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Preoperative planning software is widely used to assist surgeons
in selecting and positioning implant components for reverse total
shoulder arthroplasty (rTSA)."* These tools rely on patient-specific
bone surface models derived from preoperative supine computed
tomography (CT) scans and predict postoperative impingement-
free motion amplitudes by simulating uniplanar humeral move-
ments. However, a major limitation is that the CT scans are acquired
in the supine position, which fails to account for the scapula
posture in a standing position—a factor critical for clinical assess-
ments.!" This discrepancy can significantly influence surgical
planning.>!" Studies by Moroder et al'® and Kriechling et al®
emphasize the importance of considering the scapula posture, as
postoperative observations show its substantial impact on func-
tional outcomes.

The experimental procedure was approved by the Cantonal Research Ethics
Commission of Geneva (CER 2019-00069) and developed in compliance with the
1964 Helsinki Declaration and later amendments. All participants provided written
informed consent prior to their participation.

*Corresponding author: Florent Moissenet, PhD, Laboratoire de Cinésiologie, HUG,
4 rue Gabrielle-Perret-Gentil, CH-1211, Geneve, 14, Switzerland.

E-mail address: florent.moissenet@unige.ch (F. Moissenet).
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Despite growing recognition of its importance, standardized and
reliable methods for measuring scapula posture in the standing
position are still lacking. Current studies, including those by
Moroder et al'® and Kriechling et al,° often rely on supine CT scans for
adjusting the scapula posture. However, Matsumura et al® demon-
strated that the scapula posture significantly differs between supine
and standing positions, raising concerns about the clinical relevance
of supine imaging, which is influenced by the positioning of the
shoulder and upper limb during recording. Moreover, defining the
scapula posture in a thorax- or patient-referenced coordinate sys-
tem (CS) typically requires whole thoraco-abdominal CT scans,
which increases radiation exposure.”!!

To address these limitations, several alternative measurement
methods are available. In particular, a novel solution by Bousigues
et al” involves low-dose biplanar radiography in a standing posture.
When combined with conventional supine CT-based bone surface
models, this approach could provide a clinically relevant tool for
determining the scapula posture in the standing position prior to
motion amplitude predictions. The aim of this pilot study was to
evaluate the feasibility of this approach in determining
impingement-free motion amplitudes. We hypothesized that
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adjusting the patient-specific scapula posture would significantly
impact both the predicted impingement-free motion amplitudes
(eg, flexion), range of motion (ROM, eg, flexion-extension), and the
sites of impingement.

Methods
Participants

This monocentric retrospective study was approved by the
Cantonal Research Ethics Commission of Geneva (CER 2019-
00069). Preoperative CT and biplanar x-ray images were retrieved
from patients undergoing elective rTSA at Geneva University Hos-
pitals between September and December 2023. All participants
provided written informed consent.

Medical imaging

CT images were acquired in the supine position following our
standard rTSA protocol using a 24-row CT unit (Somatom Drive;
Siemens Healthcare, Erlangen, Germany). Biplanar x-ray images
were taken in 40° axial rotation relative to the anterior-posterior
view (as illustrated in Fig. 2 in Bousigues et al, 2023,” and repro-
duced in the supplementary materials), with patients standing and
arms relaxed, using the EOS acquisition system (ATEC Spine,
Carlsbad, CA, USA). Skin fiducials were placed on anatomical
landmarks of the thorax (Fig. 1) to assist in identification. This view
was selected to avoid bony superimposition of both shoulders and
the spine.” The observed patient-specific scapula posture was
expressed as an internal-external rotation, upward-downward
rotation, and anterior-posterior tilt (see section Prediction of Post-
operative Impingement-Free Motion Amplitudes). Based on the in-
ternal rotation (IR) of the scapula, patients were categorized
according to Moroder et al® into three types: type A (IR < 36°), type
B (36° < IR < 47°), and type C (IR > 47°). Additional biplanar x-ray
images were taken in the coronal and sagittal planes to measure the
sacral slope orientation, which allowed for categorizing patients
based on the Roussouly classification, a system that describes
sagittal spinal alignment."® For all imaging, patient positioning was
strictly controlled, and the staff followed a posture checklist to
minimize discrepancies.

