algorithm
was proposed for dynamic trajectory adaptation, though
it assumes static UEs to reduce control overhead. The
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work in [37] proposed an algorithm to account for user
mobility using a decomposed Mixed-integer non-linear
programming (MINLP) strategy. In contrast, our approach
does not consider trajectory prediction as it focuses on
static UE applications where coordination is prioritized.
Similarly, [38] introduced a spatial-temporal Double Deep
Q-Network (DDQN) framework for dynamic environments
like intelligent transportation, while our method favors a
more lightweight, decentralized inference tailored to stable
settings.

Considering the broader MEC field, works such as [39],
[40], [41], and [42] have employed DRL techniques like
DDQN to enhance performance in vehicular and IoT
environments. However, the solutions in these specific
works rely on static infrastructure, limiting their adaptability.
Furthermore, they overlook the explicit consideration of
fairness in resource distribution. To address these particular
limitations, our framework introduces UAVs as dynamic
mobile aerial relays. Coupled with a sophisticated MAD-
DPG model, our solution not only optimizes traditional
metrics but also explicitly prioritizes fairness across multiple
dimensions.

In a related effort to handle dynamic environments, the
authors in [43] presented a framework to maximize the
computation rate in UAV-assisted, wireless-powered MEC
systems with mobile users. While their swarm intelligence-
based framework is designed for user mobility, our work
differs in its primary objectives. We focus on minimizing UE
energy consumption and maximizing fairness rather than on
computation rate alone. Moreover, our approach utilizes a
MADDPG model for decentralized control, which contrasts
with their swarm-based method. From a broader optimization
perspective, the work in [44] addresses premature conver-
gence in Particle Swarm Optimization (PSO) by introducing
a double hierarchical swarm structure. While this offers a
powerful general-purpose optimizer, our work is distinct in
its application-specific approach, formulating the UAV-MEC
challenge as a multi-agent problem to be solved with DRL
rather than a swarm-based metaheuristic.

Lastly, [45] proposed a Prioritized Experience Replay
(PER)-DDPG algorithm for secure offloading, jointly opti-
mizing UAV mobility and jamming power. While resilient in
adversarial scenarios, their security-centric, mobility-aware
model differs from our static UE assumption, which enables a
leaner control structure for our mission-oriented applications.

Many existing works emphasize energy challenges at the
UAV or system level. However, UE energy consumption is
a critical and often overlooked issue. In many deployments,
recharging a UAV is feasible, while replacing a UE battery
is not [46], [47], [48], [49]. Recognizing this gap, our study
focuses exclusively on minimizing UE energy consumption
and ensuring fairness in a multi-UAV-assisted MEC system.

These prior works collectively highlight diverse approaches
to task offloading, UAV coordination, and energy-aware
control in MEC systems. A consolidated overview of related
studies and their corresponding techniques is presented in

Table 3, allowing for clear comparison across problem
domains and methodological trends.

In our work, we propose a joint optimization framework
that aims to minimize UE energy consumption, achieve geo-
graphical fairness among UEs, and ensure balanced UE load
distribution across UAVs. Given the problem’s complexity,
we adopt a multi-agent deep reinforcement learning approach
for UAV trajectory control, specifically using the well-
establishedMADDPGmethod to autonomouslymanage each
UAV’s flight path. Additionally, we introduce a simplified
strategy to enhance UE offloading decisions based on UAV
trajectories.

FIGURE 1. System model of the UAV-assisted MEC system.

IV. SYSTEM MODEL
This section outlines the system architecture and defines the
primary variables and constraints in the UAV-assisted MEC
environment. The key notations are summarized in Table 1
and Table 2.

We consider a set of UE devices located in a specific
geographical area. Let d represent an individual UE and D
the complete set of UEs, as shown in Fig. 1. Similarly, a set
of Base Stations (BSs), each equipped with a MEC server,
is defined. Let s denote a server and S be the set of all servers.
We consider a set of UAVs (denoted by N , with each

UAV represented by n ∈ N ) that supports offloading from
UEs to servers [50]. These UAVs operate at a fixed height
H and assist ground UEs by relaying tasks. The fixed-
height assumption simplifies the optimization by focusing
on horizontal trajectories and offloading decisions, avoiding
the added complexity of altitude control. In practice, this
assumption is justified by regulatory constraints and UAV
limitations like battery capacity and flight stability. Although
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TABLE 3. Consolidated overview of related works in UAV-assisted MEC systems.

a variable altitude could offer benefits, it requires complex 3D
optimization beyond this study’s scope. The fixed height H
thus provides a practical trade-off between performance and
computational feasibility.

Without loss of generality, we assume each UE has a set
of computational tasks to offload. These tasks can be sent
directly to nearby MEC servers or, if unavailable, to more
distant servers via UAV relays [51]. Let j denote an individual
task and J the set of all tasks, where the subset Jd represents

tasks assigned to UE d . Tasks arrive independently at UEs,
each with a unique arrival time and deadline.

