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A R T I C L E  I N F O

Keywords:
CNN cascade-based 3D/2D non-rigid registra
tion platform
Fully automatic
Fast personalized 3D femur reconstruction
Clinical 3D measurement
2D bi-planar radiographs

A B S T R A C T

Purpose: This paper presents an automatic 3D/2D non-rigid registration method for fast 3D reconstruction and 
clinical measurements of the femur.
Approach: The proposed CNN cascade-based 3D/2D registration platform comprises three major steps to fit a 
generic 3D femur model into 2D bi-planar EOS® radiographs: 1) Pose estimation (CNNPose)- a combination of 
Principal Component Analysis (PCA) and CNN-based 3D/2D similarity registration; 2) 3D shape deformation 
(
CNNShape

)
- a CNN-based 3D displacement estimation of handles followed by Moving Least Square (MLS) shape 

deformation to extend an as-rigid-as-possible deformation to the entire bone, 3) 3D scale deformation 
(CNNScale)- a CNN-based 3D scale ratio estimation of handles followed by MLS-based model rescaling.
Results: The accuracy of the method is evaluated in comparison to, first, a clinically proved semi-automatic 
method on 15 patients, and second, Computerized Tomography CT scans of five new patients. In the first vali
dation, the mean ± standard deviation (STD) of the Root Mean Square of point-to-surface distance (RMS-P2S) 
error is 0.88± 0.29 mm. For the second validation, the mean± STD of RMS-P2S error is 2.70± 0.39 mm. Four 
clinical measurements of the reconstructed 3D femurs are computed and compared with the first validation set. 
For each clinical measurement, the Mean Absolute Errors (MAE) is below 1 mm or 1◦.
Conclusions: The presented automatic CNN cascade-based framework efficiently registers the generic 3D femur 
models into bi-planar radiographs. The CNN-based 3D handles displacement and scale estimation eliminates 
manual-annotations and user-interventions for MLS deformation while maintaining accuracy and speed. This 
system is applicable for other bones such as the tibia.

1. Introduction

Clinical 3D geometric measurements of the lower limb bones such as 
the femur, are crucial in orthopedic pre-operative planning and patient 
follow-up [1,2]. In clinical routine, the personalized 3D model recon
struction of the femur is a useful tool for physicians to quantify clinical 
3D geometric measurements such as the size, curvatures, orientations, 
and femoral torsion ([3]; Reyneke et al., 20219). 2D bi-planar radio
graphs-based 3D femur reconstruction methods provides an efficient 
alternative to Computerized Tomography (CT) [3–5] for orthopedic 
surgical planning [6] and patient follow-up [7].

Personalized 3D bone reconstruction from 2D bi-planar radiographs 
has been investigated over the last two decades [3–5]. In this 3D 
reconstruction process, 3D/2D registration is usually essential to 
establish a geometrical relationship between a known prior 3D model 
and a patient’s 2D bi-planar radiographs [5,8,9]. This registration pro
cess, which includes the 3D pose and the 3D shape estimation of bone 
structures from only two 2D projections, is highly complex due to in
formation loss during 2D projection of 3D bones and to the need to solve 
an inverse problem using 2D projected sparse data [8–11]. 
Semi-automatic methods, such as the one employed by the EOS® 3D 
model reconstruction system [10], require the manual intervention of an 
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operator for pose initialization and scale and shape adjustment of the 3D 
model to images [8,10–16]. These manual interventions impact the 
accuracy, time efficiency and reproducibility of the different approaches 
[10]. Recently, efforts have been deployed to remove any intervention 
by the operator [9] and improve the time efficiency [17] of the regis
tration approaches. Although full automation is highly desired, there is 
always the potential for errors in the 3D reconstruction process that need 
to be manually corrected to facilitate deployment in clinical practice 
[10–16,18]. The current semi-automatic EOS® 3D femur reconstruction 
method and 3D geometric measurements quantification system [10], 
which is already integrated in the existing and established commercial 
SterEOS software tool [19], has been validated by clinicians, and has 
reached reliable and significant accuracy allowing it to be used as a very 
useful diagnostic tool assisting physicians in assessing lower limbs 
deformity [19–22]. This method uses the Moving Least Square (MLS) 
deformation approach to fit a generic 3D femur model into the patient’s 
2D bi-planar radiographs and allows physicians, if required, to easily 
refine the reconstructed 3D model. However, this semi-automatic 
approach suffers from lack of time efficiency and reproducibility [10,
19].

To meet this need, we automate the current semi-automatic EOS® 
3D model reconstruction system, which is already integrated in a clinical 
application. The present paper proposes an automatic 3D/2D non-rigid 
registration method to fit a generic 3D femur model into the patient’s 
EOS® bi-planar radiographs to accurately assess clinical 3D geometric 
parameters in a time-efficient manner. This method is easily adaptable 
by clinicians and allows them to quickly and easily adjust the recon
structed 3D femur.

The proposed automatic 3D/2D non-rigid registration framework 
combines deep Convolutional Neural Networks (CNN) cascade-based 
registration models and the Moving Least Square (MLS) deformation 
to fit the generic 3D femur model into the patient’s 2D bi-planar ra
diographs. In Sec.2, related work is introduced. Section 3 presents the 
proposed automatic 3D/2D registration workflow. Section 4 describes 
data preparations, followed by the experimental setup in Sec. 5. Results 
are depicted in Sec. 6. A discussion is being carried out in Sec. 7. Con
clusions are outlined in Sec. 8.

2. Related work

In 2D radiograph-based 3D femur reconstruction, state-of-the-art 
3D/2D registration methods range from semi-automatic [8,10,11] to 
automatic [9]. In the 3D model reconstruction, a known prior 3D model 
such as a CT-scan or Magnetic Resonance Imaging (MRI)-based 3D 
model [7,23], a statistical shape model (SSM) [8,11,16,24], or a generic 
template model [9,10,20] could be registered into the patient’s cali
brated 2D bi-planar radiographs. The choice of the 3D prior model 
drives the 3D bone reconstruction process. In SSM-based 3D femur 
reconstruction, Principal Component Analysis (PCA) is a very useful and 
popular method used to handle and regularize 3D shape deformation [8, 
12,16,18,24]. Unlike PCA-based 3D reconstructions, which require a 
training process and the collection of a CT-scan-based data set [8,12,16,
18,24], interpolation-based methods [10,25] construct personalized 3D 
bone models from a single CT-scan-based reconstructed generic 3D 
model of the target structure without statistical knowledge of the pop
ulation. In contrast to PCA-based methods, which globally constrain 3D 
shape deformation to the training population, an interpolation-based 
method using a generic 3D model provides flexible and local 3D shape 
and scale deformations [10,25].

In semi-automatic 3D/2D registration methods, an operator manu
ally initializes the prior 3D model close to the optimal position in the 
patient’s 2D bi-planar radiograph reference space [8,10,11,16]. Then, to 
optimize the 3D model’s shape and scale, a (dis)similarity measurement 
(matching) term as an objective function is defined and iteratively 
optimized over geometric [8,10,11,14,16,26], intensity [18,24] or 
hybrid [9,19,35] features. Geometric feature-based methods are limited 

to establishing accurate 2D [16] or 3D correspondences such as edges, 
non-stereo corresponding contours [14], and salient landmarks [11] 
between the 3D model and the target bone structures appearing in 2D 
radiographs. These approaches in Ref. [8,10,11,14,16] suffer from a lack 
of reproducibility and robustness. Iterative optimization of an 
intensity-based matching term is highly non-convex over registration 
parameters, and so, the registration task is prone to getting trapped in a 
local optimal when the starting position is far from the optimal one, and 
in addition, it suffers from a lack of robustness [27–29]. To address these 
limitations, hybrid feature-based methods use geometric features for a 
coarse 3D pose initialization close to the optimal position, and then use 
intensity features for a fine registration [9].