Preoperative planning

Patient-specific surface bone models of the scapula and humerus
were segmented using a semiautomatic method (Mimics; Materi-
alise, Leuven Belgium). A shoulder surgeon performed virtual im-
plantations using a planning software (MyShoulder; Medacta Intl.,
Castel San Pietro, Switzerland) as part of our standard 3-dimensional
(3D) planning process. Each patient received a correction for the
native glenoid orientation using autologous bone grafting to achieve
a baseplate neutral version and inferior inclination of —5°. The
planning surgeon was blinded to the scapula posture type, as done in
the study by Moroder et al.!' For each patient, the implant
positioning remained unchanged throughout the study.

2-dimensional—3-dimensional registration

The scapula surface model and biplanar x-ray images were
imported into image-processing software (IdefX, Institut de Bio-
mécanique Humaine Georges Charpak, Arts et Métiers Sciences et
Technologies, Paris, France; LIO, Ecole de technologie supérieure,
Montreal, Québec, Canada) for 2-dimensional (2D)—3D registra-
tion. A single operator performed a manual registration, adjusting
the model's position and orientation to align with the radiological
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contours in both x-ray views, focusing on the glenoid, coracoid
process, scapular spine, and medial border.

Prediction of postoperative impingement-free motion amplitudes

To assess the effect of the scapula posture on the predicted
impingement-free motion amplitudes and related ROM, two
simulation conditions were compared (Fig. 2). The first condition
was performed without adjusting the scapula posture. It used the
scapula local CS to simulate humeral motions relative to the scap-
ular planes. The second condition was performed with a patient-
specific adjustment of the scapula posture. It used the patient-
referenced CS to simulate humeral motions relative to the body
planes. The CSs are defined in Figure 1. Simulations were performed
in MATLAB (R2022b; MathWorks, Natick, MA, USA) by imposing
humeral elevations of 0°-180° in the sagittal (flexion and extension)
and coronal (abduction and adduction) planes, with humeral ro-
tations of 0°, +30°, and +60°, and internal—external rotations (at
0° of abduction), using a YX'Y” Euler sequence'® (step size: 1°). The
patient-specific scapula posture was expressed in the patient-
referenced CS and computed using a YX'Z” Euler sequence.'® The
sites of impingement were detected by calculating the shortest
Euclidean distance between the humerus and scapula surface
model vertices (using the pdist2 function in MATLAB). A conflict
was defined as a distance of less than 0.5 mm, excluding contact
points between the humerus and glenoid implants, and focusing on
non—implant-related impingements.

Statistical analyses

The primary parameters analyzed were the elevation angle at
which the first bony conflict occurred and the related site of
impingement (the sites of impingement are defined in Fig. 4).
Median values and interquartile ranges summarized the predicted
postoperative impingement-free amplitude of each motion (ie,
flexion, extension, abduction, adduction, internal, and external
rotation) and the ROM in each plane (ie, flexion—extension,
abduction—adduction, internal—external rotation), for each condi-
tion. The effect of the scapula posture was assessed using a Fried-
man test (paired samples) across all simulated motions and
humeral rotations. Post hoc Wilcoxon signed rank tests were per-
formed to compare conditions for each humeral rotation.

Results
Participants

Five patients (3 women, 168.2 + 9.7 cm, 84.0 + 20.5 kg) were
included in this study. Both type 1 (short lumbar lordosis and long
thoracic kyphosis) and type 3 (normal spine curves) were observed
according to the Roussouly classification.'®> Types A, B, and C from
the Moroder classification” were observed. Further epidemiological
details are provided in Table I.

