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Abstract: This paper examines strategies aimed at improving search procedures in multi-
modal, low-dimensional domains. Here, low-dimensional domains refers to a maximum of
five dimensions. The present analysis assembles strategies to form an algorithm named
S-EPSO, which, at its core, locates and maintains multiple optima without relying on exter-
nal niching parameters, instead adapting this functionality internally. The first proposed
strategy assigns socio-emotional personalities to the particles forming the swarm. The anal-
ysis also introduces a technique to help them visit secluded zones. It allocates the particles
of the initial distribution to subdomains based on biased decisions. The biases reflect the
subdomain’s potential to contain optima. This potential is established from a balanced
combination of the jaggedness and the mean-average interval descriptors developed in the
study. The study compares the performance of S-EPSO to that of state-of-the-art algorithms
over seventeen functions of the CEC benchmark, and S-EPSO is revealed to be highly com-
petitive. It outperformed the reference algorithms 14 times, whereas the best of the latter
outperformed the other two 10 times out of 30 relevant evaluations. S-EPSO performed best
with the most challenging 5D functions of the benchmark. These results clearly illustrate
the potential of S-EPSO when it comes to dealing with practical engineering optimization
problems limited to five dimensions.

Keywords: particle swarm optimization; multimodal domains; multiple optima; multimodal
optimizer; no niching; low dimensionality

1. Introduction
Solutions to practical engineering problems often lie in multimodal and multi-optima

landscapes [1]. Although identifying an efficient answer to a practical problem generally
only requires a single good solution, having access to several sets of potential configurations
allows designers to make completely enlightened selections among solution groups possibly
offering nonessential but beneficial characteristics.

Moreover, numerous contexts, such as those defined by mechanical design problems,
entail intricate interactions among variables [2], resulting in complex optimization tasks.
Consequently, the ensuing calculation burdens and associated simulation times still impose
limitations on the number of optimization variables. The following publications present
investigations on the optimization of mechanical systems [3–10]. They indeed provide a
good depiction of the context. For instance, Refs [3,4] evaluate the performance of various
metaheuristic algorithms covering typical mechanical problems. The systems they examine
involve between two and eleven design variables. The research in [5–9] also considers
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a variety of typical mechanical systems and problems. These include the design of gear-
boxes [5,6], springs, and welded joints [7], among others, and aim to optimize grinding
operations to minimize production costs and maximize surface quality [7]. More specif-
ically, Ref. [7] proposes an algorithm targeting the optimization of real-life applications.
These recent papers also set out to identify optimal parameter settings in laser cutting
operations [8] and to define optimal gear-shifting strategies minimizing fuel consumption
in internal combustion engine vehicles [9]. Most importantly, regardless of their complexity,
all these optimization studies involve not more than five variables.

The number of variables has an even greater impact in optimization jobs involving
contact simulations, such as the optimization of gear tooth profiles or bearing roller profiles,
since they can quickly become very computation-intensive [10]. Optimization problems
involving such mechanical elements are often limited to fewer than five variables.

Since the current literature indicates that they define a significant proportion of the
everyday optimization jobs in engineering, and because improving the dedicated optimiza-
tion methods remains an open research challenge, this article focuses on configurations of
this type, which may be designated as multimodal problems of relatively low dimensional-
ity. The work develops and analyses some strategies designed to improve the performance
of search procedures over multimodal landscapes comprising multiple optima. While all
the strategies considered can be individually adapted and integrated within any existing
algorithm, the exercise of assembling them results in an optimization algorithm that is
highly competitive.

1.1. Research Question

A recognized approach to help search procedures form stable subpopulations around
potential multimodal domain zones integrates niching ability into standard search algorithms [1].
For instance, when applied to the particle swarm optimization algorithm (PSO), this strategy
leads to efficient adaptations [1]. However, most often, it results in methods requiring prede-
termined information on the landscape structure to define their niching control parameters [1].
Their ultimate efficiency thus depends on the quality of pre-existing descriptions.

In other words, the search performance of many algorithms is subject to specific
constraints which control individual freedom, namely, a niche radius or a guided interaction
with closest neighbours.

On the other hand, the question may be asked as to whether a similar efficiency could
be obtained without restricting the freedom of the agents. Rather than imposing restrictions,
could giving particles unique abilities or personalities and allowing them to perform
specialized search operations be a more fruitful approach? The terms individual and agent
refer to a candidate solution. In PSO, particles are considered intelligent individuals. This
paper adopts the term particle to refer to any type of agent, regardless of the metaheuristic
being considered.

The Grey Wolf algorithm [11] is a good example of a model involving specialized
particle types. The strategy underlying this algorithm divides the particle groups, each one
respecting a ruled behaviour. Similar strategies have been integrated into various models,
with the Whale optimization algorithm published in [12] by the same authors being a good
example. The most interesting feature brought in by these models is allowing a distinct
and complementary contribution by the particle groups.

Nevertheless, the fact is that the distinct role of the particle does not emanate naturally
from its personality in a free context, but rather, is imposed via specific tasks. Hence, the
task definition is somewhat more related to the nature of the search space, which is a
unique optimum landscape in [11,12]. Therefore, it may be assumed that changing the
configuration to a multiple optima domain would require a significant restructuring of
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the task sets. Conversely, one may imagine that integrating specific characteristics into the
personality of the particles themselves would allow them to develop specialized search
responses or behaviours that are self-adaptable to landscape changes.

1.2. Research Contribution and Paper Organization

To explore this avenue and eliminate the need for predefined niching parameters to
locate and maintain multiple optima, the present paper develops the following strategies:

1. The first endows the particles with socio-emotional personalities. Based on an analogy
pertaining to socio-emotional relations prevailing during the mammal reproduction period,
the proposed approach introduces three particle types with specific personalities. Among
these, some male particles are intrepid and explore the landscapes, while others are more
prudent and preserve the found optima. The interactions between the socio-emotional
particles give the swarm a natural ability to locate and maintain multiple optima and
completely eliminate the need for predefined niching parameters.

2. The second strategy introduces a technique to help the particles visit secluded zones.
This technique apportions the particles of the initial distribution to subdomains
based on biased decisions. The biases reflect the subdomain’s potential to contain
optima. The procedure establishes this potential from a balanced combination of the
jaggedness and the mean-average interval descriptors put forward in the study.

3. In addition, to control the number of particles required to populate the subdomains, the
proposed investigation reduces the domain dimensionality based on a sensitivity index.

4. To boost the performance of the particles, the investigation also examines an economical
strategy exploiting the information provided by contours formed by surrounding particles.

After the literature survey presented in Section 2, the following sections detail the
four strategies mentioned above (Sections 3–5). Section 3 begins with the pseudocode of
the complete optimizer to show how combining these approaches leads to the proposed
algorithm. This algorithm is designated as the Socio-Emotional Particle Swarm Optimizer
or S-EPSO. Finally, Section 6 compares the performance of S-EPSO to those of two state-of-
the-art algorithms over seventeen multimodal functions with multiple optima. Section 6 also
demonstrates the S-EPSO’s ability to deal with real-world constrained optimization problems.

2. Related Work Survey
The problem of searching for optimal solutions over multimodal landscapes is certainly

not new, and the literature on the topic is rich. Published more than a decade ago, Ref. [1]
offers a detailed description of an already great literature on the subject. Since that review
continues to be valid, the present paper does not therefore repeat the discussion.

In Ref. [1], Li integrated a ring neighbourhood topology into PSO and demonstrated
that restricting the particle interactions to some close neighbours leads to stable niche
formation without any prior knowledge of the searched space. In particular, the control
of the particle interactions eliminates the need for a pre-established niche radius. This
result represents a clear and strong advantage. Essentially, the algorithm developed in [1]
responded to the following:

(1) Require no specification of niching parameters;
(2) Must be able to locate and maintain multiple optima;
(3) Must be able to locate multiple global and local optima;
(4) Have low computational complexity.

The validation of the algorithm performance in [1] includes fourteen test functions.
The validation procedure compares the proposed algorithms to high-performing niching
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PSO variants. The comparison is mainly based on a success rate measure (SR) defined as
shown in Equation (1).

SR = number o f runs f inding all optima/number o f runs (1)

Globally, the reported SR values are very high for the easiest functions. On the other
hand, while SR remains over 90% for the ring topology algorithms, it drops significantly
with the 3D case for the 2D Shubert function. When considering the Vincent function,
practically all algorithms included in the analysis performed poorly, even in the 2D case.

Almost simultaneously, Epitropakis et al. [13] presented an alternative approach
developed for the Differential Evolution (DE) algorithm and the mutation schemes
DE/rand/1 and DE/rand/2 [14–16]. The authors proposed the two new mutation opera-
tors, DE/nrand/1 and DE/nrand/2, designed to improve the ability of the DE algorithm
to converge toward and maintain multiple optima, over multimodal landscapes. Essen-
tially, the proposed mutation variants incorporate the nearest neighbour influence into
the mutation operators to force the particles to explore their neighbourhood. As in the
case of the ring topology with PSO, the incorporation of neighbour-mutation operators to
DE eliminates the need for predefined niching parameters. The authors of [13] used eight
2D multimodal functions to validate the resulting algorithms. The validation procedure
comprised two measures: SR and the peak ratio (PR), defined as written by Equation (2):

PR = number o f peaks f ound/actual number o f peaks (2)

The validation shows that the two new versions of the DE algorithms (DE/nrand/1-
2/bin) compare rather well with the five other algorithms included in the process. Neverthe-
less, the results show that all the tested approaches demonstrate significant difficulties with
the Shubert and Vincent functions. However, the new algorithm DE/nrand/2 provides
good performance with the Shubert function. On the other hand, none of the algorithms
performs well with the Vincent function.

Later, Ref. [17] introduced a 20-function benchmark to evaluate and compare niching
methods. The benchmark included simple 1D and 2D functions, the Shubert and Vincent
(2D and 3D) functions, and more complex composition functions (2D up to 20D). In addition
to SR and PR, the authors suggested the convergence speed as a performance measure.
The convergence speed corresponds to the Average number of Function Evaluations (AFE)
required to identify all global optima at a selected accuracy level ϵ. Equation (3) formulates
the measure:

AFE = ∑NR
i FEi/NR (3)

where FEi is the number of Function Evaluations required by a run i, and NR denotes the
number of runs. Ref. [17] also presented the performance of two baseline models: the
DE/nrand/1 and the Crowding DE/rand/1 algorithms developed in [13,18], respectively.
Moreover, instead of prescribing any population size, the authors preferred a Maximum
number of Function Evaluations (MFE).

As in the previous studies [1,13], the obtained results show good performances of
the algorithms with the simple functions, and less successful predictions with the Shubert
and Vincent functions, even with the 2D versions. When considering the 2D versions of
the composition functions, DE/nrand/1 slightly improves its prediction quality, whereas
Crowding DE/rand/1demonstrated a significant effectiveness decrease.