A semi-automatic 3D reconstruction method [10,22] is already used 
in clinical routines as it provides a user-friendly 3D model adjustment. 
An interpolation-based method [10] uses a small set of defined stereo 
and non-stereo corresponding (NSC) control points on the generic 3D 
model of the target bone to manipulate and control 3D shape defor
mation using the MLS method. The MLS deformation drives a con
strained and as-rigid-as-possible local 3D shape deformation on a small 
set of 3D handles and avoids undesirable distortion in the entire generic 
3D model, which is suitable for a fast 3D bone reconstruction [10,25]. 
The MLS deformation method does not take into account any statistical 
shape information about the 3D model and it is an appropriate and user 
friendly approach for clinical 3D geometrical parameters assessment 
[10]. In Ref. [10], a small set of 17 handles are manually displaced over 
the whole femur by an operator, and the reported mean reconstruction 
time for both lower limbs is 10 min, with CPU computation. However, 
the 3D femur reconstruction method in Ref. [10] suffers from operator 
intervention, a lack of reproducibility, and high time consumption. In 
contrast, Cresson e al. [25] proposes a contour-based iterative optimi
zation of the 17 MLS handles for 3D femur reconstruction. However 
[25], suffers from manual initialization. In Ref. [9], the 
interpolation-based free-form deformation (FFD) is used for control 
point-based 3D shape deformation. In contrast to MLS deformation, 
which allows physicians to easily refine the 3D shape, a large set of 3D 
control points (88) are uniformly distributed over the entire 3D volu
metric template, making any further adjustments almost impossible. 
This makes it hard to deploy the automatic method of [9] in clinical 
routine. Moreover, in rigid bone deformation, FFD is likely to produce 
undesirable distortion and needs strong regularization [9]. Of note, MLS 
deformation could avoid such undesirable distortion [30]. Recently, 
emerging machine learning (ML)-and deep learning (DL)-based ap
proaches have contributed significantly to reduce operator interventions 
and manual initialization to facilitate the automation of 3D/2D regis
tration [31]. The work in Ref. [9] proposes an automatic 3D/2D simi
larity registration of the proximal femur by using an automatic machine 
learning-based segmentation, via random forest regression, of the target 
bone structure to initialize a template 3D model without user in
terventions. In an automatic 3D/2D rigid registration of a Trans
esophageal Echocardiography (TEE) probe [26], proposes an automatic 
3D pose initialization via the marginal space learning method. The deep 
CNN performs very well in learning the non-linearity of the mapping 
function between input image features and transformation parameters 
[27–29,31]. In contrast to Ref. [9] and [46], a deep learning-based 
optimization method [27–29] overcomes the limitations of 
non-convex intensity-based (dis)similarity term optimization. In 
Ref. [27], known rigid 3D objects such as the knee prosthesis 3D model, 
the TEE probe, and a tooth implant are registered into the patient’s 2D 
frontal radiograph. Hierarchical regression models based on a CNN are 
trained to regress six rigid transformation parameters (6DOF) from local 
intensity residual inputs between Digitally Reconstructed Radiographs 
(DRRs) of TEE and X-ray images [27]. The proposed deep learning-based 
registration method shows enough robustness to produce the same 
registration results from different starting positions [27]. In Ref. [29], to 
improve the accuracy and capture the TEE probe tracking range of [27], 
a coarse-to-fine strategy is proposed for CNN-based 3D/2D rigid 
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registration. The authors refine the accuracy and the capture range of 
the registration by applying a second registration step on the output of 
the coarse step [29]. In CNN-based non-rigid registrations [32,33], 
present unsupervised VoxelMorph and TransMorph models, respec
tively, for 3D MRI brain deformation. In VoxelMorph and TransMorph 
models, an unsupervised atlas-based registration works without ground 
truths and the reference image is an atlas, which is an average volume 
obtained from repeatedly registration of brain volumes in the popula
tion. The VoxelMorph and TransMorph models combine CNN and 
spatial transformation to deform 3D MRI volumes. First, a CNN-based 
model with U-Net architecture learns to estimate deformation field 
from input source and reference images. Second, following CNN-based 
model, an spatial transformation function uses CNN-based estimated 
deformation filed to interpolate new voxel locations based on the eight 
neighbors. Then, the deformed image backpropagated to the model until 
convergence. However, TransMorph model uses U-Net architecture with 
transformed-based encoder to capture long-range relationships in 
registration [33].

In automatic and fast 3D bone reconstruction applications, recent 
developments in CNN-based methods show promising results on 
assigned tasks without user interventions [17,34]. Over the last decade, 
in many 2D radiograph-based 3D model reconstruction applications, 
DL-based methods have been useful tools for automatic and fast 
non-rigid registration [17,31]. For instance, in fully automatic 2D 
bi-planar radiographs-based 3D spine reconstruction [17], a CNN-based 
regression model successfully estimates 3D displacements of corre
sponding stereo landmarks and the vertebral body center (VBC) from 
input (frontal + lateral) local patches. In an automatic 3D knee bone 
reconstruction from 2D bi-planar radiographs [34], supervised and 
non-supervised CNN-based models are used for 3D segmentation of the 
knee bone. The CNN learns to directly reconstruct 3D models of the knee 
from input DRRs rendered from CT-scans. Finally, an MLS-based 3D 
femur reconstruction method is integrated in the commercial SterEOS 
software tool [10] and is currently used in clinical routine to assess 
clinical 3D geometric parameters of the bone structure. Although this 
semi-automatic approach provides physicians with an easy and 
user-friendly way to manually carry out adjustments to correct potential 
3D reconstruction errors to get better assessment of clinical 3D param
eters, it has nonetheless certain limitations, such as dependency on the 
operator’s skill, limited reproducibility, and high time consumption 
[10]. This semi-automatic 3D femur reconstruction and clinical 3D pa
rameters measurement approach could be automated to remove its 
current limitations. To this end, the present paper automates MLS-based 
3D femur reconstruction method [10], integrated in the existing and 
established semi-automatic commercial SterEOS software tool [19], 
with the ability to easily adjust, if required, the reconstructed 3D model 
via a small number of MLS handles. We propose a CNN cascade-based 
3D/2D non-rigid registration which automatically estimates 3D dis
placements and scale ratios of MLS handles. In clinical 3D geometrical 
parameters measurement, the contribution of this work merges the 
estimation of CNN-based handle 3D displacements and scale ratios with 
MLS deformation handles to automate the 3D/2D non-rigid registration 
process. The main benefit of this automated approach is its ease of 
adoption by clinicians, and seamlessly integrating with existing com
mercial SterEOS software [19] by automatically estimating 3D handles. 
Compared to the current semi-automatic EOS® 3D femur reconstruction 
method [10] and 3D geometric measurements quantification system 
[10,19], this work achieved good results.

3. Automatic 3D/2D registration

The proposed CNN cascade-based 3D/2D registration platform 
automatically fits 

(
Mg

)
, the generic 3D model of the target 3D bone 

structure, into (F), which is the patient’s 3D bone, using 2D bi-planar 
radiographs, as Eq. (1): 

(F) = UScale∘
(
UShape∘

(
UPose∘

(
Mg

) ) )
(1) 

The CNN cascade-based 3D/2D registration framework (Fig. 1) 
consecutively uses three CNN-based regression models, CNNPose, 
CNNShape, and CNNScale to fit 

(
Mg

)
into (F) via two main stages: 

(1) 3D/2D similarity registration (UPose): in a coarse-to-fine 3D/2D 
similarity registration, a PCA-based alignment [29] is used to 
coarsely initialize the pose of the generic 3D model of the femur 
[35]. The PCA is applied on CNN-based segmented masks of the 
detected femur in the EOS® 2D bi-planar radiographs to recover 
3D similarity transformation parameters, including translation, 
rotation and scale [20]. In the refining step, CNN-based regres
sion models are trained to obtain more accurate 3D pose pa
rameters [35].