Predicted postoperative impingement-free motion amplitudes

Predicted postoperative impingement-free motion amplitudes
and ROM are presented as boxplots in Figures 3 and 4, respectively,
for each condition (with and without scapula posture adjustment).
Detailed outcomes (values for each patient, descriptive and infer-
ential statistics) are reported in the supplementary materials. Ad-
justments in scapular posture produced significant changes in
impingement-free motion amplitudes. During flexion, the param-
eter increased significantly by 44° (P < .001), while extension was
accompanied by a significant decrease of 34° (P < .001). Similarly,
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Figure 1 Coordinate system used to simulate humerus motions. The patient-referenced CS was defined as follows: Op is centered on the deepest point of IJ, Yp represents the
vertical axis of the biplanar x-ray images, pointing superiorly, Z} is normal to a plane passing through the processus spinosus of the seventh cervical vertebra (C7), the processus
spinosus of the eighth thoracic vertebra (T8), IJ, and the PX, pointing right, Xp is determined as the cross-product of Yp and Zp, and Zp is determined as the cross-product of Xp and
Yp, pointing anteriorly. Thorax landmarks were identified by sphere fitting on skin fiducials in IdefX. The scapula local CS was defined as follows: Og is the origin centered at the GC,
X is orthogonal to a plane defined by the TS, the Al, and GC, pointing anteriorly, Zs lies on a line crossing TS and GC, pointing laterally, and Ys is determined as the cross-product of
Zs and X, pointing superiorly. The humerus local CS was defined as follows'®: Oy is the origin centered at GC, Xy is orthogonal to a plane defined by the most caudal point on
lateral EL, the most caudal point on medial EM, and GC, pointing anteriorly, Yy lies on a line crossing GC and the middle of EL and EM, pointing superiorly, and Zy is determined as
the cross-product of Xy and Yy, pointing laterally. All anatomical landmarks were identified in Slicer 3D (5.2.2, https://www.slicer.org/).* CS, coordinate system; IJ, incisura jugularis;
PX, processus xiphoideus; GC, glenosphere center; TS, trigonum spinae; Al, angulus inferior; EL, humeral epicondyle; EM, humeral epicondyle; 3D, 3-dimensional.
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Figure 2 Illustration of the impingement-free motion amplitude simulations highlighting the impact of the scapula posture adjustment on the predictions.
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Table I

Characteristics of the participants and virtual implants used in the planning process.
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Patient Posture Humeral implants Glenoid implants
ID Age Gender Height Body mass Side Roussouly Moroder Inclination (°) Retrotorsion (°) Inclination (°) Retroversion (°) Glenosphere size
(cm) (kg) classif. classif. (mm)

PO1 74 Male 175 100 Left  Type 3 Type B (38°) 135 20 -2 0 39

P02 70 Male 169 105 Right Type 1 Type C (49°) 135 20 -5 0 39

P03 58 Male 180 82 Left  Type 3 Type B (43°) 135 20 -5 0 39

P04 78 Female 160 80 Right Type 1 Type A (28°) 135 20 -5 0 36

PO5 77 Female 157 53 Right Type 3 Type C (51°) 135 20 -5 5 36

Friedman test

Post-hoc pairwise Wilcoxon signed-rank tests

__ 160 o 160
%« 140 140 * —_— |
e 120 120 . B
s 3 100 100+ I . . 8
X L 80 8o} I l 1
o 2 L i
g 60 60 B
2 40 40F O - ,
[« 5
£ 20 20} g
0 0
Overall rotations Ext. rot. 60°  Ext. rot. 30° Ext. rot. 0° Int. rot. 30° Int. rot. 60°
Friedman test Post-hoc pairwise Wilcoxon signed-rank tests
~ 160 " 160 "
~ 140 1401 2 7
x
& 120 120 [ | 1
S g 100 100} I 1
£ I 80 80| .
Q9 c o
X 2 e0 60} 1
[0} - |
2 40 l 40+ - |
o
€ 20 20+ B
= | |
0 0 -
Overall rotations Ext. rot. 60°  Ext. rot. 30° Ext. rot. 0° Int. rot. 30° Int. rot. 60°
- Friedman test 60 Post-hoc pairwise Wilcoxon signed-rank tests
% 140 £ 140 —_—— 1
c g 120 120+ . —_— b
2 3 100 100 I =
g & E | = H -
3 & 8 80 I I B
2 % 60 60} I 1
2 40 40 J
Q.
E 20 20 §
0 0
Overall rotations Ext. rot. 60°  Ext. rot. 30° Ext. rot. 0° Int. rot. 30° Int. rot. 60°
Friedman test Post-hoc pairwise Wilcoxon signed-rank tests
__ 160 160
"; 140 140+
g 120 120
e sk . *
- g 100 100+ § A
3% 80 80| —_— I =
T 2 L
< £ 60 60 . |
2 40 40
o
£ 20 20+ [ =
£ — = —_— =
0 0 ==
Overall rotations Ext. rot. 60°  Ext. rot. 30° Ext. rot. 0° Int. rot. 30° Int. rot. 60°
Friedman test Friedman test
__ 200 X ~ 160
i E 140
§ é 160 _§ 8 120 I Condition 1: Scapula posture not adjusted
=
% @ 120 g 8 100 I Condition 2: Scapula posture adjusted
P = =
= £ = & 80
g5 £ 5 - % p<005
5 £ & B § £ 60 :
E2 X “g’, 40 *% p<0.01
‘3 40 B *%% p<0.001
E £ 20
0

