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ABSTRACT This paper proposes an enhanced Nonlinear Model Predictive Control (NMPC) framework that
incorporates a robust, convergent variant of the resilient propagation (RPROP) algorithm to efficiently solve
the Nonlinear Optimization Problem (NOP) in real time. The controller is developed for both constrained and
unconstrained trajectory tracking of Wheeled Mobile Robots (WMRs), with operational constraints handled
via the external penalty method. The proposed method introduces adaptive step sizes and a backtracking
mechanism, significantly improving convergence speed without compromising accuracy. Simulation results
show that, even under constraints, the proposed method reduces computational time by a factor of 6 to
11 compared to the Interior Point method and 2 to 4 compared to the Active Set method. In addition,
it achieves superior tracking accuracy, with root mean square (RMS) position tracking errors reduced by
approximately 50% relative to the benchmark methods. Real-time experiments conducted on the Robotino
Festo Omnidirectional Mobile Robot (OMR) validate the method’s practical effectiveness, demonstrating
faster convergence and improved velocity tracking performance, while maintaining comparable or better
position tracking. These findings establish the proposed controller as a computationally efficient and accurate
solution for real-time WMR trajectory tracking.

INDEX TERMS Nonlinear model predictive control (NMPC), omnidirectional mobile robot, resilient
propagation, trajectory-following.

I. INTRODUCTION
Over the past two decades, the rapid evolution of hardware
and software technologies has revolutionized the capabilities
of automated machinery, including mobile robots, across dif-
ferent sectors of society [1], [2]. Nowadays Wheeled Mobile
Robots (WMRs) are entrusted to join operations in many
fields of application such as planet exploration [3], agricul-
ture [4], underground mines’ inspection [5], [6], surveillance
missions [7], healthcare support [8] and household assis-
tance [9]. Due to their design’s simplicity, low cost and high
efficiency, WMRs are fully developed and commercialized
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for applications in constructed environments such as fac-
tories and warehouses [10]. However, when it comes to
unconstructed environments such as underground mining
operations, these applications are still limited. Engaging
WMR in this field can improve productivity and increase
miners’ safety by performing tasks like automated trans-
portation and inspection, monitoring hazardous contagious
areas, and replacing the human operator on dangerous
missions [11], [12]. Underground mine galleries are char-
acterized by extreme conditions, including uneven terrains,
the risk of falling rocks, and poor lighting [13], [14].
To operate effectively in these hazardous conditions, WMRs
must demonstrate advanced operational capabilities, includ-
ing robust path generation to identify feasible routes, obstacle
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avoidance for safe navigation, and trajectory tracking to
ensure precise adherence to predefined paths. Among these,
trajectory tracking is pivotal for achieving the autonomy and
stability required for reliable performance in complex envi-
ronments.

Trajectory tracking aims to drive the robot towards a
reference path, created online by path-generation methods,
or predefined and uploaded offline [15]. Achieving accurate
trajectory tracking in WMRs involves addressing the sys-
tem’s nonlinear, multivariable characteristics while adhering
to operational constraints. Due to these challenges, trajectory
tracking has been a widely addressed area in the field of
robotic control. For instance, bioinspired backstepping [16],
super-twisting sliding mode [17] and observer-based meth-
ods [18], [19], have been widely used for WMR trajectory
tracking. However, these methods are designed primarily for
unconstrained scenarios and do not explicitly consider oper-
ational constraints. To manage constraints, barrier functions
have been incorporated, but this often introduces significant
design complexity [20], [21]. Input saturation management
methods [22], [23] have been proposed as another approach
to handle constraints, but these techniques commonly suf-
fer from overshooting, limiting their practical effectiveness.
Model-free methods, such as those based on fuzzy logic or
bio-inspired neural networks [24], [25], have been explored
for constrained trajectory tracking. However, bypassing the
system model may exclude valuable information critical for
control. Additionally, thesemethods often demand significant
expertise and extensive training, which may not always be
accessible.

Model Predictive Control (MPC) has emerged as a robust
solution to address these limitations [26]. MPC’s ability to
manage multivariable nonlinear systems while respecting
operational constraints makes it particularly suited for trajec-
tory tracking. For nonlinear systems, MPC is implemented as
Nonlinear MPC (NMPC) [27]. Despite its strengths, NMPC
faces substantial challenges in real-time applications due to
the high computational burden associated with solving the
underlying Nonlinear Optimization Problem (NOP). Several
approaches have been proposed to alleviate this issue, includ-
ing system linearization [28], [29], [30], adaptive horizon
adjustments [31], and hardware optimizations [32]. While
these techniques reduce computational demands, they often
compromise tracking accuracy or are problem-specific, lim-
iting their general applicability.