We define a set of communication paths between D and
S as P. Each path p ∈ P enables a device d to offload task
j to a server s. The path set P includes two types: Pstatic
for direct UE–BS links and Pdynamic for routes that include
UAVs as relays [52]. While Pstatic paths are always available,
Pdynamic routes are generated dynamically based on UAV–UE
communication.
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We adopt a slotted time system, where T is the set of
time slots. In each slot t , every UAV n moves in a direction
given by angle αn,t ∈ [0, 2π ) and covers a distance d tn ∈

[0, dmax], remaining within the operational area. The initial
coordinates of UAV n are [Xn,0,Yn,0,H ]. Its position at time
t is [Xn,t ,Yn,t ,H ], where Xn,t = Xn,0 +

∑t
t ′=0 d

t ′
n · cos(αn,t ′ )

and Yn,t = Yn,0 +
∑t

t ′=0 d
t ′
n · sin(αn,t ′ ).

Our model assumes UAVs function solely as relays,
forwarding tasks toMEC servers without performing onboard
execution. This design respects UAVs’ energy and mobility
constraints, allowing for prolonged and effective operations.
Prior studies [53], [54] have shown that using UAVs as
communication relays enhances both energy efficiency and
system scalability. By focusing on this role, our framework
emphasizes minimizing UE energy consumption and pro-
moting fairness. This approach is particularly effective in
scenarios like disaster recovery [46], where UAVs provide
essential connectivity, and smart agriculture [48], where they
support energy-constrained IoT devices.

A. COMMUNICATION MODEL
The communication distances between system entities are
defined as follows:

• The distance between a static UE d and UAV n at time
slot t is given by Eq. (1):

Wd,n,t =

√
(Xn,t − xd )2 + (Yn,t − yd )2 + H2,

∀ d ∈ D, n ∈ N , t ∈ T . (1)

This expression computes the Euclidean distance
between a UE and a UAV, which is critical for determin-
ing communication feasibility and power requirements.

• The distance between UAV n and BS s at time slot t is
defined in Eq. (2):

Wn,s,t =

√
(Xn,t − Xs)2 + (Yn,t − Ys)2 + H2,

∀ n ∈ N , s ∈ S, t ∈ T . (2)

This metric is used to assess the energy and delay
for relaying tasks from UAVs to MEC servers, where
[Xs,Ys] are the BS coordinates.

• The horizontal distance between UAV n and UAV n′ at
time slot t is evaluated in Eq. (3):

Wn,n′,t =

√
(Xn,t − Xn′,t )2 + (Yn,t − Yn′,t )2,

∀ n, n′
∈ N , t ∈ T . (3)

This equation measures the planar separation between
two UAVs, essential for maintaining a minimum safe
distanceW u for collision avoidance.

• The UE-to-BS distance is quantified by Eq. (4):

Wd,s =

√
(∥Xd − Xs∥)2 + (∥Yd − Ys∥)2,

∀ d ∈ D, s ∈ S. (4)

This formulation determines the direct distance between
a UE and a BS, which is crucial for evaluating offloading
paths that bypass UAV relays.

B. DELAY CONSIDERATIONS
To evaluate the communication delay for task offloading,
we compute the total communication time for a task j under
different routing scenarios.

• When a task is routed through a UAV to a BS, the
communication time is given by Eq. (5):

troutej = troute(dn)j + troute(ns)j , (5)

where troute(dn)j = Ij/rdn is the UE-to-UAV transmission

time, and troute(ns)j = Ij/rns is the UAV-to-BS transmis-
sion time. The data rates rdn and rns are defined as:

rdn = B · log2

(
1 +

Ptransmitd · βd0

B · N0 ·W 2
d,n,t

)
,

rns = B · log2

(
1 +

Ptransmitn · βn0

B · N0 ·W 2
n,s,t

)
.

Here, Ij is the input task size,B is the channel bandwidth,
N0 is the noise power spectral density, Ptransmitd and
Ptransmitn are the transmit powers of the UE and UAV,
and βd0 and βn0 are the respective channel power gains
at a reference distance of 1 meter.

• When a task is offloaded directly to a BS, the time is
calculated using Eq. (6):

troutej = troute(ds)j , (6)

where troute(ds)j = Ij/rds, and the data rate rds is:

rds = B · log2

(
1 +

Ptransmitd · βd0

B · N0 ·W 2
d,s

)
.

This models the delay over a single wireless hop,
capturing the impact of bandwidth, power, noise, and
distance.

• If a task result is returned via a UAV, the return time is
given by Eq. (7):

treturnj = treturn(sn)j + treturn(nd)j , (7)

where the BS-to-UAV time is treturn(sn)j = Rj/rsn and the

UAV-to-UE time is treturn(nd)j = Rj/rnd . The result size
is Rj, and the data rates are:

rsn = B · log2

(
1 +

Ptransmits · βs0

B · N0 ·W 2
n,s,t

)
,

rnd = B · log2

(
1 +

Ptransmitn · βn0

B · N0 ·W 2
d,n,t

)
.

