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A R T I C L E  I N F O

Keywords:
Rocking
Rigid body dynamics
Unreinforced masonry
Discontinuum analysis
Discrete models
Physics engines
Distinct Element Method

A B S T R A C T

Rigid block rocking, significant across disciplines from structural to mechanical engineering, remains challenging 
to predict accurately using continuum-based numerical solutions. Traditional discontinuum simulation methods, 
although widely employed for modelling particle separation, re-contact, and collision with multiple contact 
points, often involve prohibitive computational cost. Analytical solutions, while computationally simpler, are 
limited primarily to straightforward planar cases with regular geometries. Physics engines - simulation platforms 
initially developed for digital animations and videogames - present an underexplored yet promising alternative 
for rigorously modelling multi-body rocking mechanics. These engines utilize discontinuum analysis principles 
comparable to established discrete models like the Distinct Element Method (DEM), but differ notably in contact 
detection and modelling strategies, typically providing faster, albeit less precise, predictions. This paper explores 
and enhances the capabilities of two physics engines - Bullet (integrated within Blender) and Vortex (within 
Vortex Studio) - to numerically simulate free and forced rocking of isolated and stacked rigid blocks, particularly 
from an earthquake engineering perspective. Rocking during seismic events frequently impacts blocky structural 
systems, such as unreinforced masonry (URM), posing assessment challenges for complex constructions. Initially, 
calibrated Bullet and Vortex simulations are compared with results from Housner’s analytical equations for free 
rocking blocks with various aspect ratios. Subsequently, forced rocking responses to sine-pulse and sinusoidal 
base motions are examined, employing analytical solutions and referencing experimental and DEM-derived data 
across different frequencies and acceleration amplitudes. Lastly, the study replicates the rocking response of 
stacked blocks observed in shake-table tests using DEM, Bullet, and Vortex. Comparative analysis demonstrates 
that calibrated Bullet and Vortex models yield satisfactory accuracy while significantly reducing computational 
demands compared to conventional DEM approaches. Consequently, physics engines emerge as viable, efficient 
alternatives for simulating rocking mechanics, relevant both within structural engineering and beyond.

1. Introduction

The dynamic motion of rocking members is a relevant topic across 
multiple engineering domains, including structural, aerospace, and 
manufacturing engineering. Examples range from the design of vibra
tion isolation systems in construction [22] to the delivery optimization 
of powder inhalers in pharmaceutical research or the study of spacecraft 
landers interacting with uneven surfaces [69]. In structural and earth
quake engineering, rocking governs the mechanical response of a wide 
variety of building components, including, elevated water tanks, bridges 
piers, columns [80], chimneys, parapets and walls [28] – often idealized 
as rigid (at least in part). Since the pioneering work of Housner [35], 

several research studies have been conducted to uncover the mechanics 
of rocking (see e.g. [1,11,70]), now also widely used to design innova
tive low-damage dissipation devices (e.g. [71,40]). Predicting rocking 
motion is particularly important when assessing the seismic response of 
sub-standard (i.e. built before the modern standard codes) and old 
buildings, as those made of unreinforced masonry (URM), where the 
weak (or absent) connections among buildings constituents (e.g. 
floor-to-gable) often result in catastrophic rocking-governed collapses 
[75]. Advances in computer technologies and numerical modelling 
enabled in the last decades have allowed researchers to take advantage 
of the improved capabilities of a wide range of simulation tools, 
including the Finite Element Method (FEM). However, despite the 
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several successful applications available in literature [2,87], traditional 
continuum-based FEM are typically not suitable for simulating separa
tion, contact and re-contact phenomena [26,73] characterizing rocking 
responses. For this reason, zero-thickness spring interfaces are often 
used to connect FE rocking members and surrounding environment (e.g. 
foundation, other rocking blocks), albeit at the cost of a high compu
tational expense. The Distinct Element Method (DEM), originally 
developed to solve rock mechanics problems [16], has also been used to 
model rocking of URM [27] and reinforced concrete [72] members, 
mostly using rigid blocks and spring-based contact models. Despite the 
better adequacy of multi-contact DEM (i.e. those having multiple de
grees of freedom per contact; Malomo and DeJong [51] demonstrated 
that at least 10 interface springs per rigid block are needed to effectively 
simulate URM rocking with DEM) codes and other discontinuum-based 
numerical techniques [43] to predict rocking mechanisms, the some
times prohibitive analysis time presently prevents researchers from 
widely using it in real-world applications. In this paper, we investigate 
the applicability of a distinct family of discontinuum-based numerical 
approaches to URM rocking simulation, namely those typically used in 
the digital animation and robotics industries to create visually pleasing 
physical effects [3]. These physical engines [57] are capable of repro
ducing the mechanical interaction between solid bodies, albeit typically 
developed and calibrated to reproduce those in a simplified and effective 
fashion (i.e. efficiency over accuracy). Their use to solve engineering 
problems in a rigorous way, including those related to, e.g. geotechnics 
[33] and material design [39], has recently been scrutinized by various 
researchers, with positive results. Studies have also been performed on 
the collapse response of URM vaults using Project Chrono [9], as well as 
on the rocking response of URM columns under free and excited rocking 
impulses [49] via Blender. In this last contribution with Blender (widely 
used open-source modelling platform based on Bullet Physics), however, 
the authors could not find adequate match with analytical solutions for 
some of the geometries selected, which were also far from being appli
cable to URM analysis (e.g. they considered aspect ratios – i.e. height h 
over base b – ranging from 2 up to 8). In this paper, we focus on ge
ometries (0.5–2.5 aspect ratios) compatible with the macro-block 
rocking simulation of URM members (e.g. walls, chimneys, parapets), 
improving previous modelling strategies. Our study also uncovers the 
adequacy of Bullet Physics engine simulations by comparing results 
against those predicted analytically through Housner’s equations, 
numerically using Vortex (a distinct state-of-art commercial physics 
engine) and DEM, and measured experimentally via previous 
shake-table tests. This work is novel as it is the first 1) to investigate 
quantitatively and systematically the capabilities of physics engines 
against established numerical results and actual experimental data on 
rocking, 2) to consider a wide array of block sizes, shapes and boundary 
conditions, 3) to evaluate responses of rigid blocks under either free or 
forced rocking motions, 4) for both single and two stacked block sys
tems. This work is relevant to computer scientists, mechanical and 
structural/earthquake engineers working on the rocking motion pre
diction of rigid blocks, either for improving the realism of animations or 
reducing the computational burden of rigorous mechanics-based eval
uations. From a URM seismic response prediction standpoint, this paper 
offers first insights into a new family of simulation tools for expediting 
the rocking assessment of slender elements under base excitation, 
something that is presently rather impractical using traditional dis
continuum modelling [72], and overambitious [42] if relying on 
analytical approaches alone.

2. Brief review of classic rigid block rocking analysis

In this section, an overview of the main assumptions and equations 
used in classic rocking analysis of rigid blocks is given. The methods 
described herein are later used to generate the analytical “ground truth” 
used for evaluating physics engines’ predictions, in addition or in place 
of either experimental or numerical (DEM) results. In the classic 

analytical treatment of rocking mechanics for rigid particles, the equa
tion of motion for a rectangular block with half-height h, half-width b, 
and mass m (Fig. 1.a), as proposed by Housner [35], relies on three key 
assumptions. First, the impacts are perfectly inelastic, meaning there is 
no bouncing. Second, the friction between the block and the foundation 
is sufficiently large to prevent any sliding. Third, the rocking motion is 
confined to a single plane. The geometric properties of rectangular 
blocks can also be described, as customary in the literature, by the radial 
distance from the center of rotation R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h2 + b2

√
, the critical (or 

slenderness) angle λ = tan− 1(b/h), and the mass moment of inertia Io =

(4/3)mR2. When the horizontal ground motion üg exceeds the uplift 
acceleration gtan(λ), rocking motion is initiated (Fig. 1.c), and the block 
begins rotating with angle θ. The equation of motion of a rocking rigid 
block can be written as: 

Ioθ̈ + mgRsin[sgn(θ)λ − θ ] = − mgR
üg

g
cos[sgn(θ)λ − θ ] (1) 

where p =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3g/4R

√
is the frequency parameter of the block. In tradi

tional analytical rocking dynamics, damping of the system is accounted 
for only through impacts as a reduction of angular velocity. The value of 
this reduction, η, is usually derived using the conservation of angular 
momentum principle before and after the impact about any corner [20]. 
Consequently, the post-impact angular velocity can be calculated based 
on the pre-impact velocity as follows, where the superscripts “ and ‘ 
indicate the velocity after and before the impact, respectively: 

θ̇
ʹ́
= ηθ̇

ʹ where η = 1 −
3
2
sin2λ (2) 

In this work, ordinary differential equation solvers (ODE45) in the 
MATLAB post-processing platform [81] were used to integrate the 
equations of motion for analytical formulations.

The previous model describes the rocking response of a single rigid 
block under dynamic excitation. In this work, a two-stacked rigid block 
system is also considered to evaluate the predictive capabilities of the 
physics engines. As in the single-block model, the geometry is defined by 
the height and width of each block, which determine their critical angle 
and radial distance from the pivot point. In addition to the critical angles 
of the lower block (λ1) and the upper block (λ2), and their respective 
radial distances (R1 and R2), a global slenderness parameter (λ), along 
with a corresponding radial distance (R), is introduced (Fig. 1.b). These 
represent the geometry of the system when it behaves monolithically as 
a single rigid block. Similarly, the rotation angles of the lower and upper 
blocks are denoted by θ1 and θ2 (Fig. 1.d), while the rotation angle 
corresponding to the rocking motion of the equivalent monolithic sys
tem is denoted by θ.