The optimization algorithm is one of the most extensively
addressed components of NMPC for improving computa-
tional efficiency. Numerous strategies have been developed to
solve the associated Nonlinear Optimization Problem (NOP).
For instance, in [33], [34], the continuation method was
combined with the Generalized Minimal Residual (GMRES)
method, transforming the nonlinear problem into a linear
one and solving it accordingly. However, this approach
relies on specific structural properties of the system and
cost function, limiting its general applicability. Moreover,

its implementation becomes increasingly challenging when
dealing with complex system dynamics or elaborate per-
formance indices. Neural optimization methods are another
popular class of techniques for solving NOPs [35], [36].
For example, [35] introduced a one-layer projection neural
network for quadratic optimization, achieving faster conver-
gence while maintaining moderate computational demand.
Nevertheless, these methods require significant training data,
which may not always be available, and their generalization
to other problems is often constrained without retraining.
Metaheuristic strategies, such as particle swarm optimiza-
tion, ant colony optimization, and the gravitational search
algorithm, were evaluated in [37] for NMPC applications.
These approaches demonstrated good tracking performance
with relatively low computational cost. However, they inher-
ently provide only approximate solutions, and as such,
convergence and optimality cannot be guaranteed, making
them less suited for safety-critical applications. In con-
trast, conventional exact methods, such as the Interior Point
Method (IPM) [38], [39], Active-Set Method (ASM) [40],
[41], Sequential Programing (SQ), offer robust convergence
and guaranteed optimality. Despite their strengths, their appli-
cation in fast dynamic systems likeWMRs remains limited to
problems with linear structure or a small number of decision
variables [42], thereby constraining their practical utility in
high-speed real-time control settings.

Resilient propagation (RPROP), originally developed for
training neural networks, is a gradient-based optimization
technique that uses only the sign of the error gradient,
substituting its magnitude with an adaptive step size [43].
This design enables faster convergence, but the classical
RPROP lacks guaranteed convergence properties [44], [45].
To address this, a Robust Convergent variant of RPROP
(RCPROP)was introduced [44], incorporating a backtracking
mechanism to ensure convergence by reassessing step quality
based on the global error function. While RPROP has previ-
ously been applied in NMPC for quadrotor control [46], its
integration into constrained NMPC frameworks, particularly
for mobile robotics, remains unexplored, an area this work
aims to investigate and advance.

Motivated by the above-mentioned concepts, we intro-
duce an improved NMPC approach that utilizes RCPROP
algorithm to address and solve the trajectory tracking chal-
lenge of a WMR. The computational advantage of the
proposed approach facilitates achieving faster convergence.
The study considers both unconstrained and constrained
NMPC cases to comprehensively evaluate the performance of
the proposed algorithm across different practical scenarios.
The unconstrained case provides a baseline to assess the
algorithm’s core efficiency in terms of tracking accuracy and
convergence speed. Conversely, the constrained case evalu-
ates the algorithm’s ability to handle operational constraints,
which are essential in real-world applications. By study-
ing both cases together, we gain a deeper understanding
of how the presence of constraints affects the performance
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of the trajectory tracking algorithm and the optimization
method. We thoroughly investigate and validate the integra-
tion of RCPROP into the NMPC framework, comparing it to
benchmark methods and evaluating its effectiveness. For the
constrained NMPC, we employ the external penalty method
to effectively manage the constraints. The superiority of our
proposed method is demonstrated through a comparative
study against the well-known interior point method (IPM)
and active-set method (ASM). The main contributions of this
study are summarized as follows:
1. Implementation of RCPROP to efficiently tackle the

Nonlinear Optimization Problem (NOP) leading to a
significant reduction in computational cost and ensuring
fast convergence. Unlike existingmethods, our approach
introduces a guaranteed convergent variant of RPROP.

2. Exploration of RCPROP’s capability to handle opera-
tional constraints within the framework ofNMPC. To the
best of our knowledge, this aspect has remained unex-
plored until now.

