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ABSTRACT Growing data privacy concerns in smart applications have spurred the development of
Federated Learning (FL), a novel approach enabling heterogeneous clients to jointly train a global model
without exchanging private data. However, FL faces significant challenges in aggregating model updates
from different client devices, as malicious participants can poison the data and model updates to corrupt the
global model. To enhance the global model’s accuracy, many state-of-the-art defence strategies in FL rely
on aggregation-based security mechanisms. However, the global model can be more accurate if an attacker
is excluded from the training. Therefore, this research proposes a dual-layer defence mechanism called
FedChallenger to detect and prevent malicious client participation in the FL training process. The defence
mechanism incorporates zero-trust challenge-response-based trusted exchange in the first layer, whereas,
in the second layer, it uses a variant of the Trimmed-Mean aggregation strategy that uses pairwise cosine
similarity along with Median Absolute Deviation (MAD) for aggregation to mitigate the malicious model
parameters. Extensive evaluation using MNIST, FMNIST, EMNIST, and CIFAR-10 datasets demonstrates
that the proposed FedChallenger outperforms state-of-the-art approaches, including Stake, Shap, Cluster,
Trimmed-Mean, Krum, FedAvg, and DUEL, across both attack and non-attack scenarios. Under adversarial
conditions with model and data poisoning attacks, FedChallenger achieves a 3-10% improvement in global
model accuracy over the closest contender, along with 1.1-2.2 times faster convergence. Additionally,
it attains a 2-3% higher F1-Score than the best-competing technique while maintaining robustness against
varying attack intensities across different dataset complexities.

INDEX TERMS Federated learning, machine learning, poisoning attacks, robust aggregation, zero trust
security.

I. INTRODUCTION
Intelligent and smart electronics applications are the result
of the rapid development of the Internet of Things (IoT)
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and Artificial Intelligence (AI). Machine Learning (ML), the
core of AI, has enabled the development of life-changing
applications whose performance largely depends on the
amount of training data. According to [1], IoT devices are
projected to producemore than 600 zettabytes (ZB) of data by
2030 as the number of interconnected devices is expected to
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reach 500 billion [2]. Although there is a promise of abundant
data, increasing privacy concerns have begun to undermine
the benefits of ML.

Federated Learning (FL) alleviates privacy concerns by
keeping client data locally while enabling collaborative
model training [3]. In FL, a central server coordinates
multiple clients who train a shared model using their
local data and exchange only model parameters. Despite
FL’s privacy benefits, model poisoning and data poisoning
attacks are evolving rapidly [4], [5]. In model poisoning
attacks, attackers manipulate model parameters to degrade
performance, while in data poisoning attacks, they manip-
ulate training labels to cause misclassification [6]. Both
attacks can cause accuracy drops with potentially life-
threatening consequences. In response, several defence
mechanisms have been proposed, including FedAvg [7],
Krum [8], Trimmed-Mean [9], and Fang et al.’s [10] defence
strategy combining ERR and LFR approaches, hereafter
referred to as DUEL. FedAvg naively averages all client
updates without discrimination, making it vulnerable to
basic poisoning attempts. Krum selects updates closest to
their neighbours via Euclidean distance minimization, but
fails against coordinated attacks where multiple adversaries
craft seemingly legitimate updates. Trimmed-Mean mitigates
outliers by discarding extreme values based on median devi-
ation, but its fixed trimming ratio cannot adapt to dynamic
poisoning strategies. DUEL introduces parameter-wise
loss impact analysis but employs reactive strategies that
only mitigate attacks after compromising the training
process.

A. MOTIVATION
Most state-of-the-art approaches defend against poison-
ing attacks using either robust aggregation [8], [9], [10]
or verification-based rejection [11], [12]. However, these
approaches still lack accuracy and cannot fully defend
against poisoning attacks, as they rarely offer any mechanism
to prevent attacks from propagating into the aggregation
computation. Recent hybrid defence techniques, such as
Stake [13], Shapley-based methods [14], and Cluster-based
approaches [15], hereafter referred to as Stake, Shap, and
Cluster respectively, face significant challenges including
high computational costs and reduced accuracy with Non-IID
data distributions. Stake utilizes blockchain technology for
majority voting, incorporating client reward and penalty cal-
culations, which enhances security but introduces significant
processing delays. Shap relies on SHAP value computations,
creating substantial computational demands, especially for
complex models. Cluster analyzes gradients from client
updates to identify source and target classes before applying
HDBSCAN clustering [16] to detect malicious updates,
which proves particularly sensitive to variations in data dis-
tribution. Since state-of-the-art techniques do not guarantee
a poisoning-free environment, a robust defence mechanism
capable of detecting, preventing, and efficiently recovering
from such attacks remains critical.

B. CONTRIBUTIONS
This paper proposes an extension of our previously designed
FedChallenger approach [17] that can detect and prevent
malicious participants from participating in FL training using
challenge-response mechanisms. The extended approach
introduces a revised zero-trust challenge-response architec-
ture [18] that actively authenticates all participating devices
before and during training sessions. The framework incor-
porates an improved robust aggregation algorithm utilizing
Median Absolute Deviation (MAD)-based [19] trimming to
enhance resilience against poisoning attacks. Furthermore,
the performance of the extended version is evaluated across
multiple benchmark datasets [20], including comparisons
with the most recent techniques [13], [14], [15].

The major contributions of this paper are as follows.
• Propose a zero-trust challenge-response-based defence
mechanism named FedChallenger to detect and prevent
poisoning attacks on consumer electronic devices.

• Present trust-based attack detection algorithm that relies
on challenge-response information to compute trust.

• Introduce a robust aggregation mechanism that applies
cosine similarity-based consensus boosting to benign
weights and dynamically prune malicious updates via
MAD for adversarial updates.

• Evaluate the performance of the proposed approach
on MNIST, FMNIST, EMNIST, and CIFAR-10
datasets [20] using different evaluation metrics such as
convergence time and accuracy.

C. ORGANIZATION
The rest of the paper is organized as follows: The next
section presents relevant state-of-the-art literature. Section III
illustrates the design and architecture of the FedChallenger.
The experimental setup is presented in Section IV. After
that, the results and discussions are discussed. Finally,
in section VI, the manuscript is concluded with future
research directions.

II. RELATED WORK
This section presents relevant literature on the proposed
FedChallenger approach that defends against poisoning
attacks. A significant amount of research has already been
conducted to defend against model and data poisoning
attacks. Verification and aggregation-based strategies [11],
[12] show notable performance among them. Verification
strategies rely on detecting any alterations in model updates
using ML or cryptography techniques. However, the robust
aggregation mechanisms [8], [9], [10] focus on the aggre-
gation function to detect and discard outlier samples. This
section provides a brief overview of the state-of-the-art
pertinent literature focusing on both robust aggregation and
verification-based strategies.

A. AGGREGATION-BASED STRATEGIES
The ultimate goal of poisoning attackers is to degrade the
model’s accuracy by modifying the model parameters or data
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labels. Inaccuracies in model predictions can cause drastic
life-threatening scenarios or induce huge financial losses.
Therefore, poisoned updates should be removed before
evaluating the trained model. In response to the problem,
Bulyan [21], Trimmed-Mean [9], Krum [8], FABA [22], and
Fang et al.’s schemes [10] introduced novel robust aggrega-
tion strategies to detect and remove malicious updates. Most
of these strategies, including Krum, Bulyan, and Trimmed-
Mean, rely on the Euclidean distance to remove malicious
samples. Krum considered model updates malicious if the
computed Euclidean distance exceeded a threshold value.
Bulyan computed the Euclidean distance between model
updates and considered the model updates closest to their
median value. It chooses them for aggregation and computes
their mean to consider them one of the model parameters.
However, Euclidean distance is often skewed by the alteration
of a single model parameter [10]. Therefore, Krum and
Bulyan share the same attack space and cannot fully defend
themselves from poisoning attacks.

