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In radiology practice, medical images are described and interpreted by radiologists in text reports. Recent technical develop-
ments enabling deep learning models to connect images and text may facilitate the radiologic workflow. These developments 
include advances in data embedding, self-supervised learning, zero-shot learning, and transformer-based model architectures. 
Models connecting images and text can be divided into four categories: (a) Text-image alignment models associate text de-
scriptions with corresponding images. (b) Image-to-text models create text descriptions from images. (c) Text-to-image models 
generate images from text descriptions. (d) Multimodal models integrate and interpret multiple types of data such as images, 
videos, text, and numbers simultaneously. Potential clinical applications of these models include automated captioning of med-
ical images, generation of the preliminary radiology report, and creation of educational images. These advances may enable case 
prioritization, streamlining of clinical workflows, and improvements in diagnostic accuracy.
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Introduction
Analysis and interpretation of medical images rely on the ex-
pertise of radiologists. Medical imaging studies, along with 
their corresponding radiology reports, contain a wealth of in-
formation essential for clinical management. The increasing 
number of imaging studies presents a substantial challenge 
for radiologists, who must manage a growing volume of inter-
pretations while meeting the demand for rapid turnaround 
times. This situation places considerable pressure on radiolo-
gists to maintain high productivity and accuracy (1).

To address these challenges, technology may assist ra-
diologists by enhancing their efficiency and accuracy. For ex-
ample, computer-aided detection systems help radiologists 
detect and diagnose abnormalities (2–4). However, conven-
tional computer-aided systems are often limited to specific 
tasks and their performance can degrade when applied to dif-
ferent datasets or tasks, requiring datasets curated by experts 
for effective training (5).

Deep learning models, a type of artificial intelligence (AI), 
use neural networks with multiple layers to learn complex 
patterns from large datasets. Recent technical advances in 
computer vision and natural language processing, along 
with the wider availability of data and increases in comput-
ing power, have enabled models to connect images and text 
(6–11). In recent studies (11–13), medical image captioning 
using models pretrained on large and diverse datasets has 
been found to have high accuracy. These models could adapt 
to various new applications such as generating preliminary 
radiology reports from medical images (Fig 1) (14). In addi-
tion, multimodal models may integrate multiple types of 
data to inform patient care (15,16). The use of models con-
necting images and text may transform how radiologists re-

view imaging examinations and report diagnostic findings 
(17–20).

This article includes a discussion of recent technical devel-
opments in deep learning that have enabled models connect-
ing images and text. A glossary of commonly used terms in 
deep learning is provided (Table). Also discussed are differ-
ences between discriminative and generative models. Next, 
essential concepts of data embedding, self-supervised learn-
ing, and zero-shot learning are summarized. Then, four cat-
egories of models connecting images and text are discussed: 
(a) text-image alignment models, (b) image-to-text models, 
(c) text-to-image models, and (d) multimodal models. For 
each type of model, discussions of its general architecture, 
summaries of the underlying key concepts, and descriptions 
of potential applications are included.

Overview of Deep Learning Models Connecting 
Images and Text

Deep learning models connecting images and text are cate-
gorizable by their inputs and outputs. Text-image alignment 
models associate text with corresponding images. Image-
to-text models create text from images, while text-to-image 
models generate images from text. Multimodal models inte-
grate and interpret multiple types of data simultaneously (Fig 
2). In this article, the authors focus on models that process 
image and text data, although multimodal models may inte-
grate a wider variety of data types including video, audio, fre-
quency, and sequencing data.

Models taking images as input may be most relevant for ra-
diologists in clinical settings (eg, for preliminary generation 
of a radiology report) (14), whereas models taking text as in-
put may be useful for educational and research purposes (eg, 
prompts generating synthetic examples) (Fig 3) (21).

Discriminative and Generative Models
Deep learning models can be broadly categorized based on the 
nature of the tasks they solve into two types: discriminative or 
generative models (Fig 4). Discriminative models learn the de-
cision boundaries between different classes in the input data. 
Their primary goal is to determine which class new input data 
belong to based on learned features. For example, when pre-
sented with a new image, a discriminative model may decide 
whether it contains a liver or a kidney. In contrast, generative 
models learn the underlying patterns of the training data, from 
which they generate new examples (22). Thus, generative mod-
els provide a mechanism for creating new text or image data.