Overall rotations

Figure 3 Boxplots illustrating the effect of the scapula posture adjustment on postoperative impingement-free motion amplitudes. The colored box spans from the first to the third
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quartile, with the black line representing the median, and the gray dots the values.
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Friedman test
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Figure 4 Boxplots illustrating the effect of the scapula posture adjustment on postoperative impingement-free ranges of motion. The colored box spans from the first to the third

quartile, with the black line representing the median, and the gray dots the values.

abduction decreased by 15° (P <.001), contrasted by a 33° significant
increase during adduction (P <.001). These differences were further
influenced by the humeral rotation applied during the elevation
motions. Regarding rotations, only the IR showed a significant
increase of 101° (P < .05). However, only the internal—external
rotation ROM increasing significantly by 97° (P < .05).

Predicted sites of impingement

Predicted sites of impingement are shown in Figure 5 for each
condition (with and without scapula posture adjustment). The
scapula posture adjustment led to changes in the location of
the bony conflicts, independent of humeral rotation. During flexion,
the site of impingement shifted posteriorly with scapula posture
adjustment, involving the acromion, coracoid process, supra-
glenoid tubercle, and infraglenoid tubercle. Without scapula
posture adjustment, impingement was observed at the coracoid
process, anterior neck of the scapula, and infraglenoid tubercle.
During extension, impingement occurred exclusively at the infra-
glenoid tubercle when the scapula posture was adjusted. Without
scapula posture adjustment, impingement was observed at multi-
ple locations, including the acromion, posterior neck of the scapula,
and infraglenoid tubercle. During abduction, the site of impinge-
ment remained largely unchanged, with primary conflicts at the
acromion, coracoid process, and infraglenoid tubercle. However,
with scapula posture adjustment, impingement also occurred at
the posterior neck of the scapula. During adduction, the site of

impingement shifted anteriorly with scapula posture adjustment,
involving the coracoid process, anterior neck of the scapula, and
infraglenoid tubercle. Without scapula posture adjustment,
impingement was only observed at the infraglenoid tubercle.
During internal and external rotation, the site of impingement
remained largely unchanged, with primary conflicts at the anterior
neck of the scapula (external rotation) and infraglenoid tubercle
(internal and external rotation).

Discussion

The aim of this pilot study was to demonstrate the applicability
of a novel biplanar radiographic approach for adjusting scapula
posture in preoperative planning for rTSA. Our preliminary results
confirmed the importance of considering the scapula posture in
I'TSA planning, highlighting its significant impact on predicted
impingement-free motion amplitudes, ROM, and sites of impinge-
ment, regardless of the patient's posture as assessed by the Rous-
souly and Moroder classifications (Video clip 1).

Scapula posture adjustment approach

Building on the work of Bousigues et al,” the proposed approach
captures the scapula posture in the standing position using two
orthogonal x-ray images. This method improves the 2D—3D regis-
tration accuracy compared to single-image approaches.!”!> By
utilizing a low—radiation dose system, the approach also allows for
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Figure 5 Map of the sites of impingement and related occurrences across scapula posture conditions and humerus rotations.

whole-body imaging, which not only considers the thorax posture
but also the spine and overall posture of the patient. This method
addresses key challenges in assessing the scapula posture
compared to the current practices and aligns with the clinical
recommendations from Moroder et al.%!!

The approach consists of three key steps: first, obtaining
standing x-ray images, which is essential until standing CT scans
become more common?; second, establishing a patient-referenced
CS, bypassing the International Society of Biomechanics (ISB) rec-
ommendations for defining the thorax CS,'® which may be influ-
enced by postural changes such as kyphosis; and third, performing
a 2D—3D registration. While this registration process is currently
manual, it could benefit from semiautomated solutions in the
future.'” These steps are straightforward, align with existing prac-
tices, and could significantly enhance the preoperative rTSA plan-
ning, thereby improving surgical precision and patient outcomes.