3. Assessing the real-time suitability of the proposed
method using the Robotino-Festo OMR.

The rest of the paper is organized as follows: Section II
presents the NMPC setup including the kinematic modeling,
objective function, and constraints. Next, the optimization
algorithm is presented in Section III. Simulation and exper-
imental results are illustrated in Section IV, and Section V
concludes the paper.

II. NMPC SETUP
A. VEHICLE MODELING
As shown by its name, NMPC is a model-based method,
therefore, an accurate model describing the system under
control is necessary for the development of the controller.
In this study, we consider an OMR with three omni-wheels
located at 120◦ from each other (Figure 1). This type of robot
has full manoeuvrability, which means it can move instantly
in any direction without any reorientation. Define (x, y), the
position of the WMR in the global frame, (θ), its orientation,
(vx , vy), its translational velocities in the local frame, and
(ω), its rotational velocity. The state vector of the WMR is
chosen as:

q =
[
x y θ νx νy ω

]T
, (1)

and the vector of the control variables is u = (ax , ay, aθ ),
where (ax , ay) are the translational accelerations, and (aθ ) is
the angular acceleration. By mapping the global coordinates
into the local frame, we obtain the robot’s kinematic equa-
tions as follows [30]:

ẋ = νx cos θ − νy sin θ,

ẏ = νx sin θ + νy cos θ,

θ̇ = ω,

ν̇x = ax ,

ν̇y = ay,

ω̇ = aθ . (2)

FIGURE 1. Local and global coordinates.

To discretize the kinematic model, the forward differences
method is applied. The resulted discrete-time representation
is as follows [30]:

qk+1 = f (qk , uk ) =


xk + νxkT cos θk − νykT sin θk
yk + νxkT sin θk + νykT cos θk

θk + ωkT
νxk + axT
νyk + ayT
ωk + aθT

 ,

(3)

where T is the sampling time. The robot used in this study
accepts the linear and angular velocities of its center of
gravity as inputs, hence there is no need to further develop
the kinematic model to include the wheels velocities, and the
robot geometry. The reader can refer to [30] for kinematic
representation including the robot’s geometry and wheels’
velocities.

B. UNCONSTRAINED NMPC
The NMPC method is one of the optimal control strategies,
which aims to achieve the control’s objectives by formulating
them into one function called the objective function and then
finding the control inputs that minimize this function. In this
scenario, the objective is to minimize the errors between
the reference state variables and their predicted counterparts.
Hence, we opt for a quadratic cost function, which penalizes
both state variables errors and control inputs, thus effec-
tively steering the system towards the desired trajectory. First,
we consider the unconstrained case where the NMPC control
problem of the robot motion is written as [27]:

min J =
1
2
eTNQ0eN +

N−1∑
k=0

1
2
(eTk Qek + uTk Ruk )

s.t. qk+1 = f (qk , uk ), (4)
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where J is the objective function, eN = qN − qdN is the
terminal state error, ek = qk − qdk is the tracking error,
qdk is the reference trajectory, Q,Q0(both 6 × 6) and R (3 ×

3) are diagonal penalty matrices. f (qk , uk ) represents the
kinematic equations that must still be adhered to, even in
the unconstrained case. Solving (4) determines the control
inputs ensuring that the state errors are decreasing along the
control horizon. To incorporate the system’s kinematics into
the objective function, Lagrangemultipliers vectors λk (6×1)
with (k = 1, . . . ,N ) are introduced in (4) and the NMPC
control problem is transformed to:

min Ja = φ(eN )

+

N−1∑
k=0

(
1
2
(eTk Qek + uTk Ruk ) + λTk+1(fk − qk+1)

)
,

(5)

where φ(eN ) =
1
2e

T
NQ0eN is the terminal cost, and fk ≡

f (qk , uk ). The Lagrange multipliers λk are associated with
kinematic terms that are identically zero. Therefore, they can
be chosen arbitrarily to simplify the derivation.

Define the Hamiltonian function of problem (5) as:

Hk ≡ H (qk , uk ) =
1
2
(eTk Qek + uTk Ruk ) + λTk+1fk . (6)

Substituting (6) into the cost function in (5), we obtain:

Ja = φ(eN ) + H0 − λTNqN +

N−1∑
k=1

(
Hk − λTk qk

)
. (7)

To minimize (7), we differentiate Ja as:

dJa =

(
∂φ(eN )
∂qN

− λTN

)
dqN +

∂H0

∂q0
dq0

+
∂H0

∂u0
du0 +

N−1∑
k=1

(
∂Hk
∂qk

− λTk

)
dqk +

∂Hk
∂uk

duk .

