
Review Article
Trends and Advances in Urban Logistics Research: A Systematic
Literature Review

Angie Ramı́rez-Villamil ,1,2 Jairo R. Montoya-Torres ,3 and Anicia Jaegler 2

1School of Engineering, Universidad de La Sabana, Km 7 Autopista Norte de Bogotá, D.C., Chı́a, Colombia
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It is important to establish appropriate performance indicators so that decision-makers can better determine the best alternatives
for sustainable urban freight distribution systems. Tis literature about urban logistics and routing problems is structured and
analyzed through a systematic literature review of a total of 201 papers from 2002 to 2023. Tree main axes were considered:
problem modeling and solution approaches, multimodal transportation, and indicators to assess the performance and sus-
tainability of the distribution networks. Tere is a growing trend of research on this topic. Indeed, the paper highlighted the
academic interest in the analysis of case studies to test the scenarios and network confgurations and proposed solution ap-
proaches, as well as the adoption of greener transportationmodes. To the best of our knowledge, no previous studies have analyzed
the literature from the thematic lines proposed in this review, especially those that refer to performance indicators to assess both
the freight distribution networks and the transportation modes considered. Advancing stochastic modeling, expanding case
studies to underrepresented regions, integrating AI-driven multimodal logistics, and developing social impact indicators are key
research directions to enhance the sustainability and efciency of urban logistics.Tis review provides a structured foundation for
future research by identifying gaps in the literature and ofering a thematic roadmap to advance the study and implement
sustainable urban logistics solutions. In addition, its fndings can assist decision-makers and logistics planners in evaluating
current practices, identifying opportunities for improvement, and supporting the development of more sustainable and efcient
distribution strategies.
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1. Introduction

Over the past few years, the retail sector has experienced
notable growth, largely attributed to the circumstances of the
pandemic. Tese conditions prompted an expansion in the
sector and led many businesses to transition to e-commerce
to sustain their operations [1]. According to Janjevic et al.
[2], e-commerce represents 10% of the global retail market
and has been the biggest driver of retail growth. In addition,
the increase in population worldwide generates greater
demand for goods and commodities. E-commerce activities

have a very close relationship with last-mile delivery services,
especially for parcel and food delivery. Tis has triggered an
increase in deliveries in urban areas, where the trans-
portation and mobility sector has become essential to cover
these demands. Tis has made delivery operations more
complex and expensive.

Te use of many vehicles in urban delivery systems has
important implications in terms of air pollution, since
transportation activities are the source of approximately 25%
of carbon dioxide equivalent (CO2e) emissions, 30% of ni-
trogen oxide (NOx) emissions, 40% of energy consumption,
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and 50% of particle matter [3, 4]. Te world’s population is
exposed to poor air quality that exceeds the World’s Health
Organization guideline limits, causing cardiovascular and
pulmonary diseases [5]. Furthermore, these vehicles generate
an increase in trafc congestion, and they saturate parking
spaces, making driving difcult when carrying out irregular
parking practices that invade public spaces [6]. Limited space
in inner-city areas does not allow an expansion of logistics
infrastructure. Terefore, in many cities, as a strategy to
improve living conditions and make them more sustainable,
the access of delivery vehicles to urban areas is restricted [7].

Tese two trends have led to innovative models of urban
distribution [8] and to the promotion and introduction of
initiatives to use more environmentally friendly trans-
portation modes with the aim to reduce the negative ex-
ternalities and to achieve sustainable logistics operations.
For instance, governments are promoting regulations to
increase the use of electric vehicles (EVs) for urban delivery.
In addition, several logistics service providers are in-
corporating diferent types of transportation modes (e.g.,
drones, delivery robots, cargo bikes, and public transport) in
their networks [9]. Promising results are found in the lit-
erature and in practice regarding the adoption of cleaner
energies and alternative transportation modes.

To the best of our knowledge, there are no previous
studies that analyze the literature from the thematic lines
proposed in this review, especially the one that refers to the
indicators that have been used to measure the performance
of both the distribution networks and the solution methods
applied. As background, there are mainly three reviews that
address issues related to the need of making urban distri-
bution networks more sustainable. Te work of Patella et al.
[10] studied challenges and issues regarding the adoption of
green vehicles in urban freight transportation and e-
commerce activities and classifed the documents into
three categories: optimization and scheduling, policy, and
sustainability dimensions. Silva et al. [11] classifed research
works on sustainable urban logistics published between 2016
and 2022 in clusters: supply chain and channels, delivery
methods, innovative transportation modes, logistic in-
frastructures, and emerging business models. Te authors
organized the solutions that were identifed for the last-mile
drawbacks into three groups: vehicular, operational, and
organizational solutions. Some of the advantages and dis-
advantages of these solutions were discussed. Golinska-
Dawson and Sethanan [12] focused on the emerging solu-
tions in terms of hardware and software applied by logistics
service providers that can support the adoption of envi-
ronmentally friendly (in terms of energy) smart cities. Te
study classifed the solutions in urban freight consolidation
or transshipment, customers as service providers (i.e., the
use of crowdshipping), and modes of transportation. In
contrast to those previous works, the proposed literature
about urban logistics and routing problems is structured and
analyzed through a systematic literature review.Te fndings
are classifed into three main axes: problem modeling and
solution approaches, multimodal transportation, and in-
dicators to assess the performance and sustainability of the
delivery networks.

Te remainder of the paper is organized as follows.
Section 2 presents the methodology of the systematic lit-
erature review. A descriptive analysis of the selected papers is
presented in Section 3. Section 4 presents the most common
modeling and solution approaches used in the papers with
a technical outline of adopted methodologies, their reference
to practice, and a thorough analysis of their properties.
Section 5 presents an analysis of the diferent transportation
modes with some of the benefts, advantages, and disad-
vantages. A detailed description of the indicators used to
measure the performance of the distribution networks is
given in Section 6. Finally, Section 7 presents the conclusions
and outlines opportunities for future research.

2. Research Methodology

Tis section describes the research methodology. A sys-
tematic review involves a detailed analysis of the scientifc
literature under a planned and carefully executed process,
with the purpose of reducing bias through the identifcation
and synthesis of previously published fndings on a partic-
ular topic, to answer a specifc research question [13]. From
the academic side, this approach increases methodological
rigor; while, for practitioners and managers, it can help to
develop a trustworthy knowledge base by consolidating
knowledge from a set of studies [14]. We followed the
method and steps proposed by [14], whose process begins by
defning one or more research questions to defne the scope
of the review. Our study has the aim of giving answers to the
three following questions:

1. How are urban parcel delivery problems modeled?
2. Which solution methods are employed to deal with

urban parcel delivery problems?
3. Which are the transportation modes that have been

considered in literature?
4. Which are the performance indicators applied in the

literature to assess the sustainability and efciency of
multimodal urban parcel delivery systems?

