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Fig. 1. Our compact, similarity-preserving policies allow us to generate the weights of the actor-network adapting to novel character morphology, unseen by
the model. Using a diffusion model trained on less than 50 labeled policies, we learn and sample from the underlying data manifold.

Adapting motion to new contexts in digital entertainment often demands
fast agile prototyping. State-of-the-art techniques use reinforcement
learning policies for simulating the underlined motion in a physics
engine. Unfortunately, policies typically fail on unseen tasks and it is
too time-consuming to fine-tune the policy for every new morphological,
environmental, or motion change. We propose a novel point of view on
using policy networks as a representation of motion for physics-based
character animation. Our policies are compact, tailored to individual
motion tasks, and preserve similarity with nearby tasks. This allows us
to view the space of all motions as a manifold of policies where sampling
substitutes training. We obtain memory-efficient encoding of motion that
leverages the characteristics of control policies such as being generative,
and robust to small environmental changes. With this perspective, we
can sample novel motions by directly manipulating weights and biases
through a Diffusion Model. Our newly generated policies can adapt to
previously unseen characters, potentially saving time in rapid prototyping
scenarios. Our contributions include the introduction of Common Neighbor
Policy regularization to constrain policy similarity during motion imitation
training making them suitable for generative modeling; a Diffusion Model
adaptation for diverse morphology; and an open policy dataset. The results
show that we can learn non-linear transformations in the policy space
from labeled examples, and conditionally generate new ones. In a matter
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of seconds, we sample a batch of policies for different conditions that show
comparable motion fidelity metrics as their respective trained ones.

CCS Concepts: • Computing methodologies → Animation; Physical
simulation; Reinforcement learning;

Additional Key Words and Phrases: Character animation, physics-based
control, motion retargeting, control policies, deep reinforcement learning,
diffusion-transformer models

ACM Reference Format:
Michele Rocca, Sune Darkner, Kenny Erleben, and Sheldon Andrews. 2025.
Policy-Space Diffusion for Physics-Based Character Animation. ACM Trans.
Graph. 44, 3, Article 25 (May 2025), 18 pages. https://doi.org/10.1145/3732285

Project page:
michelerocca.github.io/projects/policy-space_diffusion

1 Introduction
Motion synthesis for physically based characters has received
increasing interest in recent years, with developed approaches
successfully demonstrating skilled motion synthesis for climb-
ing [Naderi et al. 2019], juggling [Chemin and Lee 2018; Luo et al.
2021], boxing [Won et al. 2021], locomotion [Peng et al. 2018], and
many other tasks. This technology has important applications in
computer graphics and animation. Deep reinforcement learn-
ing (DRL) is particularly interesting for interactive and real-time
applications, such as video games, since control policies may be
efficiently executed online, allowing virtual characters to operate
in dynamic environments.
Although DRL has demonstrated impressive results for online

motion synthesis, it is characterized by the long learning times re-
quired to generate a control policy. This drawback can be mitigated
by employing algorithms, such as proximal policy optimization
(PPO) [Schulman et al. 2017], that permit parallel exploration of the
cross-product of the state-action space, but even imitation learning
and simple locomotion tasks can require many hours of training
time. This leads to time and computational resource challenges
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when control policies are to be generated for a large number of
characters and tasks.
Recent work by Xu et al. [2023] aims to reduce training times

through policy reuse when retargeting policies to characters with
different morphologies or to different environments. However, their
approach requires training using high-end computing resources and
storing modifications to an existing policy network, in addition to
the original policy. This means that expectations of computing and
memory resources remain fairly high, which can be prohibitive for
interactive and real-time computer graphics applications on devices
with reduced resources such as mobile devices and so-called thin
clients. This is particularly the case where many different control
policies are to be loaded and executed simultaneously. Thus, the
ability to quickly generate compact policies is particularly useful
for such platforms and applications.

Diffusion models (DMs) are powerful deep generative models
for efficiently compressing large datasets into compact represen-
tations. This efficiency facilitates the generation of new, diverse
instances, with the added benefit of controllability through condi-
tioning mechanisms. Notably, their accuracy in resolution makes
them suitable for manipulating data sensitive to variations like the
weights and biases of deep neural networks. Building on recent
advances in using DMs to generate implicit neural fields for 3D
shapes [Erkoç et al. 2023], we introduce a novel approach for pol-
icy synthesis that eliminates the need for additional training time
when retargeting policies to different character morphologies, envi-
ronments, or motion types. Furthermore, our synthesized policies
are highly compact, making them well-suited for deployment on
devices with limited memory and computational resources. We
summarize the contributions of our work as follows:

— A generative learning framework that learns the conditional
distribution of policy weights and allows generating novel
control policies by sampling from a continuum of task and
environment variations.

— Introducing a novel regularization strategy, called common
neighbor policy (CNP) regularization, that preserves the
similarity of policies trained from similar motions.

— A policy dataset consisting of hundreds of policies with dif-
ferent motions, morphology, and terrains, openly available
for further studies on this topic.

2 Related Work
Related work can be divided into three sub-categories one about mo-
tion retargeting approaches, a second on DRL, and the last is about
DM approaches. Our work touches on all these three categories.

2.1 Motion Retargeting
Many of the examples used to demonstrate our proposed frame-
work focus on retargeting the control policies to new characters
and environments. However, motion retargeting has long been
of interest to the computer animation community. Traditional
approaches rely on space-time trajectory optimization to ensure
that specific position-level constraints are enforced for the motion
when retargeted to different morphologies [Gleicher 1998],
particularly foot-ground contact [Kovar et al. 2002b]. Other work
has shown that stylistic transfer is possible between different

character skeletons [Abdul-Massih et al. 2017; Feng et al. 2012].
Deep learning has recently been employed as a tool to retarget
motions to different character skeletons in 2D [Aberman et al.
2019] and 3D [Aberman et al. 2020], as well as to resolve “foot
skating” artifacts [Mourot et al. 2022a]. Lee et al. [2023] used a
skeleton-agnostic embedding to characterize and transfer motions.
Li et al. [2023] proposed a similar idea for retargeting motion from
human to non-human characters. While many early works focus
on kinematic retargeting approaches, physics has proven to be
beneficial [Tak and Ko 2005]. Reda et al. [2023] proposed using
reinforcement learning to produce plausible motions for characters
and avatars when driven by a human actor. We also re-applied
physics-based reinforcement learning to generate a dataset of extra
input motions for our framework.

