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 A B S T R A C T

Full Matrix Capture (FMC) and the Total Focusing Method (TFM) are instrumental techniques in ultrasonic 
nondestructive testing (NDT) in industries such as aerospace, oil and gas, and manufacturing, and allow 
efficient defect detection by capturing all possible transmitter–receiver pairs and generating highly resolved 
images on a predefined pixel grid. The use of dense linear or matrix probes presents significant challenges in 
data storage and transfer but also in the complexity of the acquisition system’s electronics. In this context, 
binary acquisition steps in as an attractive alternative for simplifying acquisition equipment and reducing data 
size. However, binary formats carry the drawback of amplitude information loss. To address this, the present 
study explores the application of a U-NET autoencoder neural network to reconstruct amplitude data from 
binarized FMC signals. The autoencoder’s U-NET architecture is particularly suited for this task due to its 
effectiveness with limited datasets, a common issue in NDT. Finite element simulations were used to generate 
training and validation datasets. Experimental tests were then conducted on steel samples containing various 
defects, such as Electrical Discharge Machining (EDM) cracks, side-drilled holes (SDH), and a realistic fatigue 
crack in a steel bar. The reconstructed FMC data were evaluated using TFM images and Structural Similarity 
Index Measure (SSIM), showing that the neural network accurately reconstructed FMCs. Notwithstanding the 
presence of minor amplitude errors, the spatial positioning of defects remained precise, demonstrating the 
method’s viability for practical NDT applications.
1. Introduction

The Full Matrix Capture (FMC) and the Total Focusing Method 
(TFM) represent significant advancements in ultrasonic nondestructive 
testing (NDT) [1–3]. They greatly improve defect detection across 
industries such as aerospace, oil and gas, and manufacturing. FMC 
involves the acquisition of signals from all possible transmitter–receiver 
pairs, enabling TFM to generate images by focusing these signals on a 
predefined pixel grid. These methods enhance defect detection, includ-
ing cracks, inclusions, and delaminations [4–7]. They can be further 
improved with advanced techniques such as multimode imaging for 
defects at varying orientations [8,9] or phase coherence imaging (PCI) 
for small, highly diffractive geometries [10–13].

The growing complexity of data management and electronics for 
dense or matrix probes underscores the need for innovative data ac-
quisition and compression techniques. Several approaches have been 
explored to reduce data size without compromising imaging quality. 
One method is to lower the sampling frequency, but this approach 
is constrained by the Nyquist–Shannon theorem. Compressive sensing 
allows sub-Nyquist sampling frequency for sparse signals, which is the 
case for Ascans [14,15]. Another method involves reducing the number 
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of firing events, leveraging the high redundancy of information present 
in an FMC to reduce the number of active elements during transmission, 
enabling faster acquisition with a very minimal impact on TFM image 
quality.[16–18]. A third option, compressing the amplitude axis of 
A-scans, is particularly promising.

Binary signal acquisition offers substantial advantages in data re-
duction and instrumentation cost, making it a compelling alternative 
to traditional methods. Unlike approaches such as compressive sensing 
or sparse array acquisition, binary acquisition not only reduces data 
size but also simplifies hardware requirements by replacing analog-to-
digital converters with comparators. However, its primary drawback 
lies in the deterioration of TFM image quality. Binary FMC data lack 
the destructive interferences essential for conventional TFM, leading 
to poor quality images. Additionally, the interpretation of A-scans 
becomes more challenging, as amplitude information is removed. Nev-
ertheless, certain characteristics remain detectable in binary A-scans: 
noise manifests as rapid and random variations between 0 and 1, while 
an echo will oscillate at the frequency of the generated signal.

Neural networks (NN) have proven to be effective tools for numer-
ous areas of ultrasonic testing, including (1) signal deconvolution [19], 
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Fig. 1. Explanatory diagram of the Total Focusing Method (TFM) imaging principle.

(2) classification [20], (3) detection [21], (4) segmentation [22], and 
(5) image generation [23]. One of the main weaknesses of using NN in 
nondestructive testing (NDT) is the small size of the databases available 
for training. Unlike databases in sectors such as medical or image 
recognition, those in the NDT field are limited by the number of ex-
perimental acquisitions, simulations and data sharing. In 2015, a group 
of researchers developed a particularly high-performance autoencoder 
structure for limited databases namely the U-NET architecture [24].

