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ABSTRACT

Machine learning techniques are increasingly used for high-stakes decision-making, such as college admissions, loan attribution,

or recidivism prediction. Thus, it is crucial to ensure that the models learnt can be audited or understood by human users, do

not create or reproduce discrimination or bias and do not leak sensitive information regarding their training data. Indeed, inter-

pretability, fairness, and privacy are key requirements for the development of responsible machine learning, and all three have

been studied extensively during the last decade. However, they were mainly considered in isolation, while in practice they inter-

play with each other, either positively or negatively. In this survey paper, we review the literature on the interactions between

these three desiderata. More precisely, for each pairwise interaction, we summarize the identified synergies and tensions. These

findings highlight several fundamental theoretical and empirical conflicts, while also demonstrating that jointly considering these

different requirements is challenging when one aims at preserving a high level of utility. To solve this issue, we also discuss possible

conciliation mechanisms, showing that a careful design can enable to successfully handle these different concerns in practice.

1 | Introduction

Machine learning (ML) models have many useful and promising
applications. For instance, they can help to analyze medi-
cal data, which is becoming increasingly complex due to the
improvements in medical tools. However, their growing use for
high-stakes decision-making systems—such as college admis-
sions, recidivism prediction or credit scoring—raises significant
ethical, philosophical, and societal challenges. This has led to the
regulation of their use through legislations, such as the European
Union General Data Protection Regulation (GDPR)! [1] or the
Al Act?.

In particular, three important ethical issues have emerged, each
corresponding to a key concern that should be addressed to both
comply with these new legal frameworks and lay the foundations
toward a responsible ML. First, ML algorithms require large
amounts of data, which often contains personal information.
Thus, it is of paramount importance to ensure that the privacy
of the involved individuals is not harmed while also being able
to extract useful generic patterns from this data. Regulatory
frameworks also directly mandate such data protection—most
notably the GDPR, but also the AT Act, for instance through Arti-
cle 10 on data and data governance. Second, it was shown
that data-driven decision-making processes can create or
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reproduce biases that systematically disadvantage specific indi-
viduals or groups [2]. Quantifying but also reducing/eliminating
these biases to promote fairness is hence an important challenge,
targeted by recent AI regulations and also closely related to
pre-existing non-discrimination laws [3]. Third, while common
ML models, such as deep neural networks, can reach high pre-
dictive performance, their underlying logic and representation
are often too complex, preventing users from fully understanding
their decisions. This raises significant concerns, regarding their
auditability, certifiability, and trust, thus calling for the require-
ment of interpretability with respect to their predictions. For
example, the AT Act mandates transparency for all “high-risk” AI
systems—which in practice covers many applications—under
Article 13. Additionally, Article 86 introduces a so-called “right
to explanation” of individual decision-making.

These three topics, namely privacy, fairness, and explainability,
have been extensively studied during the past decade [4-6] with
an emphasis on how they each trade-off with utility. However,
they are often considered in isolation, while in practice it is neces-
sary to enforce them simultaneously. Characterizing their mutual
interplays is hence an important research avenue, which has
attracted some attention in the last years. Indeed, these concerns
often conflict [7], and trade-offs between them, as well as with
utility, generally have to be set. Throughout this survey paper,
we conduct an in-depth review of the literature on the different
compatibilities, synergies and tensions that have been identified
between them. More precisely, we focus on the supervised learn-
ing setup while considering mainly classification tasks.

Despite growing regulatory pressure, the real-world deployment
of techniques designed to meet the aforementioned ethical
desiderata often encounters substantial practical challenges.
For example, the use of Differential Privacy (DP) by the United
States Census Bureau for the 2020 Census of Population and
Housing offers valuable insights into the operational difficulties
organizations may face when implementing DP in practice [8].
Similarly, algorithmic fairness approaches may fail to align
with non-discrimination regulations—which often require

case-by-case assessments—and can even come into conflict in
certain contexts [9, 10]. These challenges are only exacerbated
when considering jointly the different ethical desiderata. For
instance, the use of DP for the release of the 2020 U.S. Census of
Population and Housing provided thorough privacy protection
to the released data. However, the noise added to preserve pri-
vacy was later shown to yield unfair outcomes for downstream
resource allocation tasks, resulting for instance in disparate
budget allocation for school districts [11, 12]. The Apple Card
controversy provides another striking real-world example. More
precisely in 2019, users and journalists raised concerns that
the card’s credit limit algorithm may assign significantly lower
credit limits to women, even when they had similar or better
financial profiles than men [13]. Notably, the algorithm did
not use gender as an explicit input attribute—a design choice
intended to protect user privacy and promote fairness. However,
this omission complicated efforts to audit and correct potential
biases, as gender-related disparities could still arise indirectly
through correlated attributes. This case illustrates the ongoing
tension between protecting the privacy of sensitive attributes and
enabling effective fairness audits and enforcement [14].

1.1 | Positioning With Respect to Other Surveys

Other recent works survey the literature on the interactions
between several of our three identified desiderata. Among others
[7], review at a high level the main tensions that occur between
the human values of privacy, transparency, and fairness when
they have to be embodied in a machine learning model. We
extend this work by additionally considering compatibilities and
synergies. Furthermore, while they also discuss tensions within
each pillar and with the context of deployment, we rather focus
on the interplays between the three aspects to allow a more thor-
ough technical discussion. Furthermore [12], investigate solely
the interplays between fairness and (differential) privacy by con-
ducting an in-depth analysis on how one influences the other.
We extend this study in Section 4 [15] focuses solely on the fed-
erated learning setting and surveys approaches aimed at privacy
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FIGURE1 |

Summary of the identified tensions (—) (Section 3.1) and compatibilities/synergies (+) (Section 3.2) between fairness and interpretabil-

ity in machine learning. Fairness is represented conceptually along the x-axis: observations on the left tend to harm fairness, while those on the right

tend to enhance it. Similarly, interpretability is represented on the y-axis: observations near the bottom tend to harm interpretability or explainability,

while those near the top tend to enhance it.
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FIGURE2 | Summary of the identified tensions (—) (Section 4.1) and compatibilities/synergies (+) (Section 4.2) between fairness and privacy in

machine learning. Fairness is represented conceptually along the x-axis: observations on the left tend to harm fairness, while those on the right tend

to enhance it. Similarly, privacy is represented on the y-axis: observations near the bottom tend to harm privacy, while those near the top tend to

enhance it.

@ Interpretability

A

O Explainability tools can be used with the purpose of
designing attacks against machine learning models

O Post-Hoc explanations can be exploited to perform or
improve inference attacks

O Interpretable models inherently leak information
regarding their training data

(®) Interpretability eases model audit and can be leveraged
for privacy purposes

@ Interpretability can be conciliated with privacy with
some trade-offs
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with some trade-offs
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conceptually have opposite goals

O Providing useful yet privacy-protective explanations
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FIGURE3 | Summary oftheidentified tensions (=) (Section 5.1) and compatibilities/synergies (+) (Section 5.2) between interpretability and privacy
in machine learning. Privacy is represented conceptually along the x-axis: observations on the left tend to harm privacy, while those on the right tend

to enhance it. Similarly, interpretability is represented on the y-axis: observations near the bottom tend to harm interpretability or explainability, while

those near the top tend to enhance it.

protection, fairness enhancement, or both. This work comple-
ments our study well, as federated learning is not our main focus,
yet it introduces its own set of constraints, concepts and chal-
lenges. Finally, a recent thesis [16] focuses on the interactions
between transparency and fairness, thus providing a deepening
of (part of)) our dedicated Section 3 on this topic. We also want to
point out that this survey covers work published up to early 2024
and does not aim to be exhaustive with respect to more recent
developments in this rapidly evolving field, although a few of
them are included.

The outline of the paper is as follows. First in Section 2, we
review the background regarding the three considered aspects
of responsible ML, namely fairness, interpretability, and pri-
vacy before surveying their interplays. More precisely, Section 3
considers both fairness and interpretability, Section 4 studies

the interactions between fairness and privacy, and Section 5
summarizes the connections between interpretability and pri-
vacy. Then, Section 6 concludes with the identified remaining
key challenges. Finally, Figures 1-3 graphically summarize all
analyzed interplays, showing how each desideratum positively
or negatively influences each other.

2 | Background

In this section, we first briefly overview the considered machine
learning setup and notations. Then, we introduce the three iden-
tified pillars of responsible machine learning. For each of them,
we briefly review their key ideas, with an emphasis on the par-
ticular aspects that will ease the understanding of subsequent
sections.
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2.1 | Considered Machine Learning Setup

The high-level objective of a machine learning algorithm £ is to
leverage a training dataset D to build a predictive model £(D) =
h. The dataset D consists of multiple examples (also referred to as
samples or observations), each described by a set of continuous or
discrete attributes (also called features). In the supervised learn-
ing setting — the main focus of our survey —each example is asso-
ciated with a label, which is discrete in classification tasks and
real-valued in regression problems. The objective of the learning
algorithm is to construct A such that it can accurately predict the
label of previously unseen examples. The proportion of examples,
from a separate test dataset disjoint from D used to assess the gen-
eralization ability of A, for which A correctly predicts the label
is referred to as accuracy, and serves as a proxy for the model’s
utility.

While additional desiderata—introduced in the remainder of
this section—must also be considered, maximizing accuracy
remains the core objective in most machine learning contexts.
More fundamentally, it is precisely the pursuit of models that
closely capture the patterns in the training data that gives rise
to complex tensions with other ethical considerations. Indeed,
a trivial model (e.g., one that outputs a constant value) can eas-
ily satisfy perfect fairness (by assigning identical predictions to
all examples), interpretability (due to its simplicity), and privacy
(by ignoring the training data entirely), but does not provide any
utility.