Compared to the single-block case, the two-block configuration in
troduces additional complexities in the dynamic behaviour: the system 
is characterized by two degrees of freedom, and the nonlinearity of the 
response increases significantly due to the presence of four distinct 
motion patterns. Transitions between these patterns can occur either 
through impacts or sudden changes in acceleration. For the sake of 
conciseness, the full formulation is not reported here; we refer the reader 
to the following works for further details [65,76,77,78].

Pattern changes due to acceleration are detected by equating the 
overturning (external) moments with the stabilizing (internal) mo
ments, while impacts occur when the rotation of the lower body is zero 
or when the rotations of the two blocks are equal. Each impact is 
modelled using a coefficient of restitution, determined by applying the 
principle of conservation of angular momentum, similar to the single- 
block case. However, despite the conceptual similarity, the coefficient 
of restitution values for the two-block system can differ significantly. 
This is because impacts involve multiple bodies: for instance, the ve
locity of the upper block can increase following an impact between the 
lower block and the ground, hence a coefficient of restitution greater 
than one [22].
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3. Discontinuum rocking mechanics of rigid blocks

Contact formulations used in physics engines share remarkable 
similarities with those typically implemented into rigorous dis
continuum models used for rocking simulation of URM, while also 
featuring key differences allowing them to overcome the latter’s tradi
tional shortcomings. This section will comparatively discuss rigid body 
contact mechanics in physics engines and DEM, highlighting critical 
aspects in both numerical solutions that are particularly relevant for 
predicting the rocking motion of rigid blocks. Interested readers are 
referred to Malomo and Pulatsu [54] and Andrews et al. [3], from which 
the notation employed in the following sub-sections is taken, for further 
discussion on discontinuum methods and physics engines and their 
usual applications.

3.1. The Distinct Element Method

The DEM, originally formulated for the mechanical behaviour of 
particulate systems [18], simulates discrete bodies (rigid or deformable; 
in what follows, rigid block formulation alone is discussed) and their 
interactions at their boundaries through contact interfaces – determined 
through a contact (i.e., collision) detection process. Rigid blocks in DEM 
can be represented as polyhedral shapes with planar faces. Once two 
bodies are identified as “neighbours”, the Common-Plane (CP) approach 
is used to confirm if the bodies are in contact, determine sub-contacts (i. 
e., contact points where joint constitutive relationships are applied), and 
establish their respective contact normal vector (i.e., the normal direc
tion in the contact frame). This algorithm simplifies the number of 
possible collisions by (1) identifying a “common-plane” that bisects the 
space between two bodies and (2) testing each body individually for 
contact with the common-plane (i.e., effectively reducing the collision 
check to only vertex-plane interactions). Additional details about the CP 
formulation can be found in Cundall [17]. DEM, as implemented in 
3DEC [36] typically used for URM and rocking simulations, see e.g. [55, 
68,52,59], uses a time-dependent incremental solution procedure, 
where the Newton equations of motion, F = mü, and Euler rotation 
equations, M = Iω̇ + ω× (Iω), are solved for each mass point (m) and 
respective moment of inertia (I) using an explicit central difference 
method [32]. The displacement at sub-contact i over a time-step, Δt, can 
be expressed as ut+

i = ut−
i +u̇t+

i Δt and ωt+
i = ωt−

i +ω̇t+
i Δt for translational 

and rotational displacements, respectively, where t+ = t+Δt/2 and t− =

t − Δt/2. For conditional stability, DEM often uses an adaptive 
time-stepping scheme based on the Courant-Friedrichs-Lewy (CFL) 
condition such that Δt ≤ Δtc = 0.2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
mmin/kmax

√
, where Δtc is the sys

tem’s critical time-step, mmin is the minimum block mass and kmax the 

maximum contact stiffness [14].
The deformations at the joints (i.e., interface where contact points 

are established) are defined by constitutive laws, which in the case of 
dry-joints would feature zero tensile strength, ft = 0, and infinite 
compressive strength, as well as a Mohr-Coulomb slip joint model in the 
shear direction (assuming zero cohesion c, zero dilatancy angle ψ , and 
equal initial and residual friction angles, ϕ). More complex interface 
laws are available for mortared contacts (see e.g. [66]), albeit not 
relevant for this study. The set of all possible shearing forces and their 
relationship with the contact normal stress can be visually represented 
using an isotropic friction cone as shown in Fig. 2. In the soft contact 
approach, the elastic stress increments, Δσn (Eq.(3)) and Δτs (Eq.(4)), 
have a linear relationship with the relative point contact displacements, 
Δun and Δus (subscripts n and s denote normal and shear, respectively). 
This linear relationship is controlled using contact stiffnesses, kn 
(normal) and ks (shear), which introduces compliance (i.e., exceptional 
block interpenetration) between discrete bodies and adds numerical 
stability to the system. Contact stiffnesses can be computed using the 
physical properties of URM and other materials – such relationships and 
appropriate uses are thoroughly discussed in DeJong [19] and Malomo 
and Pulatsu [54]. 

Δσn = knΔun (3) 

Δτs = ksΔus (4) 

To model energy dissipation (i.e., from impacts or friction) in a dy
namic system, 3DEC implements a local Rayleigh damping scheme with 
dashpot elements at the contact points. The resultant viscous damping 
forces and moments applied at contact point i can be expressed as Fd =

cu̇t−
i and Md = cω̇t−

i , respectively, where c is the damping constant. 
Rayleigh damping combines mass and stiffness-proportional damping 
such that c = αm + βk, where k is the contact stiffness (e.g., kn or ks) and 
α (Eq.(5)) and β (Eq.(6)) are the mass and stiffness-proportional damp
ing constants, respectively [38]. DEM calculates the damping constants 
using two user-inputs: minimum critical damping ratio (ζmin) and 
fundamental frequency (fmin), where fmin = ωmin/2π (ωmin is the 
fundamental angular frequency) [36]. Rocking mechanics of rigid 
blocks are sensitive to damping considerations, especially for undesired 
high-frequencies due to the “rattling effect” (i.e., high-frequency nu
merical noise) and rebound effects from impacts [27]. To mitigate these 
unwanted effects, DeJong [19] and Peña et al. [63] recommend stiffness 
proportional damping (i.e., α = 0) for rocking behaviour. One can also 
approximate the critical frequency of a multi-block rocking system 
rather than calculating for all expected higher modes [19]. Procedures 
for selecting stiffness damping parameters (e.g., using an empirical 

Fig. 1. Rigid rocking blocks models: single block system at rest (a) stacked blocks system at rest (b) single block system in motion (c) stacked blocks system in 
motion (d).
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correlation between coefficient of restitution, e, and β) and approxi
mating critical frequency for multi-block rocking systems are discussed 
therein. 

α = ζminωmin (5) 

β =
ζmin

ωmin
(6) 

Once the system forces are determined, the sub-contact translational 
(u̇i) and rotational (ω̇i) velocities in Eq. (7) and Eq. (8) can be solved 
using time integration methods, where 

∑
Ft

i and 
∑

Mt
i represent the 

unbalanced forces and moments, respectively (i.e., sum of contact forces 
obtained from the stress increments, applied forces, and gravity loads). 
The displacements (ut+

i and ωt+
i ) are then updated and the simulation 

proceeds to the next time-step. While a widely accepted form of 
modelling rocking behaviour for URM and other blocky systems, DEM 
often entails excessive computational times (up to 54 h for a free- 
rocking simulation with 15 sub-contacts, as demonstrated by Galvez 
et al. [27]) due to the various aspects discussed herein – e.g., stiffness 
proportional damping (requires smaller time-step) and additional 
sub-contacts (for a smoother transition between elastic to rocking 
phases). 

u̇t+
i = u̇t−

i +
Δt
m

(∑
Ft

i − Fd

)
(7) 

ω̇t+
i = ω̇t−

i +
Δt
I

(∑
Mt

i − Md

)
(8) 

3.2. Physics engines

Blender [58] is a 3D modelling tool that integrates the Bullet physics 
engine [13], and Vortex Dynamics [12] is a commercial physics engine 
developed especially for virtual reality training. Both engines model the 
rigid-body equations of motion using a velocity-level formulation of the 
dynamics and couple rigid bodies using kinematic constraints. Compu
tational efficiency is a priority since these engines target real-time and 
interactive applications. Bullet uses an iterative numerical solver to 
compute constraint behaviour at each time step, whereas Vortex uses a 
specialized direct solver that is designed for engineering-grade accuracy. 
In more detail, Bullet uses sequential impulse and constraint-based 
solvers optimized for speed, suitable for real-time graphics with 
simplified contact resolution. In Bullet Physics, contact resolution typi
cally uses a sequential impulse solver with hard constraints and 
low-accuracy approximations. It handles contact forces by iteratively 
solving constraint violations, usually converging within 10–20 solver 
iterations, which is sufficient for visual realism but introduces 
non-physical penetration or jitter in precise applications. Vortex uses a 

compliant contact model with constraint-based formulations, allowing 
for more physically accurate force and frictional responses. It supports 
sub-centimetre penetration tolerances and material-dependent stiffness 
and damping values. Simulations can be tuned to achieve convergence 
errors below 1 % in contact force magnitude, making its use in scenarios 
like soil-tool interaction or cable tension modelling (for which has been 
originally conceived) feasible. Readers can refer to the work of e.g. Izadi 
and Bezuijen [37] and Wagner [82] for further insights on solvers, 
contact and impact modelling within Bullet and Vortex, respectively. In 
what follows, an overview of the typical formulation common to both 
Bullet and Vortex is presented, alongside comparisons with DEM.