(2) 3D/2D non-rigid registration, including local 3D shape defor
mation 

(
UShape

)
and local 3D scale deformation (UScale): to deform 

the local shape of the registered 3D femur model, CNN-based 
regression models are trained to find 3D displacements of a 
small number of 3D handles pre-defined on the femur. Following 
the computation of the new positions of 3D handles, an MLS 
deformation is applied to obtain a 3D model better adjusted to the 
radiographs without any user interactions. To optimize the local 
3D scale corresponding to each handle, CNN-based regression 
models are trained to estimate the local 3D scale ratios corre
sponding to the said handles. Then, the MLS method is used to 
compute 3D rescaling fields and extend the scales to the entire 3D 
femur.

To begin with the methodology, subsection 3.1 introduces the 
generic 3D model and the 3D coordinate system, which will be used in 
all methodology subsections. subsection 3.1.1 presents MLS deformation 
method. Section 3.2 presents the structure of the convolutional neural 
network models that we train for CNN cascade-based 3D/2D registration 
framework. Section 3.3 describes an automatic CNN-based similarity 
registration (UPose). Section 3.4 presents 3D/2D automatic non-rigid 
registration process through two main subsections 3.4.1 and 3.4.2. 
subsection 3.4.1 describes automatic 3D shape deformation process 
(
UShape

)
through subsections 3.4.1.1 and 3.4.1.2 for CNN-based 3D 

displacement estimation and automatic 3D shape deformation, respec
tively. Finally, subsection 3.4.2 presents automatic 3D scale deformation 
process (UScale) through subsections 3.4.2.1 and 3.4.2.2 for CNN-based 
3D scale ratios estimation and automatic 3D scaling, respectively.

3.1. Deformable generic 3D model and 3D coordinate system

To begin, the position of the generic 3D model 
(
Mg

)
and the patient’s 

bone structure are defined with respect to the origin of the 3D referential 
of the EOS cabin system (0,0,0), (Fig. 2). We use the same generic 3D 
model 

(
Mg

)
constructed by Ref. [10], which is a CT-scan-based recon

structed 3D surface mesh of the left femur. A set of 17 3D handles 
recorded as CP =

{
cpi ∈ R3⃒⃒i= 1,⋯, 17

}
are defined beforehand by 

Ref. [10] on the generic 3D model
(
Mg

)
, (Fig. 2), to manipulate and control the 3D bone shape defor

mation. Of the 17 3D handles, cp1 to cp12 are 3D point handles with 
uniform scale, and are located on the proximal and distal femoral re
gions. cp13 to cp17 are the spline handles with non-uniform scale and are 
located on the femoral diaphysis. The latter handles are more appro
priate for depicting the 3D shape deformation of the femoral diaphysis 
[10]. The 3D mesh 

(
Mg

)
is constructed by a set of 3D vertices 

(
Vg

)
, and 

each cpi is surrounded by a corresponding subset of vertices called vi.

3.1.1. MLS deformation of generic 3D model
To deform the generic 3D model, which is controlled by 17 handles, 
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we apply the MLS deformation method [10,22]. Given two sets of 3D 
positions for 17 handles, CPT (source) and CP´ (reference), the MLS 
deformation method [10,25] locally computes the new positions of the 

corresponding subset of 3D vertices, vi of 
(

MT
g

)
. The Weighted Least 

Squares (WLS) optimization, as Eq. (2), provides a locally constrained 

shape deformation based on a weight function, wi, as [10,25]: 

D̂vi = argmin
Dvi

(
w⋅
⃦
⃦cp´ − Dv

(
cpT)⃦⃦2

)
,∀vi ∈

(
VT

g

)
, (2) 

Fig. 1. Automatic 3D/2D registration framework in two main stages: (1) 3D/2D similarity registration (top row), and (2) 3D/2D non-rigid registration (bottom row).

Fig. 2. Femoral shape description with 17 3D handles at the origin of the 3D referential of the EOS® cabin system.
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wi =
1

d
(
cpT

i , vi
)2α 

Where D̂vi is an optimal similarity transformation associated with cpT
i 

and its corresponding subset of vertices vi and d(⋅, ⋅) is the Euclidean 
distance between each vertex of the subset vi and cpT

i . The function d(⋅, ⋅)

measures the distance between each vi on 
(

MT
g

)
and the handle cpT

i with 

Euclidean norm. The impact of d(⋅, ⋅) on the displacement field of v is 
controlled by the parameter α > 0. The parameter α > 0 controls the 
effect of distant handles on the deformation of the subset of vertices vi. 
For each handle, the closest vertices gain more weight and are affected 
more.

The optimal similarity transformation D̂vi is found using singular 
value decomposition [36] (SVD) by solving a least squares regression 
between the source (CPT) and target (CP´) 3D handles. To avoid unde
sirable distortion and non-uniform scaling, for each handle CPT

i , D̂vi is 
restricted to a similarity transformation as Eq. (3): 

CPT
i →D̂vi

(
CPT

i
)
= scGlobalriCPT

i + ti (3) 

Where SCGlobal is the uniform global scaling and ri is a local 3D rotation 
followed by a local 3D translation ti associated with CPT

i . For each 
handle cpT

i , we transform the corresponding subset of vertices vi with 
D̂vi to obtain a locally constrained and smooth 3D shape deformation of 

the 3D model 
(

MT
g

)
. The deformed 3D model 

(
MD̂∘(T)

g

)
is used as an 

input for the next local 3D scale ratio estimation.

3.2. Convolutional Neural Networks structure

A CNN cascade-based 3D/2D registration framework comprises 38 
CNN-based regression models: four for (UPose), 17 for 

(
UShape

)
and 17 for 

(UScale), corresponding to CPT. The regression models for (UPose) are 
multi-channel CNN, as described in Ref. [35], while those for 

(
UShape

)

and (UScale) are bi-channel CNN, which are used to estimate the handles’ 

3D displacements and 3D scale ratios, respectively, and have the same 
structure as [35]. For CNNShape and CNNScale (Fig. 3), shows the structure 
of a bi-channel CNN-based regression model corresponding to bi-planar 
input patches. Each CNN channel is constructed from two convolutional 
layers followed by drop-out layers, two max pooling layers, and a fully 
connected layer. The extracted feature maps from each CNN channel are 
concatenated and passed to another fully connected layer. The next fully 
connected layer is the output layer. Each CNN-based regression model is 
trained to minimize the Euclidean loss as an objective function, as Eq. 
(4): 

ψ =
1
n
∑n

j=1

⃦
⃦
⃦gj − yj

⃦
⃦
⃦

2

2
(4) 

Where n is the number of training samples, gj is the known target, and yj 
is the estimated output

for the jth training sample. For Sec.3.3 (UPose), 3.4.1 
(
UShape

)
, and 

3.4.2 (UScale), gj and yj are the target and estimated 3D pose parameter 
residual, 3D displacement, and 3D scale ratio, respectively. The inputs 
for (UPose), 

(
UShape

)
, and (UScale) are the local intensity (or residual) 

patches described in Sec.3.4.1 and 3.4.2, respectively.

