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Abstract
This study proposes and compares two data-driven, non-intrusive reduced-order 
models (ROMs) for additive manufacturing (AM) processes: a combined proper 
orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional 
autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper 
orthogonal decomposition to create a reduced-order model, which is then combined 
with an artificial neural network to establish a surrogate model linking the snapshot 
matrix to the input parameters. This approach effectively reduces the dimensionality 
of the high-fidelity snapshot matrix and constructs a regression framework for 
accurate predictions. Conversely, the CAE-MLP model employs a 1D convolutional 
autoencoder to reduce the spatial dimension of a high-fidelity snapshot matrix 
derived from numerical simulations. The compressed latent space is then projected 
onto the input variables using a multilayer perceptron (MLP) regression model. This 
method leverages deep learning techniques to handle the complexity of the data 
and improve prediction accuracy. The accuracy and efficiency of both models are 
evaluated through thermo-mechanical analysis of an AM-built part. The comparison 
of statistical moments from high-fidelity simulation results with ROM predictions 
reveals a strong correlation. Furthermore, the predictions are validated against 
experimental results at various locations. While both models demonstrate good 
agreement with experimental data, the CAE-MLP model outperforms the POD-ANN 
model in terms of prediction accuracy and performance. The findings highlight the 
potential of integrating reduced-order modeling techniques with machine learning 
algorithms to enhance the analysis of complex AM processes. The proposed models 
offer a robust framework for future research and applications in the field of additive 
manufacturing, providing high precision and efficiency.
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Introduction
Laser Powder Bed Fusion (L-PBF) is a cutting-edge Additive Manufacturing (AM) tech-
nology that fabricates 3D parts by fusing successive layers of powder using a high-energy 
laser beam. L-PBF comprises two primary techniques: Electron Beam Melting (EBM), 
which uses a high-energy electron beam, and Selective Laser Melting (SLM), which 
employs a high-power laser to bond powder layers. This process enables the produc-
tion of complex, robust geometries with minimal material waste, significantly reduc-
ing manufacturing costs. Despite these advantages, L-PBF faces challenges such as part 
distortion, dimensional inaccuracies, and premature build failures. This study focuses 
specifically on the SLM process, analyzing temperature evolution and strain in the fab-
ricated part to improve understanding of its thermal and mechanical behavior during 
manufacturing.

In SLM, steep thermal gradients occur between the melt pool (reaching several thou-
sand degrees Celsius) and surrounding solidified regions, which remain near ambient or 
preheat temperatures. These gradients induce residual stresses that can cause deforma-
tion and incompatibility. The combination of extreme temperature differences and a rap-
idly moving high-power laser requires highly nonlinear, finely meshed numerical models 
for accurate simulation. Moreover, SLM involves multiple length and time scales, fur-
ther complicating numerical analyses. Rapid temperature changes in the melt pool occur 
within milliseconds to seconds, while the layer-by-layer building process may extend 
over hours or even days, with prolonged cooling periods. Phase transformations and 
latent heat during the powder-to-liquid-to-solid transitions add to the complexity and 
computational cost of thermal analysis. As a result, there is an urgent need for advanced 
numerical methods or alternative approaches to reduce these computational demands.

Data-driven machine learning models offer a promising alternative for studying the 
SLM process [1, 2]. Ravichander et al. [3] developed a neural network model to pre-
dict SLM outputs, training on experimental data and applying the model to generate 
new datasets. Similarly, Chaudhry et al. [4] introduced an ML framework to construct 
a surrogate model for SLM optimization. Other studies [5–9] have also explored ML 
approaches for additive manufacturing. However, as dataset dimensionality grows, these 
methods face scalability challenges. For instance, in [4], the data matrix for training the 
deep neural network (DNN) had dimensions of 360 × 287. Expanding this to 360 × 97,650 
by increasing input vector sizes would render the DNN approach impractical due to the 
explosion in trainable parameters, which can reach millions or even billions. depending 
on network depth and size.

Recently, reduced-order modeling (ROM) has gained popularity in the computational 
community as an effective way to reduce computational costs without sacrificing accu-
racy, especially when dealing with large datasets. ROM enables rapid surrogate models 
for expensive simulations, making it particularly valuable for optimization tasks, real-
time tracking, and online predictions in both industrial applications and fundamental 
science.

One of the most widely used ROM techniques is Proper Orthogonal Decomposition 
(POD). Originally introduced by Pearson [10] in 1901, POD has evolved into a robust 
and efficient tool for ROM analysis across various fields [11]. Recent developments 
have introduced non-intrusive methods for determining the coefficients of linear POD 
approximations through data-driven approaches, while preserving the integrity of 
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the governing equations [12]. These include stochastic frameworks such as POD with 
Polynomial Chaos Expansion (POD-PCA) and POD combined with Artificial Neu-
ral Networks (POD-ANN), which build regression models linking input parameters to 
the coefficients of the POD basis [13–17]. Zhao et al. [18] applied POD to analyze the 
thermal behavior of electron beam melting (EBM) systems, using ABAQUS to inves-
tigate temperature distributions in a moving energy source. Similarly, studies [19–21] 
proposed POD-based ROM approaches for linear and nonlinear transient heat trans-
fer problems, demonstrating strong agreement between standard FEM simulations and 
POD-FEM results.