2.2 Deep Reinforcement Learning for Motion Control
Learning skills from human motion clips is a well-studied ap-
proach for generating natural motions for physics-based char-
acters [Mourot et al. 2022b]. Specifically, DRL has emerged as
a useful technique for achieving complex tasks in dynamic en-
vironments [Kwiatkowski et al. 2022]. For instance, by learning
composite control policies that combine skills encoded by a small
number of specific motion clips [Peng et al. 2018], or even larger
collections of unstructured motion clips [Peng et al. 2022, 2021; Xu
and Karamouzas 2021]. Bergamin et al. [2019] proposed to learn
responsive DRL controllers based on exemplars generated by a
motion-matching technique. Many works demonstrate the ability
of DRL to retarget motion to different character morphologies and
environments, but typically require retraining the policy for differ-
ent tasks and target environments, or use a curriculum strategy [Xie
et al. 2020]. Several recent works have proposed approaches to re-
duce the tedious training times associated with learning DRL. Ren
et al. [2023] showed that the use of a differentiable physics engine
could dramatically accelerate imitation learning. More recently, Xu
et al. [2023] proposed to learn additional layers that augment pre-
viously trained control policies, allowing a policy to be adapted to
new tasks, including changes in character morphology and terrain.
The initial training time is amortized for each new task, which re-
quires the order of minutes to train. Bohlinger et al. [2024] propose
learning an abstract controller for several legged robots for the
locomotion task. Close to our work, Won and Lee [2019] approach
the morphology adaptation task by training a parametric controller
for different characters.
Our approach differs from others by first pre-training uncondi-

tional policies and then conditioning a policy generator at a later
stage, enabling more flexibility since policy learning and condition-
ing are done separately. Conceptually, our framework allows the
reuse of policies from a database to impart new characteristics to
generated policies. We demonstrate these capabilities by combining
morphology adaptation with terrain adaptation, joining two inde-
pendent datasets — one featuring morphological variations and the
other featuring terrain variations. The resulting generated policies
exhibit characteristics drawn from both datasets. Furthermore, our
work introduces a regularization term to deal with the redundant
nature of control policy representation. Intuitively speaking, this
gives us unique representations of the policies in our policy dataset
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that are used as input for a DM, and sampling from this model can
instantaneously produce valid policy variations, avoiding costly
retraining.

2.3 Motion Diffusion Models
Recent advances in diffusion-based generative models have had
broad impacts on the field of motion synthesis. They show great
promise in their ability to capture the diversity of large motion
datasets and furthermore provide the ability to guide the model
toward generating motion sequences with specific traits. Of par-
ticular interest are text-conditioned motion diffusion models
(MDM), which allow the user to synthesize motion based on a natu-
ral language description. Tevet et al. [2023] were among the first to
propose a transformer-basedMDM conditioned on a CLIP based tex-
tual embedding. Zhang et al. [2024] proposed a similar architecture,
but included a denoising model to support the generation of longer
motion clips and more complex textual prompts. PriorMDM [Shafir
et al. 2024] shows that DMs are well-suited for synthesizing long
motion sequences and blending to produce prescribed trajecto-
ries. Others have demonstrated the ability of DMs to synthesize
human-to-human interactions [Liang et al. 2024]. This idea has been
extended to use other conditioning inputs, such as synthesizing
motion from audio [Alexanderson et al. 2023; Qi et al. 2023].
Du et al. [2023] conditioned a DM on sparse VR tracking input

and showed impressive results for full-body pose reconstruction.
Raab et al. [2024] use a DM to learn the motion patterns of a single
motion clip and generate stylized variations, useful for style trans-
fer and crowd animation. Tevet et al. [2024] recently proposed a
diffusion-based motion planner combined with a tracking policy to
convert textual prompts into simulations that can interact with the
environment.
The works Ze et al. [2024] and Chi et al. [2024] use a diffusion

policy for generating robot manipulation actions from visual con-
ditioning, where a DM substitutes the classic actor MLP. Similarly
Truong et al. [2024] use state observations as a condition for gener-
ating actions using a diffusion policy for behavior cloning. Diffusion
policy methods have recently demonstrated state-of-the-art results
in robotic learning tasks. Despite their use of a DM, they are fun-
damentally different than our proposed learning framework. They
use a diffusion process to transform states into action, we operate
a diffusion process on the policy weights.

We take a novel approach by modeling the weights and biases of
all policies as points on a shared multivariate differentiable man-
ifold. This choice allows us to sample a continuum of policies,
effectively representing a wide range of simulation parameters. To
achieve this, we approximate the underlying manifold using a con-
ditional DM. For categorical conditions, we establish conditional
continuity by leveraging the principal components of the control
policies. This design enhances our architecture’s ability to gener-
alize effectively to new samples, particularly when dealing with
motion combination tasks.

3 Policy Weights as a Continuum
Our work takes a novel view of neural network-based control poli-
cies that views the network parameters as forming a continuum
over task and environment variations.

Consider a motion clip m ≡ {𝑚1, . . . ,𝑚𝑀 }, consisting of𝑀 suc-
cessive poses. For imitation learning tasks, a neural network-based
policy with weights𝑤 ′

𝑃m𝑤′ (𝑚𝑖 ) → m′

is trained to imitate the motion m from an initial pose𝑚𝑖 . It pro-
duces motion m′ that is, in a generative way (∼), close to m (i.e.,
m′ ∼ m).

Due to the over-parametrized nature of deep neural networks, the
weights𝑤 ′ are not unique in representing the motion m, another
independent imitation learning training can lead to weights𝑤 ′′ of
a policy

𝑃m𝑤′′ (𝑚𝑖 ) → m′′

that still represents m in a generative way. Here, 𝑤 ′ and 𝑤 ′′ are
not numerically close to each other, while m′′ ∼ m′ ∼ m.