2.2 | Fairness

Different approaches to fairness have been proposed in the lit-
erature, which can be grouped into three main categories [17].
The rationale of statistical fairness, also coined group fairness, is to
ensure that a given statistical measure has similar values between
several subgroups, defined by the value(s) of some sensitive fea-
ture(s). For example, the statistical parity fairness metric aims at
equalizing the positive prediction rate across the different groups,
while the equal opportunity metric considers the groups’ true
positive rates and finally the equalized odds metric handles both
their true positive and true negative rates. The underlying princi-
ple is that such sensitive features (e.g., race, gender, etc.) should
not influence the predictions. Individual fairness approaches
build on the idea that similar individuals should be treated sim-
ilarly [18]. For instance, this can be formulated as a Lipschitz
condition over the classification function, in which bounding the
distance between two examples also bound the distance between
their outputs from the model. Causal fairness techniques analyze
the causal relationships between sensitive features, non-sensitive
ones and the target decision, leveraging causal graphs [19].

Depending on which step of the (supervised) ML pipeline they
intervene on, fairness-enhancing methods can be divided into
three main categories [20-22]. Pre-processing methods aim at
removing undesired correlations from the training dataset D
before applying standard learning techniques on the sanitized
data while post-processing techniques modify the outputs of a
trained model A to achieve fairness. Finally, in-processing (also
called algorithmic modification) techniques directly adapt the
learning procedure £ to produce inherently fair models.

2.3 | Explainability/Interpretability

There are two main approaches toward facilitating the under-
standing of ML models [23]. On the one hand, post hoc
explanations [6] can be crafted to explain the behavior of a
black-box model A. Note that £ is typically considered a black box
when its internal parameters are not accessible—for instance,
if it is only available via an API—or when it is so complex that
its predictions or underlying rationale cannot be understood
by humans. Depending on their form, different types of post
hoc explanations can be defined, among which example-based
explanations consist of data points, belonging to the same space
as the model’s training set examples. For instance, they can
be highly influential training examples [24], nearest neighbors
or prototypes. Counterfactual explanations also fall into this
category, as they are datapoints close to the explained instance
but exhibiting a different prediction from the considered model.
Feature-based explanations take the form of a vector in the fea-
ture space, in which each coordinate is the degree to which the
associated feature influences a model’s prediction. For example,
in computer vision, saliency maps [25] highlight the regions
of an input image that most contributed to the model’s deci-
sion. Feature-based explanations can be computed using several
mechanisms. For instance, gradient-based methods compute the
gradients of a model (e.g., a deep neural network) with respect
to the input features, either for a given class or for intermediate
component(s) of the network, which enables to determine which
features contribute the most to a particular prediction. In con-
trast, perturbation-based methods modify the input provided to
the black-box and observe the resulting changes in the model’s
outputs.

On the other hand, one can learn models A that are inher-
ently interpretable by humans, by considering appropriate
learning algorithms L. For instance, decision trees or rule lists
of reasonable size are commonly considered as interpretable
[26]. While the meaning of a reasonable size is ill-defined
and context-specific, it indicates that model simplicity is a
crucial property to consider while building these models. Spar-
sity—which quantifies the size of the learned model (e.g., in
terms of depth, number of nodes or number of rules)—is often
used as a proxy for model simplicity.

24 | Privacy

The development of privacy-preserving mechanisms for ML
has been widely motivated by the flourishing literature on
inference attacks against models in recent years. In the generic
setting, such attacks leverage the outputs of a computation to
retrieve information regarding its inputs [27]. More specifically
in machine learning, the computation typically consists of a
learning algorithm £, which takes as input a training dataset
D and produces a trained model i as output. Two distinct
adversarial settings are generally considered in the literature. In
the black-box setting, the adversary does not know the model’s
parameters and can only query it through an API. In contrast,
in the white-box setting, the adversary has full knowledge of
the model parameters. Of course between these two extreme
scenarios, diverse gray-box settings are possible.
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Different types of inference attacks have been proposed against
ML models [4, 28], among which:

Membership inference attacks try to infer whether given
examples were used to train a model or not [29].

 Reconstruction attacks aim at reconstructing part of a model’s
training data [27].

« Model extraction attacks aim at stealing a black-box model’s
internal functionalities or parameters [30].

« Model inversion attacks focus on retrieving a model’s inputs
by only observing the associated outputs [31]. Hence, such
attacks often target the data provided at inference time (and
not solely the training data).

To counter these risks, several syntactic models of anonymity
were proposed. More precisely, these approaches consist in
grouping examples within blocks so that the profile of a user is
indistinguishable among those belonging to the same block [32].
For instance, k-anonymity [33, 34], requires that each block con-
tains at least k examples. Several extensions of k-anonymity were
proposed, among which #-diversity requires that at least # dif-
ferent values of the private features are well represented within
each block, and #-closeness [35] additionally ensures that the dis-
tribution of these values is sufficiently close to that of the entire
dataset.

Nonetheless they are not well-adapted to ML and do not pro-
vide formal privacy guarantees. Thus, differential privacy (DP)
has been adopted as the leading approach, in parts because it can
be used to precisely bound the amount of information the out-
put of a computation leaks regarding its inputs [36]. Due to the
strong theoretical guarantees it provides, to the interesting prop-
erties it exhibits, and to the availability of several mechanisms to
enforce it, it has now been widely adopted. Examples of recent
applications of DP include the 2020 release of the U.S. Census
Bureau? [37], but also its use by companies such as Google [38],
Facebook [39] and Apple [40].

Referring to (e, §)-DP, two parameters help control the level of
enforced privacy. Intuitively, ¢ bounds the contribution of each
individual example to the output of the computation, while §
corresponds to the probability of privacy failure, with tighter val-
ues of these parameters indicating a stronger privacy protection.
Pure DP refers to scenarios in which 6 = 0 while approximate DP
covers cases in which 6 > 0. DP exhibits several important prop-
erties, among which the immunity to post-processing, which
states that the output of a differentially private algorithm remains
differentially private whatever (data-independent) computations
are further performed on it. Several mechanisms were proposed
to enforce DP [41]. For instance, the Laplace (respectively, Gaus-
sian) mechanism [36] adds random noise drawn from a Laplace
(respectively, Gaussian) distribution to the computed value, with
the noise magnitude being scaled to the function’s sensitivity
(i.e., the maximum impact a single individual can have on the
computation’s output). The functional mechanism [42] approx-
imates the function using its polynomial Taylor expansion and
perturbs the coefficients of the resulting polynomial form with
noise. Unlike the aforementioned noise addition techniques, the
exponential mechanism [43] consists in drawing an output from

a probability distribution, in which the probability of a candidate
depends on its utility.

Several frameworks for differentially private ML exist [44, 45],
which typically incorporate the DP mechanisms into an existing
learning algorithm £ to ensure that the resulting model 4 satis-
fies DP guarantees. For instance, DP-SGD [46] was proposed to
train deep learning models under DP. The authors have modified
the traditional Stochastic Gradient Descent (SGD) by clipping
the norm of the computed individual gradients (to bound each
example’s contribution to the computation) before perturbating
them with Gaussian noise. Another approach based on ensemble
methods, called PATE, considers a particular setup, with a private
training set and a public unlabeled one [47, 48]. First, the (pri-
vate) training set is partitioned into a number of non-overlapping
subsets used to train a set of teacher models. Afterward, the pre-
dictions of the teachers (i.e., vote histograms) are made differ-
entially private by adding Laplace noise. The public data is then
labeled using these noisy predictions, and used to train a differen-
tially private student model. We refer the interested readers to the
recent survey of [49], which reviews existing techniques to make
supervised learning algorithms differentially private.

3 | Fairness and Interpretability

In this section, we first review the tensions between fairness and
interpretability before exploring some synergies.

3.1 | Tensions

First, we elaborate on the theoretical and empirical tensions
between fairness and simplicity, which is often considered as a
proxy for interpretability. Afterward, we discuss the main chal-
lenges that need to be tackled when jointly pursuing the inter-
pretability and fairness desiderata. Finally, we list different ways
in which post hoc explanations can be unfair.

3.1.1 | Tensions Between Fairness and Simplicity

3.1.1.1 | Simplicity and Fairness Intrinsically Conflict.
A framework to theoretically study the implications of enforcing
interpretability is proposed by [50], adapted from that of [51]. It
considers simplicity as a proxy for interpretability. More precisely,
a ML model is represented as a set of cells partitioning the input
space and simplifying a model consists in merging some of its
cells (hence diminishing their number and the model’s complex-
ity). The authors prove that, for every non-trivial group-agnostic
simplification, there exists a more complex classifier that simulta-
neously strictly improves both accuracy and (statistical) fairness.
This classifier can be efficiently constructed by carefully select-
ing some examples from chosen subgroups and splitting their
associated cells. Overall, this result suggests that interpretabil-
ity/simplicity comes at some cost in terms of accuracy/fairness.
Similar results were originally shown by [51], further illustrat-
ing how simplicity can be inconsistent with statistical fairness
notions. As stated by [52], while model interpretability is an
abstract notion, enforcing it can only reduce the set of admissible
ML models. Consequently, ensuring interpretability can only
decrease the (training) accuracy. A similar reasoning can also
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be done with respect to fairness. More precisely, by limiting
the space of admissible classifiers, the enforcement of fairness
reduces the number of possible trade-offs, which can be an
obstacle to achieve both fair and accurate learning.