Bullet and Vortex follow a time-dependent incremental solution that 
is conceptually similar to that of DEM. Time discretization in computer 
graphics is commonly expressed in terms of frames per second, FPS, the 
rate at which the system can generate frames (i.e., proceed to the next 
time increment). This typically user-defined metric characterizes the 
visual quality of the simulation and is determined by the modelling 
application – e.g., faster (60–120 fps) for videogames and virtual reality 
applications, and slower (<30 fps) for 3D animations [10]. Physics en
gines will also reduce the time increment further for numerical stability 
by dividing each frame into ns sub-steps [50], which are not always 
visually rendered but contribute to calculating the effective time-step, 
Δt, used in the time integration scheme (Eq. (9)). The respective 
time-step sizes for the aforementioned frame rates fall in the range of 
0.008 – 0.04 s. Typical time-step for DEM range from 1e− 9 to 1e− 6 s 
[44], depending on the block size, stiffness, and density. 

Δt =
1

(ns + 1)(FPS)
(9) 

At each time-step, Δt, collision detection processes – necessary for 
separation and re-contact phenomena – are first implemented to identify 
objects that are in contact, defined as two bodies intersecting due to 
their collision shape. Collision shapes are used to approximate the vol
umes occupied by objects in space. Collision shapes for a body may be 
simplified from its actual geometry – spheres and boxes are popular for 
simplicity and efficiency [3]. However, convex hull (i.e., convex poly
gon that encloses a shape) approximations and mesh-based geometries 
are also used to capture finer details, albeit at a computational cost 
(more combinations of faces, vertices, and edges to check for in
tersections). The typical collision detection pipeline for physics engines 
occurs in two phases: (i) broad-phase and (ii) narrow-phase. Broad 
phase uses a simple shape (e.g., boxes) with computationally efficient 
collision tests to eliminate objects that are definitely not in contact [3]. 
This reduces the number of possible collisions that are then checked in 
the narrow-phase, which further refines the potential collisions using 
more complex geometries. Collision margins (buffers around the colli
sion shape) can also be used to inflate collision shape sizes to catch 

Fig. 2. DEM point contact model with isotropic Coulomb friction represented as a cone; interface constitutive laws in shear and normal directions – adapted from 
[3,84].
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non-standard cases (e.g., edge-edge intersections). Finally, the objects 
that pass this test then proceed to narrow-phase collision detection in 
order to detect contact using the finest scale geometry in the simulation. 
Once colliding bodies are identified, the following key information is 
established: discrete contact points and their displacement in global 
space, u, a contact normal direction to inform how bodies should move 
to avoid further inter-penetration, and a penetration (i.e., gap) measure, 
φ(u), describing the distance between bodies (or distance that two 
bodies are intersecting).

While DEM typically uses explicit integration schemes to evaluate 
equations of motion (e.g., central difference algorithm) [15,43], 
semi-implicit time-stepping is preferred by physics engines for numeri
cal stability as they favour larger (order of 10− 2 s) time-steps. Some 
physics engines (e.g., Bullet) [13] will use semi-implicit methods as a 
compromise between numerical accuracy, speed, and stability; however, 
for ease of providing a simplified formulation and for appropriate, 
high-level conceptual comparisons with DEM, this discussion will focus 
on implicit techniques. Rigid body dynamics in physics engines are 
governed by Newton-Euler equations of motion [31], which take the 
form of a second-order ordinary differential equation (ODE) Eq.(10), 
where M ∈ Rn×n is the system masses, u̇ ∈ Rn is the respective velocities, 
and f is the function that defines the applied forces on the system for 
each degree of freedom n. Note that rigid body computer graphics 
simulations typically operate at the velocity-level for computational 
efficiency and to ensure stable response to collision forces and impulses. 
The first-order Taylor expansion of the implicit velocities, u̇+

≈ u̇+Δtü 
(the superscript + denotes implicit quantities), substituted into Eq.(10)
yields a linear relationship for the kinematics of the rigid body system 
with respect to the chosen time-step, Δt (Eq.(11)). 

Mü = f (10) 

Mu̇+
= Mu̇+Δtf (11) 

The kinematics of bodies in a simulation are limited through the 
application of constraints (e.g., boundary conditions, non- 
interpenetration requirements between bodies in contact). For a sys
tem with j constraints, the expression φ(u) ∈ Rj is used to describe the 
“constraint manifold” (i.e., set of all possible rigid body motions that 
satisfy the given constraints at any given instant). Physics engines solve 
constraints in two groups: (1) bilateral constraints, φ(u) = 0 (e.g., 
hinges, ball-and-socket joints), and (2) unilateral (i.e., contact) con
straints, φ(u) ≥ 0 (e.g., objects cannot penetrate each other). The con
tact impulses needed to enforce these constraints are applied in a 
direction determined by the constraint gradient, J ∈ Rj×n Eq. (12), 
which is assumed to be constant throughout the time-step. 

J =
∂φ(u)

∂u
(12) 

The normal contact impulse, I+n̂ can be defined using a “push-only” 
spring-dashpot generated at the contact point – this behaves as a 
correctional impulse for interpenetration (with added numerical sta
bility) and also allows the user more control over how strictly the con
straints are solved (i.e., a tolerance for constraint enforcement). Note 
that bolded notation, I+n̂ , represents the constraint impulse, whereas the 
not bolded notation, I+n̂ , represents the equivalent constraint force such 
that I+n̂ = I+n̂ Δt. While the spring does add potential energy to the system, 
it is paired with a damper to attenuate the response and prevent unre
alistic collisions (e.g., “explosions”). The addition of this component, 
known as Baumgarte stabilization [8], yields a constitutive law that is 
mechanically analogous to the DEM point contact model in the normal 
direction. However, the spring-dashpot constraint equation takes the 
velocity dependent form I+n̂ = − knφ+ − cvn̂

+, where kn and c are the 
contact stiffness and damping coefficients and φ+ = φ+Δtvn̂

+ = Δun
+ is 

the first order Taylor expansion approximated constraint error term (i.e., 
the relative displacement in the contact normal direction, Δun

+), and vn̂ 

is the relative velocity in the contact normal direction. Rather than 
choosing kn and c based on material and mechanical properties, these 
parameters can be determined depending on the desired level of 
constraint stabilization (i.e., how “strictly” the engine adheres to pre
scribed constraints and the effect of this on numerical stability). The 
relationship between these values is discussed later in this section. The 
resulting contact model (Fig. 3) is an intuitive linear relationship (valid 
for dry-joints; more complex contact laws do exist, e.g. bonded particles, 
see e.g. [25]): a greater contact impulse is required to prevent further 
overlap if the bodies are expected to continue penetrating in the next 
time step (i.e., vn̂

+ < 0), and a smaller or zero-magnitude impulse is 
applied if the bodies are in constant contact (i.e., vn̂

+ = 0) or moving 
away from each other (i.e., vn̂

+ > 0). No contact normal impulse is 
applied if the bodies are not in contact (i.e., zero tensile strength, ft = 0). 
As in DEM, infinite compressive strength is herein assumed.

The shear component of the contact (i.e., constraint) impulse is 
determined through the implementation of the engine’s chosen friction 
model – commonly Coulomb friction for its representation of planar dry 
friction and isotropic form [3]. The exact tangential contact impulse is 
bound by the inequality, ‖І t̂‖ ≤ μ‖Іn̂‖, which defines a quadratic cone (i. 
e., the “friction cone”) (Fig. 3) where μ = tanϕ is the coefficient of 
friction. In the case of slipping (i.e., sliding), the direction of the friction 
force is chosen in the opposite direction, assuming principles of 
maximum energy dissipation. However, the isotropic friction cone rep
resentation of the stick-slip phenomenon presents itself as a non-linear 
complementarity problem (NCP), leading to numerical challenges. 
Linearized forms of the friction cone – e.g., polyhedral cone approxi
mation [4,79], box approximation [41] – will discretize the envelope of 
possible friction forces into a discrete number of unit vectors. The 
tangential impulses, І t̂, can be resolved into components with directions 
defined by the unit vectors. The respective magnitudes of the impulses in 
each direction are subsequently capped at μ‖Іn̂‖ if needed. More unit 
vectors (e.g., a polyhedral with more sides) will typically yield a more 
exact solution but at a higher computational cost.

Once contact (i.e., constraint) forces are established, Eq.(11) is 
rewritten as the multibody system equation, Eq.(13), which includes the 
terms ϵj and υj representing the constraint force mixing (CFM) and error 
reduction parameter (ERP) for each constraint j, respectively. The ERP 
defines the portion of the constraint error, φ+ = Δun

+, that is resolved in 
the next time-step, while the CFM introduces artificial compliance to the 
system (i.e., allowing a tolerance for constraint violation). These 
constraint stabilization parameters are derived from the non- 
interpenetrative impulse, І n̂, and therefore can be tuned using Δt, kn, 
and c. They also behave as feedback terms to reduce positional errors in 
the normal direction and improve the conditioning of the matrix in Eq. 
(13), improving stability – critical for real-time simulations. The coef
ficient of restitution, ej, (typically 0) is also incorporated into the right- 
hand side of Eq.(13) – this parameter is introduced when setting up the 
constraint equations and determines the fraction of the initial velocity 
(u̇) that was lost due to impact. It is also noted that Eq.(13) does not 
show additional parameters that are present if the friction cone is line
arized (e.g., slack and auxiliary variables). 