To use deep generative modeling techniques on the weight-space,
we want to encourage the weights to converge to similar values if
the underlying motion is the same, or𝑤 ′ ≈ 𝑤 ′′. More generally, the
weights should change continuously and smoothly as the target
motion clip is perturbed. Consider two motions m ≡ {𝑚𝑖 } and
n ≡ {𝑛 𝑗 } where the latter is a perturbation of the former (either
numerically m ≈ n, or in a generative way m ∼ n). A desirable
property is that their respective policies 𝑃m𝑤 and 𝑃n𝑢 consistently
converge to similar weights,𝑤 ≈ 𝑢. The hypothesis is that training
the policies with a policy-gradient method such as PPO implies
the existence of a differentiable manifold P ⊆ R𝐷 that describes
how the 𝐷 weights and biases change as the target motion deviates
from the reference motion m. Therefore the parameters𝑤,𝑢 ∈ P
are points on the manifold, and the geodesic distance

𝑑P(𝑤,𝑢) ≈ 0 .

We adopt a regularization strategy during the imitation training
to encourage neighboring solutions and aim to approximate this
manifold from data using a DM.
Our experiments utilize two distinct datasets. The first dataset

comprises instances of motion capture data m, utilized for training
the policies, which we denote the Ground-Truth-set. We generate
the second dataset, which consists of the policies 𝑃m𝑤 we use to train
the DM. We shall refer to it as the Policy-set. The Ground-Truth-
set originates from partitioned captures of the La Forge (LaFan1)
dataset as described by Harvey et al. [2020]. These captures have
been visualized and segmented into shorter clips to isolate individ-
ual motion types. Consequently, these shorter clips constitute our
Ground-Truth-set.

3.1 Common Neighbor Policy (CNP) Regularization
Each policy is trained individually from specific motion clips within
the Ground-Truth-set. The general pipeline is outlined at the top
row of Figure 2. The Policy-set is derived from training the ad-
versarial motion prior (AMP) model [Peng et al. 2021] with the
PPO algorithm solely on imitation learning tasks, without incor-
porating any goal tasks during training. Eventually, the weights
converge to one of the many local minima of the over-parametrized
model. This means that for every policy learned to imitate a ground-
truth motion, there exists a conspicuous number of equivalent
policies with different weights that can be obtained by training
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Fig. 2. An overview of the full pipeline of our method: For every motion in the kinematic motion-set we train our compact policy networks using our
CNP regularization. The network outputs the mean action for each body joint given the state observation, while the variance is fixed. The architecture
for generating the policies is a conditional Diffusion Transformer. It learns how to denoise standard Gaussian noise into the parameters of the control
policy network. The condition is refreshed at each step. During sampling, we can present novel conditions to obtain novel policies. Here is an example of
morphology adaptation.

for the same ground-truth motion. We want to restrict the so-
lutions to the subset of solutions that are numerically close to
each other.
For learning the imitation policies we follow Peng et al. [2021]

and use the AMP. To encourage proximity among policies, we
introduce a Gaussian prior around a CNP, which are pre-trained
weights 𝑤CNP from another imitation task, and it is used during
the training of the whole Policy-set. This gives the augmented loss
function proposed by Peng et al. [2021]:

L ≡ LAMP + 𝜆 | |𝑤 −𝑤CNP | |2 .

The regularization consists of the Mean Squared Error between the
current weights𝑤 of the on-training policy 𝑃m𝑤 and the weights of
the CNP. We initialize the training of each imitation policy using
the CNP weights, ensuring that the regularization loss is initially
zero. As the policy is updated during training, the weights change
in order to better imitate the desired motion. However, the regular-
ization loss penalizes values of𝑤 that are different from𝑤CNP. The
coefficient 𝜆 controls how much changes in the network weights
are penalized, and 𝜆 = 0.02 is used for all experiments. We found
that this clusters policies representing the same motion clip, while
keeping policies for different motion types centered around the
CNP regularization.

Figure 3 illustrates a 2D principal component reduced represen-
tation of the policies trained using this combined initialization and
regularization approach. It shows how the policies trained from
the same motion cluster together, and are distant from policies
representing other motions.

3.2 A Compact Policy Architecture
Policies are represented by amulti-layer perceptron (MLP) with
two fully connected hidden layers and ReLU activations. We use
the same 223-dimensional state representation and 28-dimensional
action output as AMP, where the state includes root-bone height,
local body positions, rotations, velocities, and angular velocities.

Happy-hops

Dance Sneaky

Fast-walk
Military

Model
Walk

Old

Bored-child

Painful

Limping

T-pose

Backwards

Fig. 3. Plot of the first two principal components of the control policies
representing 12 motions using the T-pose policy as CNP. The figure illus-
trates how our regularization allows five policies, trained for imitating the
same motion clip across independent training, to cluster together. Motions
like Painful and Old show more loose clusters that we correlate with poor
convergence. Figure 5 shows the cumulative explained variance of this PCA
representation

The output is a multivariate Gaussian distribution’s mean action
𝜇, while the standard deviation is fixed. In the original AMP archi-
tecture, the two hidden layers consisted of, respectively, 1024 and
512 neurons each, the input was standardized using its collected
running mean and variance, leading to 770k parameters. To reduce
the input size of the DM, we have decreased the size of the hidden
layers to 128 and 32 neurons and removed the input standardiza-
tion. Consequently, the weights and biases completely represent
the motion, leading to 33k parameters. Even though our policies
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Compact MLPLarge MLP

Fig. 4. The compact network we use can be trained to reach the same visual
quality as a bigger network similar in size to the ones used in ASE [Peng
et al. 2022]. We have reduced the number of parameters by 95% or more.

contained fewer than 5% of the parameters used in [Peng et al.
2022], they produce motions that follow the reference motion clips,
which suggests that compact networks can be used for learning
individual reference motions. This is exemplified in Figure 4. Each
policy file averages 2.8 MB in size.