• If a result is returned directly from a BS, the time is
calculated using Eq. (8):

treturnj = treturn(sd)j , (8)

where treturn(sd)j = Rj/rsd , and the data rate rsd is:

rsd = B · log2

(
1 +

Ptransmits · βs0

B · N0 ·W 2
d,s

)
.
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• The total end-to-end (E2E) delay for task j is the sum of
its routing and return times:

T E2Ej = troutej + treturnj . (9)

This final metric is crucial for evaluating task execution
performance under realistic wireless conditions.

C. ENERGY CONSIDERATIONS
We note that a task is either offloaded or computed locally
and will thus be accounted for in either the offloading energy
or the local computation energy. Hence, The total energy
consumption of a UE d , Ed , consists of offloading energy and
local computation energy:

Ed = Eoffloadd + E locald , (10)

where the components are defined as follows: label=·

• Eoffloadd = E txd + Erxd : The total energy for offloaded
tasks, comprising transmission (E txd ) and reception (E

rx
d )

energy. label=◦

– E txd =
∑

s∈S
∑

j∈Jd

∑
t∈T E

transmit
j

– Erxd =
∑

s∈S
∑

j∈Jd

∑
t∈T E

receive
j

– E transmitj = Ptransmitd · troutej
– Ereceivej = Preceived · treturnj

• E locald =
∑

j∈Jd E
d
j : The cumulative energy for

executing tasks locally. For each task j, the local energy
Edj depends on the number of CPU cycles k jd , device
frequency fd , and effective switched capacitance Cd .

D. DECISION VARIABLES
• The binary decision variable for offloading at time t for
UE d is:

zd,t =

{
1, if task is offloaded
0, otherwise.

(11)

• The relative UE load on UAV n at time t is the proportion
of UEs that choose to offload:

cn,t =

∑
d∈D zd,t
|D|

, ∀t ∈ T , n ∈ N . (12)

This metric measures the instantaneous demand on each
UAV and is key for load balancing.

E. FAIRNESS CALCULATION MODEL
• Fairness among UAVs: To prevent task congestion
and ensure balanced workloads, we measure fairness
among UAVs using an index inspired by Jain’s fairness
metric [55]:

fairdt =

(∑
n∈N

∑t
t ′=1 cn,t ′

)2
|N | ·

∑
n∈N

(∑t
t ′=1 cn,t ′

)2 . (13)

A value of fairdt close to 1 indicates an equitable
distribution of the UE load across UAVs.

• Fairness among UEs: To ensure UEs are served
equitably over time [56], we use a geographical fairness
index:

fairet =

(∑
d∈Dactive

∑t
t ′=1 z

t ′
d

)2
|Dactive| ·

∑
d∈Dactive

(∑t
t ′=1 z

t ′
d

)2 . (14)

A value of fairet near 1 signifies that all active UEs
(Dactive) have been served for a similar number of time
slots.

• UEs Energy Consumption Fairness: To evaluate
fairness in energy usage across UEs, we define the
Energy Consumption Fairness Index:

fairenergyt =

(∑
d∈D

∑t
t ′=1 E

t ′
d

)2
|D| ·

∑
d∈D

(∑t
t ′=1 E

t ′
d

)2 . (15)

A value close to 1 indicates that energy consumption is
evenly distributed among all UEs.

• Data Rate Fairness: Similarly, to evaluate fairness in
data rate allocation among UEs, we define the Data Rate
Fairness Index:

fairratet =

(∑
d∈D

∑t
t ′=1 r

t ′
nd

)2
|D| ·

∑
d∈D

(∑t
t ′=1 r

t ′
nd

)2 . (16)

A value close to 1 indicates that data rates are being
allocated equitably among UEs.

V. PROBLEM FORMULATION
With the above fairness metrics in place, we define the
optimization problem as:

P1 : max
ztd

T∑
t=1

fairet · fairdt · fairenergyt · fairratet∑
d∈D z

t
d · Ed

s.t. C 1 : Wn,n′,t ≥ W u, ∀n, n′
∈ N , n ̸= n′, ∀t ∈ T

C 2 : T E2Ej ≤ T Expj − T Arrj , ∀j ∈ J

C 3 : E td ≥ Emin, ∀d ∈ D, ∀t ∈ T

C 4 : Wd,n,t ≤ Wmax , ∀d ∈ D, n ∈ N , t ∈ T

(17)

This optimization problem in Eq. (17) aims to maxi-
mize the fairness-aware objective function for UAV-based
task offloading. The numerator aggregates four fairness
components—geographical distribution fairet , UE load fairdt ,
energy usage fairenergyt , and data rate fairratet —while the
denominator penalizes high energy consumption across UEs.

The constraints in the optimization problem are designed
to ensure system feasibility and fairness. Constraint C 1
enforces collision avoidance by maintaining a minimum
distance W u between any two UAVs at all times. Constraint
C 2 ensures that the total end-to-end delay T E2Ej , which
includes both the task routing time and result return time,
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must not exceed the available time budget T Expj − T Arrj .