[
M − JT

J Σ

][
u̇+

І+
]

=

⎡

⎣
Mu̇ + Δtf

− Υ
φ
Δt

− EJu̇

⎤

⎦ (13) 

Σ =

⎡

⎣
ϵ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ϵj

⎤

⎦ (14) 

Υ =

⎡

⎣
υ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ υj

⎤

⎦ (15) 
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Е =

⎡

⎣
e1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ej

⎤

⎦ (16) 

To obtain the system velocities at the next time-step, u̇+, physics 
engines employ constraint-based solvers to evaluate Eq.(13). It is noted 
that the complementarity conditions required to solve for unilateral 
constraints (e.g., friction impulses must lie within the “friction cone”) 
are not shown in Eq.(13); however, the nature of these conditions (e.g., 
non-linear, linear, mixed linear) are considered in the choice of solver. 
These solvers can be generalized into three categories: (i) pivoting 
methods, which can find an exact solution using a direct solver (e.g., 
Lemke’s Algorithm [47]), (ii) iterative methods, which find an approx
imate solution using iterations (e.g., Gauss-Seidel, Jacobi, Projected 
Gauss-Seidel [56,74]), and (iii) hybrid methods, which leverage ad
vantages from both pivoting and iterative methods (e.g., Incremental 
Pivoting [7]). While iterative methods (their use well-established in 
DEM) are computationally expensive, introducing a cap on the number 
of solver iterations can expedite computations, albeit sacrificing nu
merical accuracy [24]. The updated rigid body displacements (u+) are 
found using the implicit approximation, u+ = u + ΔtSu̇+, where S maps 
the angular velocities in u̇+ (solved using Eq.(13)) to their respective 
rigid body quaternion orientations.

4. Free rocking simulations for a single rigid block

This section examines the capabilities of Bullet and Vortex to simu
late the free rocking behaviour of single rigid blocks. Before testing these 
engines with varying block slenderness and initial angles, sensitivity 
analyses were conducted to evaluate how different parameters inherent 
to the various codes employed might affect the results. The sensitivity 
analyses were conducted using a reference rigid block (hereinafter 
referred to as B0) with a rectangular base of 1 × 0.2 m2, a height of 5 m, 
and a nominal mass of 1 kg. (although Eq.(1) shows that the rocking 
motion is independent of mass, most codes do require its specification). 
Gravity was set to − 9.81 m/s² along the vertical y-axis, and the block 
was allowed to rotate freely from an initial rocking angle of 0.5 λ about 
the horizontal z-axis, where λ is the critical angle equal to 0.18 rad. 
Analyses were run for 20 seconds to ensure full energy dissipation and 
thus the end of the rocking motion. The initial parameters selected for 
running these preliminary analyses (whose results are compared to the 
analytical solutions in terms of rocking angle time-histories relative to λ; 
note that the monitored point is the block centroid) using Bullet and 
Vortex physics engines are summarized in Table 1.

Large values were chosen for solver iterations and sub-steps to ensure 

detailed and robust calculations at each time-step and accurately 
replicate the block’s dynamic behaviour [49]. Regarding the collision 
shape, a box shape was selected as the simplest option that best fits the 
object’s form. Translational damping, rotational damping, coefficient of 
restitution, and friction coefficients were chosen to align with Housner’s 
assumptions [35]. In so doing, the models would only dissipate through 
opening/closing of discontinuities and friction (often referred to as 
physical damping [53]). With these initial (non-calibrated) settings and 
baseline model, the rocking responses shown in the graph in Fig. 4.a 
were obtained demonstrating good agreement between Bullet, Vortex 
and the analytical solution. The first eight seconds of motion predicted 
by both engines are virtually identical to their analytical counterpart; 
however, after that, Vortex exhibits a very slight phase shift. Bullet 
outcomes, on the other hand, continue to overlap until the end of the 
simulation, with only negligible differences – not readily noticeable. 
This phase lag in Vortex is believed to be linked to its use of integrators 
like backward Euler, which are known to suppress high-frequency dy
namics and introduce random frequency shifts in oscillatory systems 
[34].

Beyond the parameters set a priori to match Housner’s assumptions 
in the baseline model, other critical ones (see Table 2) were varied to 
analyze their impact on simulation quality and efficiency. Bullet allows 
the modification of all these values, while Vortex only provides access to 
a few, as sub-steps and simulation rates. To perform the sensitivity 
analysis, two additional variations for each parameter were tested, as 
summarized below in Table 2. Effects on predictions were evaluated by 
individually changing each value, keeping others unaltered.

These additional sensitivity analysis results are summarized in Fig. 4. 
b-i. Overall, the initial rocking angles are well replicated in all cases, 

Fig. 3. Physics engine point contact model with friction cone approximations; interface constitutive laws in shear and normal directions expressed in the stress- 
displacement domain – adapted from [3,84].

Table 1 
Initial parameters considered in the baseline model for the free rocking sensi
tivity analysis of B0.

Parameter Unit Bullet Vortex Analytical

Solver iteration-steps [step] 1000 1000 -
Collision shape - Box Box -
Collision margin [m] 1e− 6 0.00 -
Simulation sub-steps [steps/s] 200 200 -
Simulation rate [fps] 240 240 -
Velocity damping [Ns/m] 0.00 - -
Coefficient of restitution [%] 0.00 - 0.952
Friction coefficient - 1.00 1.00 -
Friction angle [◦] 45 45 -
Translational damping - 0.00 - -
Rotational damping - 0.00 - -
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Fig. 4. Sensitivity analysis results for the reference block B0: Bullet and Vortex vs analytical solutions: normalized rocking angle time-histories.
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regardless of the changes applied, with the primary differences arising 
from the rate at which energy is dissipated due to impacts – hence later 
(i.e. after 2–5 s) in simulations. The largest deviation from analytical 
results occurs when Bullet’s “mesh” collision shape is used, leading to 
significantly lower energy dissipation extent and rates. Conversely, 
using "convex hull" or "box" shapes produces results closer to Housner’s 
curves, with the box shape providing the best match (Fig. 4.e). It is 
important to note that these collision shapes are not equivalent to the 
meshes used for geometry discretization in conventional numerical 
models. Instead, they are simplified volumetric approximations of the 
objects, which the software employs for contact detection (see Section 
5). Users cannot directly specify their dimensions or characteristics, 
such as the mesh resolution in the “mesh” collision shape. The second 
most influential parameter affecting energy dissipation is the number of 
sub-step iterations. The best alignment with the analytical solution was 
achieved with 200 sub-steps, see Fig. 4.f and Fig. 4.h. With just 2 sub- 
steps, energy dissipated too quickly with both Bullet (11 s) and Vortex 
(10 s), a pattern that occurs when using up to 20 sub-steps in Bullet 
(17 s). The energy dissipation rate with 2 sub-steps is similar between 
Bullet and Vortex, with Vortex also showing a faster amplitude reduc
tion. The simulation rate impacts only the final stages of motion, see 
Fig. 4.g and Fig. 4.i. With Bullet, Fig. 4.g, the best match with the 
analytical solution occurs with 50 fps. Using 10 fps produces a non- 
smooth time-history with premature motion stoppage, while 240 fps 
results in a delayed end-of-motion prediction. With Vortex, Fig. 4.i, 240 
fps aligns best with the analytical solution, followed by 10 fps and 50 
fps. Compared to Bullet, Vortex tends to dissipate energy more slowly at 
lower fps, with slight shifts in the final phase at each rate tested. With 
Bullet, the number of solver iterations, Fig. 4.c, and collision margin 
values, Fig. 4.d, had no significant effect on prediction accuracy. The 
variation of all the parameters had a negligible impact on the overall 
analysis time. The longest simulations, those run at 240 fps, required 
approximately 3.5 s to complete, whereas the slowest simulations, per
formed at 10 fps, took around 0.5 s. Having identified in the sensitivity 
exercise the most suitable parameters for the free rocking simulation of 
the reference block B0, these were tested on additional geometries, 
namely three different blocks (B1, B2, B3) with varying slenderness 
ratios (b/h). As the rocking motion is independent of mass, the default 
value of 1 kg set in the software was used for each block, consistent with 
the setup adopted for block B0. The response of these blocks was 
simulated using three different initial rocking angles, i.e. 20 %, 50 %, 
and 99 % of their respective critical ones (θ01 , θ02 , θ03 ), see Table 3:

Fig. 5 shows that Bullet and Vortex results can satisfactorily match 
the analytical solutions, given that results almost overlap. Predictions 
differ slightly (order of magnitude is 10− 4) for B3 with initial rocking 
angle 0.2 λ, towards the end of the analysis. In this instance, the physics 
engines dissipated energy slower than the analytical model. This level of 
precision represents a substantial improvement over previous studies, 
such as Ma et al. [49], which reported discrepancies of up to 15 % in 
simulations of squat blocks.

5. Forced rocking simulations for a single rigid block

Having verified that the physics engines can satisfactorily approxi
mate the free rocking response of single rigid blocks, herein both Bullet 
and Vortex models are tested under forced rocking. To this end, the 
experimental study by Peña et al. [62] was used as a reference to define 
the block dimensions and input characteristics. The abovementioned 
authors conducted rocking shake-table tests on single, stacked, and tri
lith granite blocks under free rocking, sinusoidal, and random motion. 
This section focuses on the block referred to as "Single # 2" (by the 
authors who have performed the experiments), with dimensions 
0.17 × 0.502 × 1 m3 (Fig. 6.a) and a mass of 228 kg. The rigid block 
models were subjected to sine-pulses acceleration (Fig. 6.b, note this is a 
purely numerical exercise, as no experiments were actually performed 
using such an input) and sinusoidal acceleration excitations (Fig. 6.c). 
The rocking of the stacked blocks under sine-pulse excitation was per
formed to verify whether the differences observed in the single block’s 
rocking response under sine-pulse were confirmed, and to analyze how 
the interactions between the top and bottom blocks were managed by 
the physics engines. Results were compared to analytical (Housner; both 
pulse and sinusoidal excitation), numerical (DEM; both pulse and si
nusoidal excitation) and experimental results (sinusoidal excitation 
alone).