Based on these questions, the second stage is to defne the
search criteria. To locate the set of publications relevant to
our purposes, three keywords were used: “Urban logistics,”
“city logistics,” and “routing problems.” After testing dif-
ferent combinations of such keywords, the fnal search string
was defned as follows: TITLE-ABS-KEY (urban OR city
AND logistics AND “routing problems”), because it con-
tained a more complete list of articles. Te database used in
this search was Scopus since it is one of the major databases
that provide access to several peer-reviewed literature in-
cluding high-quality scientifc journals, books, and confer-
ence proceedings. Te study selection consists of fve steps
(see Figure 1). First, the initial number of publications
available in Scopus is extracted: 658 documents were found
between 2002 and December of 2023. At the end of the
exclusion process, a fnal set of 201 papers were thoroughly
read and classifed in this review.

Te subsequent section ofers a comprehensive analysis
of the reviewed literature. Publications were categorized
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based on various criteria including year, document type,
authors, and countries featuring case studies. Furthermore,
the documents were sorted according to their modeling
approach, solution methods, transportation modes, and
performance assessment indicators for delivery networks.
Building upon these classifcations, the subsequent phase
involves detailing the fndings of this systematic review and
outlining potential research avenues.

3. Descriptive Analysis

Over the last 6 years, research interest in urban logistics
operations has grown signifcantly. Te timeframe for this
review is 2002–2023, but it is important to note that the
search on Scopus using the string defned in the previous
section, without any time limit, shows that the frst work was
published in 2002. Since 2017, the number of documents has
increased, reaching its highest point in 2022. Te increase in
demand for e-commerce and the crisis caused by the
pandemic in 2020 could have infuenced this growth. About
65% of the papers analyzed in the present study were
published between 2020 and 2023 (see Figure 2).

According to the document type, 73% of short-listed
documents are journal articles, 24% are conference papers,
and 3% are book chapters. Te set of journals that published
the most about this topic are given as follows (Table 1) Te
concentration of publications in these specifc journals
further suggests that urban logistics is primarily being
approached from the operational research and trans-
portation perspectives, with a growing shift toward in-
corporating sustainability aspects. Tis trend points to the
increasing importance of considering both the efciency and
environmental impact of urban logistics systems as ur-
banization and congestion continue to pose challenges [15].

Te authors that published the highest number of papers
on this topic are Jairo R. Montoya-Torres (10 papers), fol-
lowed by Y. Wang (9 papers), H. Wang (8 papers), and
fnally, X. Wang, Y. Huang, D. Rezgui, H. Bouziri, and
W. Aggoune-Mtalaa, who are authors of 6 publications each
one within the defned timeframe.

In addition, to identify the most infuential works in the
feld, the top 10 most cited papers were analyzed (see
Table 2). Tese studies, with citation counts ranging from
180 to 110, show a notable increase in publications after
2018, highlighting the growing interest in sustainable and
technology-driven logistics solutions. Overall, the fndings
reveal a shift toward automation, sustainability, and
multiechelon distribution strategies, refecting both aca-
demic and industry priorities in technological advance-
ments and environmentally conscious logistics solutions.

Several studies have considered case studies to simulate
real-life logistics networks and evaluate the efects of ap-
plying the proposed methodologies, the scenarios described
and/or employed transportation modes. Among the 201
papers reviewed, there are 101 documents that have used
case studies in diferent countries (50%). Figure 3 shows
a world map colored according to the number of case studies
per country and their relative frequency. Tere are 27 dif-
ferent countries in which case studies have been considered:
China (28%), the United States (9%), Germany (7%), France
(7%), and Italy (6%).

4. Modeling and Solution Approaches

In this section, a description of the modeling approaches and
solution methods to deal with routing problems using
multiple modes of transportation is presented to answer the
two frst research questions (Table 3). Te former attends to

Stage 3: STUDY SELECTION

Step 1

Step 2

Step 3

Step 4

Step 5

Article collection
String: TITLE-ABS-KEY (urban OR city
AND logistics AND “routing problems”)

Article selection: langugage-based

Article selection based on titles,
keywords and abstract

Article assessment: content
based

Final sample for systematic
review

Scopus database N = 658

(n) = 32 N = 626

(n) = 265 N = 361

(n) = 160 N = 201

N = 201

Figure 1: Methodology for literature review, Stage 3: study selection and evaluation.
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the characteristics of the problem regarding the type of
routing problem under consideration. Furthermore, the
variants of the problem will be addressed. Te latter aims to
identify the most common solution approaches and trends
to generate efcient solutions. Te type of problems and the
solutions approaches are detailed in the Appendix.

As Cuda et al. [26] explain, there are two types of
planning decisions in routing problems: tactical and stra-
tegic. Tactical decisions refer to the routing through the
distribution network, and for the case of two ormultiechelon
problems, these decisions include the allocation of cus-
tomers to the intermediate facilities. Strategic decisions are

related to the network’s infrastructure such as the location
and number of facilities. Te traveling salesman problem
(TSP), vehicle routing problem (VRP), and multiechelon
VRP involve tactical decisions, while the location routing
problem (LRP) and its multiechelon variants involve the
strategic decisions of locating the facilities followed by the
routing part. In the reviewed literature, 79% of the papers
used the VRP as a basis for modeling the research problems;
14% considered the LRP; 3% modeled their problems as the
TSP; and the remaining 4% represent studies that modeled
their problems as production routing problem (PRP), drone
routing problem (DRP) and mixed truck and robot routing

Table 1: Number of publications per journal.

Journal Number of papers
European Journal of Operational Research 14
Transportation Research Part E: Logistics and Transportation Review 11
Sustainability 8
Computers and Operations Research 5
Computers and Industrial Engineering 5
Expert Systems with Applications 5

Table 2: Top 10 most cited papers.

Rank Reference Citations
1 [16] 180
2 [17] 179
3 [18] 157
4 [19] 142
5 [20] 142
6 [21] 141
7 [22] 136
8 [23] 127
9 [24] 121
10 [25] 110
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Figure 2: Number of papers across the years (2002–2023).
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problem (MTR–RP). In addition, 87% of the studies have
chosen to make approximations in their problems to reduce
the complexity of the scenarios, addressing them in a de-
terministic way, by considering rich routing problems that
include multiple characteristics such as time windows (one
of the most studied) [25], delivery options [27], or syn-
chronization constraints [28]. Tere are also green routing
problems, Wang et al. [29] and Yildiz and Altiparmak [30],
that incorporate the minimization of emissions using, in
some cases, new transportation modes such as drones, de-
livery robots, EVs, or heterogeneous feets that combine
them and lead to modifcations and adjustments to the
problem for their integration.