3.3. Automatic 3D/2D similarity registration (UPose)

The generic 3D model 
(
Mg

)
is initialized in the patient’s EOS 3D 

radiograph space and registered into (F), the projection of the patient’s 
bone of interest in 2D bi-planar radiographs, using the fully automatic 
CNN-based method previously presented in Ref. [35]. We use the 
coarse-to-fine 3D/2D similarity registration (UPose) method to estimate a 
seven-degrees-of-freedom (7DOF) 3D pose, and the isotropic scale pa
rameters, T

(
tx, ty, tz, rθ,rα,rβ, s

)
, to align 

(
Mg

)
into (F). To roughly locate 

the 3D bone, first, a PCA-based registration [45] is used to estimate 
(
tx,ty,

tz,rθ,rα,s
)
, following an automatic CNN-based semantic segmentation of 

the target bone [37]. Secondly, a CNN-based regression model [20], 
CNN1

(rβ)
, is trained to estimate 

(
rβ
)
. In the fine step to refine the 

Fig. 3. Bi-channel CNN-based regression model structure corresponding to the 3D handle cp1.
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transformation parameters, three CNN-based regression models, 
CNN2

(δty ,δrθ)
, CNN3

(δtx ,δrα)
, and CNN4

(δtz ,δrβ)
, are trained from bi-planar 

pose-invariant local intensity residuals, centered at the 2D projections 
of automatically computed six pose-invariant points of

the left femur (Fig. 4), to refine 3D pose residuals and reach the most 
accurate 3D position [35]. Then, 

(
Mg

)
is transformed with the computed 

transformation T to obtain 
(

MT
g

)
, which is used as input for the auto

matic 3D/2D non-rigid registration.

3.4. Automatic 3D/2D non-rigid registration

3.4.1. Automatic 3D shape deformation 
(
UShape

)

To perform a personalized and as-rigid-as-possible local 3D bone 
deformation, we propose a fast and automatic handle-based 3D/2D non- 
rigid registration algorithm combined with MLS deformation [10,25]. In 
(
UShape

)
, first, CNN-based regression models are trained to estimate the 

3D displacements of a small set of 17 handles of the generic 3D model 
(Sec.3.1, Fig. 2). Given the new positions of the handles, we apply MLS 
deformation (Sec.3.1.1) without any user interventions.

3.4.1.1. CNN-based 3D displacements estimation. To deform the 3D 

model 
(

MT
g

)
, we estimate 3D displacements of the set of 17 handles, CP 

(Fig. 2). A set of 17 CNN-based regressors, 

CNNsShape =
{

CNNShape
i

⃒
⃒
⃒i= 1,⋯, 17

}
, are independently trained to 

directly estimate the handles’ 3D displacements between the current 
and target positions, Δxyz =

{
(δx, δy, δz)i

⃒
⃒i = 1, …, 17

}
. The inputs of 

each CNNShape
i are bi-planar local intensity patches (LIs) (Sec.3.2) 

extracted from the patient’s 2D bi-planar radiographs (IF , IL) at a size of 
200 × 200 pixels. The input LIs of CNNShape

i are centered at 2D frontal 
and lateral projections of the 3D handles, cpi

T, transformed using the 
similarity transformation T previously estimated in Sec.3.3. Each 
CNNShape

i (Fig. 3) learns a mapping function f1 between the input LIs and 
corresponding 3D displacements (δx, δy, δz)i, as Eq. (5): 

f1

(
LIs

(
cpT

i , (IF, IL)
)
,
(

MT
g

))

i
=(δx, δy, δz)i (5) 

Afterward, CP´ is computed as a set of new positions for CPT, as Eq. 
(6): 

CP´=CPT + Δxyz (6) 

Fig. 4. First row: 2D projections of the six frontal (left) and lateral (right) pose-invariant 3D points on the left femur, after the coarse registration. Second and third 
row: six frontal and six lateral LIRs.Picture from Ref. [35].
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Each CNNShape
i comprises two channels: the top channel deals with 

frontal local patches, while the bottom one covers lateral local patches 
(Fig. 3). This allows to directly estimate 3D displacements. The input 
and the structure of CNNShape

i are designed to obtain 3D displacements as 
output. The inverse of the 3D/2D similarity transformation, T− 1, is 
applied in the definition of the Euclidean loss function, as Eq. (7): 

ψ =
1
n
∑n

j=1

⃦
⃦
⃦T− 1

j

(
(δx, δy, δz)Target

j

)
− T− 1

j

(
(δx, δy, δz)j

)⃦
⃦
⃦

2

2
(7) 

Where n is the number of samples and T− 1
j

(
(δx, δy, δz)Target

j

)
and 

T− 1
j ((δx, δy, δz)) are the known target and estimated 3D displacements 

for the jth training sample, respectively.

3.4.1.2. Automatic 3D shape deformation. The automatic CNN-based 
computation of CP´ allows to apply the MLS 3D shape deformation 
without any user annotations and interactions. Following the compu
tation of new positions for the 17 3D handles, CP´, to obtain an as-rigid- 
as-possible 3D shape deformation, the MLS method, described in 
Sec.3.1.1, is used to estimate regularized 3D displacements over all 

vertices of 
(

MT
g

)
. The deformed model is called 

(
MD̂∘(T)

g

)
.

3.4.2. Automatic 3D scale deformation (UScale)

Following 
(
CNNsShape + MLS

)
, to personalize the 3D scales of 

(
MD̂∘(T)

g

)
according to the target bone (F), we develop an automatic 3D 

scale deformation algorithm. (UScale) combines CNN-based regression 
models with a regularized MLS-based local 3D scale deformation to 
drive a fully automatic 3D scale deformation. The CNN-based regressors 
estimate local scale ratios corresponding to the 17 displaced handles, 
which are required to perform an as-rigid-as-possible MLS-based local 
3D scale deformation without any user intervention.

3.4.2.1. CNN-based 3D scale ratios estimation. To adjust the scale of the 

17 handles on 
(

MD̂∘(T)
g

)
, 17 CNN-based regressors are developed, with 

the same architecture as CNNsShape, called CNNsScale =
{
CNNScale

i
⃒
⃒i = 1,

⋯,17
}
, but with a different cost function, as Eq. (8): 

ψ =
1
n
∑n

j=1

⃦
⃦
⃦
(
δsx, δsy, δsz

)Target
j −

(
δsx, δsy, δsz

)

j

⃦
⃦
⃦

2

2
(8) 

Where n is the number of samples and 
(
δsx, δsy, δsz

)Target
j and 

(
δsx, δsy, δsz

)

j are the known target and estimated scale ratio for the jth 

training sample, respectively. The CNNsScale are independently trained 
to estimate the 3D scale ratios SRxyz =

{(
δsx, δsy, δsz

)

i ∈ R3⃒⃒i= 1,…,17
}

of the 17 displaced handles, CP´. Among the set of 17 handles, CP´, cp´1 to 
cp´12 are point handles with uniform scale 

(
sx = sy = sz

)

i, and the cor
responding regressors 

{
CNNScale

i
⃒
⃒i= 1,⋯,12

}
have one output in the last 

layer. cp´13 to cp´17 ,
( {

CNNScale
i

⃒
⃒i= 13,⋯,17

})
are the spline handles 

with non-uniform scale, which therefore have three outputs. Each 
CNNScale

i learns to regress a direct map function f2 between the input 2D 
bi-planar (LIRs), Sec.3.2, and the output scale ratios, as Eq. (9): 

f2

(
LIRs

(
cp´i, (DRRF,DRRL), (IF, IL)

)
,
(

MD̂∘(T)
g

))

i
=
(
δsx, δsy, δsz

)

i (9) 

Where the input LIRs are local intensity differences, inside extracted 
local patches, between bi-planar digitally reconstructed radiographs 

(DRRs) of 
(

MD̂∘(T)
g

)
, as source (DRRF , DRRL), and patients’ bi-planar 

radiographs as reference (IF , IL). The extracted local patches are 
centered at 2D projections of the 17 displaced handles, CP´, on both 

frontal and lateral projections, at a size of 200 × 200 pixels.