A handful of recent studies have sought to precisely character-
ize these trade-offs. In particular [53], have derived theoretical
bounds on the statistical fairness levels achievable by any predic-
tive model on a given dataset and task, while maintaining accu-
racy within a bounded margin from the best-performing model.
Similarly [54], provide tight statistical fairness bounds tailored
to specific hypothesis classes and sparsity levels, again under
constraints on the acceptable drop in accuracy. Their empirical
results with two types of interpretable models (namely, scoring
systems and decision diagrams) allow a precise (and certifiable)
quantification of the optimal trade-offs between predictive per-
formance, statistical fairness (statistical parity and equal opportu-
nity), and sparsity (respectively, number of non-zero coefficients
and number of active nodes). More precisely, they have shown
that imposing stringent sparsity requirements can disproportion-
ately affect—and even systematically discriminate—minority
groups.

3.1.1.2 | Empirical Trade-Offs Are Complex. An empir-
ical study of the trade-offs between interpretability and fairness
was conducted by [55]. In this study, the number of features avail-
able to a classifier is used as a measure of its complexity and
acts as a proxy for interpretability. By changing this number, the
authors report the variations obtained with respect to statistical
fairness notions (namely, statistical parity and equal opportu-
nity). The experiments on synthetic and real-world datasets show
several trends that mainly depend on the correlation between
sensitive attributes, non-sensitive ones as well as class labels. As
expected, when the sensitive attribute is correlated (even mod-
erately) with the class label, using it explicitly greatly increases
the model’s unfairness. The results obtained rely strongly on the
chosen notion of interpretability and as such cannot be consid-
ered generic. In addition, they demonstrate that the trade-off
between fairness and interpretability is, in practice, complex
and data-dependent. In a later work [56], propose the notion
of decision complexity, which is defined as “the minimum num-
ber of parameters needed for the classifier to make a prediction
on a new data point”. By generalizing the concept of sparsity,
this metric enables quantitative comparisons of interpretability
across different types of predictive models. It can also be used
to empirically assess the trade-offs between accuracy, fairness
and interpretability achieved by several state-of-the-art fair learn-
ing algorithms. The experiments conducted reveal a so-called
price of interpretability, as more interpretable models often result
in lower performance for a fixed fairness level. However, the
observed trends depend strongly on the specific fair learning
algorithm used.

3.1.2 | Combining Fairness and Interpretability is
Challenging

3.1.21 | Learning Optimal Interpretable Models Under
Fairness Constraints is Computationally Challenging.
Due to their combinatorial nature, learning optimal inter-
pretable machine learning models under constraints (e.g.,

fairness constraints) has been identified as one of the main
technical challenges toward interpretable machine learning [57].
While approaches producing optimal interpretable and fair ML
models exist in the literature (e.g., an Integer Programming
formulation for learning optimal fair decision trees), they are
often computationally expensive and difficultly scale. Yet, recent
work shows that the conflict between accuracy and fairness
can be leveraged to perform an effective pruning (using Integer
Linear Programming) when learning optimal fair rule lists [58].

3.1.2.2 | Explanations May Not Preserve Fairness Prop-
erties of a Model. It was observed by [59] that popular
explainability frameworks may not reliably reflect the fairness
properties of the explained models. For example, on the one hand
it is possible to compute post hoc explanations that appear to be
fair to explain an unfair black-box model [60]. On the other hand,
the explanations of a fair model’s decisions may (wrongly) rely
on sensitive features and exhibit discrimination [61]. In addition,
the choice of the explanation method as well as the type of expla-
nation it produces both impact the users’ perceived fairness [62].
The fairness of post hoc explanations generated from a fair
model’s decisions was also investigated by [59]. More precisely,
based on group fairness notions, the fairness of an explanation
can be formulated similarly to that of a classifier (an explanation
being seen as a local surrogate model). Afterward, fairness is
computed on a neighborhood of the explained example. For such
artificial points, no label is known, which means that only the
statistical parity metric can be used. These researchers show
that the fairness property of the explained model may not be
reflected in the generated explanations and propose a framework
for producing fairness-preserving explanations.

3.1.2.3 | Fairness-Enhancing Methods May Require
Non-Interpretable Transformations, Hence Harming
Interpretability. In a study on interpretable, fair and accu-
rate ML for criminal recidivism prediction [63], observe that
fairness-enhancing methods often require non-interpretable
transformations, which are not compatible with interpretability
desiderata. Indeed, pre-processing methods usually perform
complex transformations of the input features, which harm
their original semantic [64, 65]. The resulting representa-
tion hence cannot be used to produce an understandable
model. Furthermore, the corrections performed to a model’s
outputs by post-processing techniques [66] can also lead to
non-interpretable processes.

3.1.3 | Other Unfair Effects of Explainability
Methods

3.1.3.1 | Post Hoc Explanations Affect Individuals’ Pri-
vacy in a Disparate Manner. As discussed later in Section 4.1,
minority groups often suffer from increased privacy risks. Inter-
pretability can also exhibit this trend, as noted by [67, 68]. For
instance, when investigating whether membership information
can be inferred from post hoc explanations, it has been observed
that outliers as well as “hard to generalize” examples belong-
ing to minority groups are at a higher risk of being disclosed
than majority groups. This is partly due to the fact that they are
more susceptible of being part of the generated explanations. In
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such case, interpretability tools can penalize minorities by leak-
ing more information about disadvantaged groups.

3.1.3.2 | Post Hoc Explanation Frameworks Can Intro-
duce Unfairness Through Disparity in Explanation
Quality. Group-based disparities in explanation quality have
been recently investigated by [69]. More precisely, the authors
first identify key characteristics that define the quality of an
explanation (e.g., fidelity, stability, consistency, and sparsity).
Then, they conduct a large experimental study demonstrating
that there is often a disparity in the quality of the explanations
produced affecting minority groups. Such quantitative disparity
is identified to depend on the type of model being explained and
on the particular post hoc explanation framework considered.
Using several real-world applications (e.g., finance, healthcare,
college admissions, and the US justice system) and post hoc
explanation frameworks [70], have also demonstrated that the
fidelity of the produced explanations varies significantly across
the different identified subgroups of the population. Finally, they
suggest that robustness techniques can help reduce the observed
disparity—but emphasize that communicating details regarding
such disparity to end-users is critical.

3.1.3.3 | Counterfactual Explanation Frameworks Can
Harm Subgroups of the Population by Consistently Provid-
ing Higher Cost Recourse. In the context of counterfactual
explanations, the cost of recourse is defined as the amount of effort
a user has to do to implement the provided recourse and change
the model’s decisions. In this context, it was shown that counter-
factual explanation frameworks may provide lower cost recourse
for some subgroups of the population while harming some oth-
ers [71, 72]. For instance, some minority groups may have to
make more effort to implement the provided recourse after a loan
refusal. To face this issue, recourse fairness was studied [73, 74]
and frameworks equalizing the cost of recourse across subgroups
were proposed.

3.1.3.4 | Post Hoc Explanations Can Be Manipulated.
Explainability tools are designed to facilitate model audit and
enhance the users’ understanding. However, because the pro-
cess of explanation generation can sometimes be opaque, post
hoc explanations could potentially be manipulated by black-box
model holder to hide unfair decision-making processes by pro-
viding manipulated fair explanations. Indeed, it was shown that
black-box explanations can be misleading, for instance by achiev-
ing high fidelity with respect to the explained model while using
entirely different features, leveraging correlations in the feature
space [75]. In addition, it has been demonstrated that this can be
exploited and extended to an existing framework [76] to generate
explanations favoring some given features while avoiding others.
Finally, the authors have conducted a user study and find out that
misleading explanations can increase the user trust in black-box
models wrongly.

Other works have also shown how malicious entities can manip-
ulate explainability techniques to hide the true reasoning of
the underlying model. For example, it is possible to directly
craft manipulated explanations, such as local surrogate mod-
els [60, 77] that appear fair but actually explain the output of
a globally unfair black-box, with such practice being coined as
“fairwashing”. Explanation frameworks can also be potentially

manipulated, for instance by detecting artificial examples gen-
erated by perturbation-based methods and giving them a chosen
output value [78]. This can be leveraged to hide a black-box
model’s unfairness by crafting and providing fair explanations
to an auditor [79]. Furthermore [80] and [81], have shown that
it is possible to fine-tune a pre-trained model to manipulate the
output of feature importance explanation methods while having
little impact on the model’s accuracy. Considering sequence
classification and sequence-to-sequence tasks (i.e., in which the
input to the model is a sequence of words) [82], propose a method
to train a model with significantly reduced attention mass over
some chosen words (e.g., gender-related prefixes) while still
using them for prediction. A user study shows that the proposed
method is able to mislead users into thinking that the underlying
model is fair, while it is actually biased against gender.

It was also shown to be possible to learn a model so that the coun-
terfactual explanations generated by some off-the-shelf algorithm
look recourse fair across subgroups of the population (i.e., the
cost of the recourse associated to the counterfactual explanations
does not vary too much between individuals from the different
subgroups), while also being able to generate lower cost recourse
explanations for some privileged subgroup(s) by simply adding a
small adversarial perturbation [79, 83]. In [84]’s work, an adver-
sary is able to generate adversarial examples with chosen predic-
tion by a black-box model that also fool popular explainability
tools. This illustrates the fact that post hoc explainability tech-
niques are not a reliable way to detect adversarial inputs manipu-
lation. Finally [85], consider the setup of a fairness audit in which
the data is private and owned solely by the malicious model
holder, which provides subsamples to the external auditor. They
show that the former can manipulate the auditor’s explainability
methods to hide unfair decision-making (such as the influence
of a sensitive attribute) by providing adversarially selected data
samples. In addition, such practices are particularly difficult to
detect in a remote setting, in which the explanation is provided
by a third-party API [86].

Finally, although many tensions between explainabil-
ity/interpretability and fairness exist, one can still identify
some synergies, as discussed hereafter.