Real-life urban parcel delivery problems deal with un-
certainty in diferent aspects such as vehicle speed, trafc
congestion, fuel or energy consumption, demand, travel
times, CO2e emissions, and delivery time: 13% of the doc-
uments addressed stochastic issues. Tis represents a re-
search opportunity since the inclusion of real-life aspects in
these problems is becoming more imperative and is of in-
terest to the community.

Solution methods are also an important topic to con-
sider. Tey allow the development of decision support
systems that could help logistics service providers, dis-
patchers, and schedulers in making good decisions when
solving intracity routing problems. For instance, Ioannou
et al. [31] proved that a reduction of over 8% in terms of lost
sales can be achieved with the implementation of such tools.
Moreover, they have obtained interesting improvements in
the number of vehicles and routes. In 84% of the studies,
approximation algorithms (heuristics and metaheuristics)
are the most applied solution approaches, followed by exact
methods (25%) which are usually implemented to solve
small–medium sized instances due to the complexity of the
problem. Also, simulation approaches are used to solve
routing problems with stochastic elements in 11% of the
cases. Finally, dynamic programming with 3% of the total
articles is considered. Several solution methods have been
studied, including hybrid decomposition methods [32],
combinations of exact methods and heuristics (mata-
heuristics) [19], or combination of Monte Carlo simulation
and optimization to solve problems with stochastic features

Figure 3: Map of the countries where case studies have been evaluated.

Table 3: Main results.

Aspect Findings
Routing problem types 79% VRP, 14% LRP, 3% TSP, and 4% other (PRP, DRP, and MTR–RP)
Planning decisions Tactical: VRP, TSP, and multiechelon VRP; strategic: LRP and multiechelon LRP

Problem modeling 87% deterministic approximations with rich routing features (time windows,
delivery options, synchronization constraints, and green routing)

Problem complexity reduction Common approaches include simplifcations to reduce complexity using
deterministic scenarios

Uncertainty consideration 13% of studies address stochastic issues (trafc congestion, energy consumption,
and demand fuctuations)

Solution methods usage 84% heuristics/metaheuristics, 25% exact methods (small–medium problems), 11%
simulation, and 3% dynamic programming

Journal of Advanced Transportation 5
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(simheuristics) [9]. To address large-scale instances, meth-
odologies combining data science and machine learning
techniques have been introduced to enable data clustering
and optimization using heuristics and metaheuristics to
reduce the complexity of the problems [33–35].

5. Multimodal Transportation

Tis section aims to answer the third research question. Over
the years, the use of conventional internal combustion ve-
hicles (ICVs) in last-mile delivery operations has negatively
impacted the environment in several ways. Te CO2e
generated by these vehicles not only afects the environment
but also causes respiratory health problems for city residents
[36]. Delivery companies and researchers are paying more
attention to reducing emissions to achieve sustainable lo-
gistics [37]. Diferent transportation modes have been
evaluated for urban distribution. Tis section presents an
overview of diferent transportation modes, some of their
advantages and disadvantages, and results obtained in the
literature.

5.1. EVs. EVs and their charging infrastructure are be-
coming very popular in major cities around the world. Tis
transportation mode is an environmentally friendly initia-
tive. In urban parcel delivery, the use of EVs is increasing
[38] to decrease the negative efects of freight transport on
the environment (air pollution, CO2e emissions, and noise),
with lower operational costs compared to ICVs [39–41].
Besides, van Duin et al. [42] concluded that EVs can perform
urban delivery in an efcient way, with savings of 19% in
terms of distance traveled, as well as reducing CO2e emis-
sions by 90%.

However, this type of vehicle has some disadvantages
such as limited operational range, long charging times, and
limited battery capacity [37, 39, 43]. Typically, a full-
charged EV can travel between 75 and 125 miles, but the
mileage can be shorter depending on external factors [44].
In fact, the most current EV models exceed 200 miles per
charge, and all new models are rated for over 100 miles,
with manufacturers announcing plans for even longer-
range options in the near future [45]. However, real-
world driving conditions often lead to signifcant range
variability. For example, cold weather can reduce range by
20%–30% due to lower battery efciency and increased
energy use for cabin heating. Similarly, high temperatures
may cause battery overheating, leading to a reduction in
range of up to 20% when air conditioning is heavily used.
Road quality and terrain also play a role: uphill driving and
poor road surfaces increase energy demand, while downhill
segments can partially ofset consumption through re-
generative braking. Other factors such as aggressive
driving, underinfated tires, and heavier payloads further
diminish range performance. On the contrary, smooth
driving behavior and proper tire maintenance help im-
prove efciency [46]. Terefore, while battery capacity
remains a primary determinant of EV range, operational
and environmental variables must be carefully considered

when evaluating their applicability in urban logistics sys-
tems when modeling a routing problem [9, 47].

Moreover, the fxed costs associated with EVs are sig-
nifcantly higher than ICVs [41], although their imple-
mentation for parcel distribution is more proftable
economically and environmentally in the long-term period
[48–50]. As Ding et al. [44] explain in their study, diferent
charging techniques are currently available to recharge EVs,
for instance, inductive charging, battery swapping, and
conductive charging [51]. However, due to the high in-
vestment costs of the installation of charging facilities, there
is a lack of charging stations for such vehicles in some cities,
which causes the inclusion of this type of vehicle to require
more time and investment.

5.2. Electric Modular Vehicles (EMVs). EMVs are a type of
EVs that have been used for urban parcel delivery [38, 40].
EMVs have one cabin where the driver is located and the
cabin can carry several modules, each one has its own battery
and so they are autonomous in terms of charging and battery
consumption [52]. In addition, having independent modules
allows the rest of the EMV to continue the route without
carrying all the modules, which means that modules can be
removed if their battery level is insufcient or when there are
length restrictions for vehicles in urban areas.

5.3. Autonomous Vehicles (AVs). AVs have begun to be
employed and studied to support urban last-mile distribu-
tion. Te literature has often focused on passenger mobility
over urban delivery [53]. According to the authors in [54],
autonomous ground vehicles were especially tested within
pilot projects to investigate the feasibility as well as customer
acceptance. Te study proposed by the authors in [55] ex-
posed that the application of this type of vehicle in freight
transport presents better opportunities in terms of opera-
tional complexity compared to passenger transport because
it represents greater cost-efciency in a very competitive
feld, and there can be repetitive and predictable routes that
would reduce engineering complexity. Experiments con-
ducted by the authors in [56] conclude that the use of AVs
can increase the efciency of last-mile freight delivery in
terms of route time by up to 30%.