Although binary acquisition instruments are still in development 
and not yet commercially available, progress is being made. The aim 
of the present work is to use a U-NET autoencoder network to re-
construct the amplitude from signals that has already been binarized. 
This method will lay the groundwork for deploying binary acquisition 
systems in the field, enabling users to visualize individual A-scans as 
if they were captured with a conventional instrument. The quality of 
this reconstruction is assessed by performing TFM imaging from the 
standard FMC and the one reconstructed by the NN. These images will 
then be compared with the structural similarity index measure (SSIM).

This article is divided as follows: Section 2 presents all the necessary 
scientific background required for the study such as FMC acquisition, 
TFM imaging, the U-NET autoencoder architecture, an introduction to 
the Structural Similarity Index Measure (SSIM) and a description of the 
training, validation and experimental testing datasets. Section 3 present 
the simulated and experimental results, followed by a discussion about 
the proposed method in Section 4. Finally, a conclusion is drawn.

2. Materials and method

2.1. Full matrix capture and total focusing method

Ultrasonic imaging is an essential tool in NDT, providing advanced 
capabilities for material inspection without causing damage. Among the 
most significant developments in this area are the FMC and TFM [1,2]. 
FMC involves the acquisition of a comprehensive dataset by capturing 
all possible transmit–receive combinations from an array of elements, 
thereby providing a dense and highly detailed ultrasonic data matrix. 
An FMC can be assimilated into a matrix in three dimensions: (1) 
a temporal axis, (2) the transmitting elements and (3) the receiving 
elements. The first dimension is determined by the number of time 
increments acquired and the sampling frequency, while dimensions (2) 
and (3) depend on the number of elements (N) in the probe, resulting in 
a total size of 𝑁2. This measurement protocol therefore produces large 
quantities of data, all the more so for high-frequency acquisitions and 
dense probes, such as 128-elements or matrix probes which can easily 
contain a few thousand elements.

This rich dataset is then processed using the TFM, an advanced 
beamforming technique that focuses the wave on a predefined pixel 
grid. If a pixel grid described in Fig.  1 is considered, the TFM can be 
calculated at each pixel position (x,z) with the following equation: 
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where 𝑦̃𝑘𝑙(𝑡) is the analytic signal at a given time 𝜏𝑘𝑙(𝑥, 𝑧) which cor-
responds to the time-of-flight between the emitter 𝑘 to the pixel, and 
back to the receiver 𝑙. When using a wedge, multiple ray paths can be 
considered. As most phased array probes are longitudinally polarized, 
the wave path in the wedge is generally omitted in the nomenclature. 
𝑇  stands for a transverse mode and L for a longitudinal mode. For 
example, the TT-T path means that there is a skip before the defect 
with a reflection from the back wall using the transverse mode, and a 
𝑇  direct path from the defect to the front wall.

Several studies have shown that the amount of data recorded during 
an FMC acquisition can be drastically reduced with little effect on the 
quality of the images produced. Time axis compression is convention-
ally limited by the Nyquist–Shannon theorem, but techniques such as 
compressive sensing can reduce the sampling rate to a fraction of this 
limit when considering a sparse signal which is the case for Ascans in 
ultrasonic testing [15]. Considering the high redundancy of information 
in an FMC, a reduction of the spatial dimensions with sparse array 
acquisition [16–18] can also be considered. However, the amplitude of 
the signal in this case could still be affected. This magnitude is recorded 
digitally, and is generally coded between 12 and 16 signed bits. By 
definition, maximum compression means reducing the amplitude to 
a binary value. Phase imaging techniques such as Phase Coherence 
Imaging (PCI) [10,11,25] can still be used, as the phase of the signal can 
be recovered from a binary signal. However, the absence of destructive 
interference when applying conventional TFM produces images of poor 
quality.

2.2. U-Net autoencoder

An autoencoder (AE) [26,27] is a type of artificial neural network 
that uses an unlabeled database. The architecture consists of two parts: 
(1) an encoder which reduces the dimensionality of the data to extract 
its most important features into a latent space, and (2) a decoder which 
uses the latent space to reconstruct the input data. Once trained, these 
networks can be used to generate data similar to those in the original 
dataset. Employing low-noise or noiseless data for loss calculation, also 
allows using AEs for image or signal denoising [28,29].