3.2 | Synergies
3.2.1 | Interpretability and Explainability Ease Model
Audit

As mentioned by [87], it is easier to detect and debate possible
biases or unfairness issues with an interpretable model than with
a black-box one. This inherent benefit of interpretable models
applies both to fairness and accuracy, as it makes it possible to
detect and correct possible inaccuracies with respect to the train-
ing data—which is more difficult with black-box models. Follow-
ing the same line of research [88], state that interpretability can be
used to qualitatively ascertain whether other desiderata—such
as fairness—are met. Post hoc explainability methods can also
facilitate fairness audit by gaining insight regarding the causes of
a model’s unfairness. For instance [89], propose to rely on fair-
ness explanations based on Shapley values to be able to attribute
a model’s overall unfairness to individual input features.
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3.2.2 | Fairness Can Act as a Regularizer

It was observed in the literature that enforcing fairness con-
straints can have a regularizing effect, thus also reducing over-
fitting [90]. More precisely by preventing over-complex models,
this can lead to sparser and more interpretable models.

4 | Fairness and Privacy

In this section, we first highlight the identified theoretical and
empirical tensions between fairness and privacy. We then review
some synergies illustrating how the two requirements can be con-
ciliated. Note that part of this intersection is covered in much
more details by a recent survey [12] studying the interactions
between fairness and differential privacy (DP), in both decision
making and machine learning tasks.

41 | Tensions

As discussed in Section 2.2, it is desirable and often legally
required to ensure that sensitive attributes do not directly or indi-
rectly influence the predictions of a ML model. However, while
many popular fairness-enhancing approaches require the avail-
ability of such sensitive attributes, their collection and use may
be prohibited by privacy regulations or anti-discrimination laws.
Some approaches propose to use an encrypted version of the
sensitive attributes so that the users do not have to explicitly
reveal this information. For instance [90], leverage cryptographic
approaches such as Secure Multi-Party Computation (SMPC) to
build a fair model. Nevertheless, processing encrypted informa-
tion ensures that the computation does not leak anything more
than its outputs, but does not protect them from inference attacks.
This illustrates a first, straightforward intrinsic conflict between
fairness and privacy. Furthermore, when applied jointly, both
notions often conflict, as discussed in more details in the follow-
ing paragraphs.

41.1 | Group Fairness and Differential Privacy Are
Theoretically Incompatible

It is provably impossible to build ML models strictly respecting
a given group fairness constraint while respecting DP. More
precisely [91], have shown that pure (e, 0)-DP and fairness (more
precisely equal opportunity) cannot be simultaneously satisfied
without reaching trivial accuracy. The authors have noted that
this holds for pure (e, 0)-DP, but is also applicable for approxi-
mate (e, 5)-DP (as 6 is usually required to be cryptographically
small). An impossibility theorem is also stated by [92], consid-
ering popular group fairness definitions: if a learning algorithm
L is (e, 0)-differentially private and is guaranteed to output an
approximately fair classifier, then L is constrained to output a
constant classifier. The idea of the proof is essentially the same as
that of [91]. (i) Consider a learning algorithm £ satisfying pure
(e,0)-DP, for any two datasets D and D', and for any classifier
h, if L outputs h for D with probability strictly greater than
zero, then it must output 4 for D’ with strictly positive proba-
bility too. This can be proved because, for any two datasets D
and D', it is possible to build a series of datasets neighboring

two-by-two, from D to D’ (and the property must be verified
for all pairs of neighboring datasets by definition of pure DP).
(ii) Recall that £ can only output classifiers respecting a given
(exact or approximate) fairness requirement: if a classifier 2 does
not meet the fairness requirement on the training set D, then
P(L(D) = h) = 0. The conjunction of (i) and (ii) implies that £
can only release constant classifiers (and hence pure DP and
group fairness cannot be satisfied jointly).

4.1.2 | Enforcing Fairness Increases Privacy
Vulnerabilities

Disparities with respect to the vulnerability to Membership Infer-
ence Attacks (MIAs) between various subgroups of the popula-
tion are observed by [93]. The theoretical analysis suggests that
vulnerability to MIA is caused by distributional overfitting, which
quantifies the distance between the distributions of outputs of the
model on the training set and outside. Disparate vulnerability to
MIAs arises if and only if distributional overfitting differs across
subgroups. In practice, as aforementioned in Section 3.1.3, sub-
groups that are inherently more difficult to fit and/or that are
less represented in the data are indeed more vulnerable to MIAs.
Additionally, overfitting can increase these vulnerabilities, but
also their disparities. For instance, it was empirically shown that
enforcing fairness constraints may help under certain conditions,
but can also exacerbate the observed disparities or even create
new ones in real-world applications. Finally, the authors have
recalled that DP* upper bounds the vulnerability of all individuals
or subgroups, hence also upper-bound their disparity. However,
it does not remove it completely and in addition to get an inter-
esting mitigation, the privacy budget must often be really tight,
hence resulting in utility drops.

In a position paper [94], emphasize the importance for a
privacy-preserving mechanism to protect individuals with
equivalent effectiveness. However, while DP4 provides the same
(worst-case) theoretical protection for all dataset examples, the
actual privacy vulnerability is often not uniformly distributed.
The privacy implications of fairness are empirically studied
by [95], quantifying the data privacy risk as the success of a
black-box MIA. The authors have empirically shown that enforc-
ing fairness constraints disproportionately raises the privacy
risk of the unprivileged subgroups: “fairness comes at the cost
of privacy, and the privacy cost is not equal across subgroups”.
This is explained by the fact that the fairness requirements they
have used requires the model to equally fit the unprivileged
subgroups. When such subgroups are smaller, each example has
a stronger impact over the resulting model and, in the worst case,
is memorized. In addition, the more unfair the unconstrained
model is, the higher the privacy vulnerability disparity will be,
as there is more unfairness to be compensated.

Finally, information regarding a model’s fairness can be exploited
to reconstruct the sensitive attributes of its training examples [96,
97]. These works rely on declarative programming approaches
to encode the fairness desiderata and perform (or improve)
the reconstruction. Their empirical results demonstrate that the
information brought by fairness regarding sensitive attributes can
effectively by exploited by an adversary to harm the privacy of
individuals involved in the model’s training data.
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4.1.3 | Differential Privacy Disproportionately
Affects Utility

The effects of enforcing differential privacy on a model’s accu-
racy on different subgroups of the population are studied by [98],
using the accuracy parity fairness notion, which equalizes the
model’s accuracy across the subgroups. Considering several
image classification and natural language tasks, they use the
popular DP-SGD [46] framework for differentially private deep
learning in both centralized and federated settings. This large
empirical study shows that gradient clipping and random noise
addition, the key mechanisms of DP-SGD, disproportionately
affect underrepresented subgroups. Indeed, enforcing (approx-
imate) DP leads to higher accuracy drops for minorities and
discriminated groups, such as darker-skinned people in the con-
text of facial recognition, but also at the intersections of different
subgroups. This leads to a “poor gets poorer effect”, in which
the classes with low accuracy in the non-DP setting suffer the
largest accuracy drops when applying DP. In a follow-up work
[99], empirically observe that the differentially private PATE [47,
48] framework (introduced in Section 2.4) also has disparate
impact on the resulting model’s utility. However, they report
that PATE has smaller disparate impact compared to DP-SGD
to reach similar approximate DP levels, and note that a sweet
spot for the number of teachers exists, which minimizes the
induced disparities [100] observe that the accuracy disparity
caused by (approximate) DP still occurs even when the data is
slightly imbalanced, and for loose privacy guarantees. Indeed,
two main factors were identified in the literature to explain this
effect: properties of the training data, and characteristics of the
DP mechanism, which are summarized and analyzed with more
details in a recent survey [12].

It was also observed in healthcare applications (x-ray images
classification and mortality prediction in time series) that small
groups and samples at the tail of the data distribution suffer
from a larger accuracy drop compared to majority groups and
typical examples [101]. Furthermore, the characteristics of DP
learning mechanisms themselves are also directly related to the
magnitude of the observed disparate impact. This encompasses
the gradient clipping and noise addition mechanisms of DP-SGD
(as aforementioned), as well as the size of the teacher ensemble
and the confidence of the voting teachers in PATE [102]. Dif-
ferent technical solutions to mitigate the disparate impact of DP
on a model’s utility were proposed. Indeed, it was shown that it
is possible to modify DP-SGD to use different clipping bounds
for the different identified subgroups [103]. Other work [104]
performs early stopping based on a public validation set. When
using PATE in low voting confidence regimes, small perturba-
tions may significantly affect the result of the voting result. To
mitigate this phenomenon [102], propose to use soft labels and
report confidence scores associated with each target label, rather
than reporting solely the label with the largest confidence. While
being heuristic as it does not guarantee any form of fairness, these
approaches have been empirically shown to reduce the disparate
impact caused by traditional DP mechanisms.

The disparate impact of DP mechanisms was also observed for
decision tasks [11] have studied the setup in which agencies
release differentially private versions of their databases that are

then used for several allocation problems. The authors consider
three real-life allocation problems using the differentially private
Census data: namely printing of election materials in minority
languages, allocation of funds to school districts to assist dis-
advantaged children and apportionment of legislative represen-
tatives. They demonstrated that the noise added by (pure) DP
mechanisms leads to errors in the computed allocations com-
pared to the true allocations (i.e., the allocations that would be
decided without DP). The key point of their work is that this
error affects the entities being allocated some resources in a dis-
parate manner. For instance, it is empirically shown that small
school districts often benefit an overestimated allocation. On the
other side, larger district may get a smaller allocation, which
harms their enrolled children. This effect was also observed in
the literature with two main causes being identified [12]. In a
nutshell, the shape of the decision problem can disproportion-
ately exacerbate the noise added by the DP data release if it
involves non-linearities in its computation, such as thresholds for
funds allocation. Additionally, post-processing steps can induce
intrinsic biases. For instance, ensuring simple non-negativity
constraints within the computed values can imply a positive bias.
It was also shown that DP mechanisms adding data-dependent
noise are responsible for a more important disparity, due to
the fact that, contrary to standard DP mechanisms (such as the
Laplace mechanism), the effect of DP differs between entities.
Finally, other aspects of privacy can also impact fairness. For
instance, recent work by [105] show that models designed to
take into account potential future unlearning requests, which are
request in which a user asks for the contribution of his data to be
removed from the model, disproportionately affects the utility for
minority groups.