The frequencies (f) and amplitudes (A) used for the pulse-like and 
sinusoidal inputs are summarized in Table 4. Only a subset of those 
employed by Peña et al. [62] was considered—specifically, the fre
quency (f=1/T where T is the period) and amplitude pairs that, ac
cording to analytical and experimental observation, generate 
accelerations sufficient to trigger the rocking mechanism (i.e. üg

gtan (λ) =

|1| )
In 3DEC, the rigid block initially rested on a fictitious one with 

restrained rotations and uplifts representing the shake-table (hence 
modelled as a 1 ×0.75 ×0.25 m3 foundation plate), to which the 
shaking signals were applied in terms of velocity time histories, obtained 
by integrating the input acceleration. The parameters used for the 
rocking block and its interface with the foundation plate are summarized 
in Table 5 (with density ρ and friction angle ϕ taken from the experi
mental data available from [62]). To simulate dry-joint conditions, the 
properties of the joint interface between foundation and top rocking 
block, namely cohesion c, tensile strength ft, and dilatancy angle ψ , were 
set to zero. Additionally, the normal and shear contact stiffnesses kn and 
ks were set to the minimum value (1e9 N/m3) required to prevent 
spurious block interpenetration (as suggested by [52]). To avoid unre
alistic bouncing and excessive noises, a minimal amount (as no nu
merical damping was added into physics engine models) of Rayleigh 
damping proportional to stiffness alone (as opposed to its standard 

Table 2 
List of all parameters considered and tuned in the free rocking sensitivity 
analysis of the reference block B0.

Physics 
engine

Parameter
Reference 

value
Values 1

Values 
2

Bullet

Solver iteration-steps 
[step]

1000 10 100

Collision shape Box Convex 
Hull

Mesh

Collision margin [m] 1e− 6 1e− 3 1e− 5

Bullet- 
Vortex

Simulation sub-steps 
[steps/s] 200 2 20

Simulation rate [fps] 240 10 50

Table 3 
Additional geometries and initial rocking angles considered for the free rocking simulations of B1, B2, B3.

Block ID Height h Base b Thickness t b/h λ
Initial rocking angles

θ01 θ02 θ03

(m) (m) (m) (-) (rad) [-] [-] [-]

B1 0.75 0.50 0.20 0.67 0.59 0.20λ 0.50λ 0.99λ
B2 1.00 0.50 0.20 0.50 0.46 0.20λ 0.50λ 0.99λ
B3 1.25 0.50 0.20 0.40 0.38 0.20λ 0.50λ 0.99λ
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version, which includes considerations on mass too) was applied, 
following the procedure suggested by DeJong [19]. The critical fre
quency was selected based on the highest frequency in the system, which 
was determined from three types of impacts: edge impact we (surface in 
3D), corner impact wc (edge in 3D), and rotational impact wr. The 
highest frequency identified was we, 1418 Hz, which corresponded to a 
constant damping factor, β, equal to 2.25 × 10− 4. Five sub-contacts 
were defined along the block thickness at the interface with the base, 
in order to achieve a smooth transition between elastic response and 

rocking [27]. This value is within the range suggested by several re
searchers [43,67], and was chosen as a compromise to ensure satisfac
tory results while maintaining reasonable computational time.

5.1. Response to sine-pulse excitations

The predicted rocking angle time-histories of the single rigid block 
under sine-pulse excitations are shown in Fig. 7. The upper section of the 
figure presents a complete time-history, while the lower sections zoom 

Fig. 5. Analytical vs physics engine models normalized free rocking angle time-histories for B1, B2, B3, starting from the three initial rocking angles 0.2 λ, 0.5 λ, 
0.99 λ.

Fig. 6. Tested block’s dimensions (a) and characteristics of the input considered for the forced rocking simulation: sine-pulse (b) and sinusoidal (c) excitations.
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in on the first five seconds of each simulation to better highlight dif
ferences and similarities. The rocking oscillations obtained with Bullet, 
Vortex, and DEM are comparable in both magnitude and phase during 
the initial motion stages (until up to 1 s) for all frequency and amplitude 

combinations considered. In contrast, the analytical maximum angles 
differ slightly from those computed by the other programs. The largest 
discrepancy occurs with the sine pulse 5 Hz / 5 mm, where the analytical 
maximum angle is 21 % higher than those obtained with both Vortex 
and DEM, and 25 % higher than that computed by Bullet. Vortex and 
DEM generally show larger rocking angles than Bullet (up to +5 %). 
Relative to the analytical solution, Vortex tends to overestimate rocking 
angles, while Bullet underestimates them, as illustrated by the com
parison of the normalized maximum rotations with respect to the critical 
angle, λ, reported in Table 6. In the latter, θan, θ, θvx and θDEM stand for 
analytical, Bullet, Vortex and DEM block rocking angles taken at the 
block centroid. Both physics engines exhibit slightly overdamped 
behaviour compared to the analytical solution, while DEM shows a 
noticeably underdamped one. Moreover, results obtained with DEM, 
after the initial stages, show larger rocking angles and much longer 
oscillation periods compared to the other simulations.

Previous research on URM subjected to pulse-like base motions did 
reveal similar trends when comparing DEM analysis results of rocking 
[29] and arch [46] systems to analytical and different damping schemes, 
respectively. The stiffness proportional employed herein, although 
widely deemed as the most accurate option available for DEM [48], is 
also known for under-dissipating energy at impacts, as experienced by e. 
g. Galvez et al. [27].

The normalized maximum rocking angles, both analytical and nu
merical, are plotted against the corresponding normalized peak accel
erations in Fig. 8. This type of plot is commonly used to investigate 

Table 4 
Summary of the characteristics considered derived by [62]’s experiments on 
“Single # 2”.

Frequency f Amplitude A üg
üg

gtan (λ)
[Hz] [mm] [m/s2] [-]

3 8 2.84 1.28

3.3
6 2.58 1.16
8 3.44 1.54

5
4 3.95 1.77
5 4.93 2.22
6 5.92 2.66

Table 5 
Parameters used in 3DEC to simulate the forced rocking experimental response 
of “Single # 2” [62].

ρ kn ks ϕ c ft ψ we β
[kg/ 
m3]

[N/ 
m3]

[N/ 
m3]

[◦]
[N/ 
m2]

[N/ 
m2]

[◦] [Hz] [-]

2670 1e9 1e9 45 0.0 0.0 0.0 1418 2.25e− 4

Fig. 7. Normalized rocking angle time-histories of the single block under sine-pulse excitations: comparison between Bullet, Vortex, DEM, and the analyt
ical solution.
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rocking behaviour, see as example the works of Papastamatiou and 
Psycharis [61] and Godio and Beyer [30]. The graph shows that, despite 
some discrepancies, all models and the analytical solution display a 
broadly similar rotational response to the imposed excitations. It also 
highlights that the rocking amplitude is more strongly influenced by the 
sine-pulse amplitude than by the peak acceleration. In fact, the largest 
rotations were recorded at normalized accelerations of 1.28 and 1.54, 
corresponding to input signals of 3 Hz / 8 mm and 3.3 Hz / 8 mm, 
respectively. In contrast, the smallest rotation occurred at a normalized 
acceleration of 1.77, corresponding to an input of 5 Hz / 4 mm. Notably, 
8 mm and 4 mm were the maximum and minimum amplitudes consid
ered. This find confirm as what observed by other researchers like Yim 
et al. [85] that the rocking motion is sensitive to the characteristics of 
the ground motion

The maximum rocking angles derived from the analytical solution 
have magnitudes comparable to those obtained from the different codes 
used, as shown in Fig. 8, but they occur in the opposite direction. This 
difference becomes evident when examining the time-histories between 
0 and 0.2 s (Fig. 9.a). In both DEM and physics engines, it is worth noting 
that the rocking motion is simulated by applying input loads (in terms of 
x-velocity in DEM, following common practice [45,60], and 
x-displacement in the physics engines, since these tools do not allow 
velocity or acceleration inputs) to the foundation plate when the system 
is at rest. This causes the block to rotate in the opposite direction of the 
input due to inertia (Fig. 9.b), a behaviour also observed by DeJong and 
Vibert [21] and by Zhang and Makris [86] in their studies on the 
response of a masonry spire and a rigid block, respectively, subjected to 
sine pulse ground acceleration. In contrast, the analytical formulation 
assumes that input forces (in terms of acceleration) are applied directly 
to the centroid of the block, which begins to move in the input direction 
(Fig. 9.c) once the activation acceleration threshold is reached (i.e. üg

gtan (λ)

= |1| ). This intrinsic modelling difference explains the similar 
magnitude and opposite phases.

5.2. Response to sinusoidal excitations

The response of the block under sinusoidal excitations was analyzed 
in what follows using the same amplitude and frequency combinations 

chosen for the sine-pulse excitations, based on the experiments of Peña 
et al. [62] (Table 4). Maximum rocking angles obtained from the physics 
engines were compared with those from DEM, as well as with the 
analytical formulation and experimental shake-table tests. Generally, 
the block’s motion under sinusoidal excitation features two distinct 
phases: transient and stationary, with maximum rocking angles occur
ring during the transient phase. Overall, for each of the base excitations 
considered, Bullet, Vortex, and the analytical solution predicted the 
transition between these phases at nearly the same moment in time, 
while DEM reached the stationary phase more slowly – similarly to what 
was observed in sub-Section 5.1. In the stationary phase, the rocking 
angles simulated in Bullet, Vortex, and DEM were closely aligned, while 
those computed analytically were slightly smaller. Fig. 10 shows the 
time-histories of the rocking angles for each input analyzed, with zooms 
between 0 and 2 s, start of motion, 8–10 s, section of the transient phase, 
and 53–55 s, section of the stationary phase. It should be noted that the 
full experimental motion of the block is not available for comparison. 
The only experimental data reported in the reference study are the 
maximum rocking angles, which values are shown in in Fig. 10 by dot 
dash lines.