5.4. Delivery Robots. Autonomous delivery robots are
designed primarily to travel short distances; they can avoid
obstacles located on the sidewalk autonomously. However,
the length of their delivery route can be impacted by the
obstacles that the robot can fnd on the way to the desti-
nation. While these robots can assist with last-mile delivery,
they are not suitable for handling entire delivery operations,
as they can only carry small- to medium-sized packages.

A case study in Xi’an city in China, demonstrated the use
of delivery robots to serve areas with van access restrictions
such as pedestrianized sidewalks or city campuses [57].
Similarly, in Cardif, United Kingdom, robots are deployed
to travel along sidewalks and deliver parcels to residents in
urban areas [21].Tese robots present a valuable solution for
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reducing emissions, personnel costs, urban road trafc, land
use, and noise. Moreover, they can visit areas that can be
restricted to vans [54, 58, 59]. Te COVID-19 pandemic
further highlighted their advantages, as self-driving robots
can ensure social distancing, protecting both the delivery
personnel and customers [21]. In addition, these robots are
electronically secured, meaning that customers can only
access their parcel through an individual code, ensuring
security [54].

Despite these benefts, several limitations hinder the
broader use of autonomous delivery roots. Teir limited
load capacity, speed, and operational range constrain their
ability to handle larger or more complex deliveries [60].
Moreover, practical challenges arise as some customers,
particularly the elderly or disabled, may be reluctant to
interact with the robots, and some parcels may be too
large, risky, or hazardous to be delivered by them. As
a result, these robots are often used in combination with
standard van deliveries to optimize the process. By
combining both transportation modes, delivery efciency
improves, reducing overall travel time and costs [19].
Some experiments show that this integration can lead to
cost reductions of up to 43% compared to traditional
delivery methods [61].

5.5. Unmanned Aerial Vehicles (UAVs). UAVs, also referred
to as drones, have become an interesting option to assist the
delivery by big companies such as DHL and Amazon [62]
and have also been widely studied recently as a component
in freight delivery routing problems [63]. According to the
authors in [64], UAVs’ routing “is a potential game changer
in solving the urban air mobility challenge by allowing to
reshape transportation and logistics in the future” (p.1).
Compared to traditional vehicle distribution, drones are
more fexible and low-cost, can avoid road trafc restrictions
due to congestion or accidents, are lightweight, and carbon
emissions are lower [65, 66].

However, UAVs have some challenges in real-life ap-
plications: bad weather, fying restrictions, limited delivery
range (10–30 km) due to their battery capacity, and payload
limitations [66–70]. In some cities, there are some no-fy
areas that are inaccessible by drones such as the airports,
power plants, and government buildings [71]. Also, cities
with dense high-rise buildings, e.g., New York in the
United States of America, are very challenging for drones
due to the difculties of maneuvering [72].

According to the authors in [73], between 10% and 25%
of Amazon deliveries cannot be handled by aerial drones,
due to size restrictions. To address this limitation, diferent
scenarios have been proposed in the literature introducing
alternatives to take advantage of this transportation mode in
urban logistics. For example, Jeong and Lee [70] explored
the possibility of drones carrying multiple parcels per trip
providing both pickup and delivery services to increase their
utilization rate. In addition, researchers have studied the
integration of drones with other transportation modes, such
as trucks and delivery vans, to enhance operational efec-
tiveness [74, 75].

Huang et al. [76] demonstrated that collaborative
freight delivery using both drones and trucks can suc-
cessfully reduce costs, CO2e emissions, and delivery times.
Case studies in Seattle and Bufalo, in the United States
[70]; Izmir, Turkey [66]; and in Changsha, China [74]
examined the use of drones in areas where customer lo-
cations are difcult to reach due to high congestion and
carbon-dense environments, helping to mitigate the en-
vironmental impact of road transportation. Some studies
have also explored hybrid approaches, where drones and
trucks operate together to optimize logistics operations.
For instance, in Changsha, drones deliver parcels directly
to customers, while trucks not only handle certain de-
liveries but also supply drones with parcels and batteries,
ensuring continuous operations [74].

5.6. Cargo Bikes. In the context of more sustainable de-
liveries, cargo bikes are gaining popularity in several
cities. Mühlbauer and Fontaine [77] presented the use of
cargo bikes as a promising alternative to conventional
vans for parcel delivery in urban logistics. Tis trans-
portation mode requires less parking space, and con-
gestion can be reduced if cargo bikes use bike lanes or
other road infrastructure available. Cargo bikes can have
between 2 and 4 wheels, and the payload can be positioned
in the front or in the back of the vehicle. Also, cargo bikes
are emission-free in terms of direct CO2e emissions, NOx,
and particulate matter and emit less noise than conven-
tional vehicles [78]. Te use of cargo bikes for parcel
distribution can save between 19% and 38% of CO2e
emissions, so delivery operations become more sustain-
able than the conventional urban parcel distribution
systems [77]. Electric cargo bikes (e-cargo bikes) have also
been considered; they contain electric batteries that allow
a distance range of 50 km [79]. Tanks to the battery, they
can be charged very fast and can be used under tough
conditions for normal cargo bikes, such as steep slopes
and strong winds [80]. Cargo bikes and e-cargo bikes can
replace conventional delivery vans because they are able to
access and supply urban areas restricted to vans such as
sidewalks, narrow streets, and historic centers [81].

However, when exclusively delivering using cargo bikes,
the drawbacks are related to the extensive use of public land
space. Moreover, travel speed depends on the load, the
distance that can be covered, the street topography, and the
reduced load capacity [82]. So, this transportation mode is
commonly used in the second level of two-echelon distri-
bution systems. Cargo bikes can save up to 10% of costs [77]
but should be combined with other transportation modes
(e.g., delivery vans either electric or fuel-based) to transport
the freight needed to be delivered to remote areas or large
distances to truly beneft their advantages.

5.7. Public Transport. Te use of public transport networks
for both passengers and freight is also being explored in the
literature, including metro lines [83, 84] and freight buses
[85–88]. Case studies from cities such as Singapore, which
boasts an extensive and highly efcient public transportation
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system [89], and Nanjing, where the underground metro
network spans 378 km with 10 lines and 174 stations,
highlight the potential of urban transit systems. Nanjing’s
metro system is considered one of the most advanced urban
rail transport systems in China [90]. Tese studies dem-
onstrate how integrating public transportation systems with
freight services could replace the need for city freighters
operated by private third-party logistics companies in inner-
city areas. Tis integration could lead to signifcant re-
ductions in logistics costs, air pollution, and trafc
congestion [91].