4 Diffusion Model and Conditioning
To approximate the manifold underlying a set of policies trained
on different conditions, we train a DM. We employ a modified ver-
sion of the Diffusion-Transformer, building upon the framework
proposed by Erkoç et al. [2023] and incorporating input-based con-
ditioning. This conditioning method operates by concatenating the
condition with the input and refreshing the corresponding part
of the generated content at each diffusion step. Specifically, the
weights and biases of a control policy network are concatenated
with conditioning features that are specific to that policy. This inte-
gration ensures that the model remains aware of the conditioning
context throughout the diffusion process, enabling accurate and
context-sensitive policy generation. The input is tokenized layer
by layer, treating each set of weights or biases in the network as a
token, along with tokens for encoding the condition and diffusion
timestep. This is exemplified in the bottom-right of Figure 2. For
training, we utilize the DDPM method by Ho et al. [2020], and for
sampling, we employ the more efficient DDIM method by Song
et al. [2021].
Depending on the application, conditioning can take the form

of either one-hot encoding for categorical factors, such as motion
type, or min-max normalized scalars for continuous parameters
like height, limb lengths, and terrain roughness. While for encod-
ing the diffusion time step we use sinusoidal positional encod-
ing, a simple normalized scalar appears to be sufficient for repre-
senting conditions such as height, morphology, and terrain. Our
initial experiments on combining different motions showed that
one-hot conditioning effectively directs the diffusion process to
generate motion types from the training set, but struggles to gen-
eralize to combined motion types. To address this limitation, we
convert categorical conditions into continuous ones using a latent
representation as a condition label. Models such as variational
autoencoders (VAEs) are widely used for non-linear latent encod-
ing, but given the size of the input, they would be time-consuming
to train. Our preliminary analysis of the dataset suggested that
principal component analysis (PCA), although it is a linear la-
tent representation, can separate the data clusters by motion type
effectively already with the first two components as shown in Fig-
ure 3. We apply PCA to the policy network’s parameters across

Cumulative Explained Variance (CEV)

C
EV

Number of principal components

Fig. 5. Cumulative explained variance of the PCA encoding. The first 12
components account for 80% of the variation in our dataset with 5 instances
of 12 motion policies in Figure 3. Therefore we consider it to be a good
continuous alternative to the one-hot encoding for conditioning the DM
on the motion combination task

the entire dataset and retain the first 12 components as a condi-
tion of our DM, as they capture more than 80% of the variance as
illustrated in Figure 5. We consider this to be a feasible continu-
ous replacement for the one-hot encoding. To have a standard and
invertible representation of the policy weights used for training
the model, we normalize them by using the minimum and maxi-
mum values across the whole training set to fit the range [−1, 1].
Consequently, the last layer of the decoder is adjusted to use a
hyperbolic tangent activation function such that the output is in
the same range as the input and can effectively represent it. We
use 300 diffusion steps with a linear noise schedule in the range
[1𝑒−4, 1𝑒−2] as it resulted in a good balance between final-step diffu-
sion noise, learning capability, and sampling time. By experimental
tuning from the Erkoç et al. [2023] implementation, we reached a
low training loss by using 3040 as the size of each token after linear
projection, and 16 attention heads with 12 layers each for a total of
1537M parameters.

4.1 Quantitative Evaluation
We define policy quality based on the similarity between the sim-
ulated motion during policy replay and the motion of the ground
truth clip. In this section, we present details about how motions
synthesized by DM-generated policies are compared to their DRL
counterparts and ground truth animations.
The quality of control policies is evaluated using the following

metrics: (i) Falling Rate (FR), (ii) motion similarity measured
by Dynamic Time Warping (DTW), and (iii) Fréchet motion
distance (FMD).
Falling Rate: Running a policy in a simulator can sometimes

lead to unexpected states that cause the policy to fail. Specifically,
for many motions, falling during the simulation can be equivalent
to an unrecoverable failure. Therefore, to quantify the reliability
and success of motion imitation, the FR used byWon and Lee [2019]
is defined as the percentage of instances in which the character
falls during many independent simulations, e.g., percentage of zero
indicates that the character never fell during the evaluation. This
indicator loses meaning for motions that require the character to
lie on the floor, for example crawling. For those, the FR is assumed
to be zero. We evaluate the FR across 1024 simulations for every
policy.
Dynamic Time Warping Similarity: For successful policies,

we also want to quantify the quality of the motion imitation. Each
simulation starts from a random pose from the dataset and the tra-
jectories of the joints can slightly differ from the ground truth. For
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Fig. 6. The DTW score is calculated by using a custom distance on the
full point cloud and we average the score by dividing for the length of
the shorter sequence. The final score results in a distance between two
sequences averaged over time and number of cloud points.

this reason, it is important to use a metric showing robustness to
time-shift and moderate amplitude deformation of the trajectories.
Metrics like the Hausdorff Distance overestimate the pointwise
similarity between poses in simulation and ground truth by the
use of maximum and minimum operations. We instead use DTW
to measure the similarity between the simulated trajectories and
the retargeted, realigned ground truth. This process is illustrated
in Figure 6. To avoid mixing physical units, the trajectories are
represented by the temporal evolution of a 3D point cloud repre-
sented in meters. The point cloud is rigidly linked to the body joint
and consists of cubes with 8 points per joint, similarly to Kovar
et al. [2002a]. We use DTW to calculate the similarity as the cost
of warping the simulated trajectories into the ground truth across
all 3D points in the cloud, ensuring a comprehensive comparison
of the full pose. The distance between points clouds is calculated
as the average of the Euclidean distances between corresponding
points in the two point clouds, such that

𝑑cloud ≡
1
𝐾

𝐾∑︁
𝑖=1

∥p𝑖 − q𝑖 ∥ ,

where p𝑖 , q𝑖 ∈ R3 are the 𝑖th points in the first and second cloud.
To get a single score, we average across the time by dividing by
the shorter sequence’s length as we do not expect the warping to
dominate the shifting and to avoid underestimating the metric. The
resulting score is the average distance in meters of a point in the
cloud to its respective ground truth after the alignment.
Fréchet Motion Distance: Some aspects of motion similarity

that humans perceive through visual inspection are difficult to
quantify with traditional metrics. We assume that some abstract
motion features can be extracted by encoding motion sequences
into a latent space, as recently done with images. Frechet incep-
tion distance (FID) [Heusel et al. 2017] has been used to measure
the similarity between two distributions of images by comparing
their latent features from a pre-trained autoncoder intermediate
layer. Inspired by this approach, FMD [Hu et al. 2024; Maiorca et al.
2022] has been used to compare motion sequences by encoding
them into a latent space and calculating the distance between their
respective distributions, thus providing a more generative aligned
measure of motion similarity.
We use FMD to assess the quality and variability of the motion

g ≡ {g1, . . . , g𝑀 } generated through simulation, compared to
the reference motion r ≡ {r1, . . . , r𝑁 }. This process is illustrated

gM

Latent Space

r1 rN

g1

FMD

 

K poses

D
 o
bs

.