More recently, Wang et al. [19] published a performant version of the niching DE
algorithm. The procedure essentially incorporates three techniques within the base algorithm:
1- An automatic niching method that eliminates the need for pre-decided cluster characteristics
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and that helps detect multiple optima. A dimensional reduction procedure also helps this nich-
ing method deal with high-dimensional domains; 2- A contour prediction strategy exploiting
the available information to improve the convergence rate; and 3- A local search designed to
enhance the result accuracy. The authors apply the final procedure to the twenty functions
of the Ref. [17] benchmark, and compare its performance with those of state-of-the-art
algorithms, including the winner of the CEC 2015 competition published in [20]. This last
model depends on several interconnected particle swarms simultaneously optimizing local
subdomains [20]. The results presented in these two references demonstrate performance
that is largely improving the results described above for the Shubert and Vincent functions.
Indeed, the performance of the algorithms remains very good overall, up to the 5D version
of the most challenging composition functions of the benchmark.

The following sections show how the combination of the proposed strategies meets
the requirements provided in the list of specifications above extracted from [1].

3. Particle with Socio-Emotional Behavior and Model Basis
An efficient search procedure must preserve an appropriate balance between ex-

ploration and exploitation over the complete process evolution [21,22]. In multimodal
optimization, the situation is even more intricate; at the search beginning, the procedure
must simultaneously provide a sufficient level of exploration to avoid premature conver-
gence and preserve the identified promising zones. Later in the progression, the model
must explore all optima neighbourhoods and ultimately gather the particles in multiple
clusters at the different positions of the global optima. The specific behaviour required for
a successful operation may be ascribed to different particle personalities interconnected via
a particular sociological attraction between them.

3.1. Pseudocode of the S-EPSO Algorithm

The present section corresponds to point 1 of the introduction. To enhance the descrip-
tions, it begins with Figure 1, which describes the pseudocode of the S-EPSO algorithm.
In order to facilitate the duplication of the model or parts of it, the pseudocode is volun-
tarily extensive. The presentation divides the algorithm into two parts. Part A groups the
Initiation steps, while Part B describes the Computation steps. Numbers also mark the
beginning positions of operation groups.

As already indicated, the proposed model draws an analogy to the socio-emotional
dynamic prevailing during mammalian reproduction. The system presented is a strong
simplification of real socio-emotional interactions. It assumes a society comprising one
female personality type searching for the best male partners, and two male personality
types searching for female partners. Each male type also has a specific charisma score.
The sage male type searches for the best females in his close neighbourhood, while the
adventurous male type prefers to search for the best female far from his neighbourhood.

Adventurous males tend to have shorter lifespans, while sage males generally live
longer. However, more resilient adventurous males may transition into sage roles, whereas
frail sage males may die prematurely. Additionally, adventurous males often exhibit greater
charisma, making them more attractive to females compared to sage males.

In addition, the particle community evolves over landscapes where each other’s
view may be affected by environmental factors, such as the fog in the Firefly algorithm
introduced by Yang in [23] for unimodal domains.

From a more technical perspective, the quality of a female or a male refers to their
response to the objective function. Thus, a strong adventurous male is in a good position
in the domain, whereas a frail sage male is located at a position in the domain where the
function value is less competitive than the values found by the other males.
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Pseudocode 1—S-EPSO algorithm 
Part A Fix N,MaxNI, as well as 𝜁and 𝜅 

Calculate Vr 
Select 𝛾 ∗, a and m and set the male charisms Ch as well as 𝜒 
Set S and define the subspaces 
Generate uniform particles distributions over SD subspaces  
Calculate the domain diagonal length le 
Define initial location xi and velocity vi for each dimension d of the N particles 

Part B 
 

for 1 t=0 to MaxNI (iteration loop) 
for 2 i=1 to N (particle loop) 

if the particle position flag =changed and if the particle is not global best 
Evaluate O(xi)t 

Set the male position flag to unchanged 
Determine pbest i 
i = i +1 

end if 
end for 2 
Determine the new global best particle 

1: 
 

if 𝑡 > 𝜒𝑀𝑎𝑥𝑁𝐼 𝑎𝑛𝑑 𝑡 ≤ 12 ሺ1 + 𝜒ሻ𝑀𝑎𝑥𝑁𝐼  
Eliminate Vr short-lived males 
Calculate the new particle number N* 

endif 
2: 
 

if first iteration (t=0)  
Generate weighted particle distributions over 𝑆𝐷∗subspaces (Pseudocode 2-Fig.5) 

end if 
 
3: 

else 
if Scrt = improved particles/added function evaluations < threshold  

Identify more performant positions from contours (Pseudocode 3- Fig.10) 
end if  

4: 
 

for 3 i=1 to 𝜁𝑁 (female particle loop) 
Set the female position flag to changed 
Use Eq. 9 to calculate the female quality 

5: 
 
6: 
 

for 4 j= 𝜁𝑁 + 1 to N* (male particle loop)  
Use Eq. 9 to calculate the male quality 
If the male quality > female quality 

Use Eq.7(a) to calculate the male appealing quality 
Determine the male largest appealing quality 

endif 
end for 4 

end for 3 
7: 
 
8: 
 
9: 
 

for 5 i= 𝜁𝑁 + 1 to N* (male particle loop) 
Use Eq. 9 to calculate the male quality 
for 6 j= 1 to 𝜁𝑁 (female particle loop)  

Use Eq. 9 to calculate the female quality 
If the female quality > male quality 

Use Eq.7(b) for sage males (if i<(1-κ)(1-ζ)N) or Eq.7(c) for adventurous 
males (if i>(1-κ)(1-ζ)N) to calculate the female appealing quality 
Determine the female largest appealing quality 
Set the male position flag to changed 

endif  
end for 6 

end for 5 
10: if the particle position flag =changed and if the particle is not global best 

for 7 d=1 to D (dimension loop) 
Use Eq. 8 to calculate new velocities vid(t+1) 
if |vid(t+1)| > domain length ld use Eq.10 for correction  
Use Eq. 5 to calculate new positions xid(t+1)  
if xid(t+1) outside domain boundary use Eq.11 for correction  

end for 7 
endif 

end else 
end for 1 

Figure 1. S-EPSO pseudocode.
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3.2. Algorithm Basis and Socio-Emotional Particle Personalities

The particle types provide three levels of exploitation/exploration: the less mobile sage
males provide more exploitation; the adventurous males offer high levels of exploration and
are responsible for detecting multiple optima.; the females provide an intermediate level of
exploitation/exploration, and are responsible for transferring the good spots located by the
adventurous males to the sage males.

The haziness (designated below as γ∗) introduced into the process promotes the
exploitation of the domains and forces both the females and sage males to better probe
their neighbourhoods. In clear, the interactions between the females and sage males in a
hazy environment introduce a natural formation of niches in the vicinity of optima. The
particles’ attractiveness (β defined by Equation (7)) controls these interactions. The swarm
is endowed with an ability to locate and maintain multiple optima without any predefined
niching parameters. On the other hand, the landscape haze does not affect the adventurous
male vision. Besides, their shorter life allows for reducing the exploration level approaching
the end of the search evolution.

Although the preceding description appears to veer significantly from that of existing
models, it remains close to the PSO-local-best versions formulated to generate multiple
niches around optima [1].

Indeed, the core of the proposed algorithm corresponds to the PSO-local-best formula-
tion. Equations (4) and (5) describe this PSO version. At each iteration t + 1, the model tries
to move a particle i closer to an optimum of the D dimensional domain. The progression of
the particle depends on a memory term specified by the best position pbest i it has visited
thus far, and the location lbest (t) of the best particle of its neighbourhood identified during
iteration t. The influence of these contributors is adjusted by random factors. The model
formulation also integrates the inertia of the particles. Equation (4) translates this depiction
and expresses the velocity vid(t+1) at iteration t + 1 of particle i along each dimension d of
the D domain. Parameter W represents the constant inertia weight of the previous advance
of the particle (0 ≤ W ≤ 1), c1 and c2 are acceleration constants (≈2), and ε1(t) and ε2(t)
are random numbers between 0 and 1. Equation (5) establishes the new position xid(t+1) of
particle i along dimension d:

vid(t+1) = Wvid(t) + c1ε1(t)

(
lbest id − xid(t)

)
+ c2ε2(t)

(
pbest id − xid(t)

)
(4)

xid(t+1) = xid(t) + vid(t+1) (5)

The first and last terms of the right-hand side of Equation (4) represent the particle
record, while the middle term introduces the particle’s social interactions with the swarm.
This middle point is therefore the position where the particle’s socio-emotional personality
should be defined. It should also introduce the particle’s ability to navigate and locate
other particles in a hazy space.

In the Firefly algorithm published in [23], Yang related the attractiveness β of a particle
or a firefly j to the intensity of its light emission I detected at a distance rij by a second firefly i,

where rij is the Euclidian distance between firefly i and firefly j rij =

√
D
∑

d=1

(
xjd − xid

)2
. The

light intensity at the source I0 of firefly j reflects its response to the objective function O(xj).

Thus, in a foggy landscape defined by a light absorption coefficient γ, I(r) = I0e−γr2
gives

I at a distance r from the source particle. Hence, when rewritten in terms of attractiveness,
this expression becomes β(r) = β0e−γr2

, where β0 is the particle’s attractiveness at the
source. Low values of γ describe clear skies with the firefly being highly visible, while high γ

values lead to a reduction of the visibility or attractiveness of the firefly. Finally, Firefly establishes
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the position change of particle i attracted by a brighter particle j, as indicated by Equation (6). In
this equation, Rf denotes a random contribution driving the domain exploration:

(xid)
′ = xid (t) + β(r)

(
xjd (t) − xid (t)

)
+ R f (6)

Although the original Firefly version was designed to operate on unimodal land-
scapes and to locate a single global optimum, the attractiveness definition proposed in [23]
provides the algorithm with a natural clustering tendency. Thus, the strategy proposed
in the present study adopts a similar approach to define the particles’ socio-emotional
personalities and to replace the social term in Equation (4).

Equation (7a) formulates the attractiveness of a male to a female particle (βfm), while
Equation (7b) gives the attractiveness of a female for a sage male (βsmf). Finally, Equation (7c)
formulates the attractiveness of a female to an adventurous male particle (βamf):

β f m(r) = exp

(
−
(γ∗

Ch

)( r
Le

)2
)

(7a)

βsm f (r) = exp

(
−γ ∗

(
r
Le

)2
)

(7b)

βam f (r) = (1 − a) sinm
(

πr
2Le

)
+ a (7c)

In Equation (7), r is the Euclidian distance and γ∗ is the medium haziness coefficient
equivalent to the light absorption coefficient in Firefly. Moreover, as indicated in [10], since
γ∗ is a dimensionless variable, to respect the principle of dimensional homogeneity, r, which
is the particle separation distance should also adopt a dimensionless form. This variable
must be adapted to the probed landscape. The diagonal of the D-dimensional domain
(Le) is probably the best variable to use to define the dimensionless distance (Figure 1,
Part A). Parameter Ch in Equation (7a) denotes the charisma of a male type. A value
greater than one augments the visibility of a particle in hazy environments. Equation
(7c) shows that the visibility of the female particles to the adventurous male type is not
affected by the landscape haze. Equation (7c) produces values ∈ {(1 − a) to 1} which
increase with the dimensionless distance r

Le
. Factors a and m are two constant parameters.