On one hand, freight buses can pick up or deliver parcels
at each location they pass, and their use can improve the
accuracy of logistics services because they have fxed time
schedules and can improve the utilization rate of the roads
reserved for buses [86]. He and Yang [88] considered buses
as a supplementary delivery alternative in parallel with
trucks. It means that some parcels are delivered by buses
instead of trucks to reduce the number of trucks or the
number of trips by truck, leading to a reduction in delivery
costs and CO2e emissions and an increase in bus utilization.
On the other hand, the use of urban rail transportation
systems (e.g., metro lines) has very great advantages com-
pared to conventional deliveries in terms of costs and service
quality. However, it is important to note that the use of
metro lines is supplementary and requires the use of other
transportation modes as a complement for the distribution
network. For instance, the authors in [84] introduced
a three-stage delivery network in which trucks are in charge
of transporting parcels between the supplier and the metro
entry station (frst stage), the second stage is the route be-
tween the metro entry station and the metro exit station
(metro delivery), and the third stage corresponds to routing
delivery vans from the metro exit to the delivery points.

If the public transport system is well utilized, it could be
possible to also have some passengers to make crowdsourced
delivery (also known as crowdshipping), which is the use of
the crowd (pedestrians) for parcel delivery. Zhang et al. [92]
analyzed a case study in Singapore with public transit
passengers as crowdshippers. Results show that crowd-
shipping has a great potential to be a sustainable means for
urban parcel delivery even if it is only implemented in of-
peak hours: emissions and distance can be reduced by up to
17% and savings in delivery costs can reach 29% per parcel.

5.8. Mixed TransportationModes. According to the fndings
from the literature, the combination of multiple modes of
transportation is especially benefcial in medium and large
cities with high population density and rapid, continuous
growth. Tese cities often face challenges such as trafc
congestion and access limitations across various areas. Such
conditions make it difcult to maintain efcient trans-
portation systems, which in turn can afect urban mobility
and logistics.

Among the case studies analyzed are major cities such as
Austin, United States, with an annual growth rate of ap-
proximately 3% [93], where the combination of cargo bikes,
EVs, and ICVs was studied to improve urban logistics and

reduce congestion. Chongqing, China’s youngest munici-
pality, recognized for its unique geography featuring rivers
and mountains that divide the city into numerous distinct
areas [94], has also been a case study in several papers. Tese
studies have evaluated the combination of various vehicles,
including EVs, drones, and trucks, to optimize distribution
networks and overcome the city’s complex topography.
Chongqing is one of the most densely populated cities in
China, with a population exceeding 18 million [34].

In cities such as these, the integration of mixed trans-
portation networks, including vehicles that can navigate
diferent urban environments, is a crucial strategy. Tese
transportation systems providemore efcient access to hard-
to-reach areas, ensuring smooth logistics operations. In
addition, they contribute to reducing the negative impacts of
congestion, ofering sustainable solutions for urban mo-
bility. Tis approach supports the growth of smart city
infrastructure and enhances overall city resilience in the face
of rapid urbanization.

Tere are other interesting studies that provide evidence
that the combination of diferent transportation modes is
necessary to strengthen last-mile delivery, reducing costs,
time, and emissions. For example, combining electric ships
with cargo bikes can cut CO2-equivalent emissions by
roughly 78% (Alewijnse and Hübl, 2021). Other promising
multimodal strategies include the following: - cargo bikes
supported by crowd-shipping—an environmentally friendly
option that may, however, reduce delivery efciency (Perboli
et al., 2022); - autonomous vehicles working in concert with
cargo bikes and pedestrian couriers (J. Li et al., 2021); -
public-transport– based crowd-shipping operated in parallel
with delivery vans (Zhang et al., 2023); - mixed feets of
delivery robots and vans (Chen et al., 2021; Ostermeier et al.,
2023); - cargo bikes paired with vans (Simoni et al., 2018);
and - truck-and-drone systems (Huang et al., 2022). Liu et al.
(2023) add that close coordination between trucks and
drones is a key to scaling up drone use in the last mile,
ofsetting drones’ inherent limits in payload capacity and
range.

Also, several logistics service providers such as UPS and
DHL use in their feets a mix of transportation modes for
freight delivery in urban areas to add more fexibility and
have access to inner-city areas with restrictions on the type
of vehicles and to allow a reduction of CO2e emissions
[100, 101]. From the documents analyzed in this study,
Figure 4 presents a categorization of transportation modes
based on size, energy source, and autonomy level. Te
colored circles indicate the frequency of use of each
transportation mode in the literature, showing that trucks
(ICVs), delivery vans, EVs, and UAVs are among the most
studied options. However, there are research opportunities
regarding the use of water vehicles, urban rail trans-
portation, public transport, AVs, and motorcycles, which
remain underexplored.

Te comparative analysis between the two periods
(2002–2012 versus 2013–2023) reveals a clear shift in
transportation trends. During 2002–2012, fuel-based and
driver-operated vehicles, such as trucks and delivery vans,
were predominant in logistics studies. In contrast, the last
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decade (2013–2023) has seen the rise of more sustainable
and autonomous technologies, including EVs, EMVs, e-
cargo bikes, delivery robots, and UAVs. Tis evolution re-
fects the increasing emphasis on sustainability, automation,
and efciency in urban distribution networks.Te diference
in circle proportions refects the rise in publications over
time. While 2002–2012 research focused on fuel-based
trucks, research between 2013 and 2023 shows growing
interest in EVs, autonomous transportation modes, cargo
bikes, and drones, highlighting the shift toward greener and
more efcient last-mile solutions.

In addition, the selection of transportation modes in
specifc distribution networks depends on various factors,
including the city’s infrastructure, geographic charac-
teristics (e.g., the feasibility of using ships or rail net-
works), public policies related to urban distribution, and
access or parking restrictions in certain areas. Ensuring
the optimal implementation of transportation modalities
requires considering these elements to improve logistics
efciency, reduce congestion, and minimize environ-
mental impact.

6. Performance Indicators

Tis section presents the fndings about the performance
indicators considered in the literature to measure the
performance and the sustainability of the proposed sce-
narios. Tis section hence approaches to answering the last
research question. Indicators to assess environmental,
economic, logistics, and social issues as well as algorithmic
performance are analyzed. An overview of the fndings is
presented in Table 4. For a detailed classifcation of the

KPIs and their corresponding references, please refer to the
Appendix and a detailed description is presented in
Section 6.1.

Indicators are grouped not only by domain (economic,
environmental, social, logistics, and algorithmic) but also by
their underlying logic and contribution to the sustainability
and operational efciency of urban distribution systems.Te
selection and categorization of indicators are based on
a functional coherence: each group aims to measure distinct
but complementary aspects of the system. For example,
while economic indicators refect fnancial performance,
environmental indicators assess ecological impact, and so-
cial indicators focus on human well-being and societal ex-
ternalities. Tese dimensions, although studied separately,
are inherently interconnected and support the multidi-
mensional evaluation of the proposed scenarios.