Data Embeddings

Embedding Space
Deep learning models connecting images and text are trained 
on images paired with relevant text descriptions. Training 
data are represented as lists of numbers (ie, vectors) called 
data embeddings. The numerical values of an embedding 
encode relevant concepts in the data, effectively locating data 
items in an “embedding space.” The embedding space can be 
considered as a map, where the relative positions of different 
locations can convey semantic relationships.
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Practically speaking, during the embedding process, a 
deep learning model extracts the most relevant information 
from an input image or text and compresses it into a series of 
numbers. The meanings and concepts extracted by the model 
are represented in how big or small these numbers are, which 
reflects their relationships. These collections of numbers are 
known as embedding vectors. Embeddings can be generated 
with specialized deep learning models, or they can be learned 
by a subset of a deep learning model during training.

Text Embeddings
In a word embedding space, the locations of word vectors are 
determined by their meanings. In effect, similar words are 
located close to each other in this embedding space (Fig 5A) 
(23). To form word embeddings, the source text is processed 
into an analyzable form before being converted by deep 
learning models into embedding vectors (Fig 5B) (24). These 
embedding models have been trained on extensive text data 
to learn useful insights and underlying patterns.

Image Embeddings
Similarly, image data can be converted to embeddings that 
summarize aspects of the image content. For example, med-
ical images that depict the same organ are organized within 

the same cluster, while dissimilar images are more distant 
from each other (Fig 6A). Image embeddings are also generat-
ed by deep learning models (Fig 6B) (23). In particular, convo-
lutional neural networks are especially useful for extracting 
features such as edges, textures, and shapes that allow recog-
nition of an organ or lesion (25,26).

Shared Embedding Space
In models connecting images and text, image and text em-
beddings are aligned so that a model can associate visual con-
cepts with their textual representations. Since embedding 
models are typically trained from large nonspecialized im-
ages and datasets, incorrect conceptual relationships might 
arise when these models are used to generate embeddings for 
domain-specific applications (27). For example, a dataset of 
radiology text reports and corresponding images may contain 
similar concepts such as “fatty liver” and “steatosis.” A mod-
el without specific domain knowledge may fail to interpret 
these phrases as referring to similar medical image findings. 
This highlights the importance of domain-specific knowledge 
for specialized concepts.

To address this challenge, semantic categories curated by 
domain experts (ie, specific labels annotated by domain ex-
perts that tell the category to which each example belongs) 

Figure 1.  Illustration shows the concept of automated report generation with image-to-text models. The cur-
rent interpretation workflow relies on the production of reports by radiologists. Image-to-text models may assist 
radiologists by analyzing the medical images and automatically populating sections of radiology reports in the 
background. The radiologist then interprets the images and edits the generated reports to produce a final report. If 
an AI-augmented workflow becomes efficient, it has the potential to save interpretation time compared with that of 
the existing workflow. (Icons made by Freepik, Amethyst Design from www.flaticon.com.)
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can provide additional context to support the appropriate or-
ganization of the embedding space (27). In this example, an 
expert could indicate that image descriptions of a fatty liver 
and steatosis in reports refer to identical concepts. This way, 
the trained model can learn to recognize these phrases as re-
ferring to similar findings.

Self-supervised Learning
Self-supervised learning refers to a process by which a model can 
learn concepts from unlabeled data through carefully designed 
tasks that exploit existing information within the data (28). 
These tasks are called pretext tasks and do not require explicit 

labeling. An example of a pretext task is contrastive learning, in 
which a model learns to represent data in such a way that similar 
data are close together while dissimilar data are far apart (28).