(8)

To simplify (8), we chose:

λTN =
∂φ(eN )
∂qN

= eTNQ0
∂eN
∂qN

,

λTk =
∂Hk
∂qk

= eTk Qk
∂ek
∂qk

+ λTk+1
∂fk
∂qk

. (9)

These expressions define the values of λk based on a
backward propagation approach, starting from the terminal
condition and recursively computing the multipliers at each
previous time step. This procedure ensures the optimality
conditions required for minimizing the Hamiltonian and the
overall cost function. With these choices, (8) becomes:

dJk =

N−1∑
k=0

∂Hk
∂uk

duk , (10)

with
∂Hk
∂uk

= uTk Rk + λTk+1
∂fk
∂uk

. (11)

Here we used the fact that q0, the state vector at the current
sample instant of the controller, remains constant during
the optimization process, which means that dq0 = 0.
Equation (10) shows that minimizing the Hamiltonian auto-
matically leads to minimizing the objective function.

C. CONSTRAINED NMPC
In real-time applications, there are always limitations and
restrictions that need to be taken into consideration when
designing the control algorithm. One of the main advan-
tages of NMPC is the capability to handle control constraints
explicitly. When constraints are imposed, the NMPC control
problem becomes as follows [27]:

min J =
1
2
eTNQ0eN +

N−1∑
k=0

1
2
(eTk Qek + uTk Ruk )

s.t. qk+1 = f (qk , uk ),

h(qk , uk ) ≤ 0, (12)

Here the cost function J is designed to minimize tracking
errors while balancing control effort. The penalization matri-
ces have similar characteristics as in equation (4). In addition
to the system dynamics, the cost function is also subject to a
second constraint h(qk , uk ) that enforces the state and input
limits, where h(qk , uk ) are inequality equations set as:

−vmax ≤ vxk ; vyk ≤ vmax,

−ωmax ≤ ωk ≤ ωmax,

−at max ≤ axk ; ayk ≤ at max,

−anmax ≤ aθk ≤ anmax.

(13)

Here vmax and ωmax are the maximum allowable translational
and rotational velocities respectively, and atmax and anmax
are the maximum translational and rotational accelerations
respectively. These inequality constraints can be handled
using different approaches such as the auxiliary variable
method or the external penalty method. In [33], the auxil-
iary variable method was used to transform the inequality
constraints to equality ones by adding a dummy variable
which was later considered an additional variable in the
optimization problem. However, using a dummy variable
for each inequality constraint will increase the dimension
of the optimization problem and consequently increase the
computational burden. The external penalty method aims to
transform the constrained problem to an unconstrained one
by adding a penalty term to the objective function which
penalizes the violation of constraints. It is a straightforward
method proven to be effective [47], and it will be adopted in
this work. The additional penalty term is chosen as [47]:

Mi(qk , uk ) =

{
0 , hi(qk , uk ) ≤ 0,
µi × hi(qk , uk )2 , hi(qk , uk ) > 0,

(14)

where Mi(qk , uk ) and µi are the penalty cost and the weight
factor of the ith inequality constraint hi(qk , uk ). In this work,
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hi(qk , uk ) is: 

h1(qk , uk ) = v2xk − v2max,

h2(qk , uk ) = v2yk − v2max,

h3(qk , uk ) = ω2
k − ω2

max,

h4(qk , uk ) = a2xk − a2t max,

h5(qk , uk ) = a2yk − a2t max,

h6(qk , uk ) = a2θk − a2nmax.

(15)

Remark 1: Here we took advantage of the constraints
structure in (13), where the absolute values of the upper and
lower limits are equal. However, in the general case, each
limit should be treated as a distinct constraint. For example,
if vmin ≤ vxk ≤ vmax, this condition should be divided
into two separate constraints, ha(qk , uk ) = vxk − vmax, and
hb(qk , uk ) = −vxk + vmin.