Where T Expj is the task expiry time and T Arrj is the task
arrival time. Constraint C 3 ensures UE battery preservation
bymaintaining the energy level above the thresholdEmin, thus
enabling basic operational functionality. Lastly, constraint
C 4 enforces UAV coverage limits, requiring that a UE must
be within the communication rangeWmax of a UAV to allow
successful task offloading.

Our primary goal is to minimize the energy consumption
of the UEs while also achieving optimal fairness in multiple
dimensions, including the distribution of UE load across
UAVs, fairness in energy consumption, and fairness in data
rate allocation, ensuring efficient and equitable resource
utilization in dynamic UAV-assisted MEC systems.

VI. PROPOSED ALGORITHMS
Our problem is divided into two sub-problems: UAV
positioning and UE-UAV task offloading. This section details
the methodology for each sub-problem and presents the
complete algorithm that integrates both solutions.

A. UAV POSITIONING SUB-PROBLEM
1) UAV TRAJECTORIES AND OPTIMIZATION LOGIC
To achieve efficient and fair task offloading, we optimize
UAV trajectories using a MADDPG framework. In this
approach, each UAV operates as an autonomous agent,
learning from its environment to determine an optimal flight
path. The key optimization objectives are to:

• Minimize the task offloading delay for UEs.
• Ensure fair distribution of UAV services across all UEs.
• Reduce UE energy consumption by minimizing unnec-
essary UAV movements.

At each time step, a UAV evaluates its current position, the
location of nearby UEs, and the task demand using a reward
function (Eq. 17) designed to prioritize fairness and energy
efficiency. The trajectories are updated dynamically, allowing
the UAVs to adapt to real-time changes in UE distribution and
workload demands.

2) PROPOSED SOLUTION
Our objective is to solve the UAV positioning problem to
fairly serve all UEs and provide immediate assistance for
their offloaded tasks. A widely accepted approach for such
problems is the Markov decision process (MDP) [57], which
is based on a state space STATE (with states statet =

state1, . . . , stateT ) and an action space A (with actions at =

a1, . . . , aT ). In the MDP framework, an agent engages with
the environment in discrete time steps (TSs) by assessing the
current state and selecting an action.

Taking an action yields a reward, rewt , and leads to a
new state, statet+1. A policy, represented by the function
at = π (statet ) [58], maps the current state to a valid action.
The agent’s primary goal is to find an optimal policy that
maximizes the cumulative reward, Racumt =

∑T
i=t γ

i−1
·

rewi, where γ ∈ (0, 1) is a discount factor.

Building on this, we propose a multi-UAV reinforcement
learning-based trajectory control algorithm, which uses
an observable Markov game framework solved with the
MADDPG algorithm. MADDPG was chosen because it
is model-free and enables UAVs to make adaptive, real-
time decisions in a decentralized manner while optimizing
global objectives through centralized training. This feature
allows our method to handle the dynamic, multi-agent nature
of the problem, where UAVs must cooperate to minimize
energy consumption, ensure fairness, and reduce latency
while adhering to system constraints like collision avoidance.
By leveraging MADDPG, our framework achieves the scal-
ability and robustness necessary for large-scale, real-world
UAV-assisted MEC systems, avoiding the computational
burden of classical iterative solvers.

Each UAV is controlled by a dedicated agent. The
system involves |M | agents interacting with an environment
characterized by a set of states, STATE ≜ {statet , t ∈ T },
and actions, A ≜ {actt , t ∈ T }. Each state statet includes
the private observation obsn,t for each agent. Within each
TS, every agent n obtains its observation obsn,t , executes
an action actn,t , and receives a reward rewn,t , after which
the environment transitions to a new state. Each agent
possesses an actor network (actn,t = πn(obsn,t )), a critic
network (Qn(statet , actt )), and corresponding target networks
(actn,t+1 = πn

′

(obsn,t+1) and Qn
′

(statet+1, actt+1)).
Our framework combines decentralized execution with

centralized training. During training, every agent shares its
observation obsn,t and action actn,t with the environment.
The environment, in turn, provides each agent with the global
state statet , which is composed of all agents’ observations
and actions. This enables the critic network of each agent
to be trained using comprehensive system information.
Subsequently, during the testing phase, each agent acts
based only on its own private observation, allowing for
decentralized execution.

We define the observation, action, and reward for each
agent at TS t as follows:
1) Observation obsn,t : The observation for agent m

controlling UAV n incorporates the UAV’s coordinates
[Xn,t , Yn,t ], the set of relative distances to other UAVs
(Wn,n′,t ,∀n′

∈ N , n′
̸= n) to prevent collisions, and

the accumulated service times for UEs and the current
UE-load on UAV n to enhance exploration.

2) Action actn,t : The action is defined by the UAV’s
flying direction and distance, represented as actn,t =

{αn,t , distn,t } for the n-th UAV in the t-th TS.
3) Reward Function rewn,t : The reward function is

defined in Eq. (18):

rewn,t =
fairet · fairdt · fairenergyt · fairratet

1
D ·

∑|D|

d=1 z
t
d · Ed

− penn

(18)

This function guides UAV trajectory decisions by
combining fairness indices with normalized UE energy
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FIGURE 2. UAV n and its agent m structure.

consumption. The penalty term penn discourages
collisions and boundary violations.