4.1.4 | Differential Privacy Disproportionately
Affects the Quality of Post Hoc Explanations

Datta et al. [106] propose the notion of differentially private post
hoc explanations, among which some aim at identifying proxy
features that cause a group disparity (i.e., a difference in the
average prediction between several subgroups). Then, it is shown
that, for minority groups, the amount of noise required to make
the explanations differentially private results in a significant
loss in its utility, hence making more difficult the discovery of
discriminatory proxy features. While proposing a framework
to generate differentially private post hoc explanations [107],
have observed that sparse data regions, which often correspond
to underrepresented subgroups are associated to poorer perfor-
mances, either in terms of required privacy budget or explanation
quality. In both cases, privacy disproportionately affects minority
groups, which is consistent with previously mentioned works.

Overall, DP and statistical fairness are both theoretically incom-
patible and strongly conflict in practice. On the one side, to ensure
fairness minority groups, the corresponding examples shall yield
a higher importance in the learning process, which exposes their
information more than for examples of the majority group. On
the other side, to ensure DP, one must reduce more the influ-
ence of underrepresented subgroups, as learning an equivalent
amount of information for them would result in an increased
per-example privacy risk. Nevertheless, in the next subsection,
we show that the two notions can be jointly applied under certain
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circumstances, and thus that there are some synergies between
privacy and fairness.

4.2 | Synergies
4.2.1 | Differential Privacy and Approximate Fairness
Can Be Jointly Enforced With Some Trade-Offs

As discussed in Section 4.1, it is impossible for a learning
algorithm to satisfy DP while also producing a model strictly
complying with fairness constraints. However, it is possible for
a DP (pure or approximate) learning algorithm to output a model
approximately satisfying given fairness criteria [91]. This leads to
a trade-off between the DP guarantees and the observed model’s
fairness. Hereafter, we first introduce different methods of the lit-
erature jointly handling differential privacy and fairness.

The notion of Private and Approximately Fair Agnostic PAC
(Probably Approximately Correct) Learning was introduced
by [91]. It states that a learning algorithm satisfies DP while
returning an accurate and approximately fair classifier with
high probability. The authors implement this notion using
the Exponential Mechanism, with a utility function being the
sum of a model’s error and unfairness. The sensitivity of the
utility function being data-dependent, the Laplace mechanism
is used to upper-bound it in a differentially private manner.
This approach achieves the desiderata of privacy, fairness, and
accuracy, but the running time of the Exponential Mechanism
scales linearly with the hypothesis class size, which is expo-
nential for common hypothesis classes. This motivates the
need for an efficient algorithm conciliating these desiderata.
To realize this, the authors have built upon a polynomial-time
algorithm from the literature, producing approximately fair
and accurate randomized classifiers with high probability. In a
nutshell, this algorithm formulates the fair learning problem as a
two-player zero-sum game, between a Learner minimizing error
while satisfying fairness constraints and an Auditor updating
Lagrangian multipliers to penalize the largest subgroup-wise
fairness violations. This algorithm is modified to satisfy DP by
using a differentially private subroutine to privately compute the
players’ best responses in each round.

Two methods are proposed by [108] to achieve jointly DP and
fairness in logistic regression. Decision boundary fairness is used
as a notion of fairness that provably minimizes statistical parity
violation. A first approach coined PFLR considers the fairness
constraint as a penalty term to the objective function. DP is
enforced using the functional mechanism [42]. More precisely,
the objective function is approximated through its polynomial
representation based on Taylor expansion before being perturbed
by injecting Laplace noise into its polynomial coefficients. Mini-
mizing the perturbed objective function leads to the computation
of differentially private model parameters. A second approach,
named PFLR* and based on the first one, takes advantage of
the connection between ways of achieving differential privacy
and fairness. More precisely, the authors noted that adding
the fairness penalty is equivalent to shifting the value of some
coefficients of the polynomial form of the objective function.
Thus, they do not incorporate the fairness penalty term directly
in the objective function and rather integrate it via mean-shifting

the Laplace noise added to a subset of the coefficients. As such
shift is dataset-dependent, a small part of the privacy budget
is used to estimate it in a differentially private manner. The
Theoretical analysis as well as empirical evaluation show that
PFLR*, by separating privacy budgets on objective function and
fairness constraint, offers a more flexible framework to find good
trade-offs among privacy, fairness, and utility.

In a follow-up work [109], extended PFLR by proposing to have
two distinct privacy budgets to add Laplace noise with larger
magnitude to the coefficients of the terms involving the sensi-
tive attributes than to the others within the objective function.
They also propose a second approach using the relaxed functional
mechanism to enforce approximate DP (e, §)-DP to improve on
utility. It utilizes the extended Gaussian mechanism to perturb
the objective, adding random Gaussian noise to the coefficients
of the polynomial form of the objective function. Empirical eval-
uation on real-world datasets confirms that the use of (¢, §)-DP
leads to an improved utility in all scenarios compared to pure
DP. Furthermore, the use of two distinct privacy budgets can
help enforcing stronger privacy guarantees while also reducing
the correlations with the sensitive attribute, thus also improving
fairness.

A differentially private framework to train deep learning mod-
els that satisfy several popular group fairness notions was pro-
posed by [110]. This approach considers the Lagrangian relax-
ation of the fairness-constrained learning problem, and leverages
a Lagrangian dual approach to solve it: the fairness violation
terms, weighted by Lagrangian multipliers, are directly added to
the objective function. Then, the training procedure consists of
iteratively repeating two successive steps: primal and dual. The
primal update step optimizes the model parameters to minimize
the objective function, given the current Lagrangian multipli-
ers. Afterward, the dual update step updates the value of the
Lagrangian multiplier to approximate the stronger Lagrangian
relaxation. To enforce differential privacy for sensitive attribute
information, differential privacy is achieved at both steps, when
computing the fairness violation terms or their gradients. In the
primal update step, clipped and noisy gradients are used. The
model parameters optimization is done on this noisy version
of the objective function (in which only the fairness violation
term, accessing subgroup membership which we want to pro-
tect, is impacted by the DP mechanism). A similar mechanism is
done on the dual update step, in which constraint violations are
clipped and perturbed with carefully calibrated Gaussian noise.
Extensive empirical evaluation shows that the fairness violation
decreases as the privacy budget increases: thus enforcing DP
leads to violating more fairness. This is explained by the fact that
relaxing the DP constraint allows either to perform more itera-
tions (hence propagating more fairness violation information) or
to inject less noise for a fixed number of iterations (hence prop-
agating more accurate fairness violation information). Another
surprising trend is that the model accuracy slightly decreases as e
increases. This is due to the fact that enforcing weaker DP allows
the fairness constraints to have more impact on the objective
function, hence penalizing more the accuracy.

Two fair learning algorithms have been adapted by [111] to
satisfy both fairness (here in terms of equalized odds) and DP
(with respect to the sensitive attributes). They first consider the
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post-processing method of [112]. In a nutshell, given a pre-trained
and possibly unfair classifier, the approach first computes its
per-group per-ground truth prediction proportions. It then
solves a Linear Program to compute per-group per-class predic-
tion probabilities defining a fair randomized classifier. To enforce
(pure) e-DP in this setting, the authors simply add well-calibrated
noise drawn from the Laplace distribution to the computed statis-
tics before solving the LP with them. Theoretical analysis of how
the introduced noise propagates to the solution of the LP leads to
bounds on accuracy and fairness violation that are met with high
probability. This quantifies a trade-off between accuracy, fair-
ness, and privacy: weaker DP guarantees lead to tighter bounds
on accuracy and fairness, while stronger DP guarantees (satisfied
by adding more noise) increase the bounds, and the possible loss
on accuracy and fairness. Experimental evaluation demonstrates
that this simple method is able to provide interesting trade-offs
even with small datasets but is expected to perform worst than
the second approach on large ones. The later builds upon an
in-processing approach [113], which formulates the problem of
learning a fair and accurate classifier as finding the equilibrium
of a two-player min-max game. A Learner minimizes the objec-
tive function over the set of possible classifiers while an Auditor
maximizes it by choosing the value of the multipliers penaliz-
ing fairness violations. To enforce (approximate) (e, §)-DP, the
authors add well-calibrated Laplace noise while computing the
gradients of the Auditor, and use the exponential mechanism for
the Learner’s model selection. Similar to the first case, a stronger
privacy guarantee (smaller € and 6) leads to weaker accuracy and
fairness guarantees. However, a new trade-off can be controlled
through the maximum norm of the multipliers: larger values lead
to tighter fairness bounds but looser error bounds, and vice-versa.
For both approaches, introducing noise to achieve DP leads to a
reduction in the fairness guarantees (similarly to accuracy).