Trimmed-Mean [9] with a given trimmed rate, discards
the smallest and the largest distance values after sorting
them in ascending order. The mean of the remaining values
is calculated to determine the model parameters. However,
the distance calculation is mainly based on the Euclidean
distance and can be vulnerable to similar attack types, such
as Krum and Bulyan. Another fast aggregation strategy,
FABA [22], introduced iterative pruning of model updates
that are distant from average model updates. However, it is
still dependent on distance calculations, and distance often
gets largely changed due to changes in a single parameter.
Therefore, Fang et al.’s scheme [10] can remove outliers
by considering model updates that cause a loss in the
model evaluation and negatively impact the model accuracy.
Liu and colleagues [23] introduced an alternative method
that leverages the Pearson correlation coefficient. By cal-
culating the dissimilarity between malicious and benign
model parameters using this coefficient, their technique
enables the detection and subsequent removal of harmful
updates.

Defence techniques proposed in [24], [25], and [26]
remove training samples that induce a higher error rate in
model evaluation. Another strategy, TRIM [27], minimizes
the loss function and infers the training subset using the given
model parameter. If the data sample did not yield the inferred
subset, it discarded that training sample, assuming it was
a poisoned update. However, these approaches cannot fully
detect and prevent the impact of malicious model updates on
the final aggregation because of their limited understanding
of the entire dataset.

B. VERIFICATION-BASED STRATEGIES
Verification-based strategies [11], [12] have emerged to
identify poisoned updates in communication rounds. One
such approach, BAFFLE [12], uses a feedback-based learning
mechanism to decide on poisoned updates with other vali-
dating clients collaboratively. However, validating clients can

be malicious, and attackers may use other datasets. Another
verification-based strategy uses a digital signature [28] to
ensure a trusted exchange of information. This strategy
detects any alterations in the model updates by leveraging
digital signatures.

Generative Adversarial Networks (GAN) [29] are
extremely popular and have emerged as game changers
in the Artificial Intelligence (AI) market. These strategies
can be used to generate an auditing dataset that can train
a classifier to predict malicious samples [30]. However,
GAN solutions are proven to behave differently across
different data distributions. Therefore, they show different
characteristics in Independent and Identically Distributed
(IID) and Non-IID datasets [31], [32]. In addition to
generating auditing datasets, a reference model is often used
to predict model parameters [33]. These predicted parameters
can be used to replace malicious parameters. However,
constructing a reference model is vigorous and may not
always comply with the desired accuracy. Malicious updates
are often distinguished from benign samples using Support
Vector Machine (SVM) classifiers [34]. To distinguish
malicious updates from benign updates, FLARE [35] utilizes
a penultimate layer representation vector. The computed
results offer a trust score for local model updates, which
can determine the approval or rejection of model updates.
However, their trust computation often requires significant
initial information [36].

C. RECENT TECHNIQUES
Among the notable contributions of recent advancements in
poisoning attacks are Stake [13], Shap [14], and Cluster [15]
techniques. Stake uses blockchain [13] for aggregation,
where clients update their local updates to a blockchain,
and the aggregation process happens in the blockchain. The
aggregated updates are validated by designated voters, who
vote for acceptance or rejection of the updates. If the majority
of them accept the update, then voters and proposers are
rewarded. However, the unaccepted updates, voters, and
the proposer are slashed. Though the technique is robust,
it might have significant computational complexity due to
the nature of the blockchain. On the other hand, the Shap
technique uses SHAP values, which leave a visible mark
of poisoning attacks on the feature space. However, they
require a reference dataset for SHAP computation, which
is against FL’s privacy guarantee. The cluster technique
uses source and target neurons as discriminative features for
label-flipping attack detection, and using that information,
the HDB-SCAN [16] cluster can differentiate malicious
and benign samples. However, clustering techniques are
limited to common clustering problems, and the fea-
ture space analysis requires some knowledge about the
dataset.

While methods like FLGuardian [37] have pioneered
layer-wise defence mechanisms using cosine similarity
or Euclidean distance analysis and weighted trust scor-
ing to detect anomalous updates by comparing pairwise
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similarities across neural network layers, they face challenges
in handling adaptive poisoning attacks that strategically
manipulate gradients to evade distance-based detection. The
reliance on static clustering algorithms may fail against
dynamic attacks that gradually shift malicious updates
to mimic benign patterns, especially in Non-IID settings
where natural layer-wise variations exist. Additionally,
such methods struggle with high computational overhead
when scaling to complex models, as pairwise compar-
isons across all layers and clients become prohibitively
expensive. In contrast, AIDFL [38] introduces a novel
information-theoretic framework that leverages conditional
entropy andmutual information metrics, which are inherently
independent of data distributions, to detect poisoning attacks
by examining the structural relationships between data
and model layers. Unlike traditional methods that employ
static clustering or aggregation rules, AIDFL implements
a multi-level defence protocol combining K-means clus-
tering [39] with dynamic anomaly detection based on
information flow patterns across network layers. While
AIDFL’s information-theoretic approach effectively handles
Non-IID data, its reliance on mutual entropy calculations
incurs higher computational overhead. Additionally, AIDFL
lacks explicit client authentication to verify the legitimacy of
updates.

Another defence mechanism named MSGuard [40] com-
bines sign statistics, cosine similarity, and spectral anomaly
scores in a Mean Shift clustering model to detect Byzantine
attacks without prior knowledge of attacker counts. However,
its reliance on gradient magnitude filtering may inadvertently
discard benign updates in Non-IID settings. Additionally,
the computational overhead of multi-feature clustering could
hinder scalability in large-scale FL systems. In contrast,
TDF-PAD [41] uses IQR to classify models as poisoned,
benign, or ambiguous, then applies Z-score analysis to
ambiguous cases. Its adaptive thresholds enhance Non-
IID robustness, although computational costs may slow
convergence, and dynamic attacks may evade detection.
Another defence mechanism called PurifyFL [42] combines
homomorphic encryption with poisoning attack detection via
cosine direction analysis of updates. While its single-server
design enhances practicality by supporting additive and
multiplicative ciphertext operations, the approach may inad-
vertently filter benign updates due to directional thresholds
and impose computational burdens on resource-constrained
devices. However, FLAD [43] advances the state-of-the-
art by introducing neural Feature Extraction Models (FEM)
trained on server data to enable adaptive gradient feature
analysis through DBSCAN clustering while simultaneously
addressing privacy via CKKS homomorphic encryption [44];
however, its effectiveness depends on the representativeness
of the server’s clean dataset and may struggle against
sophisticated adaptive poisoning attacks that mimic legit-
imate gradient patterns or exploit the reduced feature
space.

FIGURE 1. The architecture of fedchallenger.

All recent techniques struggle with computational com-
plexity and may often be confined to a particular dataset type.

D. WHY FEDCHALLENGER?
Existing verification-based rejection or robust aggregation
strategies can defend against a limited set of attacks.
Moreover, they cannot entirely block the propagation of
attacks into the aggregated global model. Furthermore,
recent state-of-the-art strategies mostly prune benign sam-
ples and incur significant computational overhead. Thus,
FedChallenger is proposed to offer a lightweight multi-
layer defence. It is expected to filter out the most malicious
transactions during the challenge-response phase and remove
the remaining malicious updates using a robust aggregation
strategy. Above all, FedChallenger incorporates MAD-based
adaptive pruning, which mainly filters out non-benign
records.

III. DESIGN
This section presents the design and architecture of the
proposed FedChallenger technique for mitigating poisoning
attacks.