In the first two seconds, the graphs illustrate that the rocking angles 
predicted by the analytical solution begin later than those from Bullet, 
Vortex, and DEM, similar to the observations for sine-pulse excitations. 
This delay is attributed to the direct application of acceleration to the 
block’s centroid. However, the initial large rocking angles predicted by 
the analytical solution match in both magnitude and direction those 
predicted by all computational codes employed, with results from the 
physics engines and DEM being closely aligned during this transient 
phase. During the transient phase (8–10 s), the results from the different 
programs diverge, particularly under 3.3 Hz / 6 mm and 5 Hz / 6 mm. In 
the first case, DEM results show larger rocking angles, while in the 
second case, DEM and Vortex produce nearly identical responses. This 
response is characterized by a wobbling oscillation, similar to that 
observed by Tabbara et al. [80], where the block rotates not only around 
the z-axis but also around the y-axis when subjected to high-frequency, 
high-amplitude inputs. This suggests that Vortex, despite being a physics 
engine, is capable of capturing this complex three-dimensional behav
iour similarly to 3DEC. However, under the 5 Hz / 6 mm sinusoidal 
input, only DEM predicts the overturning of the top block between the 
transient and stationary phases, occurring at around 35 s. This collapse 
may be attributed to unrealistic numerical bouncing, likely triggered by 
an excitation frequency lower than the system’s damped fundamental 
frequency. In the stationary phase, the rocking angles obtained with 
Bullet and Vortex are nearly identical, with DEM’s results close to them. 
The analytical solution yields smaller amplitudes but similar periods. 
The only exception is the aforementioned one, 5 Hz / 6 mm, where 
Vortex shows unstable but periodic rocking angles, while DEM records 
no rotations as the block had collapsed in the previous stage. Table 7
compares the maximum rocking angles obtained with each tool, where 
θan, θbl, θvx and θDEM stand for analytical, Bullet, Vortex and DEM blocks 
centroids rocking angles, against the experimental values, θex. In gen
eral, the rocking angles predicted by the programs are close to the 

Table 6 
Comparison of normalized maximum rocking angles obtained using analytical 
solutions, Bullet, Vortex and DEM, for a rigid block under sine-pulse excitation.

Frequency 
[Hz]

Amplitude 
[mm]

Analytical Bullet Vortex DEM

θan

λ
θbl

λ
θvx

λ
θDEM

λ
[-] [-] [-] [-]

3 8 0.183 0.179 0.184 0.189

3.3 6 0.115 0.130 0.135 0.139
8 0.209 0.179 0.184 0.187

5
4 0.103 0.085 0.089 0.089
5 0.129 0.103 0.107 0.107
6 0.115 0.119 0.123 0.122

Fig. 8. Trends in the normalized maximum rocking angles of the ’single # 2′ model under sine-pulse excitation, as a function of normalized input acceleration.
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experimental results, with a maximum difference of 12 %. This excludes 
the results obtained with Vortex and DEM for the sinusoidal load at 5 Hz 
/ 6 mm. Overall, DEM provides the most accurate predictions of 
maximum rocking angles, followed by Vortex and Bullet, respectively. In 
contrast, the maximum rocking angles obtained analytically are 
consistently smaller than the experimental values, with differences 
ranging from 38 % to 43 %. It is interesting to note that under sinusoidal 
loads, DEM models did not yield overdamped results when compared to 
their physics engine counterparts. This phenomenon is explicable, as in 
this latter case blocks are continuously forced to move, as opposed to the 
pulse-like excitations where a “resting” phase was added to let the block 
ending its motion (Fig. 6.a). Also, sinusoidal motions tend to excite less 
numerical damping (since there is no sharp discontinuity in the signal).

The normalized maximum rocking angles of the single block under 
sinusoidal excitations, plotted against the corresponding normalized 
peak accelerations, confirm—similarly to the sine-pulse case—that the 
amplitude is the primary driver of the rotational response (Fig. 11). An 
exception to this trend occurs for the input of 5 Hz / 6 mm, where Vortex 
shows significantly larger maximum rotations and the block collapses in 
the DEM simulation. As previously discussed, this anomalous response is 
likely due to the activation of a wobbling motion, which was not 
observed experimentally, nor predicted by the analytical solution or 
Bullet. The graph also highlights that, although the analytical solution 
underestimates the rocking amplitude, its trend with increasing accel
eration closely follows that observed in the experiments and in Bullet 
simulations.

6. Forced rocking simulations for two stacked blocks

In this last section, the physics engines were tested using a system of 
two stacked blocks subjected to either sine-pulse or sinusoidal base ex
citations. Similarly to Section 7, results are compared against analytical 
results, obtained using available models from the literature [64] and 
Destro Bisol et al. [23], and DEM predictions for both the sine-pulse and 
sinusoidal signals (Table 8). Additionally, the experimental results from 
Peña et al. [62], in terms of maximum rotations, were also included for 
comparison with the response to sinusoidal excitation. As in the tests of 
Section 7 on the forced rocking of the single block, the dimensions and 
input parameters were herein also based on the experimental tests of 
Peña et al. [62]. The bottom block measures 0.20 × 0.4 × 0.60 m3, 
while the top block measures 0.15 × 0.55 × 0.60 m3. Both blocks had 
their corners cut 5 mm with a 45◦ angle to prevent their crashing during 
the rocking motion. This system is characterized by three critical angles, 
λ=18.45◦ for the bottom block, λ=14.04◦ for the top block and λ=9.85◦

for the whole system, assuming it behaves like a single block. The 
response of two stacked rocking blocks to sine-pulse ground motion can 
be assessed by considering the slenderest configuration between the top 
block and the monolithic system, as demonstrated in Destro Bisol et al. 
[22]. Accordingly, the smallest critical angle was used as a reference for 
normalizing the results. As for the single rigid block, only the amplitudes 
and frequencies combinations from Peña et al. [62] characterized by an 
acceleration, üg, larger than the one evaluated with the critical angle 
( üg
gtan (λ)) were considered (see Table 8).

6.1. Response to sine-pulse excitations

Fig. 12 presents the normalized rocking angle time-histories ob
tained using sine-pulse excitations, divided between the top and bottom 
blocks at the start of the motion. Depicted results show that, under each 
input, the first two rocking angles produced by the physics engines and 
DEM are similar, particularly between DEM and Vortex. However, the 
analytical solution differs due to the inertia phenomenon described in 
Section 5.1.

The rocking response of the stacked blocks under sine pulse excita
tion can be characterized by non-harmonic motion dissipation, due to 
interactions between the top and bottom blocks. In such systems, it is 
possible for the blocks to move out of sync. When this occurs, energy is 
exchanged during impacts—specifically, when the top block collides 
with the bottom block while the latter is still in a rotated position
—resulting in sudden changes in motion. In the analyzed cases, this 
behaviour is particularly evident for the sine inputs 4 Hz / 5 mm, 5 Hz / 
3 mm, and 5 Hz / 4 mm. The phenomenon is most prominent in the 
analytical and Bullet results but can also be observed, though less 
distinctly, in the Vortex and DEM results. The predicted maximum 
rocking angles of the blocks centroids normalized to the minimal critical 
angle λ, are summarized in Table 9 and Table 10, for the top and bottom 
block, respectively. Their trends, plotted against the normalized 
maximum acceleration, are shown in Fig. 13.

The top block exhibits larger rocking angles, with values of 
0.572 rad, 0.273 rad, 0.234 rad, and 0.320 rad for the analytical solu
tion, Bullet, Vortex, and DEM, respectively. These rocking angles 
occurred under different input conditions: 4.0 Hz / 5 mm for the 
analytical solution and Bullet, 5.0 Hz / 4 mm in Vortex and 3.3 Hz / 
4 mm in DEM. In contrast, the bottom block consistently showed small 
rocking angles that dissipated quickly. The maximum rocking angles 
reached were 0.021 rad for the analytical solution and Bullet, 0.008 rad 
for Vortex, and 0.015 rad for DEM. As with the top block, these values 

Fig. 9. Intrinsic differences in rocking modelling between physics engines, numerical and analytical solutions: a) rocking angles comparison at the motion start, b) 
graphical representation of the initial rocking angle direction in physics engines and DEM and c) graphical representation of the initial rocking angle direction in the 
analytical solution.
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Fig. 10. Normalized rocking angle time-histories at the start of the motion, in the transitionary phase and the stationary phase of each combination of frequency and 
amplitude analyzed.
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correspond to different input conditions: 4.0 Hz / 5 mm for the analyt
ical solution, 4.0 Hz / 5 mm and 5 Hz / 4 mm for Bullet, 3.3 Hz / 4 mm 
for Vortex, and 5 Hz / 4 mm for DEM.