Mozannar et al. [114] consider the setup in which the sensitive
attributes are released using local DP (i.e., a variant of DP in
which each user locally randomizes his data before releasing
it), and propose a two-step approach. First, a classifier that is
fair with respect to the noisy sensitive attributes is built, using a
state-of-the-art in-processing fair learning algorithm [113]. Sec-
ond, a modified version of a post-processing fairness-enhancing
method [112] is used to ensure with high probability that the
model is also fair with respect to the (unknown) original sensi-
tive attributes. For strong privacy regimes, this post-processing
step is empirically shown to significantly decrease the fair-
ness violation [115] have studied a similar local DP setting,
extending it to scenarios involving multiple sensitive attributes.
More precisely, they have introduced a privacy budget alloca-
tion strategy that adjusts to the domain size of each sensitive
attribute, ensuring a more balanced application of noise. Their
extensive empirical evaluation shows that applying local DP to
sensitive attributes before training can slightly improve fairness
across most—though not all—statistical fairness metrics and
datasets. This intriguing result suggests that using noisy versions
of sensitive attributes may, in some cases, enhance fairness by
weakening correlations between sensitive features and labels.
However, it also complicates the enforcement of strict fairness
constraints, as highlighted in aforementioned studies. This result
is consistent with the observations of [116], who found that
models trained using DP-SGD, combined with proper hyperpa-
rameter optimization, often maintain or even slightly improve

on statistical fairness metrics—including statistical parity and
equalized odds—when compared to non-private baselines.

More recently [117], have proposed FairDP, a framework for
training deep learning models that simultaneously satisfy differ-
ential privacy (DP) and statistical fairness criteria such as statis-
tical parity, equal opportunity and equalized odds. The approach
builds on the principles of DP-SGD, using gradient clipping
and noise addition, but with a key innovation: at each gradi-
ent descent step, group-specific noisy model updates are com-
puted independently and then aggregated. This ensures that all
demographic subgroups contribute equally to the training pro-
cess. Crucially, FairDP leverages the known distribution of the
injected DP noise to derive probabilistic bounds on group fair-
ness metrics. This allows the method to provide formal fair-
ness certifications, despite the inherent randomness introduced
by DP. Empirical evaluations show that FairDP significantly
improves fairness (e.g., over 65% improvement on key metrics)
and complies with DP with only a modest reduction in accuracy
(less than 4%), outperforming baseline methods across multiple
benchmarks.

4.2.2 | The Fairness Cost of Differential Privacy Can
Be Theoretically Bounded

Recent work theoretically shows that the impact of (pure or
approximate) DP on fairness is bounded and can be computed
to obtain non-trivial guarantees regarding the private model’s
fairness [118]. The underlying analysis relies on the fact that,
just like a model’s accuracy, common statistical fairness metrics
are pointwise Lipschitz continuous with respect to the model
parameters. Then, proving that the private model is sufficiently
close to the optimal non-private one implies that their fairness is
also close. Interestingly, the theoretical bound tightens linearly
with respect to the size of the training set: the “loss of fairness”
due to privacy vanishes when the number of training examples
increases. Previous works also introduced probabilistic bounds
on both fairness violations and accuracy loss in differentially
private (DP) algorithms. Notably [91], and [111] have derived
high-probability bounds that quantify the deviation in fairness
and accuracy of their DP algorithms relative to their non-private
counterparts. These bounds follow common patterns: they
improve (i.e., become tighter) when one increases the privacy
budget, enlarges the training dataset or restricts the hypothesis
class complexity. Interestingly, the in-processing method of [111]
introduces an additional hyperparameter that allows explicit
control over the trade-off between accuracy and fairness, in
which tightening one bound necessarily loosens the other.

4.2.3 | The Privacy Cost of Fairness Audits Can Be
Bounded

Online platforms often use machine learning techniques to
perform recommendations or other predictions involving indi-
vidual’s data. Because their outcomes can possibly harm some
users, it is necessary to audit their fairness properties. However,
this raises important privacy challenges, as the data used to train
the models (and its distribution) is often private, and revealing
it to (even trusted) third-parties increases the risk of disclosure.
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Recent work [119] considers fairness audits of social media
algorithms. They propose auditing techniques that come with
fairness guarantees and have bounded impact over the privacy
risk, which shows that the two concerns can be conciliated with
bounded cost over one another.

4.2.4 | Individual Fairness and Differential Privacy
Are Both Robustness Definitions

As introduced in Section 2.2, individual fairness can be formu-
lated as a Lipschitz condition: just like DP, it is a robustness
definition [120]. More precisely [18], has observed that individ-
ual fairness constitutes a generalization of differential privacy.
The authors draw an analogy between individuals in the setting
of fairness and databases in the setting of differential privacy.
Indeed, as also noted by [65], differential privacy requires that “al-
gorithms behave similarly on similar databases”, while individual
fairness enforces that classifiers yield similar outcomes for simi-
lar instances. This allows the use, for fairness purposes, of mech-
anisms designed for differential privacy. For instance [18], pro-
pose an efficient individually fair learning algorithm based on the
Exponential mechanism [43], resulting in provable loss bounds.
In [111], the proposed privacy-preserving approach (ensuring DP
for the sensitive attributes) can be seen as a relaxation of the strict
notion of individual fairness proposed by [120]. Indeed, while the
former enforces a ratio on the probabilities of different outcomes
when a single example’s sensitive attribute is modified, the lat-
ter enforces that the sensitive attribute is never used. Fairness
through unawareness is then a strict, simple but certifiable way
to ensure sensitive attribute privacy.

4.2.5 | Privacy and Fairness Can Enhance Each Other
in Particular Setups

Khalili et al. [121] consider the particular setting in which a
pre-trained model generates qualification scores for a set of
applicants. These scores are then used to determine a fixed num-
ber of candidates that will be selected by the process (e.g., for a
grant, a job, etc.). They show that the Exponential mechanism
can be used to perform the selection given the qualification
scores, to both enforce DP for the selection process and improve
fairness (here equal opportunity). Under some conditions regard-
ing the properties of the subgroups, the proposed approach can
make the selection procedure perfectly fair. Other notions of
privacy can also have different interactions with fairness defini-
tions. For instance [122], studies the context of itemset mining,
in which given a dataset, the objective is to mine frequent pat-
terns. Then, the author shows that anonymizing the data to
achieve 7-closeness with carefully chosen parameters implies
popular group fairness notions. Finally, it is possible to perform
statistically significant fairness audits using differentially private
sensitive attributes, taking into account the added noise [123].

Other work [124] also considers frequent patterns discov-
ery, and propose two-step algorithms to jointly address
non-discrimination (fairness) and privacy. More precisely,
they first apply a privacy-preserving mechanism, before using
data sanitization methods to enforce non-discrimination.

Indeed, considering either k-anonymity or DP, they theoreti-
cally prove that the privacy guarantees are not affected by the
later fairness-enhancing stage. On the contrary, they observe
that applying privacy-preserving mechanisms on a sanitized data
could alter the resulting patterns’ fairness, either increasing or
decreasing discrimination depending on the considered scenario
(in line with the aforementioned tensions). Importantly, they
empirically note that the utility loss incurred by jointly enforc-
ing fairness and privacy is only marginally higher than that of
enforcing privacy only. This result highlights a synergy between
the two desiderata, in which the former privacy-enhancing step
sometimes also improves fairness, overall leading to a smaller
utility drop from the later discrimination sanitizing step. This
trend is valid for both k-anonymity and DP, although the later
leads to a higher utility cost.

More recently [125], have conducted an empirical study on the
impact of various syntactic anonymization models—namely,
k-anonymity, £-diversity and ¢-closeness— on both statistical and
individual fairness. Their findings indicate that such anonymiza-
tion techniques often degrade statistical fairness, with metrics
like statistical parity and equalized odds showing significant
deterioration. In contrast, individual fairness tends to improve
under anonymization, though the extent of this improvement
depends on the specific anonymization method and fairness met-
ric considered.

5 | Interpretability and Privacy

In this section, we first discuss some tensions between inter-
pretability and privacy. Although these notions inherently con-
flict, we then highlight synergies between them, before summa-
rizing existing frameworks addressing them jointly.

51 | Tensions
5.1.1 | Interpretability/Explainability and Privacy
Conceptually Have Antagonist Goals

While interpretability and privacy protection are both important
requirements for responsible machine learning, they intrinsically
pursue contrasting objectives [7]. Indeed, on one hand, inter-
pretability aims at providing more information to enhance users’
understanding of a model’s behavior. On the other hand, privacy
requires a tight control of the leaked information, often obfuscat-
ing part of it to protect individuals’ data. Jointly addressing both
desiderata hence necessitates some form of arbitration [126].

5.1.2 | Explainability Tools Can Be Used With
the Purpose of Designing Attacks Against Machine
Learning Models

Tools from explainable Al can be leveraged by malicious entities
to perform more effective attacks against machine learning based
systems. For instance [127], studied malware detection models,
that are usually trained on crowd-sourced data to distinguish
between malicious softwares (malwares) and legitimate ones.
The authors investigated backdoor poisoning attacks, in which an
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attacker injects carefully chosen datapoints to the crowd-sourced
training set, resulting in its chosen malware being wrongly clas-
sified as legitimate by the detection model. In this context, they
leverage Shapley values to identify highly effective features and
their values, and efficiently craft the poisoned examples. Explain-
able AI techniques were also leveraged to fool ML-based authen-
tication systems, which take as input a user ID along with some
fingerprinting authenticating the user uniquely. An attacker can
then use perturbation-based feature explanation techniques on a
local surrogate model to efficiently craft a fingerprint authenti-
cating a desired user given its ID [128]. Again, the feature impor-
tance explanations help guiding the malicious crafting process by
indicating which features most influence the decision. A counter-
factual explanation framework is modified by [129] to generate
adversarial examples. Counterfactual explanations of a black-box
model are also used to identify the features that influence the
model’s decision boundaries and generate examples to conduct
backdoor poisoning attacks.