µr

µg

Fig. 7. The FMD is calculated by dividing the 𝐷 motion observations in
small patches of 𝐾 poses via a moving window. Each patch is encoded into
a latent space by means of a pre-trained auto-encoder, fine-tuned on the
whole Ground-Truth-set. Each motion clip is represented as a distribution
of points in the latent space, then the FD is computed as a measure of the
similarity between the reference motion r and the generated motion g.

in Figure 7. A ResNet34 model, pre-trained on images (IMA-
GENET1K_V1), is fine-tuned on the whole Ground-Truth-set to
encode motion segments in a latent space. The Fréchet distance
(FD) is calculated between the distribution of encoded simulated
motion and the one of encoded reference ground truth. Assuming
the two distributions being Gaussian the FMD can be calculated
analytically using means 𝝁 and covariance matrices 𝚺, such that

FMD ≡ ∥𝝁g − 𝝁r∥2 + trace
(
𝚺g + 𝚺r − 2

√︃
𝚺g𝚺r

)
.

More in detail, every motion clip, consisting of 𝐷 observations, is
transformed into a set of images through a sliding window selection
with window size 𝐾 . Here the RGB channels are replaced with x,y,
and z channels of the 3D motion. After a small test on the patch
sizes, we chose the encoder with the lowest reconstruction loss and
a window of 𝐾 = 34 poses per image.

Quantitative Comparison:When evaluating the quality of the
motion simulated using policies generated with the DM, we do
not compare the motion distances in absolute terms. We compare
them with the ones obtained for the motions of similar RL-trained
policies, leading to a fairer comparison. This allows us to evaluate
the quality of novel motions for which an exact ground truth can-
not be calculated, or for which no policy is trained for the same
conditional label. This is illustrated in Figure 8.

5 Results
In this section, we present results demonstrating that our DM can
generate policies adapting to a continuum of different character
morphology, generalize to other tasks such as terrain adaptation,
and explore the possibility of motion combination. We present re-
sults demonstrating that our DM can generate policies that adapt
to a continuum of different character morphologies and generalize
to other tasks, such as terrain adaptation and motion combination.
Section 5.1 provides an evaluation of morphology adaptation, tested
on five distinct motions: Dance, Cartwheel, Monkey-like, Crawling,
and Military, each with a separately trained DM. Section 5.2 exam-
ines terrain adaptation in conjunction with morphology adaptation,
focusing on the Military motion. For this, we train the DM on two
orthogonal datasets: one encompassing all morphology types on
flat terrain and the other using the default character across various
terrain types. Finally, Section 5.3 explores motion combination by
generating policies that blend Fast-walk with neighboring motions,
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Fig. 8. Schematic of the quantitative evaluation process of the motion qual-
ity comparing RL policies and DM generated policies using the distance
𝑑 . The ground truth is used to train the imitation policies using RL. We
train the DM to generate new policies with the dataset of trained policies
and their respective conditionals. We calculate the distance across multiple
simulations for each generated policy and we compare the distance distri-
bution with the RL-trained for the test set policy.

Table 1. List of the DMs That Have Been Trained

Name Condition # P Validation

Dance Morph. 10 scalars 40 10%
Cartwheel Morph. 10 scalars 40 5 polices
Monkey Morph. 10 scalars 40 10%
Crawling Morph. 10 scalars 40 10%
Military Morph. 10 scalars 40 10%
Military Morph.+Terr. 10+2 scalars 40+12 10%
12 Motions Comb. 12 PCA comp. 72 N/A

For each model, it shows the size and type of the condition; the number of
policies (# P), subset of the Policy-set, used during training; and the
percentage of policies removed from the training set for validation. For the
Cartwheel Morph example, we removed five policies for which the RL
training was unsuccessful.

such as Walk, Happy-hops (skipping), and Military. This experi-
ment utilizes a single DM trained on 12 motion types, as depicted
in Figure 3.

All training was conducted on a computer running Ubuntu 20.04,
equipped with an A6000 GPU and 48 GB of VRAM. For training con-
trol policies, we adapted the adversarial skill embeddings (ASE)
[Peng et al. 2022] implementation based on NVIDIA Isaac, and for
training our Diffusion-Transformer models, we used a modified
implementation of GPT-2 from Erkoç et al. [2023]. A link to the code
repository and the Policy-setwill be provided upon acceptance.
Details of each model configuration are provided in Table 1,

with training settings selected empirically to yield satisfactory per-
formance. All results demonstrate motion synthesized by policies
generated from conditions that were not encountered during train-
ing. The supplementary video contains animations of synthesized
motions.

5.1 Morphology Adaptation
The morphology adaptation task demonstrates the power of our
diffusion-generated policies to adapt to unseen character morpholo-
gies for the Dance motion. Each policy is trained using as a CNP
the policy of the wanted motion with the default character and flat

terrain. Additional examples of motions are shown in Figure 1, the
appendix, and the introductory video. We compare DM-generated
policies specifically for characters of the test set to the naive way of
reusing RL-trained policies on the new character. Our results can
be seen in Figure 10. Our diffusion approach for generating policies
is better at adapting to unseen morphologies than the default RL-
trained Dance policy. The default policy, when executed on a new
character, results in significantly different body poses and global
motion trajectory. The character eventually falls, which is gener-
ally the case when body proportions deviate excessively from the
default character. Our sampled policies preserve the characteristics
of the motion without further RL training.
Parametric character variations: Starting with the standard