For instance, consider a liver image and a kidney image; 
several slightly altered versions of these images can be gen-
erated using a series of transformations. A model can then 
be trained to recognize the modified versions of the liver 
image as similar to each other and to distinguish these liver 
images from the modified versions of the kidney image. In 
other words, the goal of training is to maximize the similar-
ity between similar image pairs (ie, the liver images should 
be represented similarly, and the kidney images should be 

Glossary of Commonly Used Terms in Deep Learning

Term Definition

Computer vision A field of AI enabling computers to understand images and videos
Contrastive learning A learning approach in which a model represents similar data close together and dissimilar data far apart
Decoder A part of a neural network that reconstructs the output of an encoder into the desired output. Decoders 

may convert vectors of numbers into images or text.
Deep learning A type of learning in which the algorithm learns a hierarchy of features in the data using neural net-

works with many layers
Discriminative models A type of model that focuses on learning the boundaries separating different classes
Embedding A compressed numerical representation of the relevant information from an input image or text
Embedding space A map in which embeddings are represented so that their relative positions capture their semantic rela-

tionships
Encoder A part of a neural network that converts input data into a numerical representation. Encoders may con-

vert images or text into vectors of numbers.
Encoder-decoder models A type of model that includes an encoder and a decoder. This type of model may transform one type of 

data (image or text) into another (image or text).
Generative models A type of model that learns patterns to generate new samples similar to the original training data
Image-to-text models A type of generative model designed to create text descriptions from images
Model An algorithm that learns from training data how to perform specific tasks on new data
Multimodal models A type of deep learning model that integrates multiple types of data (eg, images, videos, text, and num-

bers) into a unified framework, allowing it to interpret all these types of data simultaneously
Natural language processing A branch of AI enabling computers to comprehend, generate, and manipulate human language
Neural networks A model inspired by the structure of biologic neurons composed of multiple layers of connected nodes. 

Modern neural networks may contain thousands to millions of nodes.
Noisy labels Incorrect or misleading annotations that negatively affect the performance of a deep learning model
Self-attention A mechanism that allows the model to focus on different parts of the input data by weighing their impor-

tance (42)
Self-supervised learning A type of learning from unlabeled data relying on careful design of tasks to produce labels from existing 

information within the data; for example, a model may be trained to predict masked parts of an image
Semantic relationship Connection between concepts (whether words or images) based on their meaning; in an embedding 

space, concepts with similar meanings are located close together
Supervised learning A type of learning where all training data are explicitly labeled
Text-image alignment models A type of model that associates text descriptions with corresponding images by learning a shared embed-

ding space
Text-to-image models A type of generative model designed to create images from text descriptions
Transformer An efficient and scalable neural network architecture widely used in natural language processing, using 

self-attention to understand the meaning of words in their larger context (42). Transformers have 
more recently been applied to images (see vision transformer).

Vision Transformer An adaptation of the transformer architecture to images, where an input image is divided into a sequence 
of patches treated in a similar way to words in a natural language processing application (44)

Zero-shot learning A technique where a model can identify a concept that was not explicitly observed during training; for 
example, zero-shot learning trained on “calcified lung granulomas” and “normal spleens” may recog-
nize that splenic calcifications may represent “calcified splenic granulomas.”
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represented similarly) while minimizing the similarity be-
tween contrasting pairs (ie, the liver images should have rep-
resentations distinct from those of the kidney images).

Other training approaches can be used to address the 
challenge of labeled data scarcity, such as transfer learning 
(29). Transfer learning involves using a pretrained model (ie, 

trained on a large but nonspecialized dataset) and adapting it 
to a new but related task with limited specialized data (30). The 
process of training a model on a new task is called fine- tun-
ing. The idea of transfer learning is to leverage the knowledge 
gained by a model during pretraining to bootstrap its perfor-
mance on another task with fewer data. Transfer learning is 

Figure 2.  Summary of the four categories of deep learning models connecting text and images. These models are text-image alignment, text-to-im-
age, image-to-text, and multimodal models. The input, encoder, decoder, and output for each model are illustrated. For text-image alignment, images 
and text are input into their respective encoders to produce an embedding for both images and text, with scores indicating their similarity (eg, how 
well they are aligned). In an image-to-text model, an image is fed into an image encoder, which produces features that are subsequently fed into a text 
decoder to generate text descriptions as output. In a text-to-image model, text descriptions are fed into a text encoder, which generates features that 
are subsequently fed into an image decoder to produce images as output. In a multimodal model, both images and text are fed into their respective 
encoders, are combined and processed through a joint embedding by a multimodal decoder, and produce integrated outputs such as text.