Fig. 13 shows, as for the single block, that an increase in acceleration 
does not necessarily lead to an increase in rocking angle for either the 
top or bottom block. In this system, both frequency and amplitude 
appear to significantly influence the rocking response. Specifically, for 
the 5 Hz input, the rocking angle increased with amplitude up to 4 mm, 
but then decreased for 5 mm. This behaviour suggests that, during the 
half-cycle of the excitation, the block may not have reached its 
maximum rotation before the input reversed direction, causing it to rock 
in the opposite direction without completing the full excursion. The 
plots also indicate that, for the top block, the analytical solution predicts 
larger rotations than the numerical models for normalized accelerations 
greater than 1.72. In contrast, for the bottom block, this overestimation 
is evident in both the analytical solution and the Bullet model—although 
for the 5 Hz / 5 mm input, all models appear to be in good agreement.

The rocking motion of the blocks dissipates over time, with the 
dissipation rate depending on the simulation tool used. DEM shows the 
slowest dissipation, with the blocks taking more than 10 s to come to 
rest, followed by Bullet (about 3 s) and Vortex (less than 2 s, see Fig. 12). 
The dissipation observed in the analytical solution is tends instead to be 
faster than in DEM, but it does not follow a consistent trend compared to 

Bullet and Vortex. For instance, under input conditions such as 4 Hz / 
4 mm, 4 Hz / 5 mm, 5 Hz / 4 mm, and 6.5 Hz / 2 mm, the energy dissi
pates more slowly than in both physics’ engines, while in other cases it is 
comparable to Vortex. This suggests that the interaction between the top 
and bottom blocks has a stronger influence on energy dissipation in the 
analytical solution than in the other numerical tools. The residual 
rotation shown by DEM under certain input conditions does not indicate 
that the block remained tilted, but rather that it experienced sliding. 
This sliding behaviour is specific to DEM, where contacts are modeled 
using normal and shear springs that can elastically deform up to a 
defined limit. In contrast, the physics engines employ non-smooth con
tact models, in which transitions between sticking and sliding occur 
instantaneously, without capturing the elastic deformation phase at the 
contact interface.

6.2. Response to sinusoidal excitations

The normalized rocking angle time-histories of the two stacked 
blocks under sinusoidal excitation are shown in Fig. 14, where analytical 
and numerical maximum rocking angles are compared against experi
mental values from Peña et al. [62] (the full experimental motion of the 
block is not available for comparison. The only experimental data re
ported in the reference study are the maximum rocking angles). Since 
maximum rocking angles typically occur in the initial stages, only the 
first two seconds are reported.

Table 11 and Table 12 summarize the percentage differences be
tween the maximum rocking angles obtained analytically and numeri
cally with respect to the experimental data for both the top and bottom 
blocks. Overall, the top block rocking angles are better simulated than 
those of the bottom block, likely due to the smaller rotation values in the 
latter.

For the top block, the rocking angles amplitudes obtained are 
generally lower than those reported by Peña et al. [62]. The results from 
DEM best approximate the experimental data, with percentage differ
ences between 0 % and − 43 %, and also successfully simulate collapses 
at 4.0 Hz / 5 mm and 5.0 Hz / 4 mm, which occur at approximately 
4.65 s and 5.22 s, respectively (see miniatures in Fig. 11). However, 

Table 7 
Percentage errors in rocking angles for Bullet, Vortex and DEM, relative to experimental values for blocks under sinusoidal excitations (red indicates overestimations, 
blue underestimations vs experimental results).

Frequency Amplitude
Analytical Bullet Vortex DEM

θan − θex

θex

θbl − θex

θex

θvx − θex

θex

θDEM − θex

θex
[Hz] [mm] [-] [-] [-] [-]

3 8 38 % 11 % 8 % 4 %

3.3 6 34 % 1 % 1 % 9 %
8 39 % 11 % 12 % 2 %

5
4 43 % 10 % 9 % 7 %
5 40 % 12 % 10 % 2 %
6 43 % 7 % 107 % collapsed

Fig. 11. Trends in the normalized maximum rocking angles of the ’single #2′ model under sinusoidal excitation, as a function of normalized input acceleration.

Table 8 
Summary of the input characteristics used for the two stacked blocks forced 
rocking simulations.

Frequency Amplitude üg
üg

gtan (λ)
[Hz] [mm] [m/s2] [-]

3.3 4 1.72 1.01

4
3 1.90 1.11
4 2.53 1.48
5 3.15 1.85

5
2 1.97 1.16
3 2.96 1.74
4 3.95 2.32

6.5 2 3.34 1.96
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DEM failed to capture the maximum rocking angle at 5 Hz / 3 mm, as the 
top block collapsed after one second. The ability of DEM to realistically 
simulate rocking motion may be attributed to its capacity to capture 
rotations not only about the primary axis but also about secondary axes, 

as previously observed in the sinusoidal response of single blocks. The 
physics engines show comparable maximum rocking angles, but their 
deviations from the experimental data are larger than those from DEM, 
ranging from − 98 % to − 26 % in Bullet and from − 97 % to − 31 % in 

Fig. 12. Normalized rocking angle time-histories of two stacked blocks under sine-pulse excitations.
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Vortex. The largest differences— − 98 % for Bullet and − 97 % for Vor
tex—occur when the software programs fail to detect experimental 
collapses. A similar situation is observed with the analytical solution, 
where the maximum rocking angles deviate by − 86 % to − 6 %, with the 
largest difference (-86 %) corresponding to undetected experimental 
collapses. As observed for the sine-pulse excitations, the initial rocking 
angles of the top block are nearly identical across Bullet, Vortex, and 
DEM, except for 5.0 Hz / 2 mm, where DEM produced lower rocking 
angles. The analytical results show smaller rocking angles. In general, 
rocking angles using DEM stabilize more slowly than those from the 

other programs.
For the bottom blocks, the physics engines always underestimate 

maximum rocking angles, with percentage differences of 98 %-53 % for 
Bullet and 96 %-67 % for Vortex. Instead, the DEM models and the 
analytical solution in some cases overestimated and other cases under
estimated them.

Note that the Peña et al. [62] themselves concluded that in the 
specific case of two stacked block specimens, tests were hardly repeat
able. This can be observed when the dynamic response of complex 
rocking systems is investigated either experimentally [6] or numerically 
[5,60,85]. Hence, large deviations from measured values should not 
surprise the reader. Differences observed between prediction and test 
results shall not be directly used to quantify accuracy here. Of certain 
interest is, however, the fact that Bullet, Vortex and DEM generally yield 
comparable results.

The graphical representation of the normalized rocking angles versus 
the normalized acceleration (Fig. 15) shows that, for the top block, all 
numerical models follow the experimental trend up to a normalized 
acceleration of 1.48. Beyond this point, only the DEM model continues 
to match the experimental response, although it begins to predict 
overturning slightly earlier. Overall, the analytical solution tends to 
underpredict the top block’s rotations, except at intermediate acceler
ations (1.45 and 1.74), where it aligns well with the experimental data. 
In contrast, neither the numerical models nor the analytical solution can 
simulate the experimentally measured rocking angles for the bottom 
block.

It is acknowledged that further work is required to fully evaluate 
performance of physics engines up to rocking-induced collapse, since 
some of the macro-blocks analyzed herein did not fail under the applied 
dynamic motion. This is partly investigated in some of our other recent 
work [83] focusing on the capabilities of physics engines (Bullet) in 
reproducing experimental and DEM out-of-plane failures of dry-joint 
meso-scale masonry assemblies. The results obtained in the above
mentioned research shows when the collapse is induced quasi-statically 
using a tilting platform, slightly conservative yet satisfactorily pre
dictions can be achieved.

7. Conclusions

Physics engines are numerical tools conceived for visually plausible 
and expedited simulations of mechanical phenomena, including the 
dynamics of rigid particles, and are often used in movies, videogames 

Table 9 
Comparison of normalized maximum rocking angles obtained using analytical 
solutions, Bullet, Vortex and DEM, for the top block under sine-pulse excitations.

Frequency Amplitude
Analytical Bullet Vortex DEM

θan

λ
θbl

λ
θvx

λ
θDEM

λ
[Hz] [mm] [-] [-] [-] [-]

3.3 4 - 0.268 0.185 0.320

4
3 0.022 0.190 0.142 0.227
4 0.225 0.168 0.151 0.151
5 0.572 0.273 0.208 0.208

5
2 0.022 0.065 0.096 0.108
3 0.247 0.203 0.131 0.125
4 0.480 0.184 0.234 0.221

6.5 2 0.213 0.065 0.094 0.077

Table 10 
Comparison of normalized maximum rocking angles obtained using analytical 
solutions, Bullet, Vortex and DEM, for the bottom block under sine-pulse 
excitations.

Frequency Amplitude
Analytical Bullet Vortex DEM

θan

λ
θbl

λ
θvx

λ
θDEM

λ
[Hz] [mm] [-] [-] [-] [-]

3.3 4 - 0.036 0.049 0.067

4
3 0.022 0.037 0.021 0.052
4 0.114 0.026 0.018 0.033
5 0.125 0.121 0.029 0.056

5
2 0.022 0.017 0.021 0.031
3 0.055 0.111 0.014 0.030
4 0.061 0.122 0.046 0.086

6.5 2 0.026 0.016 0.013 0.025

Fig. 13. Trends in the normalized maximum rocking angles of the stacked block model under sine-pulse excitation, as a function of normalized input acceleration.
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and virtual reality applications for creating digital animations. 
Conceptually, they present similarities with more rigorous yet compu
tationally intensive discontinuum solvers leveraged by structural and 
earthquake engineers for assessing the rocking motion of blocky 

systems, including those made of highly vulnerable unreinforced ma
sonry (URM).