3.4.2.2. Automatic 3D scaling. Following a CNN-based 3D scale ratios 
estimation, we automatically apply scaling over all vertices to person

alize the scales of 
(

MD̂∘(T)
g

)
. The sum of weighted CNN-based local 3D 

scale ratios of the 17 handles over the sum of the computed weights, wi,

is computed to obtain the average of scale ratios over all handles, SCLocal, 
Eq. (10). Then, the average of SCGlobal, described in Sec. 3.1.1 (Eqs. (2) 
and (3)) , and SCLocal, are calculated to obtain an optimal local scale 
ŜCVi , Eq. (11), as [10]: 

SCLocal =
w ⋅

(
δsx, δsy, δsz

)

∑
iwi

. i= 1,⋯, 17 (10) 

ŜCvi =
(SCGlobal + SCLocal)

2
(11) 

Ultimately, each vertex vi ∈
(

VD̂∘(T)
g

)
is transformed with the 

computed optimal scale ŜCvi to extrapolate 3D scale deformation over 
(

MD̂∘(T)
g

)
and obtain a personalized (deformed and rescaled) 3D bone 

model as 
(

MŜ∘(D̂∘(T) )
g

)
.

4. Data

4.1. 2D Bi-planar radiographs

After ethical approvals by the ethics committees of the University of 
Montreal Hospital Center (CHUM) and École de Technologie Supérieure 
(ÉTS, Montréal, Canada), a set of 2D bi-planar radiographs of 85 patients 
are retrospectively recovered. The whole femur is visible in the images. 
The set of 2D bi-planar radiograph are acquired from various fields of 
view, including the whole lower limbs and the full body, with two 
different patient orientations, 0◦/90◦ and 45◦/45◦, by the low dose and 
slot-scanning EOS® system (EOS Imaging, Paris, France). We use a total 
of 70 patients, 56 for training and 14 for validation, in the training 
process. For testing, the remaining 15 unseen patients are then used.

4.2. Digitally reconstructed radiographs (DRRs)

The 2D bi-planar DRRs are rendered from the transformed and then 

deformed 3D model of the left femur 
(

MD̂∘(T)
g

)
, presented in Sec.3.4, 

using the Ray Casting method [44] via a home-made algorithm devel
oped in C++, and running on an Intel® Core CPU. We render 85 

bi-planar DRRs of 
(

MD̂∘(T)
g

)
, corresponding to 85 patients (training, 

validation, and test set).

4.3. Fuzzy gold standard personalized 3D models

To evaluate the performance of the 3D/2D registration, we compare 
the accuracy of the personalized 3D shape, 3D positions, and local scales 
of 17 handles with personalized fuzzy gold standard 3D models [43]. An 
expert constructed personalized fuzzy gold standard 3D models of the 
left femur, (MFGS), corresponding to 85 patients, using the 
semi-automatic commercial software, SterEOS [10,19], as an 
state-of-the-art (SOTA) method. For each patient, the set of 17 fuzzy gold 
standard handles, CPFGS, the corresponding 3D positions, and local 
scales are extracted from (MFGS). For each patient, the shape accuracy of 
the personalized 3D femur, 3D positions, and local scale of the 17 
handles are compared with the corresponding personalized fuzzy gold 
standard 3D model and handles.
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4.4. Gold standard CT-scan-based personalized 3D models

To evaluate the accuracy of the 3D reconstructed models by the 
proposed 3D/2D registration method, gold standard personalized 3D 
models are used as ground truths. The acquired CT 3D images and the 
corresponding CT-scan-based reconstructed 3D models of the left femur 
from five unseen pathological patients, who are different from the set of 
85 patients, are used as gold standard personalized 3D models, (MGS). 
CT-scan-based personalized 3D models are reconstructed from CT-scan 
slices with manual segmentations by an expert via the SliceOmatic© 
software (Laporte et al., 2013). We have the EOS® 2D bi-planar radio
graphs of these five patients.

4.5. Training data for regression models

For each CNNShape
i , corresponding to each handle cpT

i , we extract 140 
bi-planar LIs (Fig. 5) from a total of 70 patients’ bi-planar radiographs. 
For all CNNsShape, corresponding to the set of 17 3D handles, we end up 
with (17 × 140) bi-planar LIs. To train CNNsScale regression models, the 
same 70 patients’ 2D bi-planar radiographs are considered as reference 
images. To train each CNNScale

i corresponding to cp´i, 140 bi-planar LIRs 
(Fig. 6) of 70 patients are computed, leading to (17 × 140) bi-planar 
LIRs for the set of 17 CPFGS to train 17 CNNsScale models. In the second 
stage of the developed workflow, which is 3D shape and 3D scale 
deformation, we generated synthetic images for training CNNs. We used 
the same data augmentation technique that we applied in the first stage, 
3D pose estimation [35]. For each patient, we generated 10 random 
perturbations around the 17 handles’ fuzzy gold standard 3D displace
ments and 3D scale ratios. The perturbations follow a zero mean uniform 
distribution over the range of ±10 mm for 3D displacements in x, y and Z 
axis, and ±0.5 (%) for scale ratio. For 70 patients, we end up with 700 
random 3D positions and scales for each 3D handle, leading to (17 ×
1400) bi-planar LIs to train CNNsShape regression models and (17 × 1400) 
bi-planar LIRs to train CNNsScale models.

5. Experimental setup

5.1. 3D positions and 3D scale ratios of handles

5.1.1. Evaluation data and implementation
To evaluate the accuracy of the 3D position and local scale of the 17 

handles of the personalized left femur, a set of 15 unseen patients’ 2D bi- 
planar radiographs are used. From this set, nine and six bi-planar ra
diographs are acquired with 0◦/90◦ and 45◦/45◦ patients’ orientations 
in the EOS® cabin system, respectively. We apply the two stages of the 
proposed 3D/2D registration workflow. The proposed method is 
implemented in a home-made software application and run on a 
GeForce® GTX GPU. For 

(
UShape

)
and (UScale), the CNN-based regression 

models are developed in a Tensor-flow platform and implemented on a 
GeForce® GTX 1060 GPU. In each training iteration (epoch = 100), the 
mini-batch size is equal to 10, and the learning rate is 0.009. The weights 

are initialized using the Xavier method [38] and are learned using an 
Adam optimizer [39].

5.1.2. Evaluation metrics for 3D positions of handles
To evaluate the accuracy of the 3D positions of 17 handles, we 

compute the mean and standard deviation (Mean±STD), the maximum 
(Max), and minimum (Min) of the absolute 3D Euclidean distance error 
(mm) between 3D positions of the 17 3D handles, CP´, computed by the 
proposed method, and the corresponding 17 fuzzy gold standard 3D 
positions, CPFGS, over 15 evaluation cases.

5.1.3. Evaluation metrics for 3D scale ratios of handles
To evaluate the accuracy of the local scale ratios of the 17 handles, 

we compute the mean and standard deviation (Mean±STD), the 
maximum (Max), and minimum (Min) of the absolute scale ratio errors 
between the estimated 

(
δsx, δsy, δsz

)
and the fuzzy gold standard scale 

ratios, 
(
δsx, δsy, δsz

)FGS, for the 17 handles over 15 evaluation cases. Of 
the 17 handles CP´, cp´1 to cp´12 are the point handles with uniform scale 
(
sx = sy = sz

)

i, and the other five are the spline handles with non- 
uniform scale.

5.2. Personalized 3D femur and clinical measurement

5.2.1. Evaluation data and implementation
To evaluate the proposed fully automatic cascade-based CNN 3D/2D 

registration in the personalized 3D femur reconstruction and clinical 3D 
measurements application, the shape accuracy of the personalized 3D 
shape reconstruction of the left femur and the clinical 3D measurements 

are evaluated. We compare the accuracy of 
(

MŜ∘(D̂∘(T) )
g

)
with two 

different evaluation sets: 1) fuzzy gold standard (MFGS) of the 15 unseen 
patients described in Sec.4.3, and 2) ground truth gold standard (CT)- 
scan-based reconstructed 3D shape femurs (MGS) of a new set of five 
unseen patients, described in Sec.4.4.