5.1.3 | Post Hoc Explanations Can Be Exploited
to Perform or Improve Inference Attacks

Inference attacks traditionally query a model (e.g., via a predic-
tion API) and use its outputs to achieve their goal, for instance
determining an individual’s membership in the training data,
reconstructing part of the training dataset, extracting the model
itself, or inferring an individual’s missing attributes [4, 27].
Post hoc explainability techniques, by offering explanations as
additional outputs, expose a new attack surface. Several works
showed that such explanations, whatever form they take (e.g.,
example-based, feature-based, etc.), can be leveraged to enhance
the different types of privacy attacks (introduced in Section 2.4):

o Model extraction attacks. Gradient-based (a class of feature-
based) explanations of a black-box model can be exploited
by an adversary to reconstruct the underlying model [130].
In the considered setup, the adversary owns an auxiliary
dataset and can query the black-box model to obtain the
model’s gradients as explanations for given input points.
The authors have designed a near-optimal algorithm, which
provably extracts the entire underlying model within a
bounded number of queries, in the particular case in which it
is a two-layer neural network with ReLU activations. For the
general case, they design an effective heuristic inspired by
previous works on standard reconstruction attacks against
prediction APIs. More precisely, the attacker trains a sur-
rogate model mimicking the black-box behavior and opti-
mizes to match its gradients thanks to the provided explana-
tions. The results obtained demonstrates that model extrac-
tion from gradient explanations requires orders of magni-
tude less queries than from the sole predictions. Another
approach [131] also consider gradient-based explanations,
but assume no auxiliary dataset. In such case, the data
used to query the black-box and train the surrogate model
is outputted by a generative model, which in turn tries
to generate examples so that the surrogate disagrees with
the black-box. The generative model is updated leverag-
ing the provided gradient explanations, which dramatically
reduces the required number of iterations (and queries to the

black-box). Furthermore [132], show that providing coun-
terfactual (a class of example-based) explanations (CFs) can
help to realize model extraction attacks with better precision
and limited number of requests. More precisely, the adver-
sary queries the black-box model with a given attack set, and
trains a surrogate using the predictions of both the attack
set instances and the provided CFs. The authors empiri-
cally show that the use of the provided CFs improves the
attack by both increasing the built surrogate’s fidelity with
respect to the black-box model, and dramatically decreasing
the required number of queries. A similar approach is pro-
posed by [129], leveraging knowledge distillation techniques
to train the surrogate model, which may mitigate the poten-
tial performance harm of an architecture mismatch between
the actual black-box model and the reconstructed surrogate.
CFs provided by Machine-Learning-as-a-Service (MLaaS)
platforms are also exploited by [133], which propose an effi-
cient querying strategy to steal the underlying classification
model. Their strategy is based on the following observation:
the generated CFs usually lie close to the decision boundary,
while the attack set examples do not necessarily. This leads
to a “decision boundary shift issue”, in which the surrogate
model’s decision boundary is shifted compared to that of the
actual black-box. To circumvent this issue, the authors pro-
pose to generate counterfactuals for the CFs themselves, and
to use them all for training the surrogate.

Membership inference attacks. Feature-based explanations
are leveraged by [68] to perform MIAs. More precisely, they
consider both backpropagation-based (i.e., gradient-based)
and perturbation-based explanations. On one hand, they
demonstrate that the former leak information regarding
membership, and can effectively be leveraged to perform
MIAs. In particular, the explanations’ variance is very infor-
mative, in the sense that explanations of training examples
usually exhibit a low variance, while for unseen examples,
this value can be considerably higher. This is due to the
fact that for training examples, the model is usually very
confident, as it was optimized on them, and small per-
turbations are likely to not change its predictions. On the
contrary, unseen samples can be closer to the decision
boundary, which results in some features having a great
impact on the model’s predictions (hence high gradients
norms), and the resulting explanation having high variance.
On the other hand, they further show using two popu-
lar perturbation-based frameworks [134, 135] that the later
is more resistant to membership inference. This may be
explained by the fact that perturbation-based frameworks
often generate perturbed examples that lie out of the data
distribution [136]. The black-box model behavior on such
examples is unspecified, and so querying it with them does
not provide insightful information to perform inference
attacks. This also suggests that the resulting explanations
may qualitatively by poorer: “privacy comes at the cost of
explanation quality”. Counterfactual explanations are lever-
aged by [129] to conduct MIAs. More precisely, the black-box
model is queried with an auxiliary dataset and then the
model’s outputs and generated counterfactual examples are
used to train a shadow model. Membership of a given
example is then established by comparing the difference in
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prediction probabilities between the shadow model and the
actual black-box to a threshold.

« Dataset reconstruction (and membership inference) attacks.
An example-based explainability framework based on influ-
ence functions [24] and returning influential training
examples that most contribute to an example’s predic-
tion is considered by [68]. Because they explicitly reveal
training points, and a training point is likely to be used
to explain itself, such explanations are highly vulnera-
ble to MIAs. Indeed, this class of explanations allows for
stronger attacks, such that dataset reconstruction attacks.
The authors propose two algorithms that leverage the pro-
vided example-based explanations to reconstruct (part of)
the model’s training set. The first algorithm is based on sub-
space reduction and comes with a certifiable lower bound
on the number of points it discovers. Empirical evaluation
shows that it can be used to retrieve most of the training
dataset for high dimensional data. The second one is heuris-
tic and offers no theoretical guarantees, but works well in
practice for low dimensional data. It simply consists in using
previously revealed points to reveal new points. This natu-
rally defines an influence graph structure over the training
set, in which an edge between two training examples means
that one is provided as an explanation for the other. The pro-
posed algorithm can then be used to explore entire Strongly
Connected Components within this graph.

« Model inversion attacks [137] propose model inversion
attacks that aim at reconstructing a black-box model’s
inputs given its outputs (here, its prediction along with
some feature-based explanation), hence harming the pri-
vacy of test instances® (i.e., active users of the model). In
the context of image-based tasks, they focus on different
types of saliency map explanations to reconstruct the tar-
get model’s input images, namely gradient-based explana-
tions [138], influence-based explanations [139] (obtained by
multiplying each input feature by its associated gradient),
activation-based explanations [25] and layer-wise relevance
propagation [140] (i.e., attributing pixels’ importance by
backpropagating neurons’ relevance). The proposed attack
uses an attack model, trained on an independent auxiliary
dataset to predict images (given as input to the target model)
given predictions and explanations (outputted by the target
model). As expected, the frameworks directly using the input
within the explanation computation (i.e., influence-based
ones) leak more information regarding the model’s inputs,
hence allowing better attack results. Importantly, the paper
shows that even non-explainable models can be attacked,
leveraging attention transfer to build an explainable sur-
rogate whose explanations are used to conduct the attack.
With a same attack objective [141], have shown that Shap-
ley value-based explanations provided by popular Machine
Learning as a Service (MLaaS) providers can be exploited
to reconstruct the private model inputs. They provide an
information-theoretical analysis of the relationship between
an example and its associated Shapley values, and demon-
strate that an adversary can always infer useful information
about the former using the later. This analysis also holds for
sampling-based Shapley-values, which are commonly com-
puted as an efficient approximation of the exact Shapley

values. They then studied two distinct adversarial settings,
and have shown that even an adversary with no background
knowledge can reconstruct most of the private model’s input
examples given only its outputs and explanations.

« (Senmsitive) attribute inference attacks. Sensitive attribute
inference attacks can leverage feature-based model expla-
nations, computed either with backpropagation-based or
perturbation-based methods [142]. The authors consider the
two scenarios where the sensitive attribute is (or not) used
for training the model and for inference. In both studied sce-
narios, the adversary leverages an auxiliary dataset to train
an attack model to predict an example’s sensitive attribute
given only the outputs of the target model (prediction and
explanation). They empirically show that their attack is able
to leverage such explanations to perform attribute inference
attack. Furthermore, they suggest that model explanations
lead to higher attack success compared to model predictions,
hence constituting a stronger attack surface to exploit.

5.1.4 | Interpretable Models Inherently Leak
Information Regarding Their Training Data

The approach of [143] exploits the structure of a trained decision
tree to reconstruct a probabilistic version of its training set. It
is generalized by [144] to handle more generic types of knowl-
edge and reconstruct probabilistic datasets from other types of
interpretable models. Both works use tools from the information
theory to precisely quantify the amount of knowledge inter-
pretable models encode, through their structure, regarding their
training data. By formulating a dataset reconstruction attack as a
constraint programming optimization model, recent work [145]
has shown that random forests can fully leak their training
data through the structure of their trees. The use of bootstrap
aggregating when fitting the forest helps mitigate the success of
such attacks, but nonetheless the theoretical sampling probabil-
ities can still be exploited to achieve accurate reconstructions. A
recent follow-up work adapts this attack to handle random forests
complying with (pure) DP guarantees [146]. Although DP is able
to mitigate the success of the reconstruction attack, it comes
at a significant cost in terms of model accuracy. Furthermore,
in most investigated setups, the attacker is still able to retrieve
training set-specific information, evidencing potential privacy
leakages.

5.1.5 | Providing Useful Yet Privacy-Protective
Explanations Remains an Open Challenge

As discussed in the next subsection, differentially private explain-
ability tools have been proposed, but always imply some trade-off
between the explanation quality, the privacy guarantee and
the model utility. Furthermore [130], recall that DP can help
guard against attacks from prediction APIs, but it is not clear
if this is a viable approach for preventing reconstruction from
explanations. On the same line [68], state that “the effect
of DP techniques (notably the randomness they induce) on
model transparency is unknown”. Furthermore, the effect of DP
on the explanations’ robustness and user trust are still to be
investigated [132].
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Overall, applying explainability techniques while preserving for-
mal privacy guarantees is challenging. In the next subsection, we
nevertheless how this could be achieved, but this implies some
cost on either one aspect or the other.