The obtained unconstrained optimization problem can be
written as follows:

min Jc =
1
2
eTNQ0eN

+

N−1∑
k=0

[
1
2
(eTk Qek + uTk Ruk ) +

6∑
i=1

Mi(qk , uk )

]
,

s.t. qk+1 = f (qk , uk ). (16)

Using Lagrange multipliers to include system’s kinematics
into the objective function, and following similar approach
as in section B, the costate equations can be found as:

λTN =
∂φ(eN )
∂qN

= eTNQ0
∂eN
∂qN

,

λTk =
∂Hk
∂qk

= eTk Qk
∂ek
∂qk

+ λTk+1
∂fk
∂qk

+

6∑
i=1

∂Mi(qk , uk )
∂qk

,

(17)

and the gradients of the Hamiltonian as

∂Hk
∂uk

= uTk Rk + λTk+1
∂fk
∂uk

+

6∑
i=1

∂Mi(qk , uk )
∂uk

. (18)

These equations represent the foundation of solving optimal
control problems in NMPC. The costate equations propa-
gate backward, linking the terminal and intermediate costs
to system dynamics and constraints, while the Hamiltonian
gradients guide the forward determination of optimal control
inputs.

III. OPTIMIZATION ALGORITHM
In this work, we employ an RPROP-based algorithm to
address the nonlinear optimization challenges outlined in the
previous section. Unlike traditional gradient-based methods,
RPROP updates the step sizes of individual optimization
variables using only the sign of their gradients, disregarding
the magnitude. This approach introduces dynamic step varia-
tions, which adapt based on local knowledge of the objective
function. The key feature of RPROP is that the step sizes

are updated independently of the system’s inputs or absolute
gradient values, making it particularly effective for noisy or
approximate gradient cases. The method was first introduced
in [43], where the step size update mechanism is described as
follows:

1i,k =


min

(
η+1i,k−1, 1max

)
if ∂Hk−1

∂ui
∂Hk
∂ui

> 0

max
(
η−1i,k−1, 1min

)
if ∂Hk−1

∂ui
∂Hk
∂ui

< 0
1i,k−1 otherwise

 , (19)

where 1i,k is the step size, 1min and 1max are the minimum
and the maximum limits respectively, η+ and η− are the fac-
tors for increasing and decreasing the step size, respectively,
with 0 < η− < 1 < η+. A consistent gradient sign triggers
an increase in the step size to accelerate convergence, while
a sign change indicates passing a local minimum, prompting
a reduction in step size. The second stage involves updating
the optimization variables as:

ui,k+1 =


ui,k − sign

(
∂Hk
∂ui

)
.1i,k if

∂Hk−1

∂ui

∂Hk
∂ui

⩾ 0,

ui,k−1 if
∂Hk−1

∂ui

∂Hk
∂ui

< 0.

(20)

When the partial derivative changes signs, this means the
previous update was too large. Therefore, the algorithm will
backtrack to reduce the step size. In this scenario, the current
partial derivative is set to zero to avoid double penalties on
the updates.

Despite its advantages, traditional RPROP does not
guarantee convergence. As shown in [44], [45], indepen-
dently updating step sizes for each variable can occasion-
ally increase the objective function or result in negligible
error reductions, causing the optimization process to stall.
To overcome these limitations, a Robust Convergent variant
(RCPROP) was proposed in [44].
RCPROP integrates an additional verification mechanism

that evaluates the effect of step size updates on the overall
objective function. If a proposed update does not decrease
the objective function by a defined threshold, δmin(1i,k−1),
where δ is the threshold of the optimization, the algorithm
performs a global backtracking step to ensure convergence.
Algorithm 1 provides a detailed outline of this approach.

This robust mechanism ensures the algorithm converges to
a local minimum within a finite number of iterations. Further
details and proof of convergence are available in [44].
Remark 2: The term ‘‘Robust’’ in this context is attributed

specifically to the optimization algorithm rather than the
tracking controller itself. It denotes the mechanism of global
backtracking to prevent the algorithm from pursuing either
increases in error or vanishingly small improvements in error,
that could persist indefinitely. While this paper focuses on
the optimization framework, the modeling and handling of
uncertainties and external disturbances, particularly in real-
time applications, are beyond the scope of this study. These
aspects will be addressed and explored in future work.
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The overall NMPC process begins with a known reference
path for the robot. After initializing the input vector with an
initial guess based on prior control inputs, the process uses
Algorithm 1 to iteratively adjusts the control inputs by solving
a nonlinear optimization problem to minimize the cost func-
tion while respecting system dynamics and constraints. Once
optimized, the control inputs are applied to the robot, steering
it along the desired trajectorywhile continuously updating the
process in a receding-horizon manner.