FedChallenger follows a modular zero-trust [18] archi-
tecture where the core components are the Challenger,
Responder, Authenticator, and Aggregator. Figure 1 presents
the architecture of the proposed FedChallenger strategy.
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Algorithm 1Malicious Device Detection
Input:

Decrypted Challenge, C ′i,S
Shared secret (Ki,S ), Challenge Matrix (CM ), Expected
Results (ERi,S ), Similarity Threshold (ST ), Trust Factor
(TF) Trust Score (Ti,S ) & Trust Threshold (TTH )

Output:
Malicious Status (Mi)

1: Selected Challenge, CS ∈ Rand(CM ,Total(CM ))
2: for each c ∈ CS do
3: Encrypted Challenge, ECi,S = Ki,S (c)
4: Response, R= challengedEntity(ECi,S )
5: Expected Response, C ′i,S = ERi,S (c)
6: Response Similarity, Csim = similarity(C ′,R)
7: if Csim > ST then
8: Ti,S = Ti,S ×TF
9: else

10: Ti,S = Ti,S/TF
11: end if
12: end for
13: if Ti,S > TTH then
14: Mi = False
15: else
16: Mi = True
17: end if
18: ReturnMi

The architecture organizes the Federated server, S, Com-
munication Network, CN , and Edge Devices, ED, in a
top-down layout. In the considered setup, each ED and S
contains dedicated challenge-response modules that consist
of Challenger, Responder, and Authenticator submodules.
The Challenger submodule asks questions to the target
device, and the Responder submodule answers the question
asked by the Challenger submodule of another device. The
Authenticator submodule makes decisions and authenticates
devices based on their challenge-response exchange. The
management console at S defines the criteria for the questions
to be asked. The federated controller, FC , coordinates model
training, removes attacker nodes, eradicates attack samples,
aggregates model updates, and implements management
decisions. Attacker node and attack sample removal are
coordinated with the FC , challenge-response module and
their respective submodules. Each ED has a Local Training
Controller, LTC and a neural engine. They use the initial
model parameters and obtain training information from the
FC . Using this initial information, their LTC coordinates a
model training using their respective local data. The trained
model parameters are then returned to the S for aggregation.
The FC aggregates model parameters after receiving from
multiple participants using the aggregator submodule. If the
FC finds any model updates or the devices are malicious,
they remove them immediately after detection to prevent
their impact on the training. The aggregator submodule
can also filter out the outliers originating from malicious
participants.

Algorithm 2 Training With Defence at Client, i
Input:

Batches, B
Model, M ′

Weights,W ′

Output:
Weight (W ′B)

1: Training Request, TRRi = RequestToParticipate(S)
2: Run Parallel ChallengeResponseModule()
3: Shared Secret, Ki,S = establishSharedSecret()
4: if TRRi then
5: if isMAlicious(S,Ki,S ) then
6: ReduceTrustScore(S)
7: end if
8: for b ∈ B do
9: W ′[b]=W ′[b−1]∪MiniBatchSGD(M ′i ,W

′

i )
10: end for
11: end if
12: ReturnW ′B

At the beginning of the training process, the management
console instructs the FC to broadcast the details of the
model training and asks it to accumulate participants from
the EDs. The interested participants I = (i1, i2, . . . , in) ∈
ED responds to the FC’s request and establishes a shared
secret key, Ki,S for their subsequent communication. Subse-
quently, each interested participant, i and S, ask themselves
a set of management-defined questions, Qi,S and QS,i,
respectively, to accumulate their respective challenge matrix
CMi,S and CMS,i for future challenges. The questions
encompass a range of system attributes, such as CPU
speed, memory capacity, fan speed, data folder size, and
the hash values of data points at designated random
indices. All participants have their peer’s challenge matrix,
CMi,S and CMS,i consisting of unaltered challenge-response
data. In later stages, this information is used to detect a
change in the participant’s behaviour, which can eventually
lead to the early detection of malicious participants. With
the questions and answers, the FC begins the training
rounds.

In the first round, it challenges the participants with
random questions QS,i′ from its question pool, and each
participant answers those questions Ri′,S and asks back
questions Qi′,S to the S. FC matches the answer with
its accumulated challenge matrix CMS . In response to a
mismatch, FC removes the participants from its accumulated
participant list and blocks further interaction in coordination
with the attacker node removal submodule. For the rest of the
participants, the FC responds with the answer RS,i′ for each
of their questions and sends the initial modelM0, weightsW0.
Upon receiving this information, each of the I , at first verifies
the server response RS,i′ with their stored CMi′,S and if they
find any mismatch, they can abstain from participating in the
training process. Otherwise, they use the initial model M0,
and weightsW0 to begin the training. The LTC at each I uses
those initial parameters and their local data to train the model
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Algorithm 3 Incorporated Defence at Federated Server, S
Input:

Initial Weights (W0), Communication Rounds (R), Loss
threshold (LTH ), & Initial Model (M0)

Output:
Global Model (M )

1: Broadcast training request, TRRS,∗

2: Run Parallel, ED= getInterestedParticipants()
3: for each r ∈ R do
4: Random Picked Clients, I = randPickClientset(ED)
5: for i ∈ I do
6: if r = 0 then
7: Shared Secret, Ki,S = establishSharedSecret()
8: Wi,r−1 =W0
9: Mi,r−1 =M0
10: else
11: if isNotMalicious(i,Ki,S ) then
12: Wi,r ∪Train(Wi,r−1,Mi,r−1,Ki,S )
13: end if
14: end if
15: end for
16: Cosine Similarity Between Weights, XS,I ,r = cosSim(WI ,r )
17: WI ′,r = PickmWeights(WI ,r ,XS,i,r )
18: W a

I ,r = FedAVG(WI ′,r )
19: MI ,r = Load(MI ,r−1,W a

I ,r )
20: LI ,r = ComputeLoss(W a

I ,r ,MI ,r )
21: if LI ,r > LTH then
22: Discard(W a

I ,r )
23: else
24: M =M ∪MI ,r
25: end if
26: end for
27: Return M

with a pre-established algorithm such as Stochastic Gradient
Descent (SGD) [45].

A. MALICIOUS DEVICE DETECTION
Algorithm 1 presents the malicious device detection strategy
for all client and server devices. For malicious client
detection, S challenges I with CS ∈ CM to receive its
response, R. Each challenge c∈CS is encrypted with a shared
secret between client and server Ki,S before transmission
to ensure the confidentiality and integrity of the challenge.
After that, the S computes the similarity between R and
Expected Response,C ′i,S for the respective challenge, c∈CS,
where ERi,s module accumulates the responses. The higher
similarity compared to a management-defined threshold, ST
leads to the multiplicative increase of trust by a trust factor
TF ; otherwise the trust is penalized by the same factor. After
computing the overall trust for each CS, the trust threshold
determines the device’s malicious status.

B. CLIENT-SIDE DEFENCE
The client-side defence and training processes are depicted in
Algorithm 2.

The algorithm runs challenge-response modules to
facilitate the challenge-response-based defence through a
question-answering analogy. At first, the client, i, expresses
its interest in participating in the training to the S in the form
of a training request TRRi. The acceptance of the request

succeeds with the establishment of shared secrets, Ki,S
and initial model-related information. During the training
process, malicious activity detection using Algorithm 1
results in a reduction in the trust score of S and the training
halts; otherwise, the mini-batch SGD determines the model
weights W ′ for each batch, b ∈ B. Finally, the weights are
returned to the S for further processing.