humanoid character [Peng et al. 2018] as a base, we have created
morphological variations reminiscent of the exaggerated carica-
tures often found in entertainment media. In total, we are using
10 parameters: the height of the character between 140 and 200
centimeters, and the other nine parameters describing the morpho-
logical variations. The first five parameters determine the propor-
tions of the character’s full height, dividing it into sections for the
head, torso, thighs, shins, and heel height. The remaining four pa-
rameters control the lengths of additional body segments: shoulder
width, upper arms length, lower arms length, and hip width. These
segments can be adjusted independently of the height proportions,
offering greater customization. The change in dimension leads to a
change in the physical properties of the virtual character such as
mass distribution, joint torque, and collision geometry. Among the
variety of possibilities this parametrization offers, we have selected
10 caricatural characters, shown in Figure 9, that represent extreme
configurations and allow for interpolation of in-between param-
eters. A policy dataset is generated by training policies for each
new morphology and for each reference motion. Specifically, policy
training uses an imitation policy for the same motion from the
Ground-Truth-set and trained using the default character’s policy
as the CNP. For ground-truth comparisons, reference motions are
retargeted to the new character morphology and a morphology
specific policy is learned.

A full overview of the performances is given by the box plots of
the DTW, FMD, and FR in Figure 11 showing that the reliability and
fidelity of our policies are comparable to RL-trained policies for the
same test characters. The distribution of the distance metrics across
independent simulations is narrower for our generated policies,
indicating that the quality is more consistent across policy replays.

5.2 Terrain Adaptation
In addition to using a flat terrain as a playground for our charac-
ters, we introduce a heightfield with uniformly distributed depths,
controlled by two parameters: a deterministic spatial scale in the
x-y plane and the depth range in the z-direction. The maximum
deviation in the z-direction is a linear function of the spatial scale,
starting from 25 cm when the spatial scale is at its minimum (25 cm)
and reaching up to 80 cm when the spatial scale is at its maximum
(150 cm). The depth parameter shrinks the z-deviation distribu-
tion from 0 (flat terrain for every spatial scale) to the maximum
allowed for the given spatial scale. This approach allows us to create
a variety of terrains, from flat surfaces to rocky ground and tall,
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A B C D E F G H I J

Fig. 9. The default Humanoidmodel (A) and the exaggeratedmorphological
variations derived from it (B-J). For our DM on the morphology adaptation
task, the training set is constituted by policies trained on these characters.

smooth hills. We train each policy for the new terrains using as
CNP the policy for the default character proportions, 162 cm in
height, trained on flat terrain.
Policies that are trained only on flat terrain are continuously

perturbed by unexpected forces when the simulation environment
presents rough ground or slopes. To address this, we train the
DM on two separate datasets: one containing all morphologies on
flat terrain and another featuring the default morphology across
various terrains. Figure 12 illustrates examples on unseen terrains
where morphology adaptation benefits from the inclusion of terrain
variation, achieved by adding 12 policies for the default character
on different terrains. This approach improves the FR in 63.73% of
the {Terrain × Morphology} combinations compared to RL-policies
trained solely on flat terrain, with an average improvement of 9.24
percentage points.

5.3 Combining Different Motion Types
We test our model on unseen motion types by generating policies
through conditions in between the principal component embed-
dings given during training. When training policies with different
motion content, we use as CNP a policy trained to reproduce a
steady T-pose. This choice is assumed to make all the types of mo-
tion equally difficult to learn and stabilize the convergence time.
To evaluate this task we test our method on the motion types Walk,
Fast-walk, Military, and Happy-hops, which have nearby neigh-
boring clusters in the principal component space as can be seen in
Figure 3.
We generate policies by linear interpolation of the conditions

while sampling the DM, and we compare them to direct linear in-
terpolation of the policy representation. In Figure 13 we show that
the directly interpolated policy representation, being the neural
network weights and biases of the policy, can keep a faithful rep-
resentation of the motion type only when one is very close to the
original input policy representations, while the motion pattern and
direction get significantly modified the further away one is from the
policy representations. In comparison our generated policy better
preserves the motion pattern and direction, giving a more realistic
transition between the two motion types.
We can inspect the trajectory of the policies in the principal

component representation during the two types of interpolation
in Figure 16. Our generated policies show a curved path between
the two motion types. This supports our intuition of how control
policies form a large-dimension-nonlinear space and how geodesics
in this space will look in a reduced linear space.

a)

b)

c)

d)

e)

Original Unseen Generated

Fig. 10. The policy trained with the default 162 cm character on the Dance
motion does not generalize well to different morphologies: (a) Original
policy running on the default character; (b,d) Running the original policy
on characters with light morphology changes. The motion loses its charac-
teristics, such as leg rising level and dancing pattern; (c,e) Our generated
policies recover the characteristics of the original motion on the specific
morphology.

Combining a motion with a neighboring one often results in
an asymmetrical motion that takes half the characteristics of each
motion type. This phenomenon is represented in Figure 15 where
Fast-walk is mixed with other styles. The effect is more noticeable
in the introduction video.

6 Discussion
In this section, we analyze key findings, discuss model limitations,
and propose potential improvements. We structure the discussion
into distinct subsections addressing quantitative evaluation, policy
synthesis challenges, failure cases, effects of the regularization, and
considerations on the compatibility between combined motions.

6.1 Quantitative Evaluation of RL Policies
Numerically comparing an RL-trained policy from the validation
set with its DM-generated counterpart is not trivial. Policies
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Fig. 11. Quantitative evaluation of the model on the test set. These statistics are calculated for each of the policies on 200 replay instances with different
seeds. The default morphology of the humanoid character is mixed with the remaining nine morphology. The generated model achieves comparable results
compared with the trained ones. The distribution of the metrics for the generated policies is narrower for the generated ones showing more stable quality
across independent simulations. The FR shows comparable values, in some cases improving the reliability. Here A+X is a midpoint morphology unseen by the
DM, between type A (default) and type X as in Figure 9.

corresponding to intermediate conditions are not necessarily
located between the policies in the training set. In addition, multiple
convergent solutions during RL training, even when regularization
is applied, prevent a unique policy from emerging because several
solutions may be similarly distant from the CNP. Nevertheless, we
observe that the validation loss consistently decreases together with
the training loss across all our experiments. This finding supports
our assumption that employing CNP regularization in conjunction
with a policy gradient method promotes a structured data manifold.