IV. CASE STUDIES AND ANALYSES
In this section, the performance of the proposed method is
evaluated. Comparison with other benchmark approaches is
done to demonstrate the capabilities of the RCPROP opti-
mization algorithm to perform online optimization, handle
constraints and reduce the computational burden.

A. SIMULATION SETUP
Three methods will be compared:

1) NMPCPROP: This approach solves the NMPC problem
using RCPROP algorithm.

2) NMPCIP: This method uses the IPM to solve the opti-
mization problem of NMPC. Its implementation is based
on [27].

3) NMPCAS: This algorithm uses the ASM for the opti-
mization problem. It is implemented using MATLAB
‘‘fmincon’’ function.

The goal is to drive the OMR to follow a given trajec-
tory by minimizing an objective function. Constrained and
unconstrained cases will be considered. All methods mini-
mize the same objective function: (4) for the unconstrained
case and (16) for the constrained case. In our implementa-
tion, we employ a prediction horizon NP = 6, and control
horizon Nc = 3. The state and input weighting matri-
ces are chosen as Rk = diag(0.01, 0.01, 0.01) and Qk =

Q0 = diag(75, 75, 75, 5, 5, 5) to balance tracking accuracy
and actuation effort. We note that the term control horizon Nc
does not appear in the objective functions. It is the number of
variables optimized at each iteration which is less or equal to
Np.

For the Resilient Propagation algorithm, the update param-
eters are set to η+

= 1.6, η−
= 0.5, with initial step sizes

bounded by1max = 15 and1min = 10−10. The convergence
threshold and maximum iterations are δ = 10−6 and Imax =

20 respectively.
Remark 3: All NMPC and RCPROP parameters were

determined via a systematic trial-and-error procedure: start-
ing from literature-informed initial guesses, we adjusted
each parameter individually while monitoring closed-loop
tracking error and solver convergence speed. Once a satisfac-
tory operating point was found, we performed a sensitivity
analysis by perturbing parameters by ±10% and observed
negligible performance degradation, confirming robustness
of the selected values.

Algorithm 1 RCPROP
1: while iter ≤ Imax (Initialize iteration loop)

(check convergence)
2: if max

(
∂Hk
∂uk

)
≤ δ then return uk

3: (evaluate the effect of last update)
4: if Hk > Hk−1 − δmin(1i,k−1) then
5: if max(1i,k−1 ≤ 1min) then return uk−1
6: For each ui,k do
7: (global backtracking)
8: ui,k = ui,k−1 ;

∂Hk
∂ui

=
∂Hk−1

∂ui
9: 1i,k = max

(
η−1i,k−1, 1min

)
10: else

(update step sizes)
11: for each ui,k do

12: 1i,k =


min

(
η+1i,k−1, 1max

)
if ∂Hk−1

∂ui
∂Hk
∂ui

> 0

max
(
η−1i,k−1, 1min

)
if ∂Hk−1

∂ui
∂Hk
∂ui

< 0
1i,k−1 otherwise


13: (update optimization variables)
14: for each ui,k do
15: ui,k+1 = ui,k − sign

(
∂Hk
∂ui

)
.1i,k

FIGURE 2. Tracking the eight-shaped trajectory: Unconstrained case.

An eight-shaped trajectory was selected as a benchmark
test, offering a challenging scenario that incorporates contin-
uous curvature and direction changes. It’s described by the
following equations:

xd = −2 sin((2π/P)t),

yd = 1 sin(2(2π/P)t),

vxd = ẋd , vyd = ẏd , (21)

where P = 24 is the trajectory period. The desired orien-
tation and rotational speed are selected to be zero and the
initial position is set to q0 = [−0.35, − 0.2, 0, 0, 0, 0]. In
the constrained case, constraints are imposed on both speed
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FIGURE 3. Optimized control signals: Unconstrained case.

TABLE 1. Maximum time per iteration, average time per iteration, time
ratios and root mean square for different strategies: Unconstrained case.

and acceleration. The maximum speeds are set to vmax =

2 m/s and ωmax = 3 rad/s, and the maximum accelerations
to at max = 1 m/s2 and anmax = 2 rad/s2, which reflect the
limitations on the real robot. The tracking performance of the
compared strategies is evaluated using the Root Mean Square
(RMS) performance index given as follows:

Mi =

√√√√√√
Tsim/T∑
j=1

(
yref (j) − ysys(j)

)2
Tsim/T

; i ∈ {x, y, θ}. (22)

B. TRACKING ANALYSIS AND COMPUTATIONAL
RESOURCES
The simulation results of the tracking problem are illustrated
in the figures and tables below.