The essence of POD lies in constructing a high-fidelity snapshot matrix to extract a 
small set of eigenmodes and the coefficients of a linear basis derived from these modes. 
Zhao et al. [22] used POD to develop a parameter map and POD bases via a regression 
tree method, which was later applied to predict outcomes for new sets of input variables. 
In related studies [14, 15], POD modes were combined with machine learning models, 
including artificial neural networks (ANNs). This integration of POD and ML has proven 
highly effective for handling large datasets and complex processes.

Recent advances in additive manufacturing have leveraged Physics-Informed Neural 
Networks (PINNs) to model thermal-mechanical behavior and melt-pool dynamics. 
Liao, et al. [23] developed a PINN-based thermal model for SLM with parameter infer-
ence, and Li et al. [24] provided one of the first 3D PINN formulations for temperature 
and flow prediction in SLM. More recently, Sharma et al. [19] introduced thermome-
chanicallyaugmented PINNs for stress prediction, and Zhu et al. [25] proposed a transfer 
learning-enhanced PINN (TLEPINN) for rapid meltpool morphology estimation. These 
studies underscore the growing integration of PINNs in additive manufacturing for real-
time, highfidelity modeling and highlight future directions for extending the capabilities 
of data-driven reduced-order models.

Building on this context, the present study proposes a framework for non-intrusive 
reduced-order models that combine POD and CAEs in two distinct approaches to 
reduce the dimensionality of high-fidelity matrices obtained from finite element simula-
tions. These frameworks are entirely data-driven and aim to predict strain fields in SLM-
built parts efficiently while preserving accuracy. While POD’s linearity is a strength, it 
also limits its ability to represent complex dynamic systems [26]. It often fails to capture 
transient or highly localized features due to its reliance on global basis functions, which 
may not localize well in space or time. The quality of snapshots is another critical factor, 
as insufficient coverage of significant regimes can lead to inadequate reduced models. 
Modal truncation, often determined heuristically, introduces a trade-off between com-
putational efficiency and the ability to capture essential dynamics. Furthermore, the 
orthogonality constraint of POD modes may not align with the actual physics in certain 
systems, such as turbulent flows, where relevant structures are not orthogonal. Although 
POD modes are often considered physically interpretable, this clarity can dimin-
ish in highly complex systems, making it harder to relate them to meaningful physical 
phenomena.

To address these limitations, nonlinear manifolds have been explored as alternatives 
for dimensionality reduction, with several approaches leveraging deep learning tech-
niques [27, 28]. One such method is the autoencoder, which consists of two components: 
an encoder and a decoder. Jin et al. [29] introduced a convolutional neural network 
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(CNN)-based autoencoder (CAE) model for detecting anomalies in AM-built parts. 
CAEs incorporate operations such as convolution, multilayer perceptron, upscaling, and 
pooling [30, 31], which help reduce the number of trainable parameters. However, due 
to their complexity, CAEs are prone to overfitting if not properly regularized. Compared 
to POD, the CAE-MLP model generally demands more training and prediction time; 
however, this trade-off is justified by its higher accuracy, especially for strongly nonlin-
ear systems. Unlike traditional linear bases, CAEs excel at capturing complex, hierar-
chical, and spatially localized features. This expressive nonlinear power is essential for 
accurately modeling turbulent flows, highly transient phenomena, or systems where lin-
ear assumptions fail. Moreover, CAEs can generalize effectively across diverse operating 
conditions, potentially eliminating the need for retraining or recalibration when applied 
to new scenarios. Although CAEs require higher initial training costs, they enable high-
fidelity surrogate predictions that can accelerate convergence in optimization loops 
and design studies—offsetting their slightly slower prediction times. In related studies 
[32–34], CAEs have been combined with Long Short-Term Memory (LSTM) networks 
to develop surrogate modeling frameworks, particularly for time-dependent predictions 
in AM-built parts.

This study proposes a framework of non-intrusive reduced-order models (ROMs) 
for the parametric analysis of the SLM building process. The data-driven framework 
integrates POD and CAEs in two distinct approaches to reduce the dimensionality of 
high-fidelity matrices obtained from finite element simulations. These solution matrices 
represent normal directional strains computed using Workbench Additive software [35]. 
This comparison aims to evaluate how the model architectures and training procedures 
influence the learned latent modes and the accuracy of reconstructions and predictions. 
In the first approach, POD bases of the strain matrices are computed, and a multilayer 
perceptron (MLP) is trained to map input variables to the POD coefficients. This surro-
gate model is then used to predict strains for new sets of input parameters. In the second 
approach, dimensionality reduction is performed using a CAE, where the spatial dimen-
sion is encoded into a latent space. An MLP maps this latent space to the input variables, 
while the decoder reconstructs the original spatial dimension from the latent represen-
tation. Together, the trained MLP and decoder reconstruct strain fields for new process 
parameters.