Parameter a ∈ {0 to 1} introduces an offset of the function. For example, a = 0 results in
0 attractiveness for close female particles (r ∼= 0), whereas a = 1 generates an attractiveness
of 1 for all female particles regardless of r. On the other hand, m controls the curvature of
the attractiveness function. It may be set at any amplitude ∈ {0 to ∞}. The recommended
range, however, is {0 to 5}. Figure 2 illustrates the dimensionless attractiveness established
with Equation (7); Figure 2a shows the attractiveness of males with a charism Ch = 2
calculated for females by Equation (7a), as well as the female attractiveness calculated for
sage males with Equation (7b), while Figure 2b presents the female attractiveness given
by Equation (7c) for adventurous males. The dimensionless distance r

Le
ranges from 0 to 1.

For Equations (7a) and (7b), γ∗ is set at three values, namely, 0.5, 50, 1000 and 10,000, while
for Equation (7c), a is set at 0 and 0.2, and m at 0.5, 1.5 and 5.

Figure 2a shows the impact of γ∗ as well as the accrued visibility of males with a
charisma greater than one. For the highest γ∗ included in the graph, the male charisma has
no practical effect, and the females and sage males demonstrate similar attractiveness levels.
Finally, Figure 2b clearly shows the low attractiveness of females close to an adventurous
males as well as the role of a that sets the minimum attractiveness level.
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Figure 2. Socio-emotional male personalities: (a) Equations (7a) and (7b) and (b) Equation (7c).

Equation (8) writes the formulation proposed to replace Equation (4) in the proposed
algorithm. In this formulation, the variables defined previously remain unchanged, whereas
βij is calculated from Equation (7) for each particle type. When introduced in Equations (5)
and (8) establishes the particles’ evolution:

vid(t+1) = Wvid(t) + ε1(t)βij
(
rij
)(

xjd(t) − xid(t)

)
+ c2ε2(t)

(
pbest id − xid(t)

)
(8)

Equation (8) (Figure 1, Part B-10) maintains the influence of the memory and the inertia
of particle i in the calculation of its progression, while the attraction of a single particle
j defines the social term. Particle j represents the most alluring particle detected by i at
a distance rij (Figure 1, Part B-6 and 9). The appealing quality of j for i corresponds to
the combination Q0βij, where Q0 represents the quality of a particle and is similar to I0

in Firefly. It thus results from the particle’s response to the objective function. Therefore,
among all particles j satisfying the condition (Q0j > Q0i), the most alluring one for particle i
is the one maximizing Q0βij.

Q0(Fv) = k0
(−Fv

k1
)

(9)

This approach also helps avoid potentially fruitless function evaluations. Indeed, any
male particle i unable to detect a female partner j offering a quality Q0j > Q0I stays still.
Conversely, to maintain a minimal evolution of the swarm, females in the same situation
simply move as a result of their impetus introduced in Equation (8) by the memory and the
inertia terms.



Algorithms 2025, 18, 341 10 of 35

In a maximization problem, I0 may be set equal to the fitness value (Fv) [23]. However,
the present study considers minimization problems. For fitness values Fv ≥ 0, the light
intensity may be calculated as I0 = 1

1+Fv [10]. This formulation is nonetheless not valid for
Fv < 0. Hence, the literature offers few alternatives. For example, [24] suggests that when
Fv < 0, I0 = 1 + |Fv|.

To avoid introducing any abrupt modifications during the conversion of the fitness
value into attractiveness, and thus to the resulting impact on the particle interactions, it
may be suggested that an appropriate formulation should describe a low-order function,
ensuring, a least, a continuous second derivative. The combination of the above two
formulas for I0 as proposed in [24] does not respect this condition. Thus, the present study
instead suggests determining Q0 using Equation (9), where k0 and k1 are two constants,
respectively set at 1.5 and 20.

Figure 3 draws Equation (9) over a [−100 to 100] range of Fv. This plot shows that
while the conversion induces a beneficial promotion of the low fitness values, it does not
produce any strong slope changes.

0

2.5

5

7.5

10

-100 -50 0 50 100

Q
0

Fitness values - Fv

Figure 3. Equation (9)-Particle quality evaluation.

3.3. Life Expectancy of the Particles

Besides their respective personalities, the two male types also have different lifespans.
The adventurous males are responsible for the domain exploration; therefore, their con-
tribution should decrease toward the end of the search process. The common approach
is to reduce the exploration level by controlling the search process itself. However, in
the proposed model, this control is induced by removing short-lived particles, mainly the
adventurous males.

Nevertheless, it is crucial that the reduction in the number of males does not lead to a
decline in the overall quality of knowledge. Therefore, the elimination process begins with
those offering the lowest quality. However, adventurous males may become sages if they
find a particle of lower quality to replace. In this way, they can preserve their positions,
while the weakest potential solutions simply vanish.

After establishing the proportion of the total particle number (N) belonging to the female
(ζ) and male (1 − ζ) groups, as well as the proportion of the adventurous (κ) and sage (1 − κ)
males forming the second particle group, the process sets the life expectancy control.

This initial proposal first sets the minimum life expectancy of the short-lived males at
a fraction (χ) of the total pre-established maximum number of iterations (MaxNI). After
χMaxNI iterations, a group of κ(1 − ζ)N short-lived males start dying (Figure 1, Part B-1).
This period extends over half of the remaining iterations, or 1

2 (1 − χ)MaxNI iterations. The

males vanish at a constant rate Vr = 2κ(1−ζ)N
(1−χ)MaxNI . Thereafter, the remaining 1

2 (1 − χ)MaxNI
iterations involve ζN females and (1 − κ)(1 − ζ)N sage males exploiting the identified
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most promising zones and gathering in clusters around the optima. During this last period,
the exploration capacity of the females decreases, and their exploitation ability increases to
reach those of the sage males. The adventurous male disappearance eliminates both the
high and intermediate exploration levels.

3.4. Boundary Crossing

Along with the particle interactions, the method adopted to handle boundary crossings
occurring during the progression of the particles can strongly affect the search performance
of an algorithm. The literature offers numerous procedures to deal with this aspect, with
the random, the reflecting and the absorbing methods being some of the most popular
approaches [25]. These strategies present some drawbacks, as discussed in [25]. In addition,
in algorithms such as PSO, a boundary-crossing correction affects both the particle position
(Equation (5)) and its velocity (Equation (4)). Therefore, to prevent cascading adjustments,
the authors of [25] suggested that only correcting the particle position and omitting velocity
adjustments should be sufficient. Although the proposed algorithm involves a structure
equivalent to that of PSO, the approach adopted in the present context controls the velocity
and also adjusts the position of the particles crossing a domain boundary.

First, the proposed scheme limits the velocity amplitude, as indicated in Equation (10)
(Figure 1, Part B-10). In Equation (10) Ld denotes the domain length along dimension d.
More importantly, however, to grant the model the ability to concurrently detect multiple
optima located close to and exactly on the boundary, as well as distributed across the
search space, efficiently, the adopted correction relocates the particles reaching outside a
dimension d of the search domain at a random position between their starting position and
the boundary. Figure 4 illustrates this description, while Equation (11) formulates it, where
ε3(t) is a random number between 0 and 1 and ld is the coordinate of the boundary along
the d-axis:

vid(t+1) =

{
Ld i f vid(t+1) > Ld

−Ld i f vid(t+1) < −Ld
(10)

xid(t+1) = xid(t) + ε3(t)

(
ld − xid(t)

)
(11)

boundary

xid(t)

dld

xid(t+1)outside
position

Figure 4. Equation (11)-Particle position correction.

3.5. Additional Information

The algorithm described above is first designed to operate over multimodal landscapes
having multiple optima. Larger γ∗ values such as 1000 or 10,000 (Figure 2a) restrain the
sage males’ mobility and force a clustering response. However, the same algorithm should
also perform very well over single optimum domains. Indeed, low values of γ∗ such as 0.5
practically eliminate the mobility restrictions imposed on the sage males (Figure 2a), and
consequently, on the females. They move freely and are thus able to gather around a single
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position. On the other hand, the adventurous males still maintain high exploration levels.
Obviously, γ∗ renders the algorithm completely versatile.

As already indicated, multimodal landscapes often contain optima in zones close
to their boundaries. Hence, regardless of the adventurous males’ agility, the restriction
imposed on the sage males by higher γ∗ may prevent them from accessing particular zones
of a search domain. The following sections present a complementary strategy designed to
improve the model probing efficiency.

4. A Strategy Based on a Segmentation of the Search Domain’s
When the swarm contains particles with constrained mobility, the role played by the

initial particle becomes more important. Indeed, it may become difficult to attract sage
males to secluded zones briefly visited by peripatetic males, since the attraction must first
transit via female particles. Thus, to ensure a minimal coverage of the domain, a uniform
initial distribution appears to be the foremost option. However, depending on the particular
number composing the swarm, this approach may result in particle positions still too far
from the domain limits. Nevertheless, the uniform initial distribution approach may be
improved by a segmentation of the search space.

4.1. Problem Description

The present section refers to point 2 of the introduction. It describes the procedure
introduced in Part B-2 in Figure 1. Figure 5 presents the corresponding pseudocode.
The illustration again divides the algorithm into two parts. Part C corresponds to the
dimensionality reduction steps, while Part D describes the Distribution tasks. Numbers
also mark the beginning positions of the operation groups.

It is worth mentioning here that Part D-4 decides the particle type based on the
generation order: the females compose the first segment of the distribution, the sage males,
the second, and the intrepid males, the last. Since the segment order in the distribution
does not change during the iterations, it tags the particles with their precise types.

The proposed technique divides the domain into S regular segments along each
D dimension. The procedure first uniformly apportions the particles to the resulting
SD subdomains. Then, it uniformly distributes them over each subdivision (Part A in
Figure 1). Depending on the number of particles and the domain dimensions, the distri-
bution process may produce some remaining individuals. Thus, at the end of the process,
these remainders are individually assigned to random positions of the landscape.

While this uniform distribution operation may significantly help the scan evolution, it
remains insufficient to guarantee an always fully successful search. Rather, it serves as the
first step in the preparation of the initial distribution of the individuals over the landscape.
Moreover, in practice, any augmentation of the probed domain dimensionality will strongly
affect this strategy. The authors of Ref. [19] faced a similar situation with the automatic
niching ability of their algorithm.