Furthermore, measurement in this context implies more
than listing indicators; it requires an understanding of how
these indicators interact, complement, and occasionally
contradict each other. For instance, minimizing costs may
confict withmaximizing service level or reducing emissions.
Terefore, the indicators selected for the analysis should be
understood as part of a broader evaluative framework where
trade-ofs are inevitable and must be transparently
addressed.

6.1. Economic Indicators. As Pugliese et al. [62] mentioned
in their study that “parcel delivery is the most expensive
phase of distribution logistics” (p. 488).Tat is why, it is very
important to minimize costs without compromising the
efciency and productivity of the system. Tis group of

2002–2012 2013–2023

Vehicle size

Large
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Medium

Medium/large

Vehicle size
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Light

Medium

Medium/large2
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6 48 11
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Driver
Electricity-based
driver/driverle..

 Fuel-based
driver

 Fuel-based
driverDriverless Driver Driver Not driver-based
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driver/driverle.. Driverless
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Type of vehicle
Delivery robots Delivery vans (ICVs)

Deliverymen/couriers
Electric modular vehicles (EMVs)
Electric vehicles (EVs)
Motorbikes or motorcycles
Trucks (ICVs)
Unmanned aerial vehicles (UAVs)

Public transport
E-cargo bikes
Urban rail transportation
Autonomous electric vehicles (AEVs)
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Cargo bikes

Figure 4: Evolution and classifcation of transportation modes by energy source, autonomy, and vehicle size: a comparative analysis
(2002–2012 vs. 2013–2023).
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indicators comprises all fxed and variable costs related to
the operations of the distribution network under study. Also,
it includes investment, maintenance, and operational costs
of vehicle feets, as well as vehicle fuel and energy costs,
penalty costs due to delays and lost sales, savings, profts, and
workers’ salaries. It is important to highlight that some
works consider energy costs and workers’ salaries as envi-
ronmental or social metrics, respectively, but we decided to
keep these as economic indicators since they translate to
a monetary impact for the enterprises.

It is important to note that when the indicator is the total
cost, it is pertinent to be aware that it is necessary to examine
which costs are being included in this indicator, since it will
depend on the confguration of the distribution network, the
type of decisions involved, as well as additional character-
istics particular to each case study. Tis indicator is very
useful to determine the total cost incurred by operating
under such a scenario; nevertheless, a comparison between
the total cost indicator of one study versus the total cost of
another is not reliable if the same items were not considered
in both studies. For instance, in the context of EVs, Fan [102]
defned the total distribution cost as the costs of EVs’ dis-
patch, vehicle travel, customer service, and charging oper-
ations; while for Wang et al. [113], total costs involve the
opening costs and handling costs for parcel lockers and the
routing costs of the EVs.

6.2. Environmental Indicators. Te purpose of these in-
dicators is to evaluate the impact on the environment of the
emissions generated by the transportation modes. Tis
impact depends signifcantly on the type of energy source
used to power vehicles. For this reason, we can classify the
environmental indicators into two subgroups.Te frst refers
to the emission types, while the second is related to the use of
resources (energy) required by the transportation modes to
perform delivery activities. Tese are explained next.

6.2.1. Emissions. According to the authors in [29], green
logistics is becoming extremely important due to its impact
on the environment and society. Its aim is the minimi-
zation of carbon emissions because conventional trans-
portation systems are unsustainable and can also afect the
population’s respiratory health and worsen the problem of
climate change [36]. For instance, the CO2e emissions that
are generated by the feet of vehicles comprise CO2,
methane (CH4), and nitrous oxide (N2O) emissions [92].
Such indicators are very important to measure the sus-
tainability of the urban distribution networks proposed in
the literature.

6.2.2. Use of Resources. Tis group consists of indicators to
control the use of resources such as electric power, diesel,
fuel, or gasoline. In addition, the study conducted by
Fontaine [82] considers indicators such as cyclist’s energy
and the energy of the batteries that power some trans-
portation modes such as EVs, delivery robots, UAVs, and e-
cargo bikes. Moreover, the authors in [89] estimated the

energy consumption based on the multiplication of the
distance traveled by the vehicle and the kilowatt-hour (kWh)
per mile or kilometer.

6.3. Social Indicators. Delivery activities do have a high
infuence on society. Social impacts of urban distribution
systems can be measured in terms of the risk of accidents,
the occupation of public space (land use), the congestion
index or trafc congestion, or the disturbance due to noise
and congestion [81]. Since customer satisfaction in last-
mile distribution is mainly evaluated based on delivery
time windows, the service level can be evaluated. Hence,
late delivery causes customer dissatisfaction, so indicators
such as average delay per customer and customer satis-
faction are very important in these cases. Cao et al. [120]
explained that in the VRP time windows, “the time of
obtaining service for a certain customer is in the de-
termined range, which means that the service level is good
(1), otherwise it is bad (0). However, in real-life problems,
time windows can be violated” (p. 2511) for various
practical considerations.

Economic and productivity indicators are the most
studied in the literature, while there is a lack of research that
includes social indicators to assess the distribution networks.
Tis represents a research perspective since this is a very
important pillar of sustainability. Te adoption and evalu-
ation of indicators that are related to city inhabitants,
drivers, delivery persons, or similar directly or indirectly
related to urban distribution are key elements of a sustain-
able urban logistics system.

6.4. Logistics Indicators. Te traditional dimensions of
sustainability consider only economic, social, and envi-
ronmental indicators. However, in urban transport systems,
there are indicators related to logistics elements that may not
perfectly suit the defnition of the three previous categories.
So, following the rationale proposed in [212], we also
considered this fourth category, named “logistics in-
dicators,” to characterize some performance metrics that are
related to the performance of the delivery operations
(productivity and time), the vehicles’ feet size, and the
infrastructure used to execute these activities. Tis is
explained next.

6.4.1. Productivity. Measures of productivity of urban dis-
tribution networks are crucial formaking the right strategic or
planning decisions. Tis kind of indicator allows an overall
assessment of the distribution network performance and, if
there are scenarios, it is also a way to compare them to check
their feasibility and possible implementation. For instance,
the route length is the number of kilometers that a vehicle
must travel to complete a route or tour. To analyze the global
results of a distribution network, the total distance traveled is
very useful. If the study is time-dependent, the total travel
time, also called delivery time or distribution time, is the total
time that all the feet requires to deliver all parcels in
a workday. In addition, the number of parcels delivered is
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a good indicator to measure the productivity of the distri-
bution network. Finally, the covered customer rate allows
decision-makers to know how many customers a route is
serving and can be calculated as the number of served cus-
tomers divided by the total number of customers [120].
Moreover, it is important to know howmany delivery persons
(crew size) are needed to perform the delivery activities.