The proposed framework is applied to the stochastic analysis of a benchmark SLM-
built part, AMB2018-1, produced by the National Institute of Standards and Technology 
(NIST) [36]. This work introduces new capabilities for reduced-order modeling of com-
plex physical systems.

The paper is organized as follows: Sect. Mathematical modelling presents the math-
ematical background of POD and CAE. Section  Results and Discussion evaluates the 
performance of the proposed framework through a comparison with benchmark results. 
Section Conclusion provides concluding remarks and directions for future research.

Mathematical modelling
Proper orthogonal decomposition (POD)

POD was originally developed in the study of turbulent flow fields to decompose ran-
dom vector fields into deterministic functions that capture the fluctuating kinetic energy 
of the flow [37, 38]. The underlying idea was that a finite set of deterministic functions, 
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known as POD modes, could effectively describe the flow structure. Since its inception, 
POD has been widely adopted across various scientific and engineering domains.

POD exhibits two key properties: optimality and orthogonality. Optimality ensures 
that the decomposition is the most efficient, with the leading modes capturing the maxi-
mum possible energy compared to any other linear decomposition of the data. Orthogo-
nality ensures that the time series of the modal coefficients are linearly uncorrelated, a 
critical feature for constructing stable and accurate reduced-order models.

Let us suppose Y = [y1, y2 , . . . . yn] is a real-valued m × n matrix whose rank is 
d ≤ min {m, n} with columns yj ∈ Rm, 1 ≤ j ≤ n. POD is combined with sin-
gular value decomposition (SVD) to obtain the reduced order model and a low-rank 
approximation that is easy to compute [38]. The SVD assures that there are real numbers 
σ 1 ≥ σ 2 ≥ . . . . . . . . . ≥ σ d > 0 and orthogonal matrices Ψ ∈ Rm× m, with 
columns {ψ i}

m
i=1, and Φ ∈ Rn× n, with columns 

{
φ j

}n

j=1, such that

Ψ T Y Φ =
(

D 0
0 0

)
� (1)

Here, D = diag (σ 1 , σ 2 . . . σ d) ∈ Rd× d. The zero blocks in Eq.  (1) have the appro-
priate dimensions, and T represents the matrix transpose. In addition, {ψ i}

d
i=1 and {

φ j

}d

j=1 satisfy the properties

Y φ i = σ i ψ i and Y T ψ i = σ iφ i where i = 1, 2 . . . . d� (2)

which are eigenvectors of Y Y T  and Y T Y , respectively, with the eigenvalues 
λ i = σ 2

i > 0, i = 1, 2 . . . . d. Also, {ψ i}
m
i=d+1and 

{
φ j

}n

j=d+1are eigenvectors with 

the eigenvalue 0 of Y Y T  and Y T Y  (if d < m and d < n).
From Eq. (1) we can write

Y = Ψ
(

D 0
0 0

)
Φ T � (3)

For a finite number of initial L modes, the truncation criteria are imposed on the singu-
lar values as shown below:

∑ r
l=L+1σ 2

l∑ r
l=1σ 2

l

≤ δ � (4)

where δ  is a small parameter. So, every mode vector Vj  may be calculated from the j

th column of φ  as

Vj = 1
σ j

Y Φ j

.
Thus, the POD mode matrix can be constructed as below

V = [V1| . . . |Vj | . . . |V L] ∈ Rm× L� (5)

Once the POD modes are obtained, they are then used to calculate the projection coef-
ficients ( v) for the snapshot matrix as shown:
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v = V T Y

Similarly, the POD bases and the projection coefficients can be used to find the approxi-
mation matrix of Y:

Y ∗ = V V T Y = V v

The quality of the compression/expansion process can be captured by the relative pro-
jection error shown in the equation:

REP OD =
∑

n
j=1

|| (Y )j − (Y ∗)
j

||
2

|| (Y )j ||
2

� (6)

where j represents the jth column of the targeted matrix and || . ||2 is the L2- norm.

Proper orthogonal decomposition and artificial neural network (POD-ANN)

A schematic of the POD-ANN method is presented in Fig. 1. In the first step, the POD 
algorithm extracts the dominant modes from the snapshot matrix. These modes are then 
used to compute the projection coefficients v, providing a low-dimensional representa-
tion of the original data. Next, an artificial neural network (ANN) is trained to map the 
input variables to these coefficients v. The POD-ANN framework consists of two stages: 
the offline phase, where the ANN is trained using input parameters α and correspond-
ing projection coefficients v. Here, 80% of the data is allocated for training and 20% for 
testing.; and the online phase, where the trained ANN predicts new projection coeffi-
cients v* for a given set of physical parameters α∗. These predicted coefficients are then 
reconstructed into the original high-dimensional space using the process described in 
Algorithm 1.