C. DEFENCE AT FEDERATED SERVER
Algorithm 3 presents the dual-layer defence and federated
training process at S.

Here, a background broadcast of training requests, TRRs
results in an accumulation of interested devices, EDs. The
accumulation process and broadcasts continued to be run
to facilitate the required number of participants. At each
round of communication, a random subset of client devices,
I , is selected, and Algorithm 1 is run in parallel to
detect and remove malicious participants. In the initial
round of communication, M0,W0, and shared secret key
Ki,S are established at each training participant; where the
management decides on the M0,W0 and Ki,S is established
throughDiffie—Hellman exchange [46]. Only non-malicious
clients defined by the Algorithm 1 are allowed to train the
model, and their weights are accumulated in the Wi,r . At the
end of each communication round, the cosine similarity
among client weights, XS is computed using the Eq. (1).

XS [j, j′]=
W j ·W j′

∥W j∥∥W j′∥
, ∀j, j′ ∈ {1, . . . ,n}, j ̸= j′. (1)

Subsequently, Eq. (2) determines the weights WI ′,r for
federated averaging (FedAvg) to obtainW a.

W I ′,r=

{ {
W j+λ · simj · (W j−Wmed)

}n
j=1 , max(MADj)≤γ{

W (j)
}m
j=1 , otherwise

(2)

where MADj =med
k ′

∣∣XS [j,k ′]−med(XS )
∣∣ ,

γ =med(MADk ′ )+Var(MADk ′ ),

m=
⌊
n ·

med(MADk ′ )
med(MADk ′ )+Var(MADk ′ )

⌋
,

simj =medk ′ (XS [j,k
′]),

Wmed = element-wise median of {W j}
n
j=1

Under normal conditions (when max(MADj) ≤ γ for all
clients j ∈ n), the weights are consensus boosted through
the operation Wj + λ · simj · (Wj − Wmed), where γ =

med(MADk )+Var(MADk ) and simj =medk (XS [j,k]) repre-
sents client j’s median cosine similarity. In adversarial con-
ditions, the system selects m =

⌊
n · med(MADk′ )

med(MADk′ )+Var(MADk′ )

⌋
weights by sorting all weights in ascending order of their
MADj values (where k ′ indexes the weight vectors).

After that, the averaged weights are loaded into the current
model state MI ,r−1 to compute the loss LI ,r . This significant
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loss results in discarding the model updates. The final model
M is achieved after the model reaches the desired accuracy.

D. THEORETICAL ANALYSIS
This subsection presents the theoretical proof of robustness
and convergence of the proposed algorithms.
Theorem 1 (Robustness Against Poisoning Attacks): The

FedChallenger design is robust against poisoning attacks
due to its challenge-response mechanism and malicious
device detection algorithm. Specifically, the probability of
a malicious participant maintaining a trust score Ti above the
threshold Tthresh after d challenges is bounded by:

P(Ti ≥ Tthresh)≤
(
1
α

)d−logα (Tinit/Tthresh)

,

where α > 1 is the trust factor, Tinit is the initial trust score,
and Tthresh is the trust threshold.
proof: The following mechanisms ensure the robustness of

FedChallenger:
1. Challenge-Response Mechanism: Each participant i

is challenged with a set of questions Q = {q1,q2, . . . ,qn}.
The expected response rj for each challenge qj is computed
as rj = f (qj), where f (·) is a deterministic function known
only to legitimate devices. A malicious participant providing
incorrect responses r ′j ̸= rj is detected with high probability,
as the probability of guessing all responses correctly is:

Pmalicious =

n∏
j=1

P(r ′j = rj)≤
(

1
|R|

)n

,

where |R| is the size of the response space.
2. Trust Score Dynamics: The trust score Ti of participant

i is updated as:

Ti←

{
Ti ·α, if r ′j = rj (correct response),
Ti/α, if r ′j ̸= rj (incorrect response),

where α > 1 is the trust factor. Let Tinit be the initial trust
score. After l incorrect responses, the trust score becomes:

Ti = Tinit ·α−l .

The participant is marked as malicious if Ti < Tthresh. Solving
for l, we get:

l > logα(Tinit/Tthresh).

Thus, the number of incorrect responses required to mark the
participant as malicious is:

lrequired = ⌈logα(Tinit/Tthresh)⌉.

The probability that a malicious participant provides fewer
than lrequired incorrect responses out of d challenges is
bounded by:

P(Ti ≥ Tthresh)≤
(
1
α

)d−logα (Tinit/Tthresh)

.

3. Federated Aggregation with Cosine Similarity: The
server computes the cosine similarity matrix XS for the
weightsW = {w1,w2, . . . ,wn} submitted by participants:

XS [i, j]= cos(wi,wj)=
wi ·wj
∥wi∥∥wj∥

.

The server filters out outliers by selecting m benign weights
using m =

⌊
n · med(MADk′ )

med(MADk′ )+Var(MADk′ )

⌋
. Where, MADj is

computed using

MADj =med
k ′

∣∣XS [j,k ′]−med(XS )
∣∣ .

This ensures that only weights from non-malicious partici-
pants are included in the federated averaging process. Thus,
the FedChallenger design is robust against poisoning attacks.
□
Theorem 2 (Convergence of FedChallenger): The Fed-

Challenger design converges to a globalmodel thatminimizes
the loss function, assuming that most participants are
non-malicious and the learning rate is appropriately chosen.
proof: The following steps ensure the convergence of

FedChallenger:
1. Local Training Process: Each non-malicious partici-

pant i performs local training using mini-batch SGD. The
updated rule for the weights wi in next round denoted by
r+1 is:

wi,r+1 = wi,r −ηr∇Li(wi,r ),

where ηr is the learning rate and Li(w) is the local loss func-
tion. Under standard assumptions (e.g., Li(w) is Lipschitz
smooth and convex) [47], mini-batch SGD converges to a
local minimum of Li(w).

2. Federated Averaging: The server aggregates the
weights W = {w1,w2, . . . ,wn} from non-malicious partici-
pants using federated averaging:

wa =
1
|W |

|W |∑
i=1

wi.

By the convexity of Li(w), the federated average wa satisfies:

L(wa)≤
1
|W |

|W |∑
i=1

Li(wi),

where L(w) is the global loss function.
3. Global Model Update: The global model is updated

iteratively as:

wr+1 = wr −ηr∇L(wr ).

Under the assumption that the majority of participants are
non-malicious, the global model converges to a minimum of
L(w).

4. Loss-Based Filtering: At each communication round,
the server computes the loss L(wa) and discards updates if
L(wa) > Lthresh, ensuring that only meaningful updates are
applied to the global model.

Thus, the FedChallenger design ensures convergence to a
global model that minimizes the loss function. □
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TABLE 1. Dataset sample distribution.

Lemma 1 (Trust Score Dynamics): The trust score Ti of
a participant i decreases exponentially with the number of
incorrect responses. Specifically, after l incorrect responses,
the trust score becomes:

Ti = Tinit ·α−l,

where Tinit is the initial trust score and α > 1 is the trust factor.
Proof: The trust score Ti is updated as:

Ti← Ti/α (for each incorrect response).

After l incorrect responses, the trust score becomes:

Ti = Tinit ·α−l .

Thus, the trust score decreases exponentially with the number
of incorrect responses. □

E. SECURITY ANALYSIS OF CHALLENGE-RESPONSE
The FedChallenger framework employs a mutual secret
key (Ki,S )-based challenge-response mechanism to defend
against poisoning attacks in FL. Thus, the challenge-
responsemechanism’s security depends fundamentally on the
confidentiality of Ki,S and the unpredictability of generated
challenges. The encryption of challenges via ECi,S = Ki,S (c)
provides information-theoretic security when Ki,S has a key
length of λ ≥ 128-bit. The probability of compromising Ki,S
with a brute-force attack is given by the Eq. (3).