The structure of an agent is depicted in Fig. 2. Each
agent 2⃝ selects an action from its actor network 6⃝. The
transition experience en,t ≜ {st , at , rn,t , st+1} 3⃝ is stored
in an experience replay buffer 4⃝. To improve learning,
we do not sample transitions randomly. Instead, following the
proposal in [59], we prioritize transitionswith a high temporal
difference (TD) error, which indicates a valuable learning
signal. The TD error, δn, is computed using the current and
target critic networks (θQ

n
and θQ

n′
) as shown in Eq. (19):

δn = rewn,t + γ · Qn
′
(
statet+1, actt+1 | θQ

n′
)

− Qn
(
statet , actt | θQ

n
)
, ∀n ∈ N ,∀t ∈ T . (19)

This error quantifies the gap between the predicted and target
Q-values and is used to accelerate convergence via prioritized
experience replay 12⃝. The probability of sampling the k-th
transition is given by Eq. (20):

Pn,k =

(
|δn,k | + ϵ

)β∑K
k ′=1

(
|δn,k ′ | + ϵ

)β , ∀n ∈ N (20)

where K is the mini-batch size, and ϵ and β are constants that
control the prioritization.

The loss function 10⃝ for UAV nminimizes the squared TD-
error, weighted by inverse sampling probabilities, to update
the critic network, as defined in Eq. (21):

L(θQ
n
) = E

[
1

(K · Pn,k )µ
(δn)2

]
(21)

where µ is a constant. The critic network 8⃝ is updated using
the policy gradient 11⃝ from [60] to train the actor network 6⃝,
as shown in Eq. (22):

∇θπnJ = E
[
∇θπnπ

n
(
obsn,t |θπ

n
)

∇actn,tQ
n(statet , at |θQ

n
)
]
,

∀n ∈ N , ∀t ∈ T . (22)

This gradient update guides UAVs toward actions that
maximize the expected critic value, thereby optimizing for
fairness and energy efficiency.

B. UE-UAV TASK OFFLOADING SUB-PROBLEM
We present a low-complexity method for UEs to optimize
their offloading decisions using a matching algorithm that
considers UAV positions. After the UAVs have moved,
each UE chooses the UAV that results in the least energy
consumption for offloading. If no suitable UAV is available,
the UE can use the heuristic from [52] to process the task
locally or offload it to the closest ground-based BS.
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C. PROPOSED ALGORITHM
Our proposed algorithm is named Multi-UAV Reinforcement
Learning-based Trajectory Control (MUT). Its procedure is
detailed in Algorithm 1. During the initialization phase (Lines
1-5), each UAV sets up its actor, critic, and target networks.
Themain training loop (Lines 6-28) proceeds as follows: each
UAV gathers observations, selects an action from its actor
network (with added noise for exploration), and executes it.
If a collision or boundary violation occurs, the UAV remains
in its current position and receives a penalty. Based on the
new UAV positions, each UE makes its optimal offloading
decision. The resulting reward and new observation are
obtained, and the transition experience is stored in the replay
buffer.

In the learning procedure (Lines 28-34), a mini-batch of K
transitions is sampled from the buffer using the prioritized
replay scheme. The actor and critic networks are then
updated using the policy gradient (Eq. 22) and the loss
function (Eq. 21), respectively. Finally, the target networks
are updated, and the priorities of the sampled transitions are
revised.

VII. NUMERICAL RESULTS AND DISCUSSIONS
A. SIMULATION SETUP
The reinforcement learning model was trained and evaluated
using Python 3.7 and MATLAB 2022b on a laptop with an
Intel Core i5-11400H processor (2.7 GHz), 8 GB RAM, and
integrated Intel graphics. No discrete GPUwas used. Training
the agents over 1000 episodes took approximately 2 hours,
and once trained, the MUT algorithm runs in real-time, with
each decision cycle completing in under 100 milliseconds.
This performance on mid-range hardware confirms the
computational efficiency and practical deployability of our
solution.

The training environment was generated using a cus-
tomized simulator that emulates dynamic UAV positions
and task arrival rates. This approach allows for repeatable,
controlled evaluations that reflect realistic MEC scenarios
without requiring proprietary or real-world datasets.

The actor and critic networks were trained with learn-
ing rates of 3 × 10−5 and 10−4, respectively, using
the Adam optimizer [61]. Our simulation environment
consists of 50 UEs and 10 BSs randomly distributed in
a target square-shaped region. To analyze the impact of
resource availability, we evaluate two primary scenarios with
3 and 4 UAVs.

Each training episode consists of 20 time slots. In the
four-UAV scenario, the initial coordinates were set to
[10, 10], [90, 90], [10, 90], and [90, 10] to ensure
wide initial coverage. Tasks are generated at each time
slot, with every UE producing one new task. In addi-
tion to the primary scenarios, we deployed an evaluation
with obstacles to test the algorithm’s collision avoidance
capabilities. All other simulation parameters are presented
in Table 4.