5.2.1.1. First evaluation with fuzzy gold standard 3D models. The first 
evaluation compares our proposed fully automatic method with a semi- 
automatic approach [10] integrated in a commercial tool, SterEOS [10,
19], which is used to generate (MFGS) of the same 15 unseen patients. 
The main objective of the first evaluation is to validate the effectiveness 
and potential of the proposed automatic method to be integrated in the 
clinical practice by looking at how our results are close to those obtained 
by the semi-automatic commercial SterEOS tool [10,19]. This evalua
tion compares the shape accuracy of the 3D personalized femur and 
clinical measurements obtained by the proposed automatic method and 
the results of the current clinical tool [10,19]. Importantly, the generic 
3D model, that we deform to obtain the personalize 3D femur, has been 
previously validated [10,19] to be used in clinical practice and the 
extracted clinical parameters are within the acceptable accuracy.

Fig. 5. Illustration of 12 frontal LIRs (top) and lateral LIRs (bottom) centered at 2D projection of 3D handles with uniform scaling CP′to CP.
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5.2.1.2. Second evaluation with gold standard CT-scan-based 3D model 
reconstruction. In the second evaluation, the shape accuracy of the 

personalized 3D femur 
(

MŜ∘(D̂∘(T) )
g

)
is compared with the corresponding 

gold standard CT-scan-based model (MGS). We firstly apply the Iterative 
Closest Point (ICP) rigid registration method [40] to align the estimated 
(

MŜ∘(D̂∘(T) )
g

)
into (MGS), for transfer into the same 3D coordinate system. 

Then, the shape accuracy (Section 5.2.2) is computed between 
(

MŜ∘(D̂∘(T) )
g

)
and (MGS).

5.2.1.3. Evaluation of clinical measurement. In addition to the accuracy 
of the computation of the personalized 3D shape reconstructed femur, 
four important clinical 3D measurements of the personalized 3D shape 
of femurs are computed via a commercial tool integrated in SterEOS 
software [10]. These extracted 3D measurements are: 1) hip knee 
center-femoral shaft angle (HKS), which is the angle between the me
chanical and anatomical femoral axis, 2) femoral mechanical angle 
(FMA), 3) femoral torsion (FT), which is the angle between the femoral 
neck axis and the bicondylar femoral axis, and 4) femoral length (FL).

5.2.2. Evaluation metrics
The shape accuracy of the reconstructed personalized 3D model of 

the left femurs is evaluated based on two different measurements, 
namely, the point-to-surface (P2S) distance and the 3D Hausdorff dis
tance errors. We compute the Root Mean Square (RMS), Mean, Min, and 

Max of (P2S) distance errors (mm) between the estimated 
(

MŜ∘(D̂∘(T) )
g

)

and the corresponding (MFGS) and (MGS). To evaluate the clinical 3D 
measurements, we compute the Mean and Standard Deviation of Ab
solute Errors (MAE±STD) of four clinical 3D measurements of the left 

femur, separately, between the estimated 
(

MŜ∘(D̂∘(T) )
g

)
and fuzzy gold 

standard (MFGS), in mm and degrees.

6. Results

6.1. 3D displacement accuracy of handles

Fig. 7 illustrates the quantitative results of the computed 3D position 
accuracy for the 17 handles. For each handle, the black dot, red line, top 
and bottom of blue line caps show (Mean±STD), (Max), and (Min) er
rors, respectively.

6.2. 3D scale ratio accuracy of handles

Fig. 8 illustrates the quantitative results of the local 3D scale ratio 
accuracy for the 17 handles estimated by the CNNScale regression models. 
For each handle, the black dot, red line, top and bottom of blue line caps 
show the (Mean±STD), (Max), and (Min) errors, respectively. In Fig. 8, 
for 5 non-isotropic handles, cp´13 to cp´17 , we show the maximum scale 
errors for the X-, Y-, and Z-axes.

6.3. Personalized 3D femur accuracy

Table 1 presents the average of (RMS, Mean, STD, Min, Max) of 
point-to-surface (P2S) distance errors (mm) between the personalized 

3D femurs 
(

MŜ∘(D̂∘(T) )
g

)
and the corresponding fuzzy gold standards 

(MFGS) over 15 evaluation cases. The (Mean±STD) of the 3D Hausdorff 
distance errors over 15 unseen patients is equal to 2.95 ± 1.42 mm. 
Table 2 depicts the mean and standard deviation of absolute errors of 
four clinical 3D measurements extracted from personalized 3D femurs in 
comparison with the corresponding fuzzy gold standard models of 15 
unseen patients.

Fig. 9 presents RMS-P2S errors of personalized 3D femur of 15 

Fig. 6. Illustration of 12 frontal LIRs (top row) and lateral LIRs (bottom row) centered at 2D projections of 5 3D handles with non-uniform scaling CP′ to CP′.

Fig. 7. Error bars of computed 3D positions of 17 handles.
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patients in comparison with fuzzy gold standard 3D models. Table 3 for 
its part presents and compares the accuracy of the personalized 3D fe

murs 
(

MŜ∘(D̂∘(T) )
g

)
via the proposed methodology and semi-automatic 

commercial SterEOS tools [10] in comparison with the ground truth 
gold standard 3D models (MGS), for the same five patients. The average 
of (RMS, Mean, STD, Min, Max) of point-to-surface (P2S) distance errors 
(mm) are computed over five unseen patients.

Fig. 10 shows P2S distance map between a personalized 3D femur via 
the proposed method and the corresponding fuzzy gold standard model, 
reconstructed by the semi-automatic commercial SterEOS software [10], 

for one of the validation cases. Fig. 11 shows P2S distance map between 
a personalized 3D femur via the proposed method and the corresponding 
CT-scan-based gold standard 3D model for one of the validation cases.

7. Discussion

The proposed fully automatic CNN cascade-based 3D/2D registration 
framework combines an automatic coarse-to-fine CNN-based 3D/2D 
similarity registration and an automatic CNN-based 3D/2D non-rigid 
registration. The goal is to have a personalized 3D femur reconstruc
tion and clinical 3D measurements from 2D bi-planar EOS® radio
graphs. The main benefit of this work leads clinicians to easily adopt and 
use this method, as it in fact contributes to an existing and established 
software tool. In 3D/2D non-rigid registration, CNN cascade-based 
regression models are successfully merged with MLS 3D shape and 
scale deformation (Table 1). Unlike a semi-automatic MLS deformation 
integrated in SterEOS [10], which needs user interventions to annotate 
the new positions of 17 3D controls and to manually adjust the scales, 
the proposed CNN-based regressors provide significant advantages for: 
1) removing operator interventions, and 2) fast adjustments of 3D 
handles’ positions and scales, to drive MLS 3D shape and scale defor
mation (Fig. 7). In comparison with fuzzy gold standard 3D handle po
sitions, the average of the Mean Absolute Errors (MAE) of 3D Euclidean 
distance of the 17 3D handles’ positions on 15 validation cases is equal 
to 0.63 mm. Using CNN allows us to achieve a Mean of 3D Euclidean 
distance errors lower than 1 mm for each of the 15 3D handles, except 
for C3 (1.42 mm) and C7 (1.07 mm) (Fig. 7). C3 and C7 correspond to 
the smaller trochanter and the posterior exterior condyle, respectively, 
which are less visible than other 3D handles due to the overlap between 
the bone structures, mostly in patients with a 0◦/90◦ orientation. Unlike 
[9], which uses FFD deformation on a large set of 3D control points (88), 
using the MLS deformation on a small set of 17 handles allows clinicians 
to easily correct potential reconstruction errors [9]. uses the 
triangulation-based method to compute the corresponding 3D positions 
of updated 2D bi-planar positions of the projected 3D control points; this 
is done by direct estimation of the 3D displacements at the origin 
(0, 0,0) of the 3D referential of the EOS® cabin system. By contrast, our 
contribution to a 3D/2D non-rigid registration involves fewer steps.