Pr[Compromise Ki,S ]≤ ϵ(λ)≈ 2−λ, (3)

where ∈ (λ) represents the negligible success probability.
Furthermore, the unpredictability of challenge-response is

related to the random generation of CS ∈ CM . Where CM
combines multiple entropy sources, including the device’s
static, dynamic, and ephemeral traits. The static traits include,
but are not limited to, device fingerprints, historical patterns,
and so on. The dynamic traits, on the other hand, include
recent activity logs, temporal usage patterns, and so on.
Ephemeral information consists of session-specific nonces.
The probability that the attacker guesses the i-th challenge,
ci correctly, given their knowledge ( A) about the participant,
is given by Eq. (4).

Pr[Successful guess]=
n∏
i=1

Pr[ci ∈ CS|A]. (4)

Morever, Without knowledge of Ki,S the probability
is Pr[ci ∈ CS] ≈ 1

|CM | . Even if the attacker has partial
CM knowledge, the probability Pr[ci ∈ CS] is negligible.
Furthermore, the trust score mechanism provides adaptive
protection. Thus, the challenges and responses are secure
enough for most cases.

IV. EXPERIMENTAL SETUP
This section presents the experimental setup for evaluating
the proposed FedChallenger technique’s resilience against
model and data poisoning attacks. All simulations were
conducted on a MacBook M1 Pro system with an 8-
core CPU, 14-core GPU, 16GB RAM, and 512GB SSD.
The chosen model for training was a Residual Neural
Network (ResNet-18), whose architecture begins with an
initial 7×7 convolutional layer applying 64 filters with stride
two and ‘same’ padding, followed by batch normalization,
ReLU activation, and 3×3 max-pooling. The network then
processes data through four sequential residual blocks: the
first two blocks employ two 3×3 convolutional layers
with 64 and 128 filters, respectively, each preceded by
batch normalization and ReLU, while the third and fourth
blocks expand to 256 and 512 filters with identical kernel
configurations, incorporating skip connections to mitigate
vanishing gradients. The resulting feature maps are globally
averaged and processed through a fully connected classi-
fication head comprising a single linear layer with soft-
max activation for multi-class prediction. Training employs
mini-batch stochastic gradient descent (SGD) with a learning
rate of 0.001 and batch size of 20, executing five local
epochs per client across 100 clients with Non-IID data
partitioning.

This section presents the results and discussion of the
performance evaluation of the FedChallenger compared to
FedAvg, Krum, Trimmed-Mean, DUEL, Stake, Shap, and
Cluster approach. The overall evaluation results have been
subdivided into three scenarios: no-attack scenario, model
poisoning, and data poisoning attacks.

The Non-IID evaluation framework has been created
using the MNIST, FMNIST, EMNIST, and CIFAR-10
datasets as referenced in [20] for comprehensive dataset-
wise evaluation. These four datasets were specifically chosen
because they represent different levels of complexity and
are widely recognized benchmarks in FL research. MNIST
provides a fundamental baseline with its simple grayscale
digit images, while FMNIST increases the challenge with
fashion item classification at the exact resolution. EMNIST
extends this further by adding handwritten letters to the
digit classification task. Finally, CIFAR-10 introduces colour
images and more complex object recognition scenarios.
Together, these datasets enable rigorous testing across various
data distributions and difficulty levels, ranging from basic
shape recognition to more sophisticated visual classification
tasks. Their standardized formats and everyday usage in the
FL literature ensure fair comparisons with existing methods
while covering the essential spectrum of Non-IID data chal-
lenges. Table 1 presents the dataset sample distribution where
MNIST, FMNIST, and CIFAR-10 have 60,000 samples
for each of them and 45000 samples were used for the
training set, 10,000 samples were applied as test samples,
and 5,000 samples were used as validation samples. For the
EMNIST dataset, 300,000 samples have been used for the
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FIGURE 2. No attack scenario: Evaluation of accuracy.

training set, 50,832 samples have been used for the test set,
and 31,873 samples have been used for validation. During
the Non-IID data creation process, every client has been
assigned two classes of data as per McMahan et al.’s. [48]
approach. Furthermore, the error rate has been considered
the early stopping criterion for the simulation. To simulate
a model poisoning attack, we considered the most popular
Gaussian attack [49] where the jth model parameter has been
replaced with a number drawn from a Gaussian distribution.
On the other hand, the data poisoning attack has been
simulated considering the well-researched label-flipping
attack [15]. To simulate this attack, the original data label was
randomly replaced with an alternative label from within the
dataset.

FedChallenger’s evaluation has been conducted under
different scenarios, including i) no-attack, ii) Model Poi-
soning attack, and iii) Data Poisoning attack. The Gaussian
attack is considered in the model poisoning attack, and
FedChallenger’s percentage accuracy has been computed
under different percentages of compromised devices. In the
no-attack scenario, the accuracy has been measured to
highlight the robustness of the proposed approach. Moreover,
the average convergence time measurement highlights the
efficacy of the FedChallenger in a no-attack scenario.

In a data poisoning attack, model accuracy was mea-
sured by different percentages of data label-flipping. The
presence of different percentages of compromised devices
has determined the label-flipping percentage. To show the
superiority of the proposed FedChallenger, the aforemen-
tioned evaluation scenarios consider comparison with DUEL
approach [10], Trimmed-Mean [9], Krum [8], FedAvg [7],
Stake [13], Shap [14], and Cluster [27] techniques.

V. RESULTS AND DISCUSSIONS
A. NO-ATTACK SCENARIO
Figure 2 compares the test accuracy of FedChallenger against
baseline approaches, including FedAvg, Krum, Trimmed-
Mean, and DUEL approach across MNIST, FMNIST,
EMNIST, and CIFAR-10 datasets under no-attack scenarios.
FedChallenger’s innovative cosine similarity-based aggrega-
tion mechanism enables it to achieve competitive accuracy
with fewer communication rounds while providing superior
stability, particularly in Non-IID settings.

On MNIST evaluation, FedChallenger performs com-
parable to FedAvg and Trimmed-Mean, surpassing 96%
accuracy within the initial training rounds. In contrast,
Krum’s method and DUEL approach requires additional
communication rounds to attain their peak accuracy of 95%.
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This performance gap stems from Krum’s limitation of rely-
ing exclusively on a single client update per round, severely
restricting gradient diversity. Meanwhile, DUEL approach
suffers computational inefficiency due to its dual rejection
mechanisms combining Loss Function Rejection (LFR) with
Error Rate Rejection (ERR). FedChallenger’s comparable
performance emerges from its consensus boosting of updates
that maintain strong directional alignment with the global
model through cosine similarity, ensuring stable convergence
while preserving all beneficial updates.

For FMNIST evaluations, FedChallenger establishes a
clear accuracy advantage of 1.5%, 4.1%, 1.3%, and 3.4%
over Trimmed-Mean, Krum, FedAvg, and DUEL approach,
respectively, while demonstrating significantly steeper ini-
tial learning curves. Krum, Trimmed-Mean, and DUEL
approach exhibits slower adaptation to FMNIST’s complex
feature space, whereas FedChallenger’s similarity-driven
weighting mechanism successfully balances contributions
across diverse clients. This capability proves particularly
valuable in reducing noise from Non-IID data distributions.
The comparative approaches of Krum and DUEL exhibit
substantially flatter learning curves due to their respective
limitations - Krum’s excessive rigidity in update selection and
DUEL tendency toward unnecessary update discarding.

The EMNIST evaluation reveals FedChallenger maintain-
ing performance parity with FedAvg and Trimmed-Mean
while achieving significant accuracy improvements of 3.9%
over Krum and 2.9% over DUEL approach. FedChallenger’s
exceptional stability under Non-IID conditions originates
from its consensus boosted weights and rigorous enforcement
of gradient alignment through cosine similarity metrics. This
approach effectively prevents destabilization from skewed
local updates, a vulnerability particularly apparent in FedAvg
and Trimmed-Mean due to their lack of explicit geometric
consistency verification mechanisms.