To solve the problem, the authors of [19] first reduced the domain dimensionality
via a Principal Component Analysis (PCA). Since the domain segmentation introduced
herein and defined by the SD subdomains would rapidly require unmanageable numbers
of particles, the second step (Part C in Figure 5) aims to reduce the problem dimensionality.
It should reduce the number of dimensions considered during the segmentation from
D to D*. Therefore, instead of SD, the operation will involve SD* subdomains. Based on the
Ref. [19] suggestion, the maximal value for D* here is three. Thus, if D ≤ 3, then D∗ = D,
otherwise D∗ = 3.
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Pseudocode 2—Weighted particle distribution algorithm 
Part C for 8 i=1 to N (particle loop) 

Use Eq. 17-b to calculate 𝜇𝐷  
end for 8 
for 9 d=1 to D (dimension loop)  

for 10 i=1 to N (particle loop) 
Calculate the vd distinct particle positions along d 
Use Eq. 23 to calculate 𝐹ത𝑣𝑑𝑘  

end for 10 
Use Eq. 24 to calculate 𝑆መ𝑒𝑑  

end for 9 
Identify the 𝐷∗ dominant dimensions 
Eliminates divisions along the D-D* dimensions 
Relinks particles to right subdomains 

Part D 
 
 
1: 

for 11 i=1 to N (particle loop) 
Use Eq. 19-b to calculate 𝜎𝐷 ,𝑎𝑛𝑑 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 

end for 11 
Use Eq. 15 to calculate 𝐷𝑓  

2: for 12 i=1 to 𝑆𝐷∗(subspace loop) 
for 13 j=1 to 𝑛𝑘  (particle loop) 

Use Eq. 12 and Eq. 13 to calculate the 𝐽𝑢 ,𝑘  
Use Eq. 16 to calculate the 𝐹𝑣തതതത𝑢 ,𝑘  

end for 13 
end for 12 
for 14 i=1 to 𝑆𝐷∗(subspace loop) 

Use Eq. 14 to calculate the 𝐽𝑘   
Use Eq. 17-a to calculate the 𝜇𝑘  

end for 14 
3: for 15 i=1 to 𝑆𝐷∗ (subspace loop)  

Use Eq. 19-a to calculate the 𝜎𝑘  
end for 15 
for 16 i=1 to 𝑆𝐷∗ (subspace loop) 

Use Eq. 18 to calculate the 𝐼𝑢 ,𝑘   
end for 16 

4: for 17 i=1 to 𝑆𝐷∗ (subspace loop) 
Use Eq. 20 to calculate the 𝐼𝑘   
Use Eq. 21 to calculate the 𝑊𝑘   

end for 17 
Allot the particles to the 𝑆𝐷∗ subspaces based on the 𝑊𝑘  
Generate particle distributions (uniform along the 𝐷∗dimensions and random 
along (𝐷∗ − 𝐷) dimensions) respecting this order:  the  𝜁𝑁 female particles, 
the ሺ1 − 𝜅)ሺ1 − 𝜁)𝑁 sage male particles and the 𝜅ሺ1 − 𝜁)𝑁 adventurous 
male particles 

 

Figure 5. Pseudocode of the weighted generation of the particle distribution.

The third step (Part D in Figure 5) aims at apportioning the particles to the
SD* subdomains more efficiently, or, more specifically, apportioning the particles based on
biased decisions established during pre-evaluations of the potential of the subdomains. The
first uniform particle distributions made over each subdomain allow pre-probing of their
worth. The evaluation of the potential of a zone is ultimately similar to the optimization
process itself. Given its role, the pre-probing step must thus offer a rough but reliable
description at the lowest possible computation cost.

When observing landscapes such as the 2D Vincent function (36 minima) illustrated
in Figure 6a, it appears that the potential of a zone to contain multiple optima can be
depicted and evaluated by its jaggedness. On the other hand, when looking at the 2D
Himmelblau function (4 minima) presented in Figure 6b, it seems clear that in the context
of minimization, the jaggedness aspect has no bearing and cannot serve in a pre-probing
strategy. In fact, a comparison of the function local or subdomain means to the overall
average would be preferable to pre-identifying the zones closer to the four minima. On the
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contrary, the means of the subdivisions would provide no valid insights into the nature of
the Vincent function, since it essentially combines sine functions.

 
(a) 

 
(b) 

Figure 6. Landscapes (a) 2D Vincent function and (b) 2D Himmelblau function.

From a general perspective, because various landscapes can present different com-
binations of these two descriptions (jaggedness and subdivision mean), we may imagine
that a proper association of the jaggedness and subdivision means evaluations should be
sufficient for an efficient and low-cost pre-probing of various landscapes and should thus
provide serviceable pre-mappings of the domains’ potential. The ultimate goal is then to
associate these measures in a balanced description to form the weight factors required
to generate initial particle distributions properly reflecting the subdomain potential. For
clarity, the next three subsections first detail this pre-mapping strategy and end with the
dimensionality reduction aspect.

4.2. Evaluation of Landscapes Jaggedness

The Jaggedness (J) considered here also refers to the frequency spectrum representing
the landscape. While a precise representation of the frequency spectrum of a D-dimensional
domain is not easy, a 2D landscape provides a simple illustration of the concept, which then
becomes equivalent to surface roughness. Hence, high energy levels at higher frequencies
should reflect a higher jaggedness of surfaces. However, while a Fast Fourier Transform
(FFT) would normally provide the required information, in the present context involving
D-dimensional domains, obtaining a low computation cost evaluation remains challenging.

The proposed strategy is close to the quantitative method put forward in 1970 by
Hjorth for EEG activity evaluation [26]. The Hjorth method aimed at predicting properties
of time signals in the frequency domain from time-based measures of physical parameters.
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The author proposed three parameters: Activity, Complexity and Mobility. These parame-
ters are also described as normalized slope descriptors [27]. The first reflects the squared
standard deviation of the signal amplitude. It thus evaluates the mean power. Complexity
provides an evaluation of the signal bandwidth. Finally, Mobility is designed to provide an
estimate of the mean frequency of the signal [27]. Mobility thus offers information closely
related to the needs of the present study.

If a time signal T(t) is known by n sample values τu, Activity (A) is expressed
as A2 = 1

n ∑n
u=1 τ2

u , and when defining δu = τu+1 − τu, Mobility (M) is expressed as
M = 1

2π

√
1

(A∆t)2n
∑n

u=1 δ2
u. M is measured in Hz units [28]. Refs. [27,28] demonstrate that

M provides accurate predictions of the main signal frequency. In the present context, a good eval-
uation of the domain jaggedness or mean frequency is sufficient. However, since M is formulated
for a time signal or a 1D domain, it is not directly transferable to D-dimensional spaces.

Basically, M evaluates the average slope of the signal from regularly spaced samples. In
the proposed scheme, the segmentation of the D-dimensional domains or multidimensional
spaces results in multidimensional zones. The jaggedness of each of them is assumed to
be correlated with its equivalent mean frequency. We may then postulate that the particle
distribution established before the optimization should respect the jaggedness distribution
since domains with oscillations at higher frequencies are more susceptible to containing
numerous optima. Instead of the mean frequency, the calculation scheme assumes that the
maximum slope amplitude calculated between consecutive evaluation points best describes
the J amplitudes of the multidimensional zones or their potential to contain optima. The
algorithm lines between positions 2 and 3 in Figure 5, Part D integrate the formulation
developed below.

Equation (12) formulates J between the consecutive points u and u ± 1 separated
by the Euclidian distance lD. In fact, since distances lD are calculated in D-dimensional
subdomains between individuals uniformly distributed, each position potentially possesses
3D − 1 adjacent neighbours with higher lD values along the space diagonals. Therefore, to
restrict the calculations to the closest neighbours, they exclude the diagonal directions.

Ju = Max
[
|Fvu − Fvu±1|

lD

]
(12)

To obtain a representative description of the jaggedness for a subdomain k, Equation (13)
establishes an averaged evaluation Juk of the Ju values calculated among the nk particles of
the subdomain k. Finally, Equation (14) writes the normalized jaggedness Jk of subdomain k
determined when considering the SD subdomains. The resulting dimensionless jaggedness
distribution then serves to define the biased or weighted apportionment of the particles
among the subdomains.

Ju,k =

√
1

nk∑nk
u=1 J2

u (13)

Jk =
Ju,k

∑SD

k=1 Ju,k
(14)

Depending on the numbers of particles belonging to the three types and the domain dimen-
sions, the weighted distribution process may here again produce some remaining individuals.
Thus, at the end of the distribution process, these remainders are individually and randomly
assigned to subdomains among those respecting the relation Jk = Jk + c3σk, where Jk and σk

denote the mean and the standard deviation of the Jk distribution, respectively, while c3 is
a constant initially equal to one. The process divides this initial value by two as long as
no subdomains respect the inequality. The remainders are after that randomly located in
their domain.
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Figure 7a compares the original uniform distribution of 250 particles over the 2D Vin-
cent function to the distribution adjusted as a proportion of the Jk distribution established
via Equations (12) to (14). In this example, S is set to 5. Figure 7b displays the corresponding
comparison made for 100 particles over the 2D Himmelblau function. These functions and
particle numbers were only selected to ensure a clear visual description.

 
Uniform distribution Pre-mapping distribution 

(a) 

 
Uniform distribution Pre-mapping distribution 

(b) 
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Figure 7. Uniform and pre-mapping distributions established based on the jaggedness distributions
(a) 2D Vincent function and (b) 2D Himmelblau function.

As expected, the plots in Figure 7 show that, while not perfectly precise on the optima
positions, the proposed procedure concentrates the particles in the most relevant zones of the
2D Vincent function landscape. Conversely, when applied to the Himmelblau function, this
first part of the pre-probing process pushes the particles far from the optima neighbourhood.
The smooth surfaces in these zones are not able to retain the particles strongly attracted by the
contour region of the landscape, where the function slope is higher.

4.3. Evaluation of Subdomains Mean-Average Separation and Weight Factor Formulation

The jaggedness approach works well with landscapes presenting shapes equivalent
to the unidimensional sine profile displayed in Figure 8a. Conversely, the process would
concentrate the particles around the central peak of the theoretical domain shown in
Figure 8b. This result would obviously be unsuitable for a minimization problem. The
proposed technique would also prompt an equivalent particle aggregation around the
central minimum shown in Figure 8c. In this case, however, this result would be beneficial
to the search operation. The goal is therefore to find a proper correction of the jaggedness
technique to include the complementary information illustrated in Figure 8.
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(a) 

(b) 

 
(c) 

Figure 8. Idealized 2D landscape profiles: (a) Symmetric, (b) Prominent maximum, (c) Deep minimum.

The three profiles in Figure 8 describe distributions with different levels of asymmetry.
Their average and median positions thus deviate from one another. More precisely, the
jaggedness approach is well adapted to landscapes having no substantial differences
between their median and average positions, whereas domains demonstrating a greater
separation between these two measures require an adaptation of the procedure.

A comparison with the profile standard deviation represents an easy option to quantify
the importance of the average-median difference. Equation (15) defines the difference
evaluation factor (Df), where µD, MD and σD are the average and median positions, and
the standard deviation defining the landscape, respectively. Df may be interpreted as a
measure of the influence of the outermost positions. The potential to contain optima of
domains demonstrating low Df values will be better described by the jaggedness, while
domains with more important Df evaluations require a tempered pre-probing strategy, with
a reduced contribution of the jaggedness (Figure 5, Part D-1).