6.4.2. Infrastructure. Since urban distribution systems re-
quire a well-designed infrastructure to operate efciently
and to serve as many customers as possible, it is important to
defne performance indicators that also allow the quantif-
cation and measurement of diferent aspects such as the
number of recharging stations [213] or the number of depots
or distribution centers. Tis group also comprises the
number of customers or nodes served and the number of
times the vehicles must stop delivering parcels.

6.4.3. Time. Tese are all indicators that are related to time-
dependent parameters. Within this subgroup, there are
indicators such as route duration, which is the time that
a transportation mode takes to complete a route or tour.
Besides, waiting times are also considered [191]. In addition,
in the context of an electric VRP, Xu et al. [43] defned that
the total working time includes travel time, charging time,
waiting time, and service time.

6.4.4. Transportation Modes. Tis includes all indicators
related to the use and the features of the vehicle feet, such as
feet size, trafc fows (i.e., amount of vehicles/ships per day)
[95, 214], vehicle loading rate, the number of routes per day,
and the number of subfeets (e.g., number of truck versus
number of drones) [76].

6.5. Algorithm Performance. Measuring the performance of
algorithms that allow researchers and decision-makers to fnd
solutions to routing problems is crucial since reaching op-
timality can be very computationally expensive due to the
nondeterministic polynomial (NP)–hardness of these routing
problems. Terefore, indicators such as central processing
unit (CPU) time are considered in several papers. Finding
a good solution, preferably the optimum, in a short com-
putational time is highly desirable. Also, the gap between
lower bounds and upper bounds is usually applied to compare
solution approaches. Sarbijan and Behnamian [111] in-
troduced indicators such as mean ideal distance and the
diversifcation metric. In multiobjective optimization prob-
lems, the former computes the average distance of the Pareto
solutions from the ideal point. Te lower this metric, the
better the algorithm’s performance. Te latter is the distance
between the initial and fnal solutions of the Pareto solutions.
Te larger its value, the more efcient the algorithm.

6.6. Interrelation Among Indicators. Performance in-
dicators, although organized by distinct categories, rarely
operate in isolation. On the contrary, they often interact and

may even confict with one another, refecting the inherent
complexity of evaluating urban distribution systems. Un-
derstanding these interrelations is essential not only for analysis
but also for efective decision-making and policy design.

First, economic and environmental indicators frequently
present trade-ofs. For instance, minimizing operational
costs may involve using conventional vehicles instead of
electric ones, which in turn increases carbon emissions.
Similarly, reducing delivery times (a logistics indicator) may
require a larger feet size or more frequent trips, thus raising
both economic costs and environmental impacts. Tese
examples highlight how optimizing one dimension can
produce unintended consequences in another, emphasizing
the need for integrated assessment.

Second, social indicators such as service level or noise
disturbance are deeply afected by logistics and economic
decisions. A higher service level often demands narrower
delivery windows and increased vehicle frequency, which
can escalate congestion and emissions in urban areas. In
addition, the occupation of public space (e.g., for
loading/unloading or placing lockers) might enhance
efciency but simultaneously reduce urban livability,
posing a societal dilemma between efciency and quality
of life.

Moreover, logistics indicators serve as mediators be-
tween operational objectives and sustainability outcomes.
Route length, feet size, and travel time are not only ef-
ciency metrics but also directly infuence fuel consumption,
emissions, and service reliability. As such, they often act as
bridging variables across economic, environmental, and
social domains.

In this context, it becomes essential to interpret in-
dicators within a multiobjective framework, where trade-
ofs are made explicit and can be evaluated according to
stakeholder priorities. Multicriteria decision analysis
(MCDA) and Pareto optimization approaches are partic-
ularly useful in addressing this complexity, as they allow
decision-makers to evaluate multiple competing objectives
simultaneously rather than seeking a single optimal
solution.

7. Conclusions and Research Perspectives

Tis paper presented a comprehensive systematic litera-
ture review on urban logistics and routing problems,
focusing on three main aspects: problem modeling and
solution approaches, multimodal transportation, and
performance indicators to assess the sustainability and
efciency of the delivery networks. Te review highlights
signifcant trends and fndings from diverse case studies
and identifes key methodological and technological
trends shaping the feld.

Recent methodological trends show a shift toward
more advances and integrated approaches. While the
VRP, particularly with time windows, remains the
dominant modeling approach, recent studies increasingly
incorporate green routing, delivery synchronization, and
multimodal delivery components. Stochastic modeling
remains underexplored, representing an opportunity for
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future research to better address real-world uncertainties
such as fuctuating trafc conditions and dynamic de-
livery demands. Hybrid optimization techniques, in-
cluding matheuristics, simheuristics, and machine
learning–assisted heuristics, are becoming prominent as
data availability increases in smart city settings, allowing
for more efcient and adaptive decision-making
processes.

Te review also revealed important patterns in case
study applications and data usage. Approximately 50% of
the reviewed studies utilized case studies to test urban
logistics models under real-world conditions, primarily
located in China, the United States, and Western Europe,
with developing regions underrepresented. Data sources
vary signifcantly, ranging from empirical feet opera-
tions to simulation-based datasets, with key input vari-
ables including vehicle types, delivery demand, fuel/
energy consumption, and congestion levels. Te fndings
consistently indicate that multimodal transportation
networks, integrating EVs, drones, cargo bikes, and
public transport, ofer signifcant reductions in CO2e
emissions, costs, and congestion compared to conven-
tional delivery methods. However, barriers to large-scale
implementation persist, including infrastructure limi-
tations, regulatory restrictions, and cost concerns related
to charging stations, battery life, and operational
constraints.

Diferent technologies in terms of transportation modes
have been applied to support urban logistics networks, some
are more sustainable than others, or guarantee access to
restricted areas in cities. An analysis in this regard was also
made, highlighting some of the advantages and disadvan-
tages of EVs, EMVs, AVs, delivery robots, UAVs, cargo
bikes, and shared public transport systems. Moreover, the
combination of diferent transportation modes is necessary
to strengthen last-mile delivery, reducing costs, time, and
emissions. In addition, to ensure the implementation of the
most appropriate transportation modes, it is important to
analyze multiple factors such as the infrastructure of the city
under study, geographic characteristics (e.g. topography and
use of ships or rail networks), the public policies related to
urban distribution, the access to and/or limitations in
parking, and the demand of the distribution network. Te
integration of multimodal transportation has gained mo-
mentum, driven by environmental concerns and urban
accessibility challenges. Studies show that the combination
of EVs, delivery robots, drones, and shared public transport
systems can enhance delivery efciency while reducing
emissions.