5.2 | Synergies
5.2.1 | Interpretability Eases Model Audit and Can Be
Leveraged for Privacy Purposes

Interpretability can be used to confirm other desiderata of ML
systems, such as privacy [88]. It also makes it easier to detect pos-
sible privacy issues when building interpretable models [87]. Fur-
thermore, this auditable nature is particularly appreciated in the
area of ML-based cybersecurity systems [147]. Indeed, machine
learning models have shown great abilities to detect abnormal
behaviors or intrusions. However, their black-box nature and lack
of certification can be problematic as it possibly introduces weak-
nesses inside the security system. By providing an understanding
of the underlying mechanisms and reasoning of the model, inter-
pretability techniques can be helpful to detect overfitting, or in
cases in which the model captures noise or inaccurate values in
the data. This allows deploying more trustworthy models, but
also helps the administrators identify potential breaches.

5.2.2 | Interpretability Can Be Conciliated With
Privacy With Some Trade-Offs

Friedman and Schuster [148] study data mining with DP guar-
antees, considering decision tree learning as an illustrative task.
They demonstrate that the design of the privacy preserving
mechanism is crucial, and that there is a huge difference in
terms of model utility and required sample size between a naive
implementation using a general purpose privacy preserving
data interface and a task-specific differentially private learning
algorithm. Their empirical study demonstrates the ability of
their proposed algorithm to learn differentially private decision
trees with reasonable cost in terms of accuracy. Several other
works also tackled differentially private decision tree build-
ing, as summarized by [149]. Locally Linear Maps (LLMs) are
studied by [150] and consist in a linear combination of logistic
regressions for each possible class. Such interpretable models
are suitable to provide local explanations (using the appropriate
LLM) but also global ones, as the coefficients of each class’s
LLMs provide insights regarding which features really matter
to it. The authors propose a procedure to learn LLMs under DP,
leveraging mechanisms from the DP-SGD framework [46]. They
empirically observe a trade-off between the privacy guarantee
and the model’s accuracy and interpretability.

5.2.3 | Post Hoc Explainability Can Be Conciliated
With Privacy With Some Trade-Offs

Quantitative Input Influence (QII) is a framework leveraging
Shapley values to provide feature-based explanations quantifying
the influence of input features over the model’s predictions [106].
As such measures may leak information regarding individual

users, the authors introduce a mechanism to generate differen-
tially private explanations to the so-called transparency queries.
Providing pure DP guarantees, it consists in adding Laplace noise
to the query answers, scaled to the query function sensitivity. As
the proposed measures generally have low sensitivity, the amount
of added noise remains reasonable which results in relatively
small average utility losses. Nonetheless, for some types of expla-
nations with exceptionally high sensitivity, the amount of noise
added may significantly harm their utility. A method to generate
differentially private feature-based explanations (i.e., local linear
surrogates) of a black-box model is introduced by [107]. In their
framework, the explanations are computed using a differentially
private gradient descent leveraging the Gaussian mechanism.
They further proposed an adaptive mechanism, reducing the
spending of the privacy budget by leveraging the explanations
to previous queries when computing a new one. Using tabular,
text and image data, they empirically observe that the expla-
nations’ quality degrade while the privacy guarantees tighten
[151] investigated the impact of a model’s differential privacy on
the quality of post hoc explanations (saliency maps [25]) of this
model and on its utility, considering either local DP (classical
learning algorithm applied on DP data) or global DP (differen-
tially private training algorithm). In both cases, the explanations
are also differentially private due to the post-processing property
(cf. Section 2.4). Handling either general or medical imaging
applications, they have learnt neural networks under different
DP budgets and evaluate the quality of post hoc explanations
of their predictions using two metrics from the literature. In
a nutshell, these metrics aim at quantifying how much the
regions highlighted by explanation maps actually account for the
explained decisions. The experimental results show that these
metrics degrade while the privacy budget is tightened. Further-
more, they suggest the existence of a three dimensional trade-off
space between privacy, explanation quality and model accuracy.

To face the explanation-guided backdoor poisoning attack stud-
ied by [127] (and discussed in Section 5.1) [152], proposed to
generate Locally Differentially Private explanations. By randomly
perturbating the top-k features in the generated feature-based
explanations, the mechanism is shown to mitigate the success
of the attack. An approach to generate robust counterfactual
explanations for differentially private Support Vector Machines
(SVMs) is designed by [153]. More precisely, privacy is achieved
by adding Laplace noise to the SVMs’ weights, and classical
counterfactual explanation frameworks may generate counter-
factuals that allow to cross the classifier’s noisy boundaries, but
not to actually change the example’s class in real-life. To address
this issue, they instead generate robust counterfactual expla-
nations by solving an optimization problem with probabilistic
constraints. In practice, the generated counterfactuals require
more and more changes to the example as the privacy level
tightens, to ensure that its classification changes with respect to
the (unknown) non-private classifier. Again, this illustrates the
trade-off between explanations quality and privacy protection.
In the context of federated learning [154], have also noticed
that DP can alter the meaningfulness of gradient-based explana-
tions. They propose an adaptive mechanism still providing DP
guarantees but injecting noise within the model’s parameters
in a manner aimed at preserving the quality of gradient-based
explanations. Finally, recent work also studied DP for coun-
terfactual explanations [155]. The approach consists in using
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an autoencoder trained in a differentially private manner to
build noisy class prototypes, which can then be leveraged to
generate the counterfactuals. DP has also been applied to protect
training data in the context of algorithmic recourse. Specifi-
cally [156], first perform a DP clustering of the training data,
from which they construct a graph whose nodes correspond to
cluster centers and whose edges encode actionability constraints.
This graph is then used at inference time to generate counter-
factual explanations and step-by-step recourse paths, with no
additional privacy loss thanks to the post-processing property of
differential privacy. Finally, beyond DP, other privacy-preserving
strategies—including, but not limited to, syntactic models of
anonymity—have also been explored to protect post hoc expla-
nations. For a comprehensive review of such approaches, we
refer the reader to the recent survey by [157].

6 | Conclusion

We have seen throughout this paper that while fairness, inter-
pretability and privacy are three important dimensions of respon-
sible ML, they often conflict in different ways, both theoretically
and empirically. A thorough characterization of these tensions
is crucial to support informed design choices by stakeholders in
practice. Among other challenges, precisely accounting for the
(direct or indirect) privacy cost introduced by fairness mecha-
nisms, as well as systematically and rigorously quantifying the
privacy risk posed by post hoc explanations, remain important
and largely open research directions. Nonetheless, we have also
identified synergies, which suggests that a careful design can
sometimes lead to improving them jointly with a reduced impact
on utility. However, this considerably increases the complexity of
the learning process while requiring an in-depth analysis of the
used techniques. Throughout this paper, we have highlighted sev-
eral interesting works taking advantage of these synergies to con-
ciliate two of our three pillars. These insightful examples include
modifying or analyzing the distribution of the noise added by
privacy-preserving techniques to improve [108] or certify [117]
statistical fairness, leveraging fairness constraints to enhance the
learning of interpretable models through effective pruning mech-
anisms [58] or leveraging explainability tools to detect privacy
leakages [147]. Previous work has also demonstrated the poten-
tial of leveraging differential privacy tools to promote individ-
ual fairness, highlighting a promising avenue for future research.
In particular, extensions of DP—such as metric DP [158],
which generalizes the notion of neighboring databases to metric
spaces—offer powerful tools for enforcing individual fairness.

Nevertheless, compromises usually have to be made. Generally
speaking, learning a model with non-trivial utility and satisfying
our three desiderata requires a thorough theoretical formula-
tion, being aware of the existing tensions as well as of common
techniques to mitigate them. We graphically summarize them in
Figures 1, 2, and 3. More precisely, for each pair of desiderata,
we position the identified compatibilities, synergies and tensions
within a two-dimensional space based on whether they tend
to enhance or harm each desiderata. We believe that such a
summary of these interplays can be beneficial for stakeholders
to be aware of the possible tensions they may have to face, and
of the existing compatibilities and synergies they can leverage to

develop trustworthy yet accurate machine learning models. This
is crucial since a naive joint implementation of these desiderata
would likely result in suboptimal trade-offs, and some scenarios
may even lead to mutually worsening them. We also aim at
encouraging research regarding these interplays—and to sum-
marize them in a systematic manner so that they benefit the field.

Finally, it is crucial to promote an interdisciplinary approach,
for computer scientists to ensure that the metrics they optimize
for actually match legal and ethical requirements. This is a par-
ticularly challenging aspect: ethical analysis is often strongly
context-dependent while genericity is a common objective in
computer science. In addition, not all legal and ethical notions
can easily be implemented and quantified using mathematical
formulas. It is hence necessary to verify the alignment of the
notions we use with the concepts we target, for the develop-
ment of ML systems that can be trusted and that do not harm
the society. There exist several works specifically considering
these aspects, such as that of [159] which reviews critics of
popular fairness-enhancing approaches from an interdisciplinary
perspective.
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Endnotes
Lhttps://gdpr-info.eu/.
2 https://artificialintelligenceact.eu/.

3 https://www.census.gov/programs-surveys/decennial-census/
decade/2020/planning-management/process/disclosure-avoidance/
differential-privacy.html.

4That is, pure (¢,0)-DP or approximate (e, §)-DP with § cryptographically
small, which are the meaningful and typical configurations of DP.

5This differs from the previously mentioned reconstruction attacks.
Indeed, in reconstruction attacks, the objective of the adversary is to
infer information regarding the model’s training data. In the discussed
model inversion attacks, the objective is to gain information about the
examples provided to the model at inference time, by only observing the
model’s outputs (cf., Section 2.4).
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