D f =
|µD − MD|

σD
(15)

The mean fitness value Fvu,k calculated over a subdomain k compared to the subdo-
main average µk offers the required balance. The lines between positions 3 and 4 in Figure 5,
Part D integrate the formulation developed below.

Equations (16) and (17a) give the Fvu,k and µk formulas, respectively. In addition, since the
subdomain average µk and the domain average µD express different evaluations describing the
same particle population, to prevent any ambiguous interpretation, Equation (17b) gives µD:

Fvu,k =
1
nk

∑nk
u=1 Fvu (16)

µk =
1

SD ∑SD

k=1 Fvu,k (17a)
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µD =
1
N ∑N

u=1 Fvu (17b)

The difference between Fvu,k and µk represents the separation of a subdomain k from
the average position. The definition of an initial weighted distribution of the particles over
the subdomains requires a normalized formulation, based on a balanced combination
of the Jk and the influence of the separation between the subdomain means and the
average. Equation (18) presents the proposed formulation for the mean-average separation
or interval (Iuk) of subdomain k. In this formula, σk denotes the standard deviation of the
Fvu,k. This description is similar to σD, that is calculated over the entire particle population. Again,
for the sake of clarity, Equation (19) gives both σk and σD definitions. In Equation (18), c4 is a
constant arbitrary set at 4 in the present study.

Equation (18) produces values larger than one for subdomains k belonging to the
zones of the landscape with mean fitness values Fvu,k lower than the average µk, and lower
than one when it is the opposite. The result would thus be lower and greater than one for
the subdomains containing the peak of the prominent maximum function in Figure 8b and
the deep minimum of the function in Figure 8c, respectively. Finally, Equation (20) writes
the normalized version (Ik) of the Iuk values:

Iu,k =

(
1 −

Fvu,k − µk

c4σk

)2

(18)

σk =

{
1

SD ∑SD

k=1

(
Fvu,k − µk

)2
} 1

2
(19a)

σD =

{
1
N ∑N

u=1(Fvu − µD )2
} 1

2
(19b)

Ik =
Iu,k

∑SD

k=1 Iu,k
(20)

The balanced combination of the Jk and Ik descriptors must account for the overall
influence of the asymmetry of the Fv distribution over the landscape. For instance, a simple
arithmetic average of these descriptors would be undependable. Equation (21) writes the
proposed formulation for the weight (Wk) factors. The resulting values allow apportioning
the particles based on the potential of the subdomains to contain optima, and therefore,
allow forming the initial particle distribution. In Equation (21), D f introduces the overall
influence of the asymmetry, while c5 is a constant added to fine-tune the Ik impact. In the
present analysis, c5 is set at 10. The calculations associated with Equation (21) begin at
position 4 in Figure 5, Part D.

It would appear worthwhile to comment here on the adjustable constants c1 to c5

included in the model. While the proposed values are all indicated, they mainly represent
arbitrary choices, since the proposed developments include no strict identification of the
best options. The objective here is essentially to develop and present the basis of the model
as well as illustrate its potential and versatility, as the fine-tuning of the parameters would
be better examined in a dedicated study.

Wk =
1

1 + c5D f

(
Jk + c5D f Ik

)
(21)

Figure 9 repeats the pre-probing operation illustrated in Figure 7. To help the illustra-
tion, the figure also displays the weighted particle distribution realized over the inverted
Himmenblau function. The plot in Figure 9a shows that, even though the D f measure of
the Vincent function is close to zero, the weighted allotment strategy better detects the
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potential zones. Compared to Figure 7a, this plot presents an improved particle distribution,
where the subdivisions containing optima are more populated. The Himmelblau function
illustrated in Figure 6b describes a profile belonging to the category illustrated in Figure 8b.
Thus, the weighted factor of Equation (21) leads to a completely different pre-mapping of
the domain, and compared to the particle distribution presented in Figure 7b, the results
of Figure 9b now mainly concentrate the particle in the subdomain situated in the optima
neighbourhood. Finally, in the case of the inverted Himmelblau function, the contour
area, which originally belonged to the maxima zone, now becomes the landscape region to
investigate. The pre-probing strategy clearly detects this condition and concentrates the
particles in the subdomains of the contour zone close to the potential minima, while the
central subdivisions containing the maxima are virtually unpopulated.

(a) 

(b) 

(c) 
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Figure 9. Pre-mapping particle distribution established based on weight factors: (a) 2D Vincent
function, (b) 2D Himmelblau function and (c) 2D Inverted Himmelblau function.
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4.4. Reduction of the Domain Dimensionality

The PCA approach integrated in [19] can efficiently identify the principal dimensions
among correlated variables and thus allows reducing the dimensionality of real-life problems
described by subjectively selected variables. On the other hand, in functions such as those of
the Ref. [17] benchmark involving independent variables, PCA is not an efficient option. Of
note, the dimensionality reduction of problem formulations based on independent variables
should refer to the influence of the variable on the final function value.

The present section refers to point 3 of the introduction. It also corresponds to Part C
of the pseudocode in Figure 5.

The dominant variable identification examined here rests on a sensitivity analysis.
The authors of [29] proposed a statistical approach based on the variance decomposition
identity of ANOVA to classify the variables of a problem in order of their influence on the
final output. Equation (22) shows the standard form of the sensitivity index Sed considered
in [29]. This formulation is adapted to the present variable definition. Thus, xd denotes the
input positions along dimension d, while Fv represents the fitness or the function value:

Sed =
Var(E(Fv|xd))

Var(Fv)
(22)

When considering each dimension d individually, the particles of the swarm may be
classified based on the vd distinct position xd they take along the considered dimension (or
the variable). The process thus generates vd subsets. Each subset k encompasses ndk particles.
Equation (23) writes Fvdk, the average objective function of subset k of dimension d:

Fvdk =
1

ndk
∑ndk

k=1 Fvk (23)

After some manipulation of Equation (22), the authors of [29] rewrite the sensitivity
index as Ŝed. Equation (24) presents this descriptor adapted to the present nomenclature:

Ŝed =
∑vd

k=1 ndk
(

Fvdk − µD
)2

∑N
u=1(Fvu − µD)

2 (24)

where Fvu denotes the fitness function of particle u, while the average fitness value µD is
given by Equation (17b).

Thus, ranking the dimension in descending order of their Ŝed evaluation presents them
from the most significant dimension of the domain to the least. In addition, since it just
requires keeping track of the values of the particles that are already known, this sensitivity
index formulation only involves simple calculations.

The proposed procedure first divides the search domain into SD subdomains, uni-
formly distributes the particles over each of them, and then evaluates the fitness values of
the particles (Figure 1, Part A). To improve the precision of this first series of preparatory
evaluations, the number of distributed particles may be selected larger than the number of
particles employed during the optimization process itself. Thereafter, the procedure applies
Equation (24) and identifies the D* dominant dimensions. It then eliminates the divisions
generated along the remaining D − D∗ dimensions, and forms larger subdomains. The
process finally relinks the particles to the right subdomains.

After the above preparation steps, the proposed method allows distributing the opti-
mization particles over the SD∗

subdomains based on biased decisions. As indicated, the
process uniformly distributes the particles along the D∗ dominant dimensions, whereas
along the remaining dimensions, it simply establishes their positions randomly.
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5. An Intermediate Improvement of the Particle Positions
The authors of [19] boost the convergence rate of the DE algorithm with a contour

prediction strategy advanced in [30]. This method is integrated into each optimization
iteration. Essentially, the approach aims at improving the position of selected particles from
contours formed by surrounding particles. In [19,30], this step forms contours around the
best particles. In [19], the process examines the best particle of each niche. On the other
hand, since the study in [30] concentrates on single optimum functions, there is no niche.
The process considers only the first few best particles of the population. It thus has to sort
them first.

The approach developed in this paper does not involve any niche. Moreover, for the
sake of efficiency, it is preferable to avoid sorting the particles at each iteration. Therefore,
instead of considering the best particles, this step examines a fraction (fp) of the particles,
regardless of their fitness value, their position or their type. It selects the first particles
randomly, and then successively picks the following with respect to fp. For instance, if N is
1000 particles, with an fp of 0.25, 250 particles will be visited respecting a step size of 1

f p .
Here, since the particles are initially inserted into the swarm according to the generation
sequence, to cover the swarm, the process randomly selects the first particle number among
the first 1

f p particles.
The present section refers to point 4 of the introduction. It describes the procedure

introduced in Part B-3, Figure 1. Figure 10 presents the corresponding pseudocode. Again,
in this figure, numbers mark the beginning position of operation groups.

Pseudocode 3—Particle position improvement algorithm 
Part E 
1: 
 
2: 

for 18 p=1 to number of passes 
Set i to the selected particle 
for 19 i=1 to N (particle loop-step size 1/fp) 

Identify the cnb of particle i 
Use Eq. 26 to calculate the tFv 

3: for 20 d=1 to D (dimension loop)  
for 21 j=1 to cnb (neighbour loop)  

Use Eq. 25 to calculate the ൫𝑥𝑗𝑑 ൯′  
end for 21  
Use Eq. 27 to calculate the ൫𝑥𝑗𝑑 ൯∗ 

end for 20 
Calculate fitness ሺ𝐹𝑣𝑖)′  at the ൫𝑥𝑗𝑑 ൯∗ position 
Add 1 to the function evaluation count 

3: if ሺ𝐹𝑣𝑖)′ < 𝐹𝑣𝑖) 
Relocated particle i at that ൫𝑥𝑗𝑑 ൯∗position 
Add particle i to the improved particle count 

endif 
end for 19 

end for 18 

Figure 10. Pseudocode of the particle position improvement.

For each visited particle, the procedure identifies its cnb closest neighbours (Figure 10,
Part E-2). These neighbours are those situated at the lowest Euclidian distances. After
that, following the technique developed in [30], the position of a potentially better particle
is extra/interpolated between the considered particle and each of its neighbours taken
individually. The interpolation process considers a target fitness value tFv. Equation (25)

describes the linear interpolation giving the new
(

xjd

)′
positions, while Equation (26)

gives tFv. Equation (26) integrates a fraction ρ (≤ 1) to establish the target to improve the
particle fitness value Fvi for a minimization operation. In these expressions j ∈ {1 to cnb},
xid and xjd are respectively the position of the improved and the neighbour particles along
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dimension d, while Fvi and Fvj are respectively the fitness value of the improved and the
neighbour particles. The final location of the improved particle (xid)

∗ corresponds to the
average position expressed by Equation (27) (Figure 10, Part E-3):(

xjd

)′
= xid +

tFv − Fvi
Fvj − Fvi

(
xjd − xid

)
(25)

tFv = (1 − sgn(Fvi)ρ)Fvi (26)

(xid)
∗ =

1
cnb∑cnb

j=1

(
xjd

)′
(27)

If the real fitness (Fvi)
′ of the predicted improved position is better than Fvi, particle I

is relocated to that position (Figure 10, Part E-4). Otherwise, it remains possible that (Fvi)
′

will outperform any of the considered cnb neighbours. In that case, in order to avoid leaving
behind valuable knowledge, the new position may replace the closest less performant
neighbour. However, it is worth mentioning here that this neighbour replacement may lead
to premature convergence. Therefore, it is not recommended to integrate it systematically
into the iteration.