In the CIFAR-10 dataset, FedChallenger continues to
match the accuracy levels of FedAvg and DUEL approach
while substantially outperforming Krum by 6.4% and
Trimmed-Mean by 3.1%. The early convergence in Figure 2
demonstrates FedChallenger’s particular efficiency in high-
dimensional spaces, where Krum’s similarity-based selec-
tion criteria fail to maintain adequate gradient diversity.
Trimmed-Mean struggles with CIFAR-10 properties and
its blind threshold-based rejection, while FedChallenger’s
lightweight cosine-based weighting maintains scalability and
robustness.

A critical observation from all datasets shows Fed-
Challenger exhibiting markedly lower accuracy fluctuation
under Non-IID conditions compared to baseline methods,
as demonstrated in Figure 2. This stability advantage derives
from FedChallenger’s gradient alignment enforcement
strategy, which intelligently weights updates according
to their directional consistency. This approach mitigates
client drift without ignoring Trimmed-Mean’s aggressive
pruning or Krum’s problematic over-reliance on single
updates. In contrast, FedAvg’s simple uniform averaging

inevitably accumulates variance from divergent clients,
while DUEL rejection-based methodology unnecessarily
discards potentially valuable updates in benign operational
environments. Furthermore, FedChallenger incorporates
MAD-based adaptive pruning of gradients, and that ensures
zero filtered records for the no-attack scenario.

B. MODEL POISONING ATTACK SCENARIO
In the model poisoning attack scenario, the target device’s
model parameters are replaced with values drawn from a
Gaussian distribution. Figure 3 illustrates the accuracy com-
parison of FedChallenger, Krum, Trimmed-Mean, FedAvg,
and DUEL approach across successive iterations under this
attack scenario. The evaluation considers the replacement of
40% of clients’ model parameters with Gaussian-distributed
values, with tests conducted on MNIST, FMNIST, EMNIST,
and CIFAR-10 datasets to demonstrate FedChallenger’s
robustness.

The results reveal significant accuracy inconsistencies
in Krum and FedAvg, establishing them as the worst-
performing methods. FedChallenger demonstrates substan-
tial accuracy improvements across all datasets, achieving
2.9, 3.2, 3.68, and 6.7 times higher accuracy than FedAvg
on MNIST, EMNIST, FMNIST, and CIFAR-10 respectively.
Compared to DUEL approach, FedChallenger maintains
accuracy gains of 1.41, 1.54, 1.66, and 2.38 times across
the same datasets. Furthermore, FedChallenger achieves
absolute accuracy improvements of 2.65%, 14.24%, 11.15%,
and 24.85% over Trimmed-Mean on MNIST, FMNIST,
EMNIST, and CIFAR-10, respectively. Krum’s Euclidean
distance-based aggressive outlier removal proves particularly
vulnerable, yielding 1.9, 2.6, 1.4, and 3.6 times lower
accuracy than FedChallenger on the respective datasets.
The evaluation conclusively demonstrates FedChallenger’s
consistent superiority across all datasets. Its dynamic m
update selection, based on MAD-based estimation, enables
adaptive pruning of updates while ensuring cosine similarity
prioritizes update direction over absolute values. This
approach makes FedChallenger resilient to Gaussian noise
and skewed gradients caused by Non-IID data.

The evaluation framework assesses FedChallenger’s
robustness across increasing percentages of compromised
devices. Figure 4 illustrates the accuracy trends from
0% to 30% poisoning rates, where adversarial clients
inject Gaussian-distributed noise into model parameters.
Consistent with theoretical expectations, all baseline methods
demonstrate progressive accuracy degradation as poisoned
updates increase.

FedChallenger maintains superior performance across all
datasets, achieving accuracy improvements of 2.2, 2.6, 2.5,
and 4.9 times relative to FedAvg in MNIST, EMNIST,
FMNIST, and CIFAR-10 evaluations. Compared to DUEL
approach, FedChallenger exhibits relative accuracy gains of
23.6%, 32.8%, 35.4%, and 69.7% across the same datasets.

While Trimmed-Mean emerges as the strongest competi-
tor, FedChallenger maintains consistent advantages of 5.2%,
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FIGURE 3. Model poisoning attack scenario: evaluation of accuracy under 40% compromised devices.

8.3%, 7.8%, and 17.2% in MNIST, FMNIST, EMNIST,
and CIFAR-10 evaluations respectively. This performance
advantage stems from FedChallenger’s advanced aggregation
strategy, which builds upon Trimmed-Mean by incorporating
cosine similarity for enhanced robustness. Specifically,
it dynamically prunes updates via MAD computation,
adjusting the m value to enhance resilience further.
Krum’s fundamental limitation of selecting only a single

client update per aggregation round proves particularly
detrimental, resulting in severe accuracy deficits of 40.1%,
55.2%, 51.2%, and 83.8% compared to FedChallenger across
FMNIST, EMNIST, and CIFAR-10 evaluations. These com-
prehensive experimental results conclusively demonstrate
FedChallenger’s superior accuracy and resilience across all
tested scenarios and datasets.

C. DATA POISONING ATTACK SCENARIO
In this evaluation, the target label of the training set is
replaced with a randomly selected label from the available
list, excluding the current label. Figure 5 illustrates the data
poisoning attack scenarios, primarily focusing on random
label-flipping. The evaluation examines cases where 0% to
30% of the clients’ labels are flipped. The results demonstrate
that FedChallenger consistently outperforms other methods.
As the percentage of label-flipping increases, the accuracy of
Trimmed-Mean declines sharply. Specifically, under a 30%

compromised device scenario, Trimmed-Mean experiences
an accuracy drop of 4.6% on MNIST, 7.6% on EMNIST,
8.2% on FMNIST, and 7.2% on CIFAR-10.

Similarly, while Krum maintains consistency in model
poisoning and no-attack scenarios, its performance becomes
unstable as label-flipping increases. FedChallenger achieves
significantly higher accuracy than Krum, with improvements
of up to 47.2% on MNIST, 61.5% on CIFAR-10, 47.8%
on FMNIST, and 49.7% on EMNIST when 30% of device
labels are flipped. Furthermore, compared to FedChallenger,
FedAvg and DUEL approach exhibits substantial accuracy
degradation under 30% label-flipping. FedAvg suffers drops
of 93.5% on CIFAR-10, 56.4% on MNIST, 88.4% on
FMNIST, and 80.4% on EMNIST, while DUEL method
shows declines of 5.6% on CIFAR-10, 7.1% onMNIST, 7.4%
on FMNIST, and 7.8% on EMNIST.

Despite 30% of data labels being flipped, FedChal-
lenger maintains superior performance, demonstrating sig-
nificantly higher accuracy than competing methods. These
findings confirm that FedChallenger exhibits robustness
against model and data poisoning attacks, attributable
to its challenge-response-based mechanism and cosine
similarity-based weight selection. The challenge-response
mechanism dynamically verifies the credibility of participant
updates, and cosine similarity with an adaptive m value
pruning utilising MAD eliminates inconsistent updates.
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FIGURE 4. Model poisoning attack scenario: Evaluation of accuracy under different compromised device percentages.

Convergence Guarantee: In addition to improving accu-
racy, FedChallenger guarantees the fastest convergence
among baseline approaches across varying levels of model
and data poisoning attacks. Figure 6 compares the aver-
age convergence times of FedChallenger, Trimmed-Mean,
Krum, FedAvg, and DUEL approach on MNIST, EMNIST,
FMNIST, and CIFAR-10 datasets with 20% of client data
poisoned.