Algorithm 1 Proposed Algorithm MUT

1 for each UAV n candidate in N do
2 Initialize: actor network πn(.), critic network Qn(.)

with parameters θπ
n
and θQ

n
;

3 Initialize: target networks πn
′

(.) and Qn
′

(.) with

parameters θπ
n′

= θπ
n
and θQ

n′
= θQ

n
;

4 Initialize: experience replay buffer Bn;
5 end
6 for Episode = 1, 2, . . . , emax do
7 for each UAV n in N do
8 Initialize: Observation obsn,t ;
9 end
10 for each TS t in T do
11 Obtain: State statet ;
12 for each UAV n in N do
13 Obtain: Action

actn,t = πn
(
obsn,t |θπ

n)
+ ϵ; Execute:

actn,t .
14 end
15 Obtain: Action actt ;
16 for each UE d in D do
17 Obtain: Available offloading decision that

consumes the least energy; Calculate:
Ed,n,t ;

18 end
19 for each UAV n in N do
20 Obtain: rewn,t according to (17);
21 Obtain: obsn,t+1;
22 end
23 Obtain: statet+1;
24 for each UAV n in N do
25 Store: Transition {st , actt , rn,t , st+1} into

experience replay buffer Bn with priority
|δn| + ϵ;

26 if learning process starts then
27 Sample a mini-batch of K transitions

from Bn with probability Pn,k ;
28 Update actor network according to (21);
29 Update critic network according to (22);
30 Update target networks with updating

rate τ ;
31 Update priorities of K transitions;
32 end
33 end
34 end
35 end

B. BENCHMARK APPROACHES
We validate our proposed algorithm against the following
solutions:

• RANDOM: A UAV flies toward a randomly selected
UE. Upon reaching it, a new random UE is selected as
the next destination.
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TABLE 4. Simulation parameters.

• CIRCLE: All UAVs fly in a circular path with a radius
of Wmax around the geometric center of the UE cluster
for the entire simulation.

• Reinforcement Learning-based Trajectory Control
(RAT) Algorithm: This algorithm, from [28], aims to
minimize UE energy consumption by optimizing user
association, UAV trajectory, and resource allocation.
RAT is a DRL-based trajectory control algorithm that
uses prioritized experience replay to improve training
convergence.

• Optimization-embedding Multi-agent Deep Rein-
forcement Learning (OMADRL) algorithm: Pro-
posed in [27], the OMADRL algorithm seeks to achieve
energy efficiency and service fairness. In this frame-
work, each UAV autonomously learns its trajectory
via MADRL, while the optimal offloading decision is
found by solving a separate mixed-integer nonlinear
programming problem.
The OMADRL algorithm was implemented based
on the methodology described in its original paper.
Key components, including the reward function and
policy gradient updates, were reproduced and validated
by replicating results on benchmark scenarios. The
implementation was then integrated into our simulation
framework to ensure a fair comparison.

C. MUT COMPUTATIONAL COMPLEXITY ANALYSIS
This section analyzes the computational complexity of
the proposed MUT framework, quantifying both the

asymptotic complexity (Big-O notation) and the floating-
point operations (FLOPs) for its two main components.
The first component is the MADDPG-based architecture for
decentralized UAV trajectory optimization. The second is the
lightweight UE-UAVmatching algorithm for task offloading.
Both components are analyzed below to provide insight into
the scalability and efficiency of the MUT framework.

1) BIG-O COMPLEXITY ANALYSIS OF MUT ALGORITHM
OurMUT algorithm applies theMADDPG approach for joint
optimization. Similar to other works using MADDPG [62],
the time complexity is primarily influenced by the dimension-
ality of the neural networks. During each training iteration,
the framework collects interaction data from all N UAVs.
A subset ofK data samples is then drawn from this repository
to update the policy (actor) and value (critic) networks of
each UAV. The actor network processes state information to
generate actions, while the critic network evaluates the state-
action pairs.

The per-sample training complexity for an actor network
is Oactor = O(ρψ + ψ2

+ ψλ), where ρ is the state space
dimension, ψ is the number of neurons per hidden layer, and
λ is the action space dimension. The critic network’s per-
sample complexity is Ocritic = O((ρ + λ)ψ + ψ2

+ ψ).
Since the target networks mirror their primary counterparts,
the complexity for training a single UAV’s networks is given
by (23):

Osingle = O
(
2(ρψ + ψ2

+ ψλ) + 2((ρ + λ)ψ + ψ2
+ ψ)

)
(23)

Thus, for N UAVs and a minibatch of K samples, the total
training complexity is given by (24):

O
(
2NK

(
ρψ + ψ2

+ ψλ+ (ρ + λ)ψ + ψ2
+ ψ

))
(24)

2) FLOPs ESTIMATION FOR MUT ALGORITHM
The learning component of MUT is built around a feed-
forward actor network for each UAV agent, designed to
efficiently process observations and generate actions for
trajectory optimization. The analysis presented here accounts
only for the forward pass (inference) operations, not the
backward pass and weight updates involved in training.