The U-Net architecture is a specific case of convolutional autoen-
coders, and derives its name from its symmetrical U-shaped structure. 
Originally developed for biomedical image segmentation [24,30], it is 
now also used for image denoising [31,32] and upscaling [33]. The 
encoder generally consists of repeated convolutional and max-pooling 
allowing the extraction of important features in the latent space. These 
features are then up-sampled by a corresponding decoder. Unlike other 
AEs, the encoder’s features in this case are saved and then concatenated 
to the corresponding decoder layer through connecting path. This 
notably allows the NN to better carry to context of the input data along 
the different layers of the structure, thus increasing the accuracy of the 
reconstructed data. This architecture has been shown to perform very 
well for small databases, which is particularly interesting in the case of 
NDT.

The model used in the present study is very similar to the original 
version proposed by Ronneberge et al. [24,30], and was built using the 
Pytorch library. The encoder is also composed of successive applica-
tions of two 3 × 3 convolutions, each followed by a batch normalization 
layer (𝜀 = 1e−5) and a ReLU activation function. Downsampling is done 
with a 2 × 2 max pooling operation with stride 2. Each step in the 
decoder starts with an upsampling with a 2 × 2 transposed convolution. 
A concatenation is made with the corresponding feature map from the 
encoder. Then, multiple double 3 × 3 convolutions each followed by a 
batch normalization layer (𝜀 = 1e−5) and a ReLU activation, are applied. 
For the final layer a 1 × 1 convolution layer is applied. For each stage 
of the encoder, the number of convolutional filters is indicated in Fig. 
2 and follows the sequence 64, 128, 256, and 512; the decoder mirrors 
this structure with 512, 256, 128, and 64 filters, respectively. One of 
the differences between Ronneberge et al.’s model and that used in this 
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Fig. 2. Autoencoder U-Net model used.
paper is that here, padding is added at each convolution layer to avoid 
losing any border pixel and to remove the cropping required in the 
original version.

The input consists of a full binarized FMC, where all A-scans are 
provided at once as a 4096 (number of samples) by 1024 (32-element 
probe) matrix. Here the number of elements was limited to 32 to 
meet graphics memory requirements during network training. An Adam 
optimizer was used with PyTorch’s default parameters (𝛽1 = 0.9, 𝛽2 =
0.999, 𝜀 = 1e−8). The output was compared to the corresponding stan-
dard non-binary FMC with a Mean Square Error (MSE) loss function. 
The learning rate was selected through a manual search, retaining the 
value that resulted in the lowest validation loss while minimizing over-
fitting, as indicated by the smallest divergence between the training 
and validation loss curves. A value of 2 × 10−4 was ultimately chosen. 
The batch size was constrained to a value of 1 due to computational 
resource limitations. The number of epoch was controlled with an early 
stopping routine which ended the training when the validation loss 
stopped improving for 100 epochs. Whenever this happened, the NN 
weights were set to the configuration value at which the validation loss 
was minimal.

2.3. Structural similarity index measure

In order to judge the network’s ability to reconstruct the FMC from 
binary data, it was decided to use a TFM algorithm with both the base 
and the reconstructed FMCs. These two images were compared with 
the SSIM. This metric was developed in 2004 [34], and is used to 
compare an image with another reference image. It is usually calculated 
on windows 𝑓 and 𝑔 of these two images using the following equation:

SSIM(𝑓, 𝑔) =

(

2𝜇𝑓𝜇𝑔 + 𝑐1
) (

2𝜎𝑓𝑔 + 𝑐2
)

(

𝜇2
𝑓 + 𝜇2

𝑔 + 𝑐1
)(
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where 𝜇𝑓  and 𝜇𝑔 are the mean value of the windows 𝑓 and 𝑔, 𝜎2𝑓  and 
𝜎2𝑔 the variance in the windows 𝑓 and 𝑔, 𝜎𝑓𝑔 is the covariance of 𝑓 and 
𝑔. 𝑐1 and 𝑐2 are two constants used to stabilize the function when the 
denominator is close to 0. In general, 𝑐1 =

(

𝑘1𝐿
)2 and 𝑐2 =

(

𝑘2𝐿
)2 with 

𝑘1 = 0.01 and 𝑘2 = 0.03, and 𝐿 is the dynamic range of the pixel values. 
In our case the values of the TFM images were normalized between 0 
and 1 so 𝐿 = 1. Once all these local SSIMs are calculated, a global SSIM 
can be obtained by applying an average to these local values. The more 
identical the two images compared, the closer the SSIM value will be 
to 1. On the contrary, for two images with large differences, this value 
will tend towards 0.
3 
Fig. 3. Diagram of the developed finite element models.