On the MNIST dataset, FedChallenger achieves a 19.5%
reduction in convergence time compared to Trimmed-Mean
and outperforms DUEL method by 32.2%. The performance
advantage is more pronounced when compared to FedAvg
and Krum, showing improvements in convergence time of
57.1% and 56.2%, respectively. This substantial perfor-
mance gap originates from FedChallenger’s efficient cosine
similarity-based aggregation mechanism, which effectively
filters malicious updates while preserving valid gradient
contributions.

The FMNIST evaluation yields similar results, with
FedChallenger converging 24.2% faster than Trimmed-Mean
and 17.8% faster than DUEL approach. The baseline methods
FedAvg and Krum demonstrate significantly slower conver-
gence, requiring 55.9% and 49.4% more time, respectively,

to reach comparable accuracy levels. EMNIST experi-
ments further validate FedChallenger’s robustness, showing
convergence time improvements of 53.7% over FedAvg
and 52.5% over Krum. Compared to more sophisticated
approaches, FedChallenger maintains a 19.2% advantage
over Trimmed-Mean and an 18.6% improvement over DUEL
method.

The consistent performance across datasets highlights
the effectiveness of FedChallenger’s aggregation strategy in
handling varying data complexities. The most challenging
CIFAR-10 evaluation reveals FedChallenger’s strongest per-
formance advantages, particularly against vulnerable base-
line methods. FedChallenger converges 60.0% faster than
FedAvg and 52.0% faster than Krum. When compared to
more robust approaches, it maintains significant leads of
31.2% over Trimmed-Mean and 27.4% over DUEL This
demonstrates FedChallenger’s scalability to complex, high-
dimensional data spaces while preserving its convergence
advantages.

The comprehensive evaluation across MNIST, FMNIST,
EMNIST, and CIFAR-10 demonstrates that FedChallenger
achieves consistent convergence time improvements ranging
from 17.8% to 60.0% compared to existing approaches.
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FIGURE 5. Data poisoning attack scenario: Evaluation of accuracy under different compromised device percentages.

These results demonstrate that FedChallenger’s background
challenge-response and light-weight cosine similarity-based
aggregation utilising MAD computation achieves both
faster convergence and enhanced robustness against poi-
soning attacks across diverse datasets and complexity
levels.

D. PERFORMANCE COMPARISON WITH RECENT
TECHNIQUES
To assess how FedChallenger performs against recent
defence solutions—including Stake [13], Shap [14], and
Cluster [15] in mitigating poisoning attacks, an extended
evaluation was conducted for both data and model poisoning
scenarios.

The Stake aggregation mechanism employs
blockchain-based majority voting along with client reward
and penalty computations. In this evaluation, Stake was sim-
ulated using an Ethereum smart contract implementation [50]
with ϵ= 0.5 inWeb3.py [13]. On the other hand, Shap utilizes
SHAP values to detect poisoning attacks; here, 10% of test
samples were used as the background dataset for SHAP value
computation. Meanwhile, the Cluster technique extracts
source and target classes from gradients derived from clients’
local updates, subsequently applying HDBSCAN [16] to
cluster and identify malicious updates.

For the model poisoning attack, the parameters of a
randomly selected device were replaced with a Gaussian
distribution. In contrast, the label-flipping attack randomly
replaced training data labels with other available class
labels. The experimental setup remained consistent with prior
evaluations to ensure a fair comparison. The results include
convergence time and accuracy comparisons under data and
model poisoning attacks.

1) CONVERGENCE TIME GUARANTEE
Figure 7 presents the average convergence time for Stake,
Shap, Cluster, and FedChallenger Techniques under the
No attack scenario to highlight their efficacy in normal
operational mode. The experimental result suggests that
datasets and size differences impact model convergence
time.

In MNIST evaluation, Shap takes almost double the
time to converge than FedChallenger because of SHAP
value computation complexity, and Stake consumes nearly
63% more time due to the computation in Blockchain.
Cluster, on the other hand, uses HDBSCAN and takes
nearly 38% more time than FedChallenger. FedChallenger
employs a lightweight challenge-response mechanism in the
backgroundwhile utilizing cosine similarity-based consensus
boosting prior to weight averaging. This design yields
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FIGURE 6. 20% data poisoning attack scenario: Evaluation of average convergence time.

significantly lower computational complexity than Stake,
Shap, and cluster-based techniques.

Further evaluation with EMNIST, FMNIST, and CIFAR-
10 datasets reveals that the FedChallenger is faster among its
peers. In EMNIST, FedChallenger is 2.2, 2.4, and 2.5 times
faster than the Stake, Shap, and Cluster techniques. Mean-
while, in the FMNIST evaluation, FedChallenger remains
1.8, 1.6, and 1.4 times faster than the Stake, Shap, and Cluster
techniques, respectively.

In CIFAR-10 evaluation, FedChallenger becomes 46%,
42%, and 50% fastest than the Stake, Shap, and Cluster
techniques, respectively. The results proved that the FedChal-
lenger is a lightweight alternative to the recent state-of-the-art
solutions.

2) MODEL POISONING ATTACK
This study comprehensively evaluates model poisoning
resilience by systematically comparing the FedChallenger
and Stake aggregation methods using the MNIST, EMNIST,
FMNIST, and CIFAR-10 datasets. Other defence mecha-
nisms were excluded from this evaluation as they primarily
address data poisoning scenarios rather than model poisoning
attacks. The experimental framework assumes that 40%
of the client model parameters are compromised through
adversarial manipulation.

The results, as presented in Figure 8, demonstrate dis-
tinct performance characteristics between the two defence
mechanisms. FedChallenger exhibits superior resilience in

MNIST and CIFAR-10 environments, achieving measurable
accuracy improvements of 0.5% and 1.1%, respectively,
compared to the Stake method. Conversely, Stake shows
marginally stronger performance on EMNIST and FMNIST
datasets, with accuracy advantages of 2.4% and 9.5%,
respectively. These differential outcomes suggest a nuanced
relationship between dataset characteristics and defence
mechanism efficacy. FedChallenger’s consistent performance
across multiple evaluation scenarios, particularly its strong
showing in more complex CIFAR-10 environments, indicates
robust generalization capabilities.

3) DATA POISONING ATTACK
In the data poisoning attack scenario, class labels were
randomly replaced with different labels, ensuring that each
original label and its replacement were distinct. The evalu-
ation considers MNIST, EMNIST, FMNIST, and CIFAR-10
datasets, and the compromised device percentage has been
varied between 10% to 40%. Figure 10 presents the result of
data poisoning attacks under different compromised device
percentages in various datasets.

In MNIST evaluation, FedChallenger shows negligible
performance improvement over the Shap technique. How-
ever, Stake and Cluster show nearly 3% and 6% drop
in accuracy, respectively, in 40% compromised device
scenarios. In contrast, the EMNIST evaluation in Cluster
technique shows nearly a 6% drop in accuracy compared to
FedChallenger under 40% compromised device percentage.
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FIGURE 7. No attack scenario: Evaluation of average convergence time.

FIGURE 8. Model poisoning attack scenario: Evaluation of accuracy under
40% compromised device scenario.

Shap shows approximately a 1.5%drop in accuracy compared
to the FedChallenger in the same compromised device
scenario. The stake technique is the worst performer in a
40% compromised device scenario since it loses over 10%
accuracy to FedChallenger. However, in FMNIST evaluation
at 40% compromised device scenario, the Cluster technique

TABLE 2. Accuracy comparison with 30% label-flipping on MNIST.

becomes the worst performer with a drop of nearly 20% of
accuracy compared to the FedChallenger, while Stake and
Shap lose 9.5% and 6% accuracy to Fedchallenger.

Finally, in CIFAR-10 evaluation, most techniques start to
lose more accuracy compared to FedChallenger due to the
nature of the dataset, and Shap becomes a bad performer in
40% compromised device scenario as it loses nearly 15%
accuracy to the FedChallenger. Additionally, the Stake and
Cluster technique loses 10% and 12% global model accuracy,
respectively, compared to FedChallenger under the same
compromised device percentage.