In terms of performance evaluation, the study presented
a detailed classifcation of indicators used to assess the three-
dimensional sustainability of urban delivery systems. A clas-
sifcation of fve important aspects was made as follows: (1)
algorithm performance, (2) environmental indicators

(emissions and use of resources such as energy or fuel), (3)
economic indicators, (4) logistics indicators (productivity,
infrastructure, time, and transportation modalities), and (5)
social indicators. In addition, the study of performance in-
dicators has evolved to include not only economic and envi-
ronmental metrics but also social sustainability indicators, such
as land use, congestion levels, and customer satisfaction. Te
growing inclusion of social metrics represents a positive trend
toward holistic assessment, though more research is needed in
this area.

In response to the review fndings, this study ofers the
following detailed conclusions regarding urban logistics
research:

• Te most commonly studied problem is the time
window VRP, often expanded with multimodal, syn-
chronization, or sustainability objectives.

• About half of the papers use real-world case studies,
but most are limited to developed countries.

• EVs, UAVs, delivery robots, and cargo bikes are fre-
quently evaluated as alternative transport modes, es-
pecially in combination.

• Te most frequently used performance indicators are
emissions, cost, energy consumption, and
delivery time.

• Less than 30% of the studies include social indicators,
which indicates a research gap.

Several research gaps were identifed: (1) the limited use
of stochastic and uncertainty-based modeling, (2) the need
to diversify the geographical focus of case studies, (3) the
opportunity to enhance multimodal delivery through AI and
real-time optimization, and (4) the underrepresentation of
social impact evaluation in logistics models.

In summary, this review provides a structured overview
of the current state of urban logistics research, uncovering
clear patterns in methodological preferences, technological
adoption, and the evaluation of sustainability practices. Te
predominance of optimization-based approaches, the
growing interest in hybrid heuristics, the increasing atten-
tion in multimodal transport integration, and the gradual
inclusion of social indicators highlight the ongoing evolu-
tion of the feld, while also exposing gaps and inconsistencies
in certain areas. Te thematic classifcation developed in this
paper enables a more coherent understanding of how
modeling approaches, transport technologies, and sustain-
ability metrics interact. Tis framework not only facilitates
comparative analysis across studies but also supports
practitioners and researchers in identifying practical strat-
egies and unexplored research avenues aligned with the goals
of sustainable urban logistics systems.
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Table A2: Classifcation of performance indicators for each document analyzed.

Article
Environmental Logistics

Social Economic Algorithm
performanceUse of

resources Emissions Transportation modes Infrastructure Productivity Time

[33] × × × × × ×

[35] ×

[96] × × ×

[57] × ×

[32] × × ×

[43] × × ×

[29] × ×

[128] × ×

[30] × × × ×

[76] × × × × ×

[59] × × ×

[130] × ×

[131] × ×

[125] ×

[126] × × ×

[1] × ×

[127] × × × × ×

[83] ×

[74] × ×

[8] × ×

[82] × × ×

[132] × × ×

[133] × ×

[97] ×

[27] ×

[134] × × ×

[135] ×

[136] ×

[137] × ×

[84] × × ×

[138] ×

[19] ×

[2] ×

[139] × ×

[140] ×

[141] ×

[142] × ×

[216] × ×

[143] × × × ×

[86] × ×

[39] × × ×

[216] × × × ×

[56] ×

[81] × × ×

[145] × × ×

[146] × × ×

[77] × ×

[19] ×

[79] × × × ×

[147] ×

[58] × ×

[148] ×

[95] × × ×

[149] ×

[6] × × × ×

[150] ×

[217] ×

[151] ×

[7] ×
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Table A2: Continued.

Article
Environmental Logistics

Social Economic Algorithm
performanceUse of

resources Emissions Transportation modes Infrastructure Productivity Time

[152] × ×

[153] × × ×

[155] ×

[23] × × × ×

[156] × × × ×

[157] × × ×

[158] × ×

[159] × × × ×

[160] × × × ×

[161] × × ×

[5] × ×

[162] × ×

[64]
[37] × × × × × ×

[49] × × ×

[65] × × × ×

[218] × ×

[164] × × ×

[165] ×

[166] × × ×

[163] × × ×

[66] × ×

[167] ×

[62] × × ×

[168] × × ×

[75] × × ×

[169] × × × ×

[170] × × ×

[171] ×

[172] × ×

[47] × × ×

[38] × ×

[24] ×

[17] × × ×

[173] × × × ×

[54] ×

[9] ×

[174] × ×

[40] × ×

[91] ×

[175] × ×

[67] × ×

[178] × ×

[179] × × ×

[78]
[176] × ×

[177] × ×

[88] × ×

[20] × ×

[219] × × ×

[34] × × × ×

[93] ×

[213] × × ×

[181] × ×

[182] × ×

[183] × ×

[184] × ×

[185] × ×
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Multi-Vehicle Truck-and-Robot Routing Problem for
Last-Mile Delivery,” European Journal of Operational
Research 310, no. 2 (2023): 680–697, https://doi.org/
10.1016/j.ejor.2023.03.031.

[99] Y.-Q. Liu, J. Han, Y. Zhang, Y. Li, and T. Jiang, “Multivisit
Drone-Vehicle Routing ProblemWith Simultaneous Pickup
and Delivery Considering No-Fly Zones,”Discrete Dynamics
in Nature and Society 2023 (2023): 1–21, https://doi.org/
10.1155/2023/1183764.

[100] DHL, “2022 Annual Report,” (2022), https://www.dpdhl.com/
en/sustainability/our-approach/sustainability-reports.html.

[101] UPS, “Global Reporting Initiative,” (2022), https://about.ups.
com/content/dam/upsstories/images/social-impact/reporting/
2022-reporting/2022%20UPS%20GRI%20Report.pdf.

[102] L. Fan, “A Hybrid Adaptive Large Neighborhood Search for
Time-dependent Open Electric Vehicle Routing Problem
With Hybrid Energy Replenishment Strategies,” PLoS One
18, no. 9 (2023): e0291473, https://doi.org/10.1371/
journal.pone.0291473.

[103] T. Stamadianos, N. A. Kyriakakis, M. Marinaki, and
Y. Marinakis, “A Hybrid Simulated Annealing and Variable
Neighborhood Search Algorithm for the Close-Open Electric
Vehicle Routing Problem,” Annals of Mathematics and
Artifcial Intelligence (2023): https://doi.org/10.1007/s10472-
023-09858-x.
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