An autoencoder is a type of deep neural network designed for unsupervised fea-
ture extraction and dimensionality reduction. Its architecture is well-suited for modal 
decomposition due to the inclusion of nonlinear activation functions. However, stan-
dard autoencoders can struggle to decompose input fields with multiscale coherent fea-
tures. This limitation can be mitigated by incorporating convolutional layers, which are 
adept at processing high-dimensional spatial data. Convolutional autoencoders (CAEs) 
have gained prominence in image recognition and are increasingly applied in nonlin-
ear reduced-order modeling. Unlike classical autoencoders with fully connected layers, 
CAEs employ convolutional layers to efficiently handle high-dimensional inputs [31]. A 
CAE consists of two main components: the encoder, which compresses the input matrix 
into a latent space using convolution, pooling, and dense layers; and the decoder, which 
reconstructs the original input dimensions from the latent space through upscaling, 
convolution, and dense layers. The architecture of a CAE is illustrated in Fig. 2. In this 

Algorithm 1  Flowchart of the POD-ANN method
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study, we adopt a similar CAE structure to encode and decode the spatial dimensions of 
the input snapshot matrix.

In the convolutional layers, each unit in a feature map is connected to a localized 
region of the preceding layer through a kernel and activation function. This localized 
connection allows the network to extract dominant features from the input efficiently. 
The operation of a 1D convolutional layer can be mathematically expressed as [39]:

hl
i = σ

(
H l−1 ⋇ f l

i + bl
i

)
� (7)

in which the ⋇  denotes the 1D convolution operator, hl
i ∈ RDl× 1 represents the ith 

feature of the lth, σ  is the nonlinear activation function, H l−1 = [ hl−1
1 , hl−1

2 …. hl−1
Nf l−1

 

] represents the convolution layer l − 1, bl
i gives bias value with i ∈ Nf l, f l

i  represents 

Fig. 2  Pictorial representation of a 1D convolution autoencoder architecture

 

Fig. 1  Sketch of the POD-ANN process
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kernel for layer l and l ∈ (1, n) . The depth of the convolution layer is represented by 
the total number of layers. After each layer, the pooling layers are inserted to decrease 
the dimension of the features by an amount that is defined by the kernel size of the pool-
ing layer.

As presented in the previous section, the snapshot matrix consists of 
a set of n high-fidelity solutions obtained from the numerical simula-
tion {y (α s) ∈ Rm , s = 1, . . . .n}. In this solver, α s is the s th value of the random 
variable α  in its data sample with size n, which follows a probability density function 
ϕ (α ). All these vectors’ solutions are combined and form a global snapshot matrix:

Y = [y1 .. .ys . . . .yn] ∈ Rm× n � (8)

where m is the total number of computational nodes in the spatial domain. The global 
snapshot matrix created above is divided into two sets, one with 80% and the other with 
20% of the data for training and testing, respectively.

The CAE framework is divided into three parts: (1) spatial compression, (2) a regres-
sion-based multilayer perceptron (MLP), and (3) online surrogate predictions. Spatial 
compression reduces the dimension of the input data matrix from n to L along the spa-
tial dimension where L represents the latent space dimension. The snapshot matrix Y is 
reshaped using the space encoder ( Fxenc) part of the CAE along the spatial dimension, 
as given:

VxL = Fxenc (Y) ∈ Rm× L� (9)

where VxL represents the snapshot matrix with reduced dimension. The detailed archi-
tectures of each autoencoder used for the test set and the benchmark problem are pro-
vided in Appendices Tables A1 and A3. Once the latent space is constructed, the next 
stage of the CAE framework involves implementing an MLP within this latent space. The 
MLP model is composed of multiple fully connected layers. Detailed configurations of 
the MLP applied in each case are given in Appendices Tables A2 and A4. The compres-
sion of the spatial dimension using the CAE and the application of the MLP constitute 
the offline phase of the framework, as illustrated in Fig. 3. It is worth noting that this 
framework is developed using the open-source package TensorFlow [40] and optimized 
with the Adam optimizer employing its default parameters. To accelerate optimization 
and improve convergence during training, the input snapshots are normalized as follows:

ũsi = Ysi − min (Ys)
max (Ys) − min (Ys)

s = 1 . . . ..n, i = 1 . . . .m� (10)

where usi is the normalized output for the sth input parameter and for the ith mesh 
node.

The final step involves the online surrogate prediction for a new dataset. A new set 
of input variables is generated using the Latin Hypercube Sampling (LHS) algorithm 
[41]. For each entry in the new dataset, a spatial latent vector ( VxL

*) is predicted using 
the trained MLP regression model. This predicted latent space is then decoded back to 
the original dimensional space using the spatial decoder function ( Fxdec), following the 
relation:
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Y *= Fxdec

(
VxL

*
)

. � (11)

The overall workflow of this framework is illustrated in Fig. 3 and detailed in Algorithm 
2.