2.4. Training and validation

The data used for training and validation were generated solely 
using finite element simulations. This choice was motivated by the 
simplicity of constructing the database, both with respect to the in-
spected block and the position and size of a defect. The simulations 
were performed on Pogo FEA [35], a GPU-accelerated solver.

In each case, the model consisted of a 25 mm homogeneous and 
isotropic steel plate, with a density of 𝜌 = 8000 kg∕m3, a Young 
modulus of E = 210 GPa and a Poisson ratio of 𝜈 = 0.30 modeled 
in 2D. The emission system consisted of an Evident 5L64-32X10-A32-
P-2.5-OM probe associated with the Evident SA32-N55S-IHC wedge, 
with only the first 32 elements being modeled to limit the size of 
the FMC. A flat-bottom hole (FBH) with a diameter of 5 mm, with 
its position varying from 25 to 75 mm in front of the probe’s center 
line (5 increments), and whose depth varied from a quarter to half of 
the plate’s thickness (4 increments), was present on the backwall of 
the plate, for a total of 20 models (Fig.  3). Absorbing boundaries [36] 
were added at the ends of the plate (x-axis) to reduce the model size 
by minimizing edge echoes.

The excitation signal used was a 5-cycle Hann-windowed toneburst 
centered at 5 MHz. The length of the excitation signal was similar to 
the time response of the elements of the 5L64-32X10-A32-P-2.5-OM 
probe when excited by a half-cycle burst produced by most industrial 
inspection equipment. The element size was defined to ensure at least 
25 elements per the shortest wavelength, and to guarantee result 
convergence, the time step was chosen such that a mode could not skip 
an element within a time increment.
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Table 1
Experimental and simulation parameters.
  Probe  
 Model 5L64-32X10-A32-P-2.5-OM 
 Central frequency 5 MHz  
 Active elements (total) 32 (64)  
 Pitch 0.5 mm  
 Wedge  
 Model SA32-N55S-IHC  
 Angle 36.1◦  
 Material Rexolite  
 Longitudinal velocity 2330 m/s  
 Specimens  
 Material Steel  
 Longitudinal velocity 5940 m/s  
 Shear velocity 3243 m/s  

The obtained FMCs were then resampled at a sampling frequency 
of 50 MHz and reorganized to have dimensions of 4096 × 1024 (32-
elements FMC). The initial burst was nullified as it is an unusable 
section of the matrix. To approximate the signal that could be obtained 
experimentally, filtered white noise within the probe’s bandwidth was 
added. The FMCs were then binarized by associating a positive value 
with a high state and a null or negative value with a low state. The 
binary FMCs were used as input for the neural network, while the 
standard FMCs were used for loss calculation.

2.5. Testing

The testing dataset was built using only experimental data. A Vera-
sonics Vantage 64 LE was used for the acquisition system, and the same 
probe and wedge as the ones modeled were used. The A-scans were 
acquired on Matlab in signed 16-bit integers, with value ranging from 
−32,768 to +32,767, and then binarized with the routine described 
in the previous section. Although a purely binary acquisition system 
would have been preferable to demonstrate the capabilities of such 
a network, a standard FMC is nonetheless required to quantify the 
performance of the trained network.

Three samples were used for the experimental acquisitions (see 
Fig.  4). The first two blocks were 19 mm steel plates. The first block 
contained EDM cracks with a width of 0.3 mm, extending vertically 
by 5 mm, but with inclinations of 90◦, 80◦, 70◦, and 60◦ relative to 
the backwall. The second block contained several groups of two side 
drilled holes (SDH) created by EDM, with a diameter of 0.3 mm, also 
spaced vertically by 5 mm, and centered in the thickness. The axis 
connecting these SDHs was inclined at 90◦, 80◦, 70◦, and 60◦ relative 
to the bottom of the piece. These specimens were chosen to test the 
NN’s ability to reconstruct an FMC when the wave interacts with defects 
whose position, dimension, orientation, and nature differ from those 
included in the simulated training dataset.

The last sample was a 24.54 mm thick steel bar, including a fatigue 
crack of 8.6 mm. In this case, the objective was to test the method’s 
performance on realistic defects.