6.2 Challenges in Policy Synthesis
Although our experiments employed relatively small neural
networks, our model synthesizes high-quality motion for almost
all motion types without the need for hyperparameter tuning.
However, certain motions, such as Old-walk and Painful-walk,
exhibit reduced performance. As shown in Figure 3, these slow
motion types form more dispersed clusters, suggesting that
the policies have not converged accurately. Peng et al. [2021]
introduced a gradient penalty to stabilize training and to prevent
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Original policy a)

Generated (ours)

Original policy b)

Generated (ours)

Fig. 12. Our generated policies can adapt simultaneously to morphology
and different terrains, improving the FR on 64% of the cases compared with
the same policy on a flat terrain. (a) On a character with taller heels the
FR is recovered from 80% to 26% using our model. (b) On a character with
a larger torso the FR is recovered from 100% to 20% using our model.

the generator from overshooting the data manifold. Large gradient
penalties, however, appear to hinder the learning of slow motions.
To mitigate this, we reduce the gradient penalty so that slower
motions can be learned more effectively. Figure 17(a) illustrates
the impact of poor convergence in compact model representations.

Another challenge arises from the use of AMP in training policies.
Characters sometimes freeze entirely, particularly in slow-motion
styles. We attribute this behavior to the Markovian nature of the
algorithm and the absence of a temporal phase term. In motions
such as Crawling or Monkey-like walking, policies may enter ab-
sorbing states where the optimal action is to maintain the same
pose. Our generated policies occasionally exacerbate this freezing
effect, suggesting that an alternative control policy model might
better capture such motions. Figures 20 and 21 in the appendix
highlight this issue by showing increased mean and variance in
FMD scores, while DTW scores remain comparable to those of the
reference policies. Other policies, as the military walk in Figure 18,
do not show this freezing phenomenon.

6.3 Failure Cases and Limitations
Certain failure cases occur when the conditioning variables ex-
tend beyond the well-supported regions of the training set. For
instance, as illustrated in Figure 17(b), policies fail when the thigh
length is significantly shorter than the shin length. If such character
types are required, the model can be improved by incorporating
corresponding policies into the training set.

s=0.1

s=0.3

s=0.5

s=0.7

s=0.9

Linearly interpolated

Fig. 13. Direct linear interpolation with a parameter 0 < 𝑠 < 1 of learned
policies results in poor motion quality. Only when close to the end-points
of the interpolation do the motions look similar to the source policies but
at the mid the motions become weird looking. One can not simply use
interpolation to blend different motions.

Failures also become more frequent when changes in character
morphology involve increased mass, as seen in Figure 17(c). This
observation suggests that the policies are less robust for larger
and heavier characters under the same joint stiffness conditions.
Addressing this issue requires expanding the training set to include
more policies adapted to such morphologies.

Moreover, ensuring the reliability of the policy training set prior
to training the DM is crucial. For example, in the Cartwheel task
(Figure 19), policies trained on larger-torso characters (B, E, G)
fail to recover from upside-down positions. To mitigate this, we
removed the five worst-performing policies before training the DM.
Consequently, test characters A+B, A+E, and A+G exhibit a 100%
FR, whereas RL-trained versions succeed due to their lower mass,
which makes them easier to train.

6.4 Impact of CNP Regularization
The choice of CNP is, in principle, arbitrary because any policy
could serve as a regularizer. For morphology and terrain adaptation,
selecting the policy corresponding to the samemotionwith a default
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s=0.1

s=0.3

s=0.5

s=0.7

s=0.9

Generated (ours)

Fig. 14. We use our diffusion process trained on the 12 motion types to
generate unseen motions that can be described as a gradual mixing from
Slow-walk to Fast-walk motions. The top row shows the slowest walking
motion and the bottom row shows the fastest walking. This demonstrates
the ability to generate new motion for a character by linearly interpolating
between conditions to the DM by a parameter 0 ≤ 𝑠 <≤ 1 .

character on flat terrain as the CNP is a natural choice since other
policies can be interpreted as variations of this baseline.

For motion combination tasks, however, selecting an appropriate
CNP is more complex. We opted for the T-pose (trained without
regularization) because it represents a neutral, standing character
and is therefore motion-agnostic. Although the “zero-policy”, where
all entries are zero, might appear to be a natural neutral choice
because it represents inactivity in PD controllers and minimizes
squared weight values, it ultimately hinders policy learning.

The selection of neighbors in CNP regularization plays a critical
role in shaping the local manifold structure. For example, regular-
izing Fast-walk policies with Walk policies causes convergence at
a different local minimum. In this scenario, even a linear interpo-
lation in policy space yields a meaningful motion transition, with
walking speed increasing progressively as expected. We attribute
this behavior to the similarity between the two motions and the
local linearity of gradient-based methods. Figures 22 and 23 in the
appendix illustrate this effect. We speculate that carefully selecting

Fast-walk + Military

Fast-walk + Happy-hops

Fig. 15. Combining Fast-walk with a motion of a neighboring cluster results
in an asymmetrical motion where one step is taken from Fast-walk and
the next from the combined style. The introduction video offers a better
representation of the phenomenon.

Generated (ours)

Linearly interpolated

WalkFast-walk

Fig. 16. Two-dimensional PCA plot of the interpolated policies. The gener-
ated policies obtained by linearly interpolating the principal component
condition from Walk to Fast-walk remark the non-linearity of the transfor-
mation between the policy parameters of two similar motion types. Our
generated policies follow a curved path, showing the diffusion process can
model the non-linearity of the geometrical manifold of the policy space.
This result is supported by Figures 13 and 14, where we show the motion
quality for some of these policy points parametrized by 𝑠 .

regularization policies could help shape the data manifold more
effectively.

6.5 Compatibility on Motion Combination
Our observations indicate that meaningful motion combinations
occur only between motions that form neighboring clusters in
Figure 3. For example, combining forward and backward walking
results in an incoherent policy. Future research should explore how
policies encode motions and investigate model improvements to
better handle diverse motion combinations.