Results and discussion
This section evaluates the POD-ANN and autoencoder models on two test cases: a 2D 
heat transfer problem and a 3D additive manufacturing scenario. The results obtained 
from these reduced-order models are compared with experimental data to demonstrate 
their efficiency and accuracy.

2D heat transfer test case

This preliminary test case investigates steady-state heat transfer through a plate of 
thickness e in a steady state. It serves to validate the implementation of the proposed 

Algorithm 2  Flowchart of CAE-MLP method

 

Fig. 3  Flow chart of the CAE with its online and offline phases
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algorithms. The governing equation and associated boundary conditions are defined by 
the linear heat equation:

div (−→q ) = 2h

e
(Tex − T )� (12)

where −→q  is the conduction flux given by Fourier’s law −→q = −K ∇ T  (K is the conduc-
tivity, h is the coefficient of convection and 100°C represents the given temperature on 
one side. The boundary condition at the edges is −→q .−→n = h (T − Tex). The temperature 
is 22 °C at the base (x = 0). In this test case, the coefficients of convection and conductiv-
ity are constant and considered input parameters, while the temperature over the entire 
domain is the output. A total of 300 samples were generated for the input parameters 
using the Lattice Hypercube Sampling (LHS) algorithm, with samples uniformly col-
lected in the intervals [51, 61] for K  and [42.6, 57.5] for h. The heat equation was solved 
for each input set using an in-house finite element method code. The mesh consists of 
quadrilateral elements with a total of 289 nodes, as shown in Fig. 4. The output snapshot 
matrix was used to train the POD-ANN and CAE-MLP models. The dataset of 300 sam-
ples was divided into 80% for training and 20% for testing. After training, the predictions 
from both models with a new set of input parameters were compared with the original 
snapshot matrix. A set of 5000 samples was generated using the LHS method, and the 
surrogate models (POD-ANN and CAE) were run to obtain new predictions. A statisti-
cal analysis of the outputs was then performed.

The POD-ANN model consists of three hidden layers, each with 50 neurons. The 
model determined that three POD modes were sufficient to accurately predict the out-
puts of the heat transfer problem. The CAE-MLP model reduces the spatial dimension 
from 288 to a latent space dimension of 5. More details on the encoder and decoder 
structure are provided in Table A1. This process results in a total of 140,587 trainable 
parameters. The constructed spatial latent space is then mapped to the input variables 
using a multilayer perceptron (MLP) with 34,053 trainable parameters; the detailed 
structure is presented in Table A2. The MLP and CAE are trained for 5000 and 500 
epochs, respectively, and the loss convergence graphs are shown in Fig. 5. The compar-
ison of the CAE-MLP and POD-ANN models with the snapshot matrix is performed 

Fig. 4  Pictorial representation of the mesh structure and temperature distribution throughout the plate
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using the standard deviation (std) and the mean of the predicted temperature distri-
bution across the entire domain. The outputs are compared in Fig.  6, which shows a 
good match between the temperature profiles predicted by the POD-ANN and CAE-
MLP models and the original snapshot matrix. The relative L2 error norm between the 
mean of the predicted temperature profile for the 300-snapshot matrix and each of the 
5000 realizations of the POD-ANN and CAE-MLP models are 2.88e-07 and 5.76e-08, 
respectively. It is important to note that the 5000 realizations are new input parameters, 
not those used in the training phase. Figure 6(a) shows the mean temperature variation 
between 100 and 800 °C across the entire domain, while Fig. 6(b) indicates the variation 
of the temperature profile for each node in the set for a given number of input param-
eters. Both models required similar times to train and predict the outputs; however, the 
relative L2 error norm for the CAE-MLP is lower than that of the POD-ANN. This dif-
ference indicates that the CAE-MLP predictions are more accurate than those of the 
POD-ANN. Table 1 provides more details about each model.

Fig. 5  Loss function evolution with epochs for the POD-ANN (a), CAE (b) and the MLP (c) networks
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Additive manufacturing benchmark test

In 2018, the National Institute of Standards and Technology (NIST) released several 
standard benchmark tests for different AM processes to help the community verify their 
numerical simulations. The AMB2018-01 test is one such case, designed for the selec-
tive laser melting process using the material IN625. AMB2018-01 is a bridge structure 
with dimensions of 75 × 5 × 12.5 mm, built over an 81 × 12.7 × 11 mm substrate, as shown 
in Fig. 7a and b. The case study aimed to provide reliable data on the residual stresses, 
strains, and deflections in the built part. The residual stresses and strains were measured 
using neutron diffraction and x-ray methods, while the deflection was measured after 
partially cutting the bridge from the base plate. More details on the experimental pro-
cess and geometry can be found on the NIST website [42]. The additive manufacturing 
numerical simulation is constructed using the Workbench Additive software. The valida-
tion of the workbench model was conducted in a previous publication [4]; for details on 
the Workbench Additive model, readers are referred to [35]. The simulation took 1 h on 
32 CPUs with an Intel E5-2683 v4 processor. The layer thickness, hatch spacing, laser 
speed, Poisson’s coefficient, and Young’s modulus were considered random input param-
eters, while the strain across the entire domain was the output variable. The output 
strains were calculated over 97,360 nodes in the three-dimensional mesh, as shown in 
Fig. 7c. To eliminate edge or boundary errors, nodes near the boundary were excluded. 
This simplification reduces the number of nodes, minimizing computation costs.