The experimental and simulation parameters are summarized in 
Table  1.

3. Results

3.1. Training solely on simulated data

The network (Fig.  2) was trained on a server with two NVIDIA 
QUADRO P6000 GPUs. This process was completed in 1267 epochs, 
according to the following strategy: early stopping whenever the valida-
tion loss stopped improving for more than 100 epoch. All weights were 
then restored to the configuration that allowed for minimal validation 
4 
loss, which was 9.17 × 10−4 at epoch 1167 (Fig.  5). This stage was 
completed in 8.5 h and used approximately 23 GB of VRAM.

Examples of reconstructions using the training dataset are presented 
in Fig.  6. Fig.  6(a) shows an FMC obtained by simulation, and Fig. 
6(b) shows its binarized version. Fig.  6(c) is the version reconstructed 
by the UNET network. At first glance, the differences between the 
original and reconstructed FMCs are barely noticeable. The different 
modes and echoes appear to be present in both cases at the same 
locations. To compare these two matrices more precisely, the Ascan 
obtained when the first element emits and the 16th element receives is 
displayed in Fig.  6(d). To facilitate visibility, the time axis was zoomed 
in around a section including 2 relatively close echoes and noises. The 
original and reconstructed versions are presented in blue and red, in 
a standard and binary format respectively. The binary signal in black 
represents the absolute error between the two binary signals. Several 
observations can be made from Fig.  6(d). Firstly, there is no phase shift 
between the original Ascan and its reconstructed version. Secondly, the 
echoes oscillate around the same frequency and have the same length. 
The primary difference visible in the standard signals is an error in 
amplitude; a slight discrepancy is visible between the two versions of 
the Ascan. This error is not constant, and appears to be smaller for the 
second echo than for the first one. When examining the binary signals, 
one can observe more errors between the simulated and reconstructed 
signals, which are easily visible on the black curve. However, these 
errors are all located in regions of low amplitude. Near the echoes, no 
errors are present in the binary signals.

To evaluate whether these errors will impact a potential inspection, 
TFM images were calculated around the defect. These are shown in 
Fig.  7. Fig.  7(a) corresponds to the TFM image obtained using a T-T 
wave path with the FMC from the simulations, and Fig.  7(b) uses the 
reconstructed FMC. Here again, few differences are visible to the naked 
eye. A metric such as SSIM (Fig.  7(c)) reveals that the main errors (low 
SSIM values) are located at the edges of the indications, regardless of 
whether they are defects or artifacts. As for the larger indications, the 
center is reconstructed with high fidelity (SSIM value close to 1). This is 
consistent with the observations made in Fig.  6(d) since the absence of 
errors on the time axis (phase shift or delay) does not cause positioning 
errors, while an error in the shape and therefore the amplitude of the 
echoes will result in a modification of the shape of the indications. 
Notwithstanding the observed errors, these two images remain very 
similar, making it difficult to determine which of the two was created 
using simulated data and which was generated by the neural network.

3.2. Experimental verification

Experimental tests were conducted to evaluate the method’s gener-
alization capabilities across various configurations, including different 
block thicknesses and various defect characteristics (size, orientation, 
nature, and number).

The first inspected plate is the one with four increasingly inclined 
open EDM notches at 90◦, 80◦, 70◦ and 60◦ relative to the bottom 
of the piece. The results are presented in Fig.  8. The first row, Fig. 
8(a) to (d), shows the TFM images obtained with the experimental 
measurements; Fig.  8(e) to (h) shows the images obtained using the 
data reconstructed by the network, and Fig.  8(i) to (l) show the SSIM 
figures. The cases are organized by column: Fig.  8(a), (e), and (i) are 
obtained using the measurements on the vertical crack at 90◦ ; (b), 
(f), and (j) on the crack at 80◦ ; and so on. To better visualize the 
inclination of the crack between the different cases, the wave path used 
for reconstruction varies as a function of the configuration: the TT-T 
path is used for the cracks at 90◦ and 80◦, and the TT-TT path for 
those at 70◦ and 60◦ . The same observations as in the previous section 
can be made, namely that the errors are mostly present at the edges 
of the indications. A noteworthy particularity on the vertical crack is 
that the quantity or intensity of artifacts seems lower when using the 
reconstructed data as compared to the experimental data.
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Fig. 4. Different steel samples with defects used during experimental verification.
Fig. 5. Evolution of the loss on the training and validation datasets during network 
training with a learning rate of 2 × 10−4.