The input layer’s size depends on the number of UAVs. For
our scenarios with 50 UEs and 3 or 4 UAVs, the input vector
includes the UAV’s position (2 elements), relative distances
to other UAVs (2 or 3 elements), accumulated service times
for UEs (50 elements), and the current UE load (1 element),
resulting in 55 or 56 input neurons. This structure effectively
captures the spatial and service-related context for decision-
making.

The network contains two hidden layers of 64 neurons
each. This size, a power of 2, is a common practice in deep
reinforcement learning that balances model capacity with
computational efficiency. It is sufficient to learn complex
relationships without the significant overhead of larger
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TABLE 5. Trainable parameters per layer for 3 and 4 UAVs.

layers, and has been optimized through empirical tuning
for deployment on resource-constrained UAVs. The output
layer has 2 neurons representing the continuous action
variables: flying direction (αn,t ∈ [0, 2π )) and distance
(distn,t ∈ [0, dmax]).

The number of trainable parameters in a dense layer is
given by the standard formula in Eq. (25) [63]:

Parameters = (Input size × Output size) + Output size
(25)

Based on this, the total number of trainable parameters ζ in
our actor network is:

For 3 UAVs:

Layer 1: 55 · 64 + 64 = 3, 584

Layer 2: 64 · 64 + 64 = 4, 160

Layer 3: 64 · 2 + 2 = 130

Total: ζ = 3, 584 + 4, 160 + 130 = 7, 874

For 4 UAVs:

Layer 1: 56 · 64 + 64 = 3, 648

Layer 2: 64 · 64 + 64 = 4, 160

Layer 3: 64 · 2 + 2 = 130

Total: ζ = 3, 648 + 4, 160 + 130 = 7, 938

A detailed breakdown of these parameters is presented in
Table 5.
Using TensorFlow’s profiler [64], the total floating-point

operations (FLOPs) per forward pass are estimated as ζflops =

2 × ζ , resulting in:

ζflops = 2 × 7,874 = 15,748 (3 UAVs)

ζflops = 2 × 7,938 = 15,876 (4 UAVs)

It is important to distinguish between trainable parameters
(ζ ), which indicatememory requirements, and FLOPs (ζflops),
which quantify the arithmetic workload. The FLOPs per
forward pass are typically 1.5-2 times the number of
parameters in dense networks [65].
The total forward pass complexity of the MADDPG

component over a simulation of ϵmax = 1000 episodes is
computed with Eq. (26):

FLOPsMADDPG = ϵmax · N · ζflops (26)

This results in total complexities of 47,244,000 FLOPs
for 3 UAVs and 63,504,000 FLOPs for 4 UAVs.

The second component of MUT is the UE-side offloading
algorithm. At each time step, each of the D UEs selects the
closest UAV in a greedy matching process. The complexity of
this component over an entire simulation is FLOPsoffload =

ϵmax ·D ·N . With D = 50, this totals approximately 150,000
FLOPs for 3 UAVs and 200,000 for 4 UAVs. Although this is
less than 0.5% of the total execution complexity, it is included
for a complete analysis of the MUT system’s runtime
cost.

D. RESULTS
This subsection presents a comprehensive evaluation of
the proposed MUT algorithm against several bench-
marks. We analyze UAV trajectories, energy consumption,
multi-dimensional fairness, and performance
sensitivity.

1) UAV TRAJECTORY AND OBSTACLE AVOIDANCE
Figs. 3 and 4 illustrate the optimized UAV trajectories for
three and four UAVs, respectively. The proposed frame-
work enables UAVs to dynamically adjust their paths,
minimizing travel distance and overlap while maximizing
service coverage for the UE population. The heatmaps
confirm that service is distributed efficiently; UEs near
the center receive consistent coverage, while edge UEs
are visited sufficiently to maintain fairness. The addi-
tion of a fourth UAV enhances service at the periphery
and demonstrates that the optimization process scales
seamlessly, ensuring an even workload distribution across
all UAVs.

FIGURE 3. UAV trajectories (with 3 UAVs, UE positions are presented via
dots).

Furthermore, we evaluated the algorithm’s performance
in environments with obstacles. As shown in Figs. 5 and 6,
the MUT algorithm successfully enables UAVs to navigate
safely between start and end points without collisions.
This capability is attributed to the fast convergence of the
model, which learns to prioritize obstacle avoidance. The
focused view in Fig. 6 highlights the algorithm’s precision
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FIGURE 4. UAV trajectories (with 4 UAVs, UE positions are presented via
dots).

in navigating tight spaces, reinforcing its robustness for real-
world deployments.

FIGURE 5. 3D visualization of the UAV collision avoidance trajectory via
the proposed algorithm learned actions.