The five input parameters were selected within the bounds listed in Table 2 to create a 
dataset of 360 samples randomly chosen using the LHS sampling method. Young’s mod-
ulus and Poisson’s ratio were scaled using variables c1​ and c2, respectively, to adjust their 
values. Normal directional strains over the 97,360 nodes were calculated for each input 

Table 1  Comparison between the POD-ANN and the CAE-MLP
POD mode/
Latent space 
dimension

Training time 
(sec)

Prediction
Time (sec)

Relative L2 error 
norm
(mean)

Relative 
L2 error 
norm
(std)

POD-ANN 3 422.37 4.15 2.88e -07 9.02e -05
CAE-MLP 5 444.743 5.89 5.76e -08 3.05e -05

Fig. 6  Comparison of the mean (a) and std (b) of the temperature results between the original snapshot matrix 
and the temperature predictions of 5000 realizations from POD-ANN and the CAE-MLP networks
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sample, and the solutions from each sample were combined to construct a high-fidelity 
snapshot matrix, which was later used to train the POD-ANN and CAE-MLP models.

A total of three snapshot matrices, each with dimensions of 360*97,360, were gen-
erated for the x, y, and z normal strains. The POD-ANN and CAE-MLP models were 

Table 2  Upper and lower bounds for input parameters
Input Parameters Lower Bound Upper Bound
laser speed 680 mm/s 920
layer thickness 0.085 mm 0.115
hatch spacing 0.017 mm 0.023
c1Y 0.85 1.15
c2v 0.85 1.15

Fig. 7  a 2D representation of the AMB2018-01 bridge geometry from a plan and an elevation view. b Mesh of the 
bridge and the substrate using workbench additive software. c Representation of nodes considered to extract the 
strain results
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trained separately for each matrix. The performance of both models was evaluated by 
comparing the statistical moments with the original snapshot matrix. Figure 8 shows the 
training and testing of the POD-ANN models for all three normal strains, while Fig. 9 
presents comparisons between the POD-ANN predictions and the snapshot matrix for 
the entire domain and different directional strains. The POD-ANN uses the Adam opti-
mizer and the ReLU activation function to achieve better results during the learning 
and prediction phases. The number of POD modes for each normal strain are calculated 
using the truncation error δ ,which is 10− 5, 10− 6, and 10− 7 for the x, y and z directional 
strains, respectively. It was determined that 19, 42, and 66 POD modes are sufficient to 
construct a surrogate model for the given snapshot matrix, as evidenced by the error 
graph in Fig. 8. Figure 9 demonstrates that the mean and standard deviation results cor-
relate well with the original snapshot matrix. The strain graphs indicate that the body 
has undergone compression in certain areas and expansion in others. The comparison 
between the mean and standard deviation results suggests that the predictions are accu-
rate. This model can be utilized to calculate the strain at any given point in the geometry 
and for unseen input parameters within the training intervals. The results along a ran-
dom cross-section of the bridge are provided in Fig. 10. Additional details related to the 
POD-ANN structure and effects are presented in Table 3.

Similar to the heat transfer test case, the spatial autoencoder structure consists of 1D 
convolution layers with 10 and 15 channels, along with max pooling layers and a non-
linear activation function (ReLU). These components help reduce the spatial dimen-
sion from 97,360 to 19, 40, and 60 for the x, y, and z directional strains, respectively. 
The reduced dimensions represent the spatial latent space and are directly connected 
to the input parameters via an MLP model. Figure 3 illustrates the working flowchart 

Fig. 8  Error graphs for the POD-ANN for the x, y and z strains represented by (a), (b) and (c), respectively
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of the CAE-MLP model, while the detailed architecture of the CAE-spatial and MLP 
is presented in Appendix Table A3 A and A4 A. During the training process, the CAE 
is trained for 500 epochs, followed by the MLP for 1,000 epochs. The convergence his-
tory of the CAE and MLP for the x, y, and z strains is shown in Figures B1-B3 in the 
appendix. he CAE-MLP model is trained on the original snapshot matrices for x, y, and 

Fig. 9  Comparison of POD-ANN and CAE-MLP with the snapshot matrices of the x, y and z strain represented in 
(a-b), (c-d) and (e-f), respectively, for the whole domain
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Table 3  POD_ANN structure
POD 
mode