The second plate used includes four groups of two SDHs. Fig.  8 
shows the various TFM and SSIM images. The organization of the sub-
figures is the same as in Fig.  9. One difference in this case is that 
the TT-TT path is used for all the images. The same observations as 
before can be made. The original TFM and the one obtained using 
the reconstructed FMCs show indications in the same locations in both 
cases, with an error at the edges of the indications visible thanks to the 
SSIM, but indiscernible directly on the TFM images.

3.3. Realistic defect

The final experimental measurements were conducted on a
24.54 mm thick steel bar incorporating a fatigue crack occupying 35% 
(length of 8.6 mm). This allowed for testing on realistic defects with 
more irregular profiles as compared to EDM-machined notches or SDH 
(see Fig.  10).

In this case, it can be noted that the fatigue crack is clearly visible 
in both TFM images. These reconstructions are very similar to those 
obtained with a perfectly machined notch and less so to a fatigue 
crack. This can be explained by the fact that the frequency used is 
5 MHz; an increase in frequency would improve the resolution. The 
limitation of the active probe elements to 32 also reduces the image 
precision. However, if we consider only the quality of the TFM image 
(Fig.  9(b)) obtained using the FMC reconstructed by the network, the 
same observations as previously can be made, namely, there is an error 
5 
in amplitude at the edges of the indications but no positioning error. 
It is also interesting to note that the reconstructed image (Fig.  9(b)) 
seems to present fewer artifacts than the original one (Fig.  9(a)).

4. Discussion

The last section demonstrated the performance of the UNET network 
in reconstructing an FMC from binary data, which is much lighter to 
store, using TFM images, a standard in ultrasonic NDT. The training 
database is quite limited, containing only 20 simulated FMCs (15 for 
training and 5 for validation), with only FBHs being modeled. However, 
the results showed similar performances in each investigated case for 
different configurations, whether in terms of thickness, nature, posi-
tion, or number of defects. A possible reason for these generalization 
capabilities is that the network’s objective is not to reconstruct a TFM 
image, but rather to directly reconstruct the Ascans that compose the 
FMC. In this sense, the training database consists of 20,480 Ascans.

The main error noted is an alteration in the echo shape, which 
induces errors in the TFM images, at the edges of the indications 
rather than on their positions. These discrepancies are barely visi-
ble in the TFM images and are only highlighted by the SSIM. This 
effect would therefore only have a small impact on the sizing and 
positioning of a defect. Several reasons can explain this phenomenon. 
The simulations were performed on steel plates without attenuation. 
The only considered amplitude loss is the spreading of the ultrasonic 
beam. Therefore, the network has learned to reconstruct the FMC with 
minimal attenuation and may overestimate the amplitude of the echoes, 
especially as the propagation duration increases. Taking attenuation 
into account during the simulations could reduce this problem, but this 
would only be valid for an inspection on a given material. Additionally, 
this effect can also be present without using the network developed 
for this project. Indeed, the shape of an echo in ultrasonic inspection 
is mainly influenced by the central frequency and the bandwidth of 
a piezoelectric element. These two parameters can vary between two 
theoretically identical elements, and even within the same phased array 
probe.

The next improvements to the model will address several current 
limitations. First, the number of active elements is currently limited to 
32, due to the high VRAM requirements during training. Optimizing the 
network architecture, such as reducing the number or size of layers, 
will be necessary to support a higher number of elements. Second, 
the probe frequency was fixed in order to limit the duration of the 
simulations used to generate the training dataset, which are already 
time-consuming, particularly when a wedge is modeled. While varying 
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Fig. 6. Example of FMC included in the training dataset: (a), (b), and (c) correspond to the FMC from the simulations, the binary version of this FMC, and the one reconstructed by 
the UNET network, respectively. (d) corresponds to an example of an Ascan from these FMCs, zoomed in on two echoes, including the original signal (blue) and the reconstructed 
signal (red) as well as their binary versions in the corresponding colors and the absolute error between the reconstructed and original binary signal (black).
Fig. 7. TFM images obtained using the original FMC (a) and reconstructed FMC (b) 
presented in Fig.  6, along with the SSIM (c).
6 
the frequency in future simulations could enhance the model’s gener-
ality, this would significantly increase the size and generation time of 
the dataset. In addition, an important next step will be to extend the 
model’s capabilities to inspect a wider range of materials. Currently, 
the model produces significant artifacts and reconstruction errors when 
the acoustic velocity of the inspected material deviates substantially 
from that of steel, the material used for training. Overcoming this 
limitation will require incorporating a more diverse set of materials 
into the training dataset to improve the model’s robustness and ability 
to generalize across different inspection conditions.