The developed 17 CNN-based local 3D scale ratio regressors auto

Fig. 8. Error bars of local 3D scale ratios of 17 handles.

Table 1 
Average (Ave.) of (RMS, Mean, STD, Min, Max) of P2S distance errors (mm) in 
comparison with fuzzy gold standard 3D models.

Error RMS Mean STD Min Max

Ave. 0.88 0.66 0.57 9.77E-05 2.87

Table 2 
(MAE±STD) of four clinical measurements in degrees (◦) and (mm) over 15 
reconstructed 3D femurs in comparison with fuzzy gold standard 3D models.

Error HKS (◦) FMA (◦) FT(◦) FL (mm)

Mean 0.14 0.09 0.16 0.67
STD 0.09 0.09 0.12 0.35

Fig. 9. Illustration of RMS-P2S error of reconstructed personalized 3D femurs for 15 patients in comparison with fuzzy gold standard 3D models. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 3 
Average (Ave.) of (RMS, Mean, STD, Min, Max) of P2S distance errors (mm) as 
compared to CT-scan-based gold standard 3D models.

Error RMS Mean STD Min Max

Proposed method Ave. 2.70 2.14 1.64 0 11.08
Semi-automatic SterEOS 

tool [10]
Ave. 2.07 1.47 1.19 6.8E- 

04
10.07
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matically provide personalized local scale ratios corresponding to the 17 
3D handles. Merging CNN-based local 3D scale ratio regressors with MLS 
deformation automatically adjusts the 2D silhouette of the 3D femur 
with the edges of the target bone in patients’ 2D bi-planar radiographs. 
Compared to fuzzy gold standard 3D handle scale ratios, using CNN to 
estimate the local scale ratios of 17 3D handles provides an MAE lower 
than 0.1 % over 15 validation cases for each handle (Fig. 8). The mean of 
the MAE of the 17 3D handles is equal to 0.05 %. C15 (spline diaphysis 
with non-uniform scale) and C7 (condyle posterior exterior with uni
form scale) are two 3D handles that have Min 
(
Esx = 0.05%,Esy = 0.03%,Esz = 0.05%

)
and Max (0.1 %) of MAE, 

respectively.
The computation time for the 3D femur reconstruction via the pro

posed fully automatic 3D/2D registration framework, without any code 
optimization, is 75 s, using a GeForce® GTX 1060 GPU and an Intel® 
Core I7 CPU. Hence, using automatic CNN-based 3D pose initialization 
and CNN-based 3D/2D registration improves the computation time as 
compared to Ref. [10], which is a semi-automatic method and requires 
10 min for the reconstruction of both lower limbs with CPU computa
tion. Regarding hardware adaptability, since the proposed method au
tomates MLS-based 3D femur reconstruction method [10], integrated in 
the existing and established semi-automatic commercial SterEOS soft
ware tool [19], with the ability to easily adapt to different hardware 
environment including GPU and CPU-based systems in clinical routines, 
hence our proposed method has ability to be easily adapted into 
different hardware environment making it suitable for the clinical 
routine setting. In comparison with other relevant works, in Ref. [18], a 

conventional iterative optimization is used to reconstruct a personalized 
3D proximal femur, with a reported time of 15 min, with CPU compu
tation. However, in Ref. [24], the computation time of [18] is improved 
to 1.09 s with GPU computation.

The personalized 3D femur shape accuracy is validated in compari
son with two different validation sets. In the first validation, we compare 
the shape accuracy of the personalized 3D femurs with fuzzy gold 
standard 3D models reconstructed via the semi-automatic approach in
tegrated in the commercial software, SterEOS [10,19]. The 
(Mean ± STD) of RMS-P2S errors over 15 validation cases is equal to 
0.88 ± 0.29 mm (Table 1). The Mean of Max-P2S errors is 2.87 mm 
(Table 1) [10]. presents a Mean of 1.0 mm and Max of 6.6 mm in 
comparison to CT-scan, and [19–22] show that this semi-automatic 
method [10] has significant accuracy for lower limbs deformation 
diagnosis and it is a very useful tool in the current clinical routines. 
Therefore, the results of our automatic method are close to those ob
tained by Ref. [10] and, with the current accuracy, it has a strong po
tential to be used as a practical diagnostic tool and be implemented in 
clinical routines.

After 3D femur reconstruction, four clinical measurement errors are 
computed in comparison with the semi-automatic software SterEOS 
tools [10,19], on the same validation set. The MAE and STD of each 
clinical 3D measurement are lower than 1 mm or 1◦ (Table 2) and are 
very close to those obtained by Ref. [10,19–22] demonstrate that [10] is 
a very useful tool to assist physicians to measure lower limbs clinical 
parameters, so our automatic method also can be used to measure 
clinical parameters. In the clinical routine of 3D model-based orthopedic 
applications, the proposed automatic and fast CNN cascade-based 

Fig. 10. Distance map of the P2S error on a personalized 3D femur of a patient 
with a 0◦/90◦ orientation in comparison with fuzzy gold standard model (left) 
and error bar (right) showing minimum (0) and maximum (2) error in (mm). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)

Fig. 11. Distance map of the P2S error on a personalized 3D femur of a patient 
with a 45◦/45◦ orientation in comparison with CT-scan-based gold standard 
model (left) and error bar (right) showing minimum (0) and maximum (3) error 
in (mm). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)
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3D/2D registration achieves a high accuracy for clinical 3D measure
ment computation to help clinicians quickly diagnose and analyze 3D 
shape deformities in the femur. For the first validation set, a 100 % 
success rate is achieved for RMS-P2S errors lower than 1 mm for the 
reconstructed personalized 3D femurs (Table 1).

For the second validation set, the (Mean±STD) of RMS-P2S errors of 
five personalized 3D femurs in comparison with CT-scan-based gold 
standard 3D models is equal to 2.70 ± 0.39 (Table 3, first row). The 
Mean of Max-P2S error is 11.08 mm (Table 3, first row). The second row 
of Table 3 presents the accuracy of the semi-automatic commercial 
software SterEOS [10], which is already integrated in the existing clin
ical routine, in comparison to the ground truth CT-based 3D models for 
the same five patients. Table 3 shows that the proposed automatic 
method presents similar results to the semi-automatic method estab
lished in the commercial SterEOS tool [10]. Our results are like those 
obtained by Ref. [10] which physicians are currently using in the clinical 
routines [19–22]. Hence the proposed automatic framework with the 
current accuracy has the power of the practical usability for lower limbs 
deformation diagnosis in the clinical routines. The differences between 
the two evaluation results (Tables 1 and 3, first row) arise from the fact 
that, in the first validation set, the fuzzy gold standard models are the 
reconstructed 3D models from the same generic 3D femur with the same 
17 handles that are used in the proposed methodology. On the other 
hand, in the second validation set, gold standards are CT-scan-based 3D 
models reconstructed by manual segmentations of the femur boundaries 
on CT slices. The CT-scan-based gold standard 3D models are more ac
curate than the fuzzy gold standard 3D models, so the 3D reconstruction 
errors of the second validation set are larger than in the first validation 
set. Fig. 10 shows the distance P2S error map with RMS-P2S of 0.5 mm 
between a personalized 3D femur and fuzzy gold standard model of a 
patient with a 0◦/90◦ orientation. Fig. 11 depicts the distance P2S error 
map with RMS-P2S of 1.03 mm between a personalized 3D femur and 
CT-scan-based gold standard 3D model of a patient with a 45◦/ 45◦

orientation. The second validation, which uses gold standard 3D models 
constructed from CT-scans via manual segmentation, serve to validate 
that the proposed approach, even if it is not able to exactly reproduce 
every small detail on the surface of the bones because of the limited 
degrees of freedom of the underlying 3D generic model, is still a very 
good representation of the shape of the bone, as shown in Table 3. The 
reconstructed 3D model is flexible enough to still represent the shape of 
the femur with good accuracy.