Hidden 
layers
of ANN

Number of 
neurons in 
each layer

Training 
time (Sec)

Prediction
time (Sec)

Relative L2 
error mean

Relative 
L2 error 
std

X_ strain 19 4 100 413.024 40.96 0.0003725 0.0148
Y_ strain 42 5 30 226.7586 39.6269 0.0000698 0.00871
Z_ strain 66 5 50 290.95 37.41 1.898 e-05 0.0040

Fig. 10  Comparison of POD-ANN and CAE-MLP with the snapshot matrices of the x, y and z strain represented in 
(a-b), (c-d) and (e-f), respectively, for a cross section
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z separately, with the calculated outputs presented in terms of standard deviation and 
mean. Similar to the POD-ANN process, the trained CAE-MLP model is used to predict 
outputs for a new dataset of 5,000 samples, and the variations in the statistical moments 
are compared with the original snapshot matrices for each normal strain. Figures 9 and 
10 illustrate the variations in the CAE-MLP predictions for the entire domain and a 
random cross-section of AMB2018-01, respectively, to better visualize the results. The 
results from the CAE-MLP are also compared with those of the POD-ANN in Figs. 9 
and 10 and listed in Table 4. The complete architecture of the CAE-MLP model for dif-
ferent strains is shown in Appendix Table 3 A and 4 A. Both models are trained with 
80% of the initial snapshot matrix, while the remaining 20% is used to test the models. 
Compared to the POD-ANN, the CAE-MLP model takes more time to train and predict, 
but the CAE-MLP predictions are more accurate. The L2 norm between the statistical 
moments of CAE-MLP predictions and the snapshot matrix is lower than that of the 
POD-ANN predictions for all strains. Table 4 lists the results of both models for easy 
comparison.

Comparison with experimental results

This section compares both models and the experimental outputs. The means of the 
5,000 sample outputs from both models are compared with the experimental data at 
location z = 9.536, as shown in Fig. 11. These outcomes are also compared with the out-
puts generated from the DNN model in [4] over the same cross-section. Chaudhry et al. 
[4] constructed a surrogate model using the DNN model for the normal strains at the 
experimental location points.

z = 9.536 with only 251 nodes. Comparing the three models indicates that the reduced-
order models constructed over the whole geometry provide better results than the DNN 
model built with just a cross-section. The new approaches improve the accuracy of the 
results by 60%-80%. The CAE-MLP offered significantly better results than the DNN and 
even improved on the POD-ANN, providing better results for all three normal strains. 
The relative L2​ norm values for the models and the experimental data are presented in 
Table 5 for each directional strain.

Additionally, the prediction results for normal directions with the POD-ANN and 
CAE-MLP are compared with the experimental results at three different locations. Fig-
ure  12 shows the good correlation between the experimental outputs and the predic-
tions at z = 8.25 mm, 8.75 mm, and 9.25 mm. A total of 40 experimental data points for 
each location were considered and compared up to a length of 60  mm of the bridge. 
These results demonstrate the ability of the proposed technique to accurately predict 
strain values across the entire domain.

Table 4  Comparison of POD-ANN and CAE-MLP results
Modes Relative L2 error for mean Relative L2 error for std

POD-ANN x strain 19 0.00037 0.0149
CAE-MLP x strain 19 0.0001 0.0038
POD-ANN y strain 44 0.0006 0.0088
CAE-MLP y strain 40 0.0001 0.0014
POD-ANN z strain 66 0.000017 0.0039
CAE-MLP z strain 60 0.0002 0.00049
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Conclusion
This study introduced non-intrusive reduced-order models—POD-ANN and CAE-
MLP—to analyze the selective laser melting (SLM) process. By leveraging proper 
orthogonal decomposition and deep convolutional autoencoders, the proposed frame-
works demonstrated both efficiency and effectiveness in constructing data-driven sur-
rogate models that combine techniques from reduced-order modeling and machine 
learning.

Both approaches operate in two stages: an offline phase and an online phase. Dur-
ing the offline phase, a high-fidelity snapshot matrix (97,360 × 360), representing nor-
mal strains computed using Workbench Additive software, is used. In this stage, the 
POD-ANN employs proper orthogonal decomposition to reduce the dimensionality of 
the snapshot matrix, while the CAE-MLP utilizes an autoencoder to encode the spa-
tial dimension into a latent space. The decoder subsequently reconstructs the original 
dimension from the latent representation. The reduced latent space is mapped to the 
input variables using a multilayer perceptron (MLP). In the online phase, new input 
datasets are provided, and the trained models predict the corresponding outputs. For 

Table 5  Comparison of relative L2 error norm values of 3 ML approaches with the experimental 
results

POD-ANN CAE-MLP DNN
X strain 0.040 0.039 0.271
Y strain 0.234 0.212 0.658
Z strain 0.789 0.74 0.873

Fig. 11  Comparison of the POD-ANN and CAE-MLP models with the experimental results for normal strains in the 
x, y, and z directions
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CAE-MLP, the predicted latent vectors are decoded back into the original spatial dimen-
sion, enabling reconstruction of the strain fields.