Since the whole operation does not target the best particles of the swarm, the proposed
approach repeats it twice at each iteration (Figure 10, Part E-1). After the first round, the first
particle is replaced by the one coming immediately after it in the swarm. Evaluations not included
here demonstrated that the strategy with two successive rounds increases the performance.

The proposed procedure Improves a significant number of particles during the first
iterations, and its impact tends to diminish after numerous iterations. On the other hand,
the number of added function evaluations does not decrease. Thus, to avoid reducing the
global algorithm performance, the operation must be stopped after the ratio Scrt = improved
particles/added function evaluations falls below a certain threshold (Figure 1, Part B-3). In the
presence study, this limit is set at Scrt = 10%. The simulations presented below also imply
cnb = 4 and ρ = 0.4.

As any modification of a particle’s position can lead to boundary crossings, this intermediate
particle improvement procedure must also control the particles reaching outside a dimension d.
However, since a potential position is accepted only if it improves the performance of a particle,
and is rejected otherwise, its capacity to have a negative impact on the swarm evolution remains
limited. Therefore, there is no need to integrate a particular correction method such as those given
by Equations (10) and (11). Instead, the control simply relocates any potential position crossing
the boundary exactly to the boundary.

6. Results
As earlier indicated, the present paper focuses on multimodal-multi-optima problems

of relatively low dimensionality, and primarily aims to present efficient solution strategies.
It also combines these strategies to form the basis of the optimization algorithm, S-EPSO.
Section 6.1 validates this algorithm and presents its performance in that regard. However,
even though the development works target was specific, S-EPSO can also easily handle
various problem definitions. Thus, Section 6.2. presents the algorithm performance when
tested with two classic real-world constrained design problems: the weight optimization of
a pressure vessel and of a speed reducer. In addition to the constraints influence, the speed
reducer example also shows that S-EPSO can efficiently deal with dimensionality higher
than the original frame of reference.

6.1. Multimodal-Multi-Optima Problems

The following compares the S-EPSO predictions for the multimodal functions of the
Ref. [17] benchmark to the results published in [19,20]. In keeping with the study main focus,



Algorithms 2025, 18, 341 23 of 35

the comparison includes functions up to 5D. Since [17] provides a complete description of the
functions, Table 1 below lists their names and describes the landscapes, but does not repeat their
formulations. The function sequence respects the order established in [17].

Table 1. Function list and optimization context.

Function Dim. (D) Optimization Domain
Number of Minima

Global Local

F1: Five-Uneven-Peak Trap 1 x ∈ [0, 30] 2 3
F2: Equal Maxima 1 x ∈ [0, 1] 5 0
F3: Uneven Decreasing Maxi 1 x ∈ [0, 1] 1 4
F4: Himmelblau 2 xd ∈ [−6, 6]D 4 0

F5: Six-Hump Camel Back 2 x1 ∈ [−1.9, 1.9] x2 ∈
[−1.1, 1.1] 2 2

F6: Shubert 2 xd ∈ [−10, 10]D 18 many
F7: Vincent 2 xd ∈ [0.25, 10]D 36 0
F8: Shubert 3 xd ∈ [−10, 10]D 81 many
F9: Vincent 3 xd ∈ [0.25, 10]D 216 0
F10: Modified Rastrigin 2 xd ∈ [0, 1]D 12 0
F11: Composition function 1 2 xd ∈ [−5, 5]D 6 many
F12: Composition function 2 2 xd ∈ [−5, 5]D 8 many
F13: Composition function 3 2 xd ∈ [−5, 5]D 6 many
F14: Composition function 3 3 xd ∈ [−5, 5]D 6 many
F15: Composition function 4 3 xd ∈ [−5, 5]D 8 many
F16: Composition function 3 5 xd ∈ [−5, 5]D 6 many
F17: Composition function 4 5 xd ∈ [−5, 5]D 8 many

The evaluated version of S-EPSO includes no fine-tuning of any of the adjustable
parameters. They were instead all set to values that were considered reasonable. For
instance, parameter W and c2 in Equation (8), which were inherited from the original
PSO algorithm, were set at the values recommended in the literature for PSO 0.729 and
1.495, respectively [31]. All other constants were set at the values already indicated in
the text. For clarity, Table 2 presents the values set for all parameters. Among them, the
medium haziness γ∗ is probably the most controlling parameter. Thus, based on the results
presented in Figure 2a, γ∗ is set at 103 for the simpler landscapes, which are described by
F1 to F5. These landscapes correspond to 1D functions or to 2D functions containing few
optima. Functions F6 to F17 involve numerous optima, and for most of them, many local
minima. Thus, to help the particles gather around the optima and preserve them during
the iterations (once again inspired by Figure 2a), γ∗ is set at 104.

The segmentation required for the Initial weighted generation of the particle distribu-
tions remains the same for all simulations, and involves 5 segments along each component
of the D* dimensions. Thus, the maximum numbers of subdomains are 5, 25 and 125 for
the 1D, 2D, and 3–5D domains, respectively. Moreover, all simulations involved the same
number of particles during the domain segmentation procedure and optimization. Adding
the function evaluations involved during these two gave the total number of function
evaluations. The Maximum number of Function Evaluations MFE imposed respects the
values prescribed in [17], namely, 5 × 104 for functions F1 to F3, 2 × 105 for the 2D functions,
and 4 × 105 for the 3 and 5D functions.
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Table 2. Algorithm parameters setting.

Parameter Value Description

a 0 Offset in Equation (7c)
m 1.5 Curvature control in Equation (7c)
c2 1.495 Acceleration constants in Equation (8)
c3 1.0 Constant for subdomains selection
c4 4.0 Constant in Equation (18)
c5 10 Constant in Equation (21)

Ch 1 or 2 Constant in Equation (7a): 1 for sage males
2 for intrepid males

cnb 4 Neighbour number in Equation (27)
D* 3 Reduced domain dimension number
fp 0.25 Fraction of improved particles
k0 1.5 Constant in Equation (9)
k1 20 Constant in Equation (9)

Scrt 10% Improved particles/added func. Evalua.
γ∗ 103 or 104 Constant in Equations (7a) and (7b): 103 for F1 to F5 and 104 for F6 to F17
W 0.729 Weight of particle record in Equation (8)
κ 0.5 Proportion of adventurous male particles
ρ 0.4 Constant proportion in Equation (26)
χ 0.8 Life duration of short-lived males
ζ 0.42 Proportion of female particles

The initial numbers of particles were approximately adapted to the size of the land-
scapes. Besides, since their smoothness was known, to control the calculation burden, the
final decision on the particle numbers also considered this aspect. In fact, when some
particles of the swarm have limited mobility, having more particles helps in locating the
optima. Specifically, more particles help locate the optima while a large γ∗ better preserves
them throughout the iterations. Table 3 indicates the initial particle numbers selected for
each function. Finally, all tests included 50 runs.

Table 3. Function-specific particle numbers.

Functions Particle Numbers

F1 30
F2 30
F3 30
F4 100
F5 100
F6 1000
F7 1000
F8 2000
F9 2000
F10 500
F11 1000
F12 1000
F13 1000
F14 2000
F15 2000
F16 2000
F17 2000

To illustrate the ability of the developed pre-probing strategy to navigate over highly
intricate landscapes, and detects the important zones, Figures 11–13 use three landscapes
to present graphic descriptions. They display the landscapes of functions F11, F12 and F13,
respectively. They also superimpose the initial biased particle distribution, as well as the
position of the optima, onto the contour plot of these domains. The grey circles correspond
to the particles, while the black diamonds indicate the optima. For clarity, the distributions
include 500 particles.
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(a) 

(b) 

Figure 11. F11 landscape: (a) 2D plot and (b) 2D contour plot.

(a) 

(b) 

Figure 12. F12 landscape: (a) 2D plot and (b) 2D contour plot.
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(a) 

(b) 

Figure 13. F13 landscape: (a) 2D plot and (b) 2D contour plot.

Table 4 juxtaposes the reference results and the prediction of the proposed S-EPSO
algorithm. In the table, ANDE refers to the automatic niching DE algorithm developed in
Ref. [19], while NMMSO designates the niching migratory multi-swarm optimizer of [20]. The
presented values are the success rate measure SR given by Equation (1) for the 50 runs, and
the peak ratio PR written by Equation (2) averaged over the 50 runs. The layout also identifies
the best performances in boldface type. Ref. [19] does not provide any evaluation for accuracy
levels greater than 10−3. Table 4 fills the corresponding empty positions with dashes.

Table 4. Results.

S-EPSO ANDE NMMSO

Accuracy
Level ϵ

PR SR PR SR PR SR

F1

10−1 1.000 1.000 -- -- 1.000 1.000
10−2 1.000 1.000 -- -- 1.000 1.000
10−3 1.000 1.000 1.000 1.000 1.000 1.000
10−4 1.000 1.000 1.000 1.000 1.000 1.000
10−5 1.000 1.000 1.000 1.000 1.000 1.000

F2

10−1 1.000 1.000 -- -- 1.000 1.000
10−2 1.000 1.000 -- -- 1.000 1.000
10−3 1.000 1.000 1.000 1.000 1.000 1.000
10−4 1.000 1.000 1.000 1.000 1.000 1.000
10−5 1.000 1.000 1.000 1.000 1.000 1.000

F3

10−1 1.000 1.000 -- -- 1.000 1.000
10−2 1.000 1.000 -- -- 1.000 1.000
10−3 1.000 1.000 1.000 1.000 1.000 1.000
10−4 1.000 1.000 1.000 1.000 1.000 1.000
10−5 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4. Cont.