7 Conclusion
In this work, we present a novel framework for retargeting control
policies for physics-based characters to new task and character
variations. Our CNP regularization technique enables the learning
of a similarity-preserving policy network representation across
various motion types. This approach makes the actor-network’s
weight space suitable for generative modeling, where different
weights are assumed to represent continuous variations on a
shared manifold. The compact nature of our networks suggests
that motion representations can be compressed. We propose a new
role for neural network-based control policies, where a compact
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Compact MLPLarge MLP

(a)

Unbalanced proportions

Original task Generated (ours)

(b)

Increased mass sensitivity

Original task Generated (ours)

(c)

Fig. 17. Example failure cases of our approach. (a) For some specific motion
types, such as Painful-walk, the compact policy performs worse than a
bigger network. (b) A generated policy fails if the morphology has unbal-
anced proportions such as thighs way shorter than shins. (c) Generated
policies become more sensitive with taller and increased mass characters.
The likelihood of these failures can in our experience change depending on
the choice of motion type and character morphology.

representation encodes the motion, and new variations of the
motion are generated by manipulating the network’s weights.

We further demonstrate that a Diffusion Transformer model can
effectively manage diverse motion types and produce new policies
adaptable to novel character morphologies, environmental vari-
ations, and motion combinations. In the case of the latter, a key
aspect of our approach is the continuous conditioning of categorical
labels, achieved through the principal component parametrization
of motion types. Our results show that non-linear transformations
within the policy space can be learned from labeled examples, en-
abling the conditional generation of new policies.

7.1 Future Work
Our findings open up several promising research directions. These
include exploring conditioning on finer motion characteristics, con-
ducting topological analyses of the newly represented motion space,
and integrating physical simulation more deeply into the DM train-
ing process.
The DM attempts to learn the manifold underlying the policy

weights. However, it does not have any feedback on the final quality
of the motion. This opens up a future path of research to study
conditional policies based on the motion itself with the need of
validating the policies during training. It is not a trivial task to deal
with the validation of the motion quality during the training of the
DM. The input to a policy is a state observation, while the output
is the joints’ action. The easiest way to perform validation would

be to include simulation steps during the diffusion training. This is
a computationally too demanding task in our current setting, yet it
may be conceptually feasible after some resource optimization. We
leave this to be explored in future work.

Recent advancements in DMs and transformer architectures have
showcased their ability to generate data conditioned onmulti-modal
parameters, facilitating complex and context-aware synthesis. We
believe that achieving an efficient and interpretable encoding of
control policies is essential for fully leveraging these generative
models in physics-based simulation and animation.

Future research could also focus on investigating the compression
limits of policy motion representation and planning conditional
transitions between motions for thin-clients in the video game
industry. Enhancing the concept of CNP regularization could lead
to a more efficient and smooth encoding of policies on differentiable
manifolds. Additionally, exploring the formalization of a policy
space may improve the stability of policies in out-of-distribution
states and contribute to the development of more robust controllers.

To support and accelerate research in this domain, we are releas-
ing our comprehensive dataset of control policies, which includes
hundreds of regularized, labeled examples. This resource is de-
signed to enable further experimentation and validation of new
generative approaches, fostering innovation in policy synthesis
and adaptive motion generation. We anticipate that access to such
data will facilitate the development of methods that extend the
generative capabilities of current models, leading to more robust
and versatile solutions in physics-based character animation.
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Appendix
In this appendix, we show further results for a more complete overview of the characteristics of our method.

Morphology Adaptation

Dynamic Time Warping Comparison - Military
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Fig. 18. Quantitative evaluation for the Military motion. Here A+X is a midpoint morphology between type A (default) and type X as in Figure 9.
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Dynamic Time Warping Comparison - Cartwheel
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Fig. 19. Quantitative evaluation for the Cartwheel motion. Here A+X is a midpoint morphology between type A (default) and type X as in Figure 9.
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Dynamic Time Warping Comparison - Monkey
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Fig. 20. Quantitative evaluation for the Monkey motion. This type of motion is subject to the freezing phenomenon due to the Markov Chain nature of the
imitation framework. The policies can favor absorbing states rather than moving actions for slow motions like this one. This explains the high FMD scores for
some of the morphologies. Here A+X is a midpoint morphology between type A (default) and type X as in Figure 9.
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Dynamic Time Warping Comparison - Crawling
150 cm 170 cm 190 cm 

D
TW

 s
co

re
 [

m
]

A+
B

A+
C

A+
D

A+
E

A+
F

A+
G

A+
H

A+
I

A+
J

A+
B

A+
C

A+
D

A+
E

A+
F

A+
G

A+
H

A+
I

A+
J

A+
B

A+
C

A+
D

A+
E

A+
F

A+
G

A+
H

A+
I

A+
J

RL Trained DM Generated

Fréchet Motion Distance Comparison - Crawling

A+
B

150 cm 170 cm 

A+
C

A+
D

A+
E

A+
F

A+
G

A+
H

A+
I

A+
J

190 cm 

A+
B

A+
C

A+
D

A+
E

A+
F

A+
G

A+
H

A+
I

A+
J

A+
B

A+
C

A+
D

A+
E

A+
F

A+
G

A+
H

A+
I

A+
J

RL Trained DM Generated

Fig. 21. Quantitative evaluation for the Crawling motion. This type of motion is subject to the freezing phenomenon due to the Markov Chain nature of the
imitation framework. The policies can favor absorbing states rather than moving actions for slow motions like this one. This explains the high FMD scores for
some of the morphologies. The FR is omitted because the character lies on the floor. Here A+X is a midpoint morphology between type A (default) and type X
as in Figure 9.
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Motion Combination
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Fig. 22. Two-dimensional PCA plot of the interpolated policies. When a
Fast-walk is fine-tuned by regularizing from aWalk instead of the T pose, it
converges to another policy. In this specific case, Walk and Fast-walk have
very similar policies, and linear interpolation in the policy space is sufficient
for good motion interpolation. This is better illustrated in Figure 23.
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Fig. 23. When a Fast-walk is fine-tuned using as regularization a slower
Walk, the policies are so close to each other that linear interpolation on the
policy space is sufficient to produce the expected motion.
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