Figure 2 shows the performance of the three methods when
tracking the eight-shaped trajectory without constraints. It is
evident that NMPCPROP achieved faster convergence com-
pared to the other twomethods. The optimized control signals
are shown in Figure 3. It can be appreciated that the initial

TABLE 2. Maximum time per iteration, average time per iteration, time
ratios and root mean square for different strategies: Constrained case.

FIGURE 4. Tracking the eight-shaped trajectory: Constrained case.

control effort resulted using NMPCPROP is notably lower
compared to the initial efforts of NMPCIP and NMPCAS.

Table 1 presents the average andmaximum time required to
complete one single iteration for each of the compared strate-
gies, along with the RMS values computed from equation
for (22) the unconstrained case.

It is notable that NMPCPROP exhibits a significant advan-
tage in terms of computational cost, completing iterations
12 to 17 times faster than NMPCIP and 7 to 8 times
faster than NMPCAS, making it highly suitable for real-time
applications. Despite this substantial reduction in computa-
tional burden, NMPCPROP achieves a tracking performance
remarkably close to NMPCIP and NMPCAS, with its RMS
tracking error only slightly higher—by an order of 10−3. This
slight discrepancy is acceptable and well justified given the
considerable gain in computational efficiency.

Figure 4 shows the tracking performance of the compared
methods when following the eight-shaped trajectory in the
presence of constraints. We can clearly see that all three
methods exhibit a decrease in convergence speed compared
to the unconstrained scenario. This deceleration is expected,
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FIGURE 5. Position tracking errors: Constrained case.

FIGURE 6. Comparison of control signals in constrained and
unconstrained cases.

given the restrictions imposed on control inputs, resulting
in slower convergence. Nonetheless, NMPCPROP maintains
faster convergence than the other two methods in the con-
strained case.

Table 2 presents the performance under constraints,
where NMPCPROP maintained its efficiency, operating 6 to
11 times faster than NMPCIP and 2 to 4 times faster
than NMPCAS. Furthermore, NMPCPROP outperformed the
other two methods in tracking accuracy for both x and y
positions, confirming its effectiveness in constrained trajec-
tory tracking scenarios. Figure 5 visualises the tracking errors
for the constrained case, where the faster convergence of
NMPCPROP can be seen.

FIGURE 7. Overview of the trajectory tracking experiment.

FIGURE 8. Real-time tracking of the eight-shaped trajectory.

The capability of RPROP to handle constrained optimiza-
tion problem online has not been tested before. Therefore,
Figure 6 shoes the performance of NMPCPROP under con-
straints. It managed to bring the control amplitudes under
the maximum allowed values, after they were violated in the
unconstrained case, while keeping fast convergence and good
tracking performance.

C. EXPERIMENTAL RESULTS
This section provides the experimental results of testing the
three methods on the Robotino-Festo robot (Figure 7). It is
a three-wheeled OMR. Each wheel has its individual motor
which is controlled by a 32-bit microcontroller that uses
PWM signals to actuate these DC motors using a PID. The
entire system is controlled by a higher embedded PC with
Intel i5, 2.4 GHz dual core, 8 GB RAM and 23 GB SSD.

The transition ratio between the drive shaft and
omni-wheels is 32:1 which is achieved using a planetary gear
unit [48]. The maximum translational and rotational speeds
of the robot are 2m/s and 2rad/s respectively. A MATLAB-
Simulink toolbox is used to implement the algorithms. The
robot expects the translational and rotational speeds as inputs;
therefore, integrators were included in the algorithms. The
robot requires updates every 70ms, a timeframe deemed
adequate for the application of all three methods, ensuring a
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FIGURE 9. Real-time position tracking.

TABLE 3. Root mean square for different strategies: Real-time
experiment.

fair comparison in real-time scenarios. In the first experiment,
we aim to drive the robot to follow the eight-shaped trajectory
given in (21) where P = 50. The initial position is chosen to
be q0 = [−0.15, 0.1, 0, 0, 0, 0]. The penalization matrices
for NMPCPROP are set as follows:

Rk = diag(4, 4, 4),

Qk = Q0 = diag(100, 100, 100, 5, 5, 8),

and for NMPCIP and NMPCAS, the penalization matrices
are selected as:

Rnk = diag(1, 1, 1),

Qnk = Qn0 = diag(750, 750, 750, 10, 10, 10).