From the evaluation, it is evident that the FedChallenger,
due to its challenge-response mechanism and consideration
of the variant of Trimmed-Mean aggregation that employs
MAD-based adaptive m value pruning with cosine-similarity
computation, competes significantly well with Stake, Shap,
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FIGURE 9. Data poisoning attack: Evaluation of accuracy under different compromised device percentage.

TABLE 3. F1-Score for techniques under different percentage of compromised devices.

and Cluster techniques. Once again, it has been proven that
the method is robust across diverse datasets and converges
faster due to the lightweight nature of its algorithms.

E. DEMONSTRATION WITH EXEMPLARY MNIST DATA
To empirically validate the FedChallenger approach,
we demonstrate its behaviour on a subset of the MNIST
dataset under label-flipping attacks. Figure 10 shows the
original and poisoned samples along with FedChallenger’s
mitigation process. In original samples, 3, 7, and 5 are the
correct labels for the images. However, the poisoned samples

are identified with incorrect labels of 2, 8, and 9, respectively.
After FedChallenger’s corrections, labels 3, 7, and 5 are
restored. Table 2 quantifies the impact of 30% label-flipping
on MNIST classification:

The demonstration shows FedChallenger maintains 86.7%
accuracy despite label-flipping, outperforming baseline
methods by 4-57%. Figure 11 illustrates how cosine similar-
ity detects malicious updates from poisoned clients. From the
figure, it is evident that FedChallenger successfully identifies
poisoned updates with similarity< 0.3while retaining benign
ones with similarity > 0.7.
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FIGURE 10. Demonstration of label-flipping attack and mitigation on
MNIST samples.

FIGURE 11. Gradient cosine similarity between benign and poisoned
clients.

F. ABLATION STUDY
To further analyze the impact of adversarial settings and
hyperparameters, we conduct an ablation study.

1) IMPACT OF COMPROMISED DEVICE PERCENTAGES
Table 3 presents an ablation study to understand better how
state-of-the-art techniques perform under varying percent-
ages of compromised devices with poisoned data. The study
is conducted under the following experimental setup:
• Datasets: Two widely used datasets, EMNIST and
CIFAR-10, are employed to evaluate the techniques.

• Adversarial Conditions: The percentage of compro-
mised devices α is varied at 0%, 10%, 20%, and 30%
to simulate increasing levels of adversarial influence.

• Metric: The F1-Score is used to measure the perfor-
mance of each technique.

The findings of the ablation study are highlighted as
follows:

TABLE 4. F1-Scores (%) under varying B and η.

• Baseline Performance (α = 0): All techniques per-
form well without adversarial influence. FedChallenger
achieves the highest F1-Score of 92.48% on the
EMNIST dataset, while the Shap technique achieves
the highest F1-Score of 84.14% on CIFAR-10. Stake
remains a close contender on EMNISTwith an F1-Score
of 91.94%, and FedChallenger ranks second on CIFAR-
10 with an F1-Score of 83.98%.

• Impact of Adversarial Conditions (α > 0): As the
percentage of compromised devices increases, the per-
formance of most techniques degrades. FedChallenger
maintains the highest F1-Score across most levels of
α, demonstrating its robustness. However, it achieves
the second-highest F1-Score on the EMNIST dataset
when 30% of devices are compromised, with Shap
emerging as the clear winner. In contrast, FedAvg shows
significant vulnerability, with its F1-Score dropping
sharply from 83.34% at α= 0 to 23.46% at α= 30 on the
CIFAR-10 dataset. Krum is the second most vulnerable
strategy, with F1-Scores of 48.24% and 34.22% in the
30% compromised device scenario on the EMNIST and
CIFAR-10 datasets, respectively.

• Comparative Analysis: FedChallenger consistently
outperforms other techniques, highlighting its effective-
ness in adversarial conditions. Techniques like Stake,
Shap, and Cluster exhibit moderate robustness, while
FedAvg and Krum are the most vulnerable to adversarial
influence.

2) IMPACT OF BATCH SIZE AND LEARNING RATE
This experiment evaluates the effects of batch size (B) and
learning rate (η) variations exclusively through F1-Score
measurements on the CIFAR-10 dataset, with a fixed α = 20.
The outcomes are presented in Table 4 where the
Key Findings are:

• Batch Size: Larger batches (B= 20) generally improve
robustness (e.g., FedAvg gains +1.94% over B= 10).

• LearningRate: Increasing η to 0.01 boosts performance
for FedAvg (+5.75%) but may destabilize Krum.

• FedChallenger remains robust across configurations,
though B= 10 surprisingly outperforms at η = 0.001.

This study demonstrates the importance of robust aggre-
gation techniques in FL, particularly in adversarial settings.
FedChallenger is the most effective method for maintaining
high performance even under significant adversarial influ-
ence. It is a strong candidate for real-world applications
where device data poisoning is a concern. The default setup
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(B = 20, η = 0.001) balances stability and performance, but
tuning η could further mitigate poisoning effects.

VI. CONCLUSION
Existing defence strategies against model poisoning and
data poisoning attacks have been shown to inadequately
prevent the propagation of malicious samples into the aggre-
gation process. To address this limitation, FedChallenger,
a zero-trust challenge-response-based defence mechanism,
is introduced. This approach accumulates device behavioural
data to detect compromised data or model parameters.
Additionally, a secondary defence layer uses an adaptive
Trimmed-Mean approach in two distinct modes. It applies
cosine similarity-based consensus boosting during normal
operation to refine model updates. When attacks are detected,
it filters compromised data throughMAD computations. The
evaluation results suggest that the MAD-based aggregation
strategy is very effective in removing the impact of malicious
updates. Moreover, based on the evaluation of multiple
datasets, including MNIST, EMNIST, FMNIST, and CIFAR-
10, it is evident that FedChallenger shows consistent perfor-
mance and is evident to be the best dataset-independent tech-
nique compared to the existing state-of-the-art approaches.
The experimental evaluation demonstrates FedChallenger’s
consistent superiority across multiple attack scenarios and
datasets. Under 30% label-flipping attacks on FMNIST,
FedChallenger achieves significant accuracy improvements
of 8.2%, 47.8%, 88.4%, and 7.4% over Trimmed-Mean,
Krum, FedAvg, and DUEL approach, respectively. The
advantages extend to convergence speed, with FedChallenger
showing 60%, 52%, 31%, and 27% faster performance than
these same baselines in 20% label flipping scenarios. For
more severe 40% model poisoning attacks on CIFAR-10,
FedChallenger maintains substantial accuracy leads, outper-
forming comparative methods by factors of 1.24 to 6.7 times.
Even in benign environments, FedChallenger preserves its
competitive edge due to consideration of consensus-boosted
gradients. Moreover, the evaluation with recent techniques
suggests that FedChallenger is consistently a good competitor
of the Stake, Shap, and Cluster techniques and offers 36%,
47%, and 54% faster convergence guarantee in the CIFAR-
10 dataset, respectively. These comprehensive results validate
FedChallenger as a robust, dataset-independent solution that
effectively addresses the limitations of existing defence
mechanisms. The technique’s multi-layered architecture
combines challenge-response verification with enhanced
cosine similarity-based aggregation and proves particularly
effective at neutralizing diverse poisoning threats while
maintaining model performance.

FedChallenger provides robust defence against poison-
ing attacks but exhibits two limitations: vulnerability to
sophisticated privacy attacks (e.g., HidAttack, membership
inference) and untested performance on textual data. Future
extensions will investigate textual domain adaptation and
develop countermeasures against different privacy attacks to
broaden the framework’s protective scope.
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