Predicted postoperative impingement-free motion amplitudes
The predicted impingement-free motion amplitudes without

adjusting the scapula posture are consistent with findings from
recent literature. For flexion at 0° external rotation, the amplitudes

in the literature span from 83.1 + 14.6° to 127 + 27°,">>® compared
to 98° [72°-102°] (median [interquartile range]) in our study. For
extension at 0° external rotation, Lidermann et al’ reported
81.3 + 28.1°, which is lower than our values of 122° [107°-132°]. For
abduction at 0° external rotation, reported amplitudes range from
77 + 13° to 120 + 30°,">°718 compared to 96° [93°-109°] in this
study. For adduction at 0° external rotation, Lidermann et al’ re-
ported 28.6 + 10.7°, which is slightly higher than our values of 19°
[13°-20°]. Only results for external rotation at 0° abduction were
found in the literature, and reported amplitudes span from 15 + 21°
to 50 + 19°,"*° compared to 69° [65°-71°] in this study. These
differences in reported amplitudes can likely be attributed to var-
iations in implants, 3D planning software, and surgical techniques.
Notably, bone graft lateralization was planned in our study to
maximize impingement-free motion amplitudes.

The impact of the scapula posture adjustment on impingement-
free motion amplitudes also aligns with previous studies. Moroder
etal'' showed that the scapular IR, downward rotation, and anterior
tilt correlate with decreased abduction and extension amplitudes
when comparing type A, B, and C patients. We observed similar
trends when comparing nonadjusted and adjusted scapula postures.
However, unlike Moroder et al,'' who observed no significant
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changes in flexion, we identified a pronounced increase in flexion
amplitude. This discrepancy may be attributable to methodological
differences or disparities in sample size (n = 5 vs. n = 30).

Interestingly, we found no significant alterations in overall
flexion—extension or abduction—adduction ROM. This suggests
that the loss of extension (or abduction) from adjusting the scapula
posture is offset by a gain in flexion (or adduction), thereby shifting
the neutral alignment in each plane. In contrast, a significant in-
crease in the internal—external rotation range was observed. This
finding aligns with Moroder et al,” who reported that scapular IR
(increasing from type A to type C patients) is linked to higher IR
amplitudes across different scapula posture types.

Predicted sites of impingement

The predicted impingement sites without adjusting the scapula
posture align with prior findings. Specifically, Lidermann et al’
identified the coracoid process as the main site of impingement
in flexion, the acromion and infraglenoid tubercle in extension, the
acromion in abduction, and the infraglenoid tubercle in both
adduction and external rotation.

To our knowledge, this is the first study to examine the effect of
the scapula posture adjustments on the predicted sites of
impingement. We observed significant differences in these loca-
tions between conditions, emphasizing the potential importance of
the scapula posture in refining preoperative assessments. However,
further research is needed to assess the clinical impact of these
adjustments, particularly once implant settings are updated.

Limitations

This study provides valuable insights into the impact of the
scapula posture on rTSA planning, but there are several limitations.
First, the small sample size (n = 5) limits the generalizability of our
findings. However, this pilot study was intended to establish the
feasibility of the proposed approach. Larger-scale studies are
needed to confirm these results and assess variability across
different patient populations.

Second, the manual 2D—3D registration process introduces
potential bias or variability, which may affect the reproducibility
and reliability of the results. This manual procedure has not yet
been formally validated. Future research should focus on validating
automated or semiautomated registration processes to improve
consistency and enhance clinical feasibility.

Finally, this study did not establish direct correlations between
predicted impingement-free motion amplitudes and clinical out-
comes. Future studies should aim to validate the clinical relevance
of these findings by assessing postoperative function and pain
outcomes.

Conclusion

This pilot study demonstrates the feasibility and importance of
incorporating the scapula posture into the preoperative planning
for rTSA using a low-dose biplanar radiographic approach. Our
findings reveal significant effects on predicted impingement-free
motion amplitudes and sites of impingement, highlighting the
potential of this method to refine surgical precision and improve
patient outcomes. Future studies should focus on validating these
results in larger cohorts, automating key processes, and correlating
predicted changes with clinical outcomes to maximize the trans-
lational impact of this approach.
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