Figure 8 shows the real-time tracking performance of the
faster convergence compared to the other methods which
take a longer to converge due to the higher computational
time required in the transitory phase. Position tracking and
velocity tracking are given in Figures 9 and 10 respectively.
While the position tracking performance of three methods
was similar, the superiority of the NMPCPROP is clear in
speed tracking thanks to its computational advantage over the
other two methods. The position tracking errors are displayed
in Figure 11 where the faster convergence of NMPCPROP
can be seen. Table 3 provides RMS errors from real-time
experiments. The results highlight that NMPCPROP reduced

FIGURE 10. Real-time velocities tracking.

FIGURE 11. Real-time position tracking errors.

tracking errors by approximately 50% compared to NMPCIP
and NMPCAS. Additionally, NMPCPROP achieved faster
convergence and better velocity tracking, validating its suit-
ability for real-time control applications.

In the second experiment, the aim is to track an
eight-shaped trajectory with time-variant orientation given as
follows:

xd = 0.5 sin((4π/P)t),

yd = 1.5 sin((2π/P)t),

θd = atan (ẏd/ẋd ) + kπ, k = 0, 1,
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FIGURE 12. Tracking of the eight-shaped trajectory (time-variant
orientation).

FIGURE 13. Position tracking (time-variant orientation).

vxd =

√
ẋ2d + ẏ2d , vyd = 0, (23)

where P = 50. The initial states are set to:

q0 = [0.2, 0, π/2, 0, 0, 0]. (24)

Figure 12 illustrates the performance of the three meth-
ods when tracking the eight-shaped trajectory. NMPCPROP
demonstrated faster convergence compared to NMPCIP
and NMPCAS. Furthermore, Figures 13 and 14 depict the
positions and speeds tracking, respectively. The superior
performance of NMPCPROP is evident, particularly in the

FIGURE 14. Velocities tracking (time-variant orientation).

FIGURE 15. Position tracking errors (time-variant orientation).

velocities, where it exhibits better tracking compared to the
other two methods.

The position tracking errors are presented in Figure 15,
and the RMS errors are given in Table 4. It is evident that
NMPCPROP not only attained faster convergence but also
maintained comparable position errors with the other two
methods.

In our real-time experiments we encountered several prac-
tical challenges: transient deviations resulting form floor
irregularities and wheel slip, occasional control lag due to
solver convergence limits, and degraded state estimation
caused by sensor noise, bias, and latency. To address these
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TABLE 4. Root mean square for different strategies: Real-time
experiment (time-variant orientation).

issues, this work can be extended to incorporate robust
or adaptive control schemes that compensate for parameter
shifts, automate filtering and outlier rejection to improve
sensor data quality, and allow real-time adjustment of opti-
mization settings. These enhancements would further narrow
the gap between idealized simulation and real-world deploy-
ment, ensuring reliable trajectory tracking under realistic
operating conditions.

V. CONCLUSION AND FUTURE WORK
In this study, a NMPC controller for the trajectory track-
ing problem of mobile robots was presented. The proposed
controller used RCPROP algorithm to solve the optimization
problem leading to rapid convergence, precise tracking, and
low computational burden. The capability of this algorithm
to solve constraint problems during online optimization was
successfully demonstrated.

To validate the performance of the proposed controller,
comparison studies were conducted against benchmarkmeth-
ods, namely Interior Point and Active Set. Simulation and
experimental results proved that NMPCPROP outperformed
both NMPCIP and NMPCAS in terms of computational
efficiency, convergence speed and in real-time tracking per-
formance. The results of this study highlighted the superiority
of NMPCPROP in practical applications.

However, some limitations remain. While the controller
achieves high tracking accuracy and efficiency under nominal
conditions, its robustness to model uncertainties and external
disturbances has not been extensively evaluated. Moreover,
the current parameter tuning was done manually, which may
limit adaptability and scalability across different operating
scenarios. These limitations highlight opportunities for fur-
ther improvement.

In future work, we aim to evaluate the robustness of the
proposed method and explore the use of automated tuning
algorithms to optimize the tuning process.
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