The efficiency and accuracy of these approaches were validated on two test cases: a 
steady-state heat transfer problem and the AMB2018-01 SLM benchmark from NIST. 
Both models achieved excellent agreement with high-fidelity simulations within ± 15% 
variation of input parameters. In the benchmark SLM case, CAE-MLP provided a supe-
rior approximation of statistical moments relative to the original snapshot matrix and 
outperformed POD-ANN in modeling nonlinear complexities. The CAE-MLP exhibited 
lower relative error norms and demonstrated enhanced capability for representing intri-
cate physical phenomena.

Moreover, predictions from both models were compared to experimental data and 
results from a deep neural network (DNN) model reported in [40]. Notably, both POD-
ANN and CAE-MLP showed improved correlation with experimental observations, 
with CAE-MLP achieving prediction accuracy gains of 60–80% over the prior DNN 
approach. These findings underscore the potential of the proposed methods for generat-
ing high-fidelity surrogates capable of capturing the essential dynamics of additive man-
ufacturing processes.

While these models exhibit promising performance, their reliance on training data 
limits generalization beyond the sampled parameter space. Future work will focus on 
incorporating uncertainty quantification techniques—such as ensemble methods or 
Bayesian neural networks [43–45], to provide confidence intervals, enhance robust-
ness, and ensure reliability in extrapolative scenarios. Such developments will make 

Fig. 12  Comparison of the x strains found with the POD-ANN and CAE-MLP models with the experimental results 
at z = 8.25, 8.75 and 9.25, in (a), (b) and (c), respectively
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these reduced-order models even more applicable to real-world industrial applications 
where variability and unknowns are inevitable. Furthermore, recent advances in Physics-
Informed Neural Networks (PINNs) for additive manufacturing—including thermome-
chanically augmented PINNs for stress prediction [19] and transfer learning-enhanced 
PINNs for melt pool morphology estimation [25] suggest promising avenues for hybrid 
approaches. Combining physics-based constraints with data-driven ROMs could 
enhance generalization, interpretability, and reliability, paving the way for their deploy-
ment in real-world SLM workflows and optimization pipelines.

Thus, the proposed POD-ANN and CAE-MLP models present powerful tools for 
studying highly nonlinear, complex physical systems by reducing computational costs 
without sacrificing accuracy. They offer a compelling foundation for advancing surrogate 
modeling in additive manufacturing and beyond.

Appendix A
This section provides the convergence history and the architecture for the CAE-MLP 
and POD-ANN models.

Table A.1: CAE space architecture for the heat transfer test case:

Table A.1a  Encoder-Space
Filters Activation function Kernel shape

Input - - -
Conv-pooling 32 Prelu 3 × 2
Conv-pooling 68 Prelu 3 × 2
Conv-pooling 128 Prelu 3 × 2
Flatten - - -
Dense - Prelu -
Dense (output - Lx) - Prelu -

Table A.1b  Decoder- space
Filters Activation function Kernel shape

Input ( Lx) - - -
Dense - Prelu -
Reshape - Prelu -
Conv-upsamp 128 Prelu 3 × 2
Conv-upsamp 68 Prelu 3 × 2
Conv-upsamp 32 Prelu 3 × 2
Output 1 Prelu 3

Table A.2  MLP architecture for heat transfer case
Layer type Output size Activation function
Input layer 2 Prelu
Dense layer 128 Prelu
Dense layer 128 Prelu
Dense layer 128 Prelu
Output layer Lx = 5 Linear

Table A3: CAE space architecture for the AMB2018-01 benchmark case:

Table A 3a  Encoder-Space
Filter size Kernel shape Activation function

Input - - -
Con-pooling 10 3 × 2 Prelu
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Table A 3a  Encoder-Space
Filter size Kernel shape Activation function

Con-pooling 15 3 × 2 Prelu
Flatten - - -
Dense - - Prelu
Dense (output - Lx) - - Prelu

Table A.3b  Decoder- Space
Filter size Kernel shape Activation function

Input ( Lx) - - -
Dense - - Prelu
Reshape - - Prelu
Con-upsam 15 3 × 2 Prelu
Con-upsam 10 3 × 2 Prelu
Output layer 1 3 Prelu

Table A.4  MLP architecture for the AMB2018-01 cases
Layer type Output size Activation function
Input layer 5 Prelu
Dense layer 128 Prelu
Dense layer 128 Prelu
Dense layer 128 Prelu
Output layer Lx = 19,40,60 Linear

Fig. B1  Evolution of the training and validation error for the x-strain in the AMB2018-01 benchmark case

Fig. B2  Evolution of the training and validation error for the y -strain in the AMB2018-01 benchmark case
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Fig. B3  Evolution of the training and validation error for the z-strain in the AMB2018-01 benchmark case
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