S-EPSO ANDE NMMSO

Accuracy
Level ϵ

PR SR PR SR PR SR

F4

10−3 1.000 1.000 -- -- 1.000 1.000
10−4 1.000 1.000 -- -- 1.000 1.000
10−5 1.000 1.000 1.000 1.000 1.000 1.000
10−6 1.000 1.000 1.000 1.000 1.000 1.000
10−7 1.000 1.000 1.000 1.000 1.000 1.000

F5

10−1 1.000 1.000 -- -- 1.000 1.000
10−2 1.000 1.000 -- -- 1.000 1.000
10−3 1.000 1.000 1.000 1.000 1.000 1.000
10−4 1.000 1.000 1.000 1.000 1.000 1.000
10−5 1.000 1.000 1.000 1.000 1.000 1.000

F6

10−1 1.000 1.000 -- -- 0.998 0.960
10−2 0.999 0.980 -- -- 0.998 0.960
10−3 0.996 0.920 1.000 1.000 0.998 0.960
10−4 0.980 0.660 1.000 1.000 0.997 0.940
10−5 0.896 0.080 1.000 1.000 0.000 0.000

F7

10−1 0.947 0.100 -- -- 1.000 1.000
10−2 0.882 0.020 -- -- 1.000 1.000
10−3 0.754 0.000 0.936 0.176 1.000 1.000
10−4 0.651 0.000 0.933 0.176 1.000 1.000
10−5 0.607 0.000 0.941 0.196 1.000 1.000

F8

10−1 0.494 0.000 -- -- 0.984 0.260
10−2 0.308 0.000 -- -- 0.984 0.220
10−3 0.202 0.000 0.947 0.078 0.983 0.180
10−4 0.162 0.000 0.944 0.078 0.981 0.180
10−5 0.111 0.000 0.948 0.039 0.980 0.180

F9

10−1 0.477 0.000 -- -- 0.930 0.020
10−2 0.380 0.000 -- -- 0.922 0.000
10−3 0.355 0.000 0.616 0.000 0.920 0.000
10−4 0.321 0.000 0.512 0.000 0.917 0.000
10−5 0.203 0.000 0.506 0.000 0.913 0.000

F10

10−1 1.000 1.000 -- -- 1.000 1.000
10−2 1.000 1.000 -- -- 1.000 1.000
10−3 1.000 1.000 1.000 1.000 1.000 1.000
10−4 1.000 1.000 1.000 1.000 1.000 1.000
10−5 1.000 1.000 1.000 1.000 1.000 1.000

F11

10−1 1.000 1.000 -- -- 1.000 1.000
10−2 1.000 1.000 -- -- 1.000 1.000
10−3 1.000 1.000 1.000 1.000 1.000 1.000
10−4 1.000 1.000 1.000 1.000 1.000 1.000
10−5 1.000 1.000 1.000 1.000 1.000 1.000

F12

10−1 1.000 1.000 -- -- 0.998 0.980
10−2 0.995 0.96 -- -- 0.998 0.980
10−3 0.985 0.88 1.000 1.000 0.998 0.980
10−4 0.970 0.76 1.000 1.000 0.998 0.980
10−5 0.960 0.68 1.000 1.000 0.998 0.980

F13

10−1 1.000 1.000 -- -- 0.993 0.960
10−2 1.000 1.000 -- -- 0.993 0.960
10−3 1.000 1.000 0.771 0.078 0.990 0.940
10−4 0.997 0.980 0.686 0.000 0.990 0.940
10−5 0.997 0.980 0.686 0.000 0.990 0.940

F14

10−1 0.923 0.560 -- -- 0.770 0.080
10−2 0.883 0.380 -- -- 0.740 0.060
10−3 0.873 0.320 0.667 0.000 0.713 0.020
10−4 0.853 0.240 0.667 0.000 0.710 0.000
10−5 0.847 0.200 0.667 0.000 0.703 0.000

F15

10−1 0.750 0.000 -- -- 0.673 0.000
10−2 0.728 0.000 -- -- 0.673 0.000
10−3 0.678 0.000 0.645 0.000 0.673 0.000
10−4 0.673 0.000 0.632 0.000 0.670 0.000
10−5 0.665 0.000 0.632 0.000 0.668 0.000
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Table 4. Cont.

S-EPSO ANDE NMMSO

Accuracy
Level ϵ

PR SR PR SR PR SR

F16

10−1 0.667 0.000 -- -- 1.000 0.000
10−2 0.667 0.000 -- -- 0.703 0.000
10−3 0.667 0.000 0.667 0.000 0.653 0.000
10−4 0.667 0.000 0.667 0.000 0.653 0.000
10−5 0.667 0.000 0.667 0.000 0.633 0.000

F17

10−1 0.728 0.000 -- -- 0.553 0.000
10−2 0.625 0.000 -- -- 0.548 0.000
10−3 0.615 0.000 0.397 0.000 0.543 0.000
10−4 0.588 0.000 0.397 0.000 0.538 0.000
10−5 0.515 0.000 0.397 0.000 0.238 0.000

It is worth mentioning here that, since Refs. [19,20] already include the results of
several other state-of-the-art algorithms in their validation operations, and because they
demonstrate that ANDE and NMMSO perform better than these algorithms over the
benchmark of [17], to maximize the validation acuteness, the present analysis voluntarily
restricts the comparison to the Refs. [19,20] results.

The results in Table 4 indicate that all three algorithms successfully identify all optima
for functions F1 to F5, and of F10 and F11. Summing up the best responses of each algorithm
(highlighted in bold) for the three highest accuracy levels (ϵ ≤ 10−3) shows that S-EPSO,
ANDE and NMMSO give perfect evaluations or outperform the other two, 35, 30 and
31 times out of 51, respectively.

Friedman test allows a first paired comparison of the algorithms performance across
these multiple test results. The Friedman test identifies any significant difference. The null
hypothesis (H0) is here: The tree algorithms give equivalent performance; while the alternative
hypothesis (H1) is: At least one of them exhibits a different performance.

Table 4 may be reformatted to present the algorithm ranking based on SR and PR.
The best-performing algorithm ranks first (R = 1), whereas ties receive average ranks. For
instance, if all three algorithms tie, each receives R = 2; if two algorithms tie for the first
position, they both receive R = 1.5, and the remaining one R = 3, and if two tie for second,
they both receive R = 2.5.

The first step establishes the average ranking Ri for each algorithm i, using
Ri =

1
np

∑
np
j=1 Rij, where np represents the number of considered problems, here np = 51

(i.e., 17 functions at 3 precision levels). Equation (28) formulates the Friedman test, with
k = 3 representing the number of algorithms.

χ2
F =

12np

k(k + 1)

[
∑k

1=1

(
Ri
)2
]
− 3np(k + 1) (28)

The critical chi-square value χ2
critical is 5.991 at a significance level α = 0.05 and

2 degrees of freedom (k − 1). The computed statistics χ2
F are 0.775 and 0.824 for PR and

SR, respectively. Since both values are below the critical threshold, H0 cannot be rejected,
meaning there is no overall statistically significant difference among the three algorithms.

The Friedman test includes 21 evaluations in which all three algorithms achieved
perfect performance. Thus, excluding these data results in 30 remaining evaluations.
S-EPSO, ANDE and NMMSO achieve the best performance on 14, 9 and 10 of them,
respectively. These numbers include three cases of equal responses by S-EPSO and ANDE
on F16. Although a Friedman test applied to this reduced dataset would still not reject H0,
the following analysis provides targeted descriptions and comparisons.
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To complete the description, Table 5 presents pairwise comparisons of the S-EPSO
performance. These results amalgamate 136 comparisons conducted across the 17 functions
evaluated at 3 and 5 accuracy levels for the S-EPSO/ANDE and the S-EPSO/NMMSO
pairs, respectively. The presented amounts are the number of times each side outperforms
the other, as well as the number of tied results. Table 5 also reports the corresponding
percentages. The best result is again indicated in boldface. This evaluation confirms that,
across the considered benchmark functions, the overall S-EPSO performance exceeds that
of the two other algorithms, demonstrating its competitive capacities.

Table 5. Pairwise comparison of the numbers of best responses.

S-EPSO Tie ANDE and NMMSO

39 59 38
28.7% 43.4% 27.9%

On the other hand, when considering the 2D version of the F6 Shubert and the F7

Vincent functions, the ability of S-EPSO to locate the optima with very high precision
decreases slightly as compared to the two other algorithms. In reality, the S-EPSO perfor-
mance remains very good but is below that of the two reference state-of-the-art algorithms.
The difference also increases when considering F8 and F9, the 3D versions of the same
functions. In these cases, S-EPSO does not offer competitive responses. This accuracy loss
may be attributed to the nature of the algorithm, where the particles do not belong to any
restrictive niche.

These two specific landscapes concentrate many optima in small areas of their domains.
To illustrate this description, Figure 14 shows the optimal positions of F8, the 3D version of
the Shubert function. First, to locate optima, S-EPSO necessitates a sufficient number of
particles able to move and reach their positions. Later on, the medium haziness γ∗ controls
the ability of the algorithm to preserve the found locations. However, while this results
in high precision optima positions, this haziness also simultaneously limits the mobility
of numerous particles. This mobility reduction lessens their ability to move toward new
optima. On the other hand, larger numbers of particles may successfully compensate for
this reduced mobility. Hence, to detect numerous optima concentrated in small zones, such
as those of the Shubert and Vincent functions, the procedure must combine a sufficiently
large particle number to probe the search space and a high γ∗ value to form clusters and
improve the precision of the identified position locations. However, large particle numbers
can rapidly lead to excessive numbers of function evaluations. In clear, in a context of a
limited number of function evaluations, too large particle numbers limit the number of
successive improvement steps and ultimately reduce the algorithm precision. The best
particle number-haziness combination is thus a trade-off.

Figure 14. Positions of the 81 optima of the 3D Shubert function (F8).
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The present analysis does not include any pursuit of the best trade-off. However, to
picture the particle number-haziness interrelation, Table 6 shows the results of additional
optimizations of the 2D version of the Vincent function F7. The first case increases γ∗ to
2 × 104 and maintains the particle number at 1000. The second of these new simulations
also increases the particle number to 1500 particles. Again, these choices are arbitrary and
only consider convenient values selected larger than those defining the initial setup.

Table 6. S-EPSO results for F7 with γ∗ and particle number N increases.

S-EPSO: N-1000
and γ*-104

S-EPSO: N-1000
and γ*-2×104

S-EPSO: N-1500
and γ*-2×104

Accuracy
Level ϵ

PR SR PR SR PR SR

F7

10−1 0.947 0.100 0.942 0.060 0.987 0.580
10−2 0.882 0.020 0.867 0.000 0.972 0.360
10−3 0.754 0.000 0.758 0.000 0.863 0.000
10−4 0.651 0.000 0.690 0.000 0.754 0.000
10−5 0.607 0.000 0.654 0.000 0.603 0.000

As in Tables 4 and 5, the presentation in Table 6 highlights the best performances in
boldface type. It also underlines the evaluations improving the performance of the initial
setup (N-1000 and γ∗-104). The results of the N-1000 and γ∗-2 × 104 setup shows that
the reduction of the particle mobility brought about by the γ∗ augmentation first reduces
the number of found optima. Indeed, compared to the initial configuration (N-1000 and
γ∗-104), PR and SR demonstrate smaller values at the first two accuracy levels (ϵ ≥ 10−2).
Conversely, as indicated by the PR evaluations at higher accuracy levels (ϵ ≤ 10−3), the
γ∗ augmentation improves the response precision. The second case (N-1500 and
γ∗-2 × 104) demonstrates that the augmentation of the particle number clearly increases the
number of found optima and tends to improve the precision. However, while this N and
γ∗ configuration is markedly better, at the highest accuracy level (ϵ ≤ 10−5), its response
appears to be a little below that of the two others. Indeed, the search would have benefited
from some additional iterations. These observations tend to indicate that it would be
possible to identify a more efficient configuration.

However, based on a comparison with the results of the two reference algorithms,
we may also assume that with this specific landscape type, the best S-EPSO performance
would hardly reach those of ANDE and NMMSO. In other words, for landscapes concen-
trating numerous optima in small zones, strategies such as niching, which somehow force
additional links between particles of a cluster, represent an indispensable option.