In comparison to Voxel Morph [32], which is a deep-learning based 
non-rigid registration between 3D MRI volume and an atlas without any 
landmarks, we developed a personalized approach to fit a generic 3D 
femur into patient’s 2D radiographs to construct the patient-specific 3D 
femur model to quantify 3D clinical measurements which are essential 
for clinicians in preoperative planning. For an intensity-based non-rigid 
registration, VoxelMorph iteratively combines CNN, to estimate regis
tration field, and a linear interpolation-based spatial transformation, to 
warp the source 3D image into an atlas. In our method, to automate MLS 
deformation, we train 17 CNNs to estimate 3D displacement fields and 
3D scale ratios of 17 handles, which are required as input for MLS 
deformation. Then, the MLS method starts to deform the 3D femur to fit 
into patient’s 2D radiographs. In contrast to the VoxelMorph, which 
does not use any landmarks for non-rigid registration, in our method the 
3D position and scale of the 17 handles, which are essential to measure 
3D geometric parameters of the femur, in clinical routines. The MLS 
deformation [10], provides clinicians with a user-friendly way to easily 
adjust, if required, the reconstructed 3D model via a small number of 
MLS handles. However, VoxelMorph, used large number of voxels for 
spatial transformation, which makes impossible the adjustment of the 
errors after non-rigid registration. The main advantage of our method is 
its ease of adoption by clinicians and seamlessly integrating with 
existing commercial SterEOS software [19] by automatically estimating 
3D handles. The VoxelMorph reported the Dice score metric as nonrigid 
registration, however, we reported P2S distance error of the 

reconstructed 3D model after non-rigid registration. VoxelMorph re
ports the runtime of less than 1 s for non-rigid registration via GPU, 
without considering affine transformation of the preprocessing step. In 
our method, all stages of 3D/2D registration framework takes 75 s, using 
both GPU and CPU computations.

Notwithstanding difficulties in comparing the accuracy of different 
methods validated based on non-similar databases, experiments, eval
uation metrics, and applications, we compare the accuracy of the 
personalized 3D femurs with the most relevant state-of-the art results in 
3D model-based orthopedic applications. In contrast to Ref. [25], a 
semi-automatic 3D femur reconstruction with a manual 3D pose 
initialization, which optimizes MLS handles of the generic 3D femur via 
a conventional iterative method, CNN cascade-based regression models 
are trained to optimize the MLS handles of the generic 3D femur. In 
Ref. [25], the average of the Mean-P2S distance errors on six femurs is 
1.0 mm, and the Max of Mean-P2S is 5.53 mm. In contrast to conven
tional iterative optimization methods in semi-automatic 3D/2D 
non-rigid SSM registration [8,11,16,18,24], we develop CNN 
cascade-based regression models for a fast and automatic 3D/2D 
non-rigid registration of the generic 3D model of the femur in patients’ 
2D bi-planar EOS® radiographs. In the proposed fully automatic 3D/2D 
registration, we reach an average RMS-P2S distance error of 2.70 mm for 
the whole femur reconstruction [8,16]. report an average RMS-P2S 
distance error of 1.68 mm and 1.48 mm, respectively, in a 
semi-automatic 3D/2D registration for personalized 3D distal femur 
reconstruction with manual pose initialization. In (Yu et a., 2015; [9]), 
the mean accuracy of personalized 3D proximal femur reconstruction is 
equal to 1.5 mm and 1.3 mm in a semi-automatic and automatic 
intensity-based 3D/2D non-rigid registration, respectively. However 
[18], requires a manual 3D pose initialization. In Ref. [9], the proposed 
automatic 3D/2D registration uses FFD deformation with a large set of 
control points. This approach requires a strong regularization to avoid 
undesirable distortions in 3D bone reconstruction. Moreover, after the 
3D reconstruction process, if a manual adjustment were needed to cor
rect 3D model errors, it would be difficult for clinicians to manually 
adjust a large set of control points. In contrast, using the MLS defor
mation, which is deployed as part of the commercial SterEOS software 
tools [10,19], provides an as-rigid-as-possible shape deformation 
without undesirable distortion on a small set of 3D handles. Moreover, 
the proposed automatic CNN cascade-based 3D/2D registration merged 
with the MLS deformation is more appropriate for clinicians in clinical 
routine as they retain the capacity to quickly and easily adjust recon
structed 3D femur models.

As the limitation of our method, we can see the largest errors are 
located around trochanter and posterior exterior condyle which are less 
visible than other 3D handles due to the overlap between the bone 
structures. In further works, to speed up the 3D shape and local 3D scale 
deformation, we can estimate 3D displacement of the 17 handles in a 
parallel computation to speed up the performance. Afterward, we can 
estimate local 3D scaling of 17 handles in a parallel computation to 
speed up the performance. In addition, to generalize the proposed 
method, we will use different image sets from different hospitals to train 
CNN-based models. In this work, we used EOS 2D bi-planar radiographs 
which provide high quality images with patients. In the case of using 
different imaging systems with poor image qualities, to improve 
contrast, reduce noise, and enhance anatomical boundaries, we will use 
an appropriate image processing step to enhance image qualities prior 
training CNN-based regression models [41,42]. The proposed approach 
utilizes 2D bi-planar images of equal resolution, rotated 90◦ relative to 
one another, for the 2D/3D registration process. This setup aligns with 
the output format of the EOS system, which generates a pair of X-ray 
images with similar imaging characteristics and spatial calibration 
relative to the cabin reference frame. This is not considered a limitation, 
as the method is specifically designed to operate on EOS-generated 
images. Importantly, aside from the requirement that input images are 
acquired using the EOS system, there is no other limitation with respect 
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to the size or the resolution. The proposed approach will certainly work 
for images produced by different devices, even if the resolutions of the 
devices are different. This is the case because the 3D model is registered 
to the images in a two-stages approach in which the first approximation 
is obtained by a similarity transformation including a scale parameter. 
During CNNs training, we added a data augmentation strategy to 
generate input image patches at different scales, which effectively 
makes the 3D/2D registration process invariant to size and resolution 
variations. This generalizability is supported and clearly demonstrated 
in the quantitative results presented in Table 1, which includes in
dividuals of different sizes.

8. Conclusion

The presented fully automatic CNN cascade-based 3D/2D non-rigid 
registration framework efficiently registers the generic 3D model of 
the femur into 2D bi-planar EOS® radiographs to assess clinical 3D 
geometrical parameters. The proposed CNN-based 3D handles 
displacement and scale ratio estimation eliminates manual annotations 
and user interventions for MLS deformation and does so in a time- 
efficient manner. In clinical 3D geometrical parameter assessment of 
the femur, this method provides physicians with the capacity to easily 
adjust possible errors of the reconstructed 3D model. We achieve an 
average RMS-P2S accuracy of 0.88 and 2.70 mm in evaluations with 
respect to a fuzzy gold standard and CT-scan-based ground truth gold 
standard 3D models, respectively. Four clinical 3D measurements of the 
reconstructed 3D femurs are evaluated in comparison with the fuzzy 
gold standard 3D models. The MAE of each clinical 3D measurement is 
lower than 1 mm or 1◦. When compared to the previous semi-automatic 
method [10,19], the results obtained with the proposed automatic sys
tem are promising, and the system can be used efficiently for other lower 
limbs bone structures, such as the tibia. The context of the 3D femur 
model reconstruction is rich with potential applications and develop
ment of the prototypes opens the door to possible research opportu
nities. Following the accomplishment of this project, as future work, we 
will apply the proposed system on 3D pose estimation of the knee 
flexion, since we trained CNN-based 3D pose estimation models with 
generated DRRs of the femur with the knee flexions until 15◦. It will 
need some modification on the model’s development and then valida
tion of the model, since the structure of the knee bone differs from the 
femur and we developed this 3D pose estimation model for the femur 
bone.
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