This study is the first quantitative evaluation of two widely used 
physics engines, Bullet Physics (implemented in Blender, open-source) 

Fig. 14. Normalized rocking angle time-histories of two stacked blocks under sinusoidal excitations.
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and Vortex (developed by CM Labs, commercial code), in simulating 
complex rocking phenomena of isolated and stacked rigid blocks under 
either free or forced motion. Various block aspect ratios, shapes, and 
boundary conditions were considered, and outcomes validated against 
experimental data, analytical predictions, and numerical simulations via 
3DEC, a reference Distinct Element Method (DEM) software for the 
rigorous rocking analysis of URM. Key findings are summarized as 
follows: 

• Both Bullet and Vortex can accurately simulate the free rocking of 
single rigid blocks with varying slenderness and initial rocking an
gles, yielding maximum errors on the order of 10⁻4 relative to the 
widely accepted Housner’s analytical solution.

• Under sine-pulse forced rocking, both physics engines and DEM 
exhibited a maximum difference up to approximately ±20 % in 
predicted rocking angles compared to the analytical solution. In 
these cases, the physics engines produced an overdamped response, 
while DEM exhibited an underdamped behaviour attributable to its 
stiffness-damping approach.

• Under sinusoidal excitations, the maximum rocking angles produced 
by both physics engines and DEM were within + 12 % of the 
experimental values, whereas the analytical solution underestimated 
these angles by about 40 %. This discrepancy arises because the 
analytical model applies the input loads directly at the centroids of 
the blocks, whereas the numerical models apply them to the foun
dation blocks.

• For two stacked blocks under sine-pulse forced rocking, the initial 
rocking angles of the top block were similar between the physics 
engines and DEM, with average absolute errors of 26 % (Bullet) and 
15 % (Vortex). However, larger discrepancies were observed for the 
bottom block, with absolute average errors of 76 % for Bullet and 
45 % for Vortex.

• In the case of sinusoidal forced rocking for two-stacked blocks, both 
physics engines underestimated the maximum rocking angles when 
compared with experimental data: the top block’s angles were 
underestimated by an average of 56 % in Vortex and 58 % in Bullet, 
while the bottom block’s angles were underestimated by 77 % and 
82 %, respectively. Notably, DEM provided more accurate pre
dictions for the top block (with an absolute average error of 18 %) 
and was the only method capable of simulating the collapse of the 
top block under certain loads.

• The computational times for Bullet and Vortex were comparable and 
significantly lower than those for DEM. For instance, in the case of a 
single block subjected to a 5 Hz / 6 mm excitation, Bullet and Vortex 
required approximately 150 s for the sine-pulse input and 53 s for the 
sinusoidal input, whereas the DEM simulations took 1440 and 
1560 s, respectively. Similarly, for the analysis of two stacked blocks 
under a 5 Hz / 4 mm excitation, Bullet and Vortex simulations 
required 489 s for the sine-pulse and 358 s for the sinusoidal input. In 
contrast, DEM simulations for the same scenarios required 7220 and 
18055 seconds, respectively. It is important to note that DEM 

Table 11 
Percentage errors in maximum rocking angles obtained using analytical solu
tions, Bullet, Vortex and DEM, relative to experimental values for the top block 
under sinusoidal excitation (red indicates overestimations, blue un
derestimations vs experimental results).

Analytical Bullet Vortex DEM

θan − θex

θex

θ − θex

θex

θvx − θex

θex

θDEM − θex

θex

f= 3.3 A= 4 mm 79 % 26 % 39 % 15 %
f= 4.0 A= 3 mm 44 % 38 % 46 % 9 %
f= 4.0 A= 4 mm 8 % 39 % 42 % 43 %
f= 4.0 A= 5 mm 96 % 98 % 97 % collapsed
f= 5.0 A= 2 mm 26 % 33 % 38 % 28 %
f= 5.0 A= 3 mm 26 % 34 % 31 % collapsed
f= 5.0 A= 4 mm 96 % 98 % 97 % collapsed
f= 6.5 A= 2 mm 56 % 79 % 73 % 32 %

Table 12 
Percentage errors in maximum rocking angles obtained using analytical solu
tions, Bullet, Vortex and DEM, relative to experimental values for the bottom 
block under sinusoidal excitation (red indicates overestimations, blue un
derestimations vs experimental results).

Analytical Bullet Vortex DEM

θan − θex

θex

θbl − θex

θex

θvx − θex

θex

θDEM − θex

θex

f= 3.3 A= 4 mm - 55 % 67 % 19 %
f= 4.0 A= 3 mm 253 % 57 % 74 % 91 %
f= 4.0 A= 4 mm 422 % 76 % 72 % 42 %
f= 4.0 A= 5 mm 70 % 98 % 96 % 35 %
f= 5.0 A= 2 mm 4 % 53 % 90 % 306 %
f= 5.0 A= 3 mm 242 % 78 % 70 % 1856 %
f= 5.0 A= 4 mm 82 % 98 % 88 % 49 %
f= 6.5 A= 2 mm 69 % 97 % 95 % 8 %

Fig. 15. Trends in the normalized maximum rocking angles of the stacked model under sinusoidal excitation, as a function of normalized input acceleration.
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analyses were conducted on a high-performance workstation 
equipped with a 12th Gen Intel® Core™ i9–12900K processor 
(3.2 GHz) and 128 GB of RAM. In comparison, Bullet and Vortex 
simulations were carried out on a significantly less powerful ma
chine, equipped with a 13th Gen Intel® Core™ i7–13700K processor 
(2.1 GHz) and 16 GB of RAM.

This study demonstrates that Bullet and Vortex can be used for the 
rocking analysis of rigid blocks and that their performance does not 
differ significantly from that of established DEM models (3DEC in this 
case). Because the analysis time required by physics engines is signifi
cantly lower than that of DEM, our results will enable researchers and 
engineers working within and beyond structural engineering to conduct 
larger-scale computations much more effectively, potentially involving 
complex configurations of isolated or stacked blocks. Future research 
will comparatively assess the capabilities of physics engines and DEM in 
simulating the dynamic response of multi-block dry-joint systems, also 
up to collapse, as well as the development of more advanced bonded 
particle models for physics engines.
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(FRQ-NT). The authors thank CM Labs for kindly providing free access 
and support to/for Vortex Studio. Finally, the authors would like to 

thank Prof. Pulatsu (Carleton University) for sharing his valuable in
sights on fundamental differences and similarities between DEM and 
physics engines.

Data availability

The datasets presented in this study are available from the corre
sponding author on reasonable request.

References

[1] Acikgoz S, Dejong MJ. The interaction of elasticity and rocking in flexible 
structures allowed to uplift. Earthq Eng Struct Dyn 2012;41:2177–94. https://doi. 
org/10.1002/eqe.2181.

[2] Aghagholizadeh M. A finite element model for seismic response analysis of 
vertically-damped rocking-columns. Eng Struct 2020;219:447–66. https://doi.org/ 
10.1016/j.engstruct.2020.110894.

[3] Andrews S., Erleben K., Ferguson Z. (2022) Contact and friction simulation for 
computer graphics.

[4] Anitescu M, Potra FA. Formulating dynamic Multi-Rigid-Body contact problems 
with friction as solvable linear complementarity problems. Nonlinear Dyn 1997;14: 
231–47. https://doi.org/10.1023/A:1008292328909.

[5] Aslam M, Godden WG, Scalise DT. Earthquake rocking response of rigid bodies. 
J Struct Div 1980;106:377–92. https://doi.org/10.1061/JSDEAG.0005363.

[6] Bachmann JA, Strand M, Vassiliou MF, et al. Is rocking motion predictable. Earthq 
Eng Struct Dyn 2018;47:535–52. https://doi.org/10.1002/eqe.2978.

[7] Baraff D. (1994) Fast contact force computation for nonpenetrating rigid bodies. In: 
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive 
Techniques, SIGGRAPH 1994. Association for Computing Machinery, New York, 
NY, USA, pp 23–34.

[8] Baumgarte J. Stabilization of constraints and integrals of motion in dynamical 
systems. Comput Methods Appl Mech Eng 1972;1:1–16. https://doi.org/10.1016/ 
0045-7825(72)90018-7.

[9] Beatini V, Royer-Carfagni G, Tasora A. A regularized non-smooth contact dynamics 
approach for architectural masonry structures. Comput Struct 2017;187:88–100. 
https://doi.org/10.1016/j.compstruc.2017.02.002.

[10] Berton J.A., Chuang K.-L. (2016) Effects of Very High Frame Rate Display in 
Narrative CGI Animation. In: 2016 20th International Conference Information 
Visualisation (IV). pp 395–398.

[11] Chatzis MN, García Espinosa M, Needham C, Williams MS. Energy loss in systems 
of stacked rocking bodies. J Eng Mech 2018;144:4018044. https://doi.org/ 
10.1061/(asce)em.1943-7889.0001443.

[12] CM Labs Simulations (2024) Vortex Studio.
[13] Coumans E. (2015) Bullet physics simulation. In: ACM SIGGRAPH 2015 Courses. p 

1.
[14] Courant R, Friedrichs K, Lewy H. On the partial difference equations of 

mathematical physics. IBM J Res Dev 1967;11:215–34. https://doi.org/10.1147/ 
rd.112.0215.

[15] Cundall PA. The measurement and analysis of accelerations in rock slopes. Ph 
d thesis. Imp Coll; 1971.

[16] Cundall P.A. (1971a) A computer model for simulating progressive large-scale 
movements in blocky rock systems. In: In Proceedings of the Symposium of the 
International Society of Rock Mechanics. p No. 8.

[17] Cundall PA. Formulation of a three-dimensional distinct element model-Part I. A 
scheme to detect and represent contacts in a system composed of many polyhedral 
blocks. Int J Rock Mech Min Sci 1988;25:107–16. https://doi.org/10.1016/0148- 
9062(88)92293-0.

[18] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies. 
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