The results obtained for functions F11 to F17 correspond to the best S-EPSO per-
formance. In fact, S-EPSO outperforms the two reference algorithms over most of the
corresponding evaluations. Moreover, since functions F16 and F17 describe 5D domains,
the good performance demonstrated over these landscapes indicates that the examined
dimensionality reduction provides an adapted evaluation of the dominant variables.

6.2. Real-World Constrained Design Problems

The original design of the algorithm targeted 5D problems, essentially because real-
world engineering jobs normally involve simulations associated with demanding compu-
tations roughly proportional to the problem dimensionality. Nevertheless, the proposed
algorithm structure is not limited to this frame of reference. The following considers two
constrained design problems defined as “real-world problems” in the literature [32–39]: the
weight optimization of a pressure vessel and the weight optimization of a speed reducer.
Regardless of their “real-world” tag, these problem definitions lead to simple objective
functions involving only low-cost computations.
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The following equations give the objective function for the pressure vessel (PV) and
the speed reducer (SpRe) problems, respectively, while Equations (30a) and (30b) show
the associated constraints. The PV case includes four optimization variables and four
constraints (Equation (30a)), whereas the SpRe problem describes a 7D domain and includes
eleven constraints given by Equation (30b). In Equation (29a) Th, Ts, L and R are the
thickness of the cylinder wall, the thickness of the head wall, the cylinder length and the
cylinder inner radius, respectively [32]. In Equation (29b), b, m, z, l1, l2, d1 and d2 are the
gear face width, the tooth module, the tooth number, the length of the input shaft, the
length of the output shaft, the diameter of the input shaft and the diameter of the output
shaft [37].

fPV(Th, Ts, L, R) = 0.6224TsRL + 1.7781ThR2 + 19.84LT2
h + 3.1661LT2

s (29a)

fSpRe(b, m, z, l1, l2, d1, d2)

= 0.7854bm2(3.3333z2 + 14.933z − 43.0934
)
+ 0.7854

(
l1d2

1 + l2d2
2
)
− 1.508

(
d2

1 + d2
2
)

+ 7.477
(
d3

1 + d3
2
) (29b)

The optimization variables also respect the following ranges:

• For the PV problem, Th and Ts are given by xh0.0625 and xs0.0625, respectively, where
xh and xs represent integer values ∈ [1, 99], L ∈ [10, 200] and R ∈ [10, 200] (See [32]).

• For the SpRe problem, b ∈ [2.6, 3.6], m ∈ [0.7, 0.8], z an integer ∈ [17, 28], l1 ∈
[7.3, 8.3], l2 ∈ [7.3, 8.3], d1 ∈ [2.9, 3.9], and d2 ∈ [5.0, 5.5]

CPV-1 −→ 0.0193 R
Ts

− 1.0 ≤ 0
CPV-2 −→ 0.00954 R

Th
− 1.0 ≤ 0

CPV-3 −→ −4
3

R
L + 1,296,000

πLR2 − 1.0 ≤ 0
CPV-4 −→ L

240 − 1.0 ≤ 0

(30a)

CSP-1 −→ 27
bm2z − 1.0 ≤ 0

CSP-2 −→ 397.5
bm2z2 − 1.0 ≤ 0

CSP-3 −→ 1.93l3
1

mzd4
1
− 1.0 ≤ 0

CSP-4 −→ 1.93l3
2

mzd4
2
− 1.0 ≤ 0

CSP-5 −→

(
16.9×106+

(
745 l1

mz

)2
)0.5

110d3
1

− 1.0 ≤ 0

CSP-6 −→

(
157.5×106+

(
745 l2

mz

)2
)0.5

85d3
2

− 1.0 ≤ 0

CSP-7 −→ mz
40 − 1.0 ≤ 0

CSP-8 −→ 5m
b − 1.0 ≤ 0

CSP-9 −→ b
12m − 1.0 ≤ 0

CSP-10 −→ 1.5d1+1.9
l1

− 1.0 ≤ 0

CSP-11 −→ 1.1d2+1.9
l2

− 1.0 ≤ 0

(30b)

In addition to the optimization algorithm, the solution quality obtained for constrained
problems also depends on the constraint handling method [40]. The authors of [33] offer
a good review of the available strategies. They also propose variants of the feasibility
rules introduced in [40]. The formulations proposed in [33] use a penalty factor (pv)
to disadvantage particles in position of constraint violation, see Equation (31). In this
expression Fvbest represents the best fitness value identified among the particles respecting all
constraints. Equation (32a) gives the expression for the pv variant considered in the present
study. In this equation Cj represents the normalized version of a constraint j belonging to a
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group of m constraints. The constraint equations presented in Equations (30a) and (30b) are
normalized expressions.

More precisely, in order to avoid converging toward particle positions nearly respecting the
imposed constraints, the present simulations used the modified version of Equation (32a) given
by Equation (32b). This formulation ensures that the Fv∗ evaluation for particles in position of
constraint violation is never smaller than twice Fvbest. It therefore eliminates all those particles
from the final exploitation period.

Fv∗ =

{
Fv for particles respecting all constraints

pv × max{Fvbest, Fv} otherwise
(31)

pv= max
{

max
{

0, Cj
}

, j ∈ [1, m]
}

(32a)

pv = max
{(

max
{

Cj
}

, j ∈ [1, m]
)
, 2
}

(32b)

Both the PV and the SpRe problems have been analyzed in numerous publications.
Some studies present solutions nearly respecting the imposed constraints or tolerating
a given level of constraint violation. Some studies also ignore the integer limitation on
xh and xs (PV problem) or on z (SpRe problem). Most of the publications accepting
constraint errors present lower weight values. Refs. [32,34–37] give some examples of those
results for the PV, while Refs. [37,39] give examples for the SpRe.

A strict review of the current literature indicates that the optimal solutions fully
respecting the constraints defined in Equations (30a) and (30b) are as given below.

• For the PV case: fPV = 6059.7208 with Th = 0.4375, Ts = 0.8125, L = 176.6372, and
R = 42.0984 (see [34]);

• For the SpRe case: fSpRe = 2994.4798 with b = 3.5000, m = 0.7000, z = 17, l1 = 7.300,
l2 =7.7153, d1 = 3.3503 and d2 = 5.2867 (see [37]).

Given that the real form of the PV and SpRe landscapes are not fully described in the
literature, the following analysis first assumed that they could comprise multiple optima.
Thus, the parameter setting defined in Table 2 was kept. Only γ∗ was changed to 2 × 104.
The simulations used two pre-probing zones along each dimension. In addition, since both
optimum correspond to large values, in order to avoid working with particle quality Q0

close to zero (see Figure 3), the Fv results introduced into Equation (9) were first divided
by 5 × 103. As before, all test series included 50 runs. The first simulation groups led to a
unique optimum for both cases. Therefore, to focus on unique optimal positions, a second
series of 50 runs with γ∗ set at 0.05 repeated the optimizations. Table 7 shows the obtained
results. The second series confirm the γ∗ = 2 × 104 predictions.

Table 7 shows that the S-EPSO predictions are in perfect agreement with the refer-
ence evaluations. This result demonstrates that, although the algorithm was originally
designed for low-dimensional landscapes with multiple optima, it is not restricted to low-
dimensional spaces and can also effectively handle higher-dimensional domains. Further-
more, the last two problems confirm that S-EPSO is well suited to constrained optimization
scenarios. This is an important outcome, as real-world engineering applications typically
involve various types of constraints.



Algorithms 2025, 18, 341 33 of 35

Table 7. S-EPSO results for the PV and SpRe problems with γ∗ set at 20,000 and 0.05.

Problem Variable γ*−20,000 γ*−0.05

PV

Best fPV 6059.714336 6059.714336
Worst fPV 6059.714336 6059.714336
Std. Dev. 0.0 0.0

Th 0.437500 0.437500
Ts 0.812500 0.812500
L 176.636596 176.636596
R 42.098446 42.098446

S SpRe R

Best fSR 2994.554224 2994.554224
Worst fSR 2994.554224 2994.554224
Std. Dev. 0.0 0.0

b 3.5000 3.5000
m 0.7000 0.7000
z 17 17
l1 7.3000 7.3000
l2 7.715320 7.715320
d1 3.350541 3.350541
d2 5.286654 5.286654

7. Conclusions
This paper proposed and evaluated some strategies developed to improve the perfor-

mance of search procedures over low-dimensionality multimodal domains. This problem
definition corresponds to common conditions for optimization problems in mechanical
engineering. All the examined strategies can be individually integrated within any existing
algorithm. The present analysis assembled them to form a competitive optimization algo-
rithm named S-EPSO. Essentially, this algorithm requires no niching parameters to locate
and maintain multiple optima.

The first tactic put forward gives socio-emotional personalities to the individuals.
Depending on their personality, the particles can naturally adopt various roles during the
search evolution.

The main idea imitates a simplified representation of socio-emotional relations pre-
vailing during mammal reproduction periods. Some particles echo a female personality,
whereas two male personalities form the remaining particle group. Some males are intrepid
and explore the landscapes, while others are more prudent. This second group is thus
responsible for preserving the found optima and gives the swarm a natural tendency
to form clusters around fitting positions. Moreover, less performant males are prone to
premature death.

The analysis introduces a strategy to help particles visit secluded zones. The proposed
approach controls the initial particle distribution. It allots the particles to subdomains of the
landscape based on biased decisions reflecting the subdomain’s potential. The technique
first reduces the domain dimensionality based on a sensitivity index. After that, it evaluates
the potential of each subdomain to contain optima. This evaluation rests on a balanced
combination of the jaggedness and the mean-average interval descriptors developed in the
present analysis.

Finally, an intermediate step tries, based on interpolated evaluations, to identify more
performant positions for a fraction of the particles.

The last part of the study contrasts the S-EPSO performance with those of state-of-the-
art algorithms. When compared over seventeen functions of the CEC benchmark ranging
from 1 to 5D, S-EPSO demonstrated an excellent overall performance. The comparison
showed for 30 specific evaluations, suitable for differentiating among the tested algorithms
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that S-EPSO produced the best performance 14 times, whereas ANDE and NMMSO pre-
sented the best results 9 and 10 times, respectively. The global S-EPSO response thus clearly
indicates that S-EPSO constitutes a competitive optimization algorithm.

Specifically, S-EPSO demonstrated its best performance with the more challenging
functions of the benchmark. It outperformed the reference algorithms over most of the
evaluations done over the 3 and 5D domains.

Finally, the last two real-world problems demonstrate that S-EPSO can handle domains
of higher dimensionality than its original frame of reference and that it also performs well
in constrained optimization problems. These results are strong indicators of S-EPSO’s
potential to address practical optimization problems, such as those commonly encountered
in mechanical engineering.

Future work will test the algorithm in dynamic optimization contexts, where the
problem conditions evolve over time. This work will focus on optimizing the contact
fatigue life of gear tooth profiles subjected to non-stationary loads.
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