2) UE ENERGY CONSUMPTION
Figs. 7 and 8 show the total UE energy consumption,
expressed as a percentage of the energy required for full local
execution. In both the three-UAV and four-UAV scenarios,
the MUT approach significantly outperforms all benchmarks
in energy efficiency. This improvement is due to intelligent
trajectory planning and resource allocation, which extends
the operational lifetime of UEs. The results also indicate that
increasing the number of UAVs from three to four leads to a
further reduction in UE energy consumption, confirming that
our system’s efficiency scales with the number of available
aerial relays.

3) FAIRNESS ANALYSIS AND REWARDS
We evaluated fairness from multiple perspectives. In terms
of geographical fairness among UEs (fairet ), MUT achieves a

FIGURE 6. Planar (2D) top-down view of the UAV collision avoidance
trajectory via the proposed algorithm learned actions.

FIGURE 7. Total UEs energy consumption of MUT, CIRCLE, RANDOM, RAT
and OMADRL (using 3 UAVs).

FIGURE 8. Total UEs energy consumption of MUT, CIRCLE, RANDOM, RAT
and OMADRL (using 4 UAVs).

high fairness index of nearly 85% with three UAVs (Fig. 9)
and improves further to 90% with four UAVs (Fig. 10), while
benchmarks stagnate at lower values. This demonstrates
that MUT distributes service more equitably across the
UE population. For fairness among UAVs (fairdt ′ ), which
reflects a balanced UE load distribution, MUT also performs
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exceptionally well. As shown in Figs. 11 and 12, it achieves
near-perfect fairness (approaching 100%) in the four-UAV
scenario, indicating uniform utilization.

FIGURE 9. Average UE fairness faire
t performance of MUT, CIRCLE,

RANDOM and OMADRL (using 3 UAVs).

FIGURE 10. Average UE fairness faire
t performance of MUT, CIRCLE,

RANDOM and OMADRL in time (using 4 UAVs).

The superior performance is also reflected in the learn-
ing process itself. Fig. 13 shows that MUT consistently
achieves higher average accumulated rewards over its training
episodes compared to the RAT and OMADRL algorithms,
indicating more effective and efficient learning.

Furthermore, Figs. 14 and 15 show the fairness of
energy consumption and data rate distribution, respectively.
In both cases, MUT maintains a fairness index consistently
above 0.9, ensuring equitable resource allocation, which is
critical for maintaining Quality of Service (QoS) across
all UEs.

4) SENSITIVITY TO ALTITUDE AND UAV DENSITY
Finally, we analyzed the framework’s sensitivity to the
number of UAVs and their flight altitude. As shown in
Figs. 16 and 17, increasing the number of UAVs consistently

FIGURE 11. Average UAV fairness faird
t ′ of MUT, CIRCLE, RANDOM and

OMADRL in time (using 3 UAVs).

FIGURE 12. Average UAV fairness faird
t ′ of MUT, CIRCLE, RANDOM and

OMADRL in time (using 4 UAVs).

FIGURE 13. Accumulated reward versus training episodes for MUT, RAT
and OMADRL algorithms.

improves both final UE energy levels and the task completion
rate. Lower altitudes (e.g., 50m) yield the best performance
due to shorter communication distances, which enable faster,
more reliable, and more energy-efficient task offloading.
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FIGURE 14. Average Fairness with respect to UE energy consumption for
MUT, CIRCLE, RANDOM and OMADRL in time (using 4 UAVs).

FIGURE 15. Fairness with respect to data rate distribution for MUT,
CIRCLE, RANDOM and OMADRL in time (using 4 UAVs).

FIGURE 16. Average UE Energy Level vs Number of UAVs.

5) SUMMARY OF RESULTS
These results demonstrate the effectiveness of the proposed
MUT algorithm in optimizing UAV trajectories, reducing UE
energy consumption, and ensuring fair resource distribution.
MUT consistently outperforms benchmark approaches across

FIGURE 17. Task Completion Rate vs Number of UAVs.

all evaluated metrics, confirming its suitability for real-
world deployment. Specifically, MUT surpasses OMADRL
by leveraging a dynamic reward function that integrates both
fairness and energy efficiency, enabling a more balanced
optimization. The centralized training with decentralized
execution framework ensures scalability, while the faster
convergence reduces computational overhead, enhancing
real-time applicability.

VIII. CONCLUSION
This work introduced a UAV-assisted task offloading
framework that combines decentralized MADDPG-based
trajectory control with a low-complexity greedy offloading
strategy. Our approach successfully reduces UE energy
consumption and enhances fairness, with simulations demon-
strating energy savings of up to 30% and fairness indices
exceeding 0.9 across various scenarios.

Future work will explore several promising directions,
including support for heterogeneous UAV fleets, multi-tier
aerial networks, and the integration of security and privacy
mechanisms. Adaptability to heterogeneous platforms can
be achieved by extending the reinforcement learning (RL)
model, where the reward function is adjusted to reflect each
UAV’s specific capabilities, such as distinct communication
capacities or levels of autonomy. Furthermore, for real-time
applications, task prioritization can be integrated into the
offloading and scheduling mechanisms, enabling the RL
agent to dynamically respond to task urgency and support
latency-sensitive operations.
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