A binary acquisition system is currently under development. It is 
expected to reduce FMC storage requirements by a factor of 16, assum-
ing a 16-bit signed digitization similar to that used by the Verasonics 
system. By considering only the FMC and no other contextual informa-
tion, recording one of the experimental FMCs in binary format reduces 
the file size from 8192 KB to 512 KB. This gain will be even more 
interesting for acquisitions with denser probes (e.g., 64–128 elements 
or matrix probes) or over a longer duration. Subsequently, the proposed 
technique will allow for the retrieval of an FMC and Ascans compatible 
with classical TFM and signal that are easier to interpret visually.

The reconstruction delay was evaluated under different hardware 
configurations. It ranges from approximately 30 s on a standard laptop 
without GPU acceleration to about 1 s on a server equipped with two 
Nvidia Quadro P6000 GPUs, the same system used for training the 
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Fig. 8. TFM images obtained with experimental acquisitions on samples containing open cracks (a), (b), (c), and (d), and from data reconstructed by the U-NET network (e), (f), 
(g), and (h), as well as the corresponding SSIM (i), (j), (k), and (l). The cracks are inclined at 90◦ (a-e-i), 80◦ (b-f-j), 70◦ (c-g-k) and 60◦ (d-h-l) relative to the sample backwall.
Fig. 9. TFM images obtained with experimental acquisitions on samples containing four groups of two SDHs each (a), (b), (c), and (d), and from data reconstructed by the U-NET 
network (e), (f), (g), and (h), as well as the corresponding SSIM (i), (j), (k), and (l). The axes connecting the SDHs are inclined at 90◦ (a-e-i), 80◦ (b-f-j), 70◦ (c-g-k) and 60◦
(d-h-l) relative to the bottom of the sample.
network. This additional processing time currently limits the applica-
bility of the method for real-time inspections, as most industrial devices 
are not designed for AI-based processing. However, in many on-site 
inspection scenarios, it is not necessarily required to access the full 
amplitude data immediately. Providing the user with views such as PCI 
(which can be computed directly from binary data) is often sufficient. 
7 
If amplitude data is eventually required during the inspection, a prac-
tical solution would be to either transfer the compressed binary FMC 
over the internet to a remote computation server, or store it locally 
and perform the reconstruction later on more powerful equipment. 
This approach provides greater flexibility in managing computational 
resources and adapting to operational constraints.
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Fig. 10. TFM images obtained from an experimental FMC (a) acquired on a block 
containing a fatigue crack occupying 35% of the thickness, or 8.6 mm in height, from 
the FMC reconstructed by the U-NET network (b), and the corresponding SSIM (c).

5. Conclusion

In this study, a UNET model was used to recover the amplitude 
of a binarized signal. The training data was generated exclusively 
through finite element simulations, allowing for easy generation and 
great control of parameters such as the specimen thickness, and the 
nature, dimension, and size of defects. The capabilities of the UNET 
network were verified using various experimental measurements, in-
cluding notches and EDM machined SDHs, as well as a block containing 
a fatigue crack. TFM images were used to compare the experimental 
FMCs with those reconstructed by the neural network, as TFM is a 
standard imaging method in ultrasonic NDT. The images showed a 
faithful reconstruction of the indications, and without metrics such as 
SSIM or an individual examination of the Ascans, detecting error is 
a complex or even impossible proposition. The main errors observed 
were in the amplitude and shape of the echoes and at the edges of 
the indications on the TFM images, but no errors were observed in 
the temporal position of the echoes or at the phase of the signal. The 
observed errors will have only a minimal effect on the positioning and 
sizing of the defects.

The proposed method confirms the feasibility of a binary acquisi-
tion system, offering a simplified and cheaper electronic design and 
significantly reducing data size. Importantly, it achieves these bene-
fits without compromising data interpretation or the performance of 
advanced algorithms like the Total Focusing Method (TFM).
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