Figure 3.  Illustration shows the leveraging challenges associated with the lack of domain-specific datasets and educational barriers in radiol-
ogy with text-to-image models. Text-to-image models can augment existing radiologic datasets by generating image variations based on text de-
scriptions. This approach could be useful when the datasets are small, as it provides additional data for training of AI models, reducing the time 
and cost to create large medical imaging datasets. These models could also be used to enhance training and education in radiology. Trainees 
could learn to associate text findings with corresponding radiologic images. (Icons made by Freepik, VectorPortal from www.flaticon.com.)
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can change over time. Zero-shot learning allows models to 
classify new examples based on semantic attributes, which 
represent the essential characteristics of different classes 
and enable the model to recognize and classify concepts not 
encountered during training (Fig 8) (34,35). Classes are posi-
tioned as vectors in this space of attributes, with their location 
determined by how well they express these attributes (Fig 9) 
(33,36). This enables the model to make informed predictions 
about new classes based on their semantic similarities to 
known classes. Zero-shot learning is useful for models con-
necting images and text because it allows them to handle a 
broad range of concepts.

For instance, in a patient with an Echinococcus infection, 
hydatid cysts are most commonly found in the liver, while 
splenic hydatid cysts are rare. A radiologist may have never 
seen this condition in the spleen but could still recognize this 
diagnosis, drawing on their understanding of similar charac-
teristics of this lesion in the liver and related medical knowl-
edge. Zero-shot learning works similarly. Consider an AI 
model that has been extensively trained on medical images of 
common abdominal conditions such as hepatic hydatid cysts 
and simple cysts, but not on the rarer condition of splenic hy-
datid cysts. Despite this, with zero-shot learning, the model 
can still identify the splenic lesion as a potential hydatid cyst 
by leveraging its knowledge of spleen structures and patho-
logic features learned from other conditions.

Although zero-shot learning offers advantages in scenari-
os where acquiring labeled data is challenging, this technique 
still assumes that new classes of interest are adequately rep-
resented, even if they are not explicitly labeled in the train-
ing data. These new classes of interest effectively must be-
long to the same domain as that of the training data (31). A 

Figure 4.  Illustrations show the differences between discriminative and generative models. (A) Discrimina-
tive models learn the decision boundary (represented by the dotted line) separating different classes in the 
training data. In this example, a discriminative model aims to find the optimal line that best separates the 
two classes (liver and kidney). The goal is to accurately classify new data points (ie, discriminative classifi-
cation) by determining on which side of the boundary they fall, based on learned features (eg, to determine 
whether a new image contains a liver or a kidney). (B) Generative models learn the underlying patterns of the 
training data and generate similar new data. In this example, darker-colored small circles represent individ-
ual training examples of the liver (in beige) and the kidneys (in blue). The lighter-colored ellipses represent 
their respective distribution. The images in boxes illustrate the concept of synthetic (ie, generated) images.

useful in scenarios where robust pretrained models are acces-
sible and when the new task is related to the original task.

Classifying Unseen Classes: Zero-Shot Learning
Task-specific learning requires a predefined and fixed set of 
classes. The number of classes is determined by the labels in 
the training data, and the objective of the model is to predict 
the correct class for new unseen inputs. For example, for the 
task of classifying images of organs into categories such as liv-
er, kidney, or spleen, the model needs training examples for 
each of these classes (Fig 7A). Such models can achieve high 
accuracy if classes are well represented in the training dataset.

Most deep learning models developed for radiology have 
relied on this task-specific approach, which requires access to 
expert-labeled data. This reliance on labeled data means that 
generalization across the spectrum of abnormalities and im-
age-acquisition techniques remains a substantial challenge 
for wider adoption (31). The scarcity of radiologists available 
to annotate images for purposes beyond patient care, along 
with the high costs and resources required for labeling radio-
logic images, limits the size of labeled datasets. For instance, 
even in the recent medical image segmentation decathlon 
(32), the size of datasets was typically limited to a few dozen 
or, at best, a few hundred CT or MR images.

Zero-shot learning offers a promising alternative to 
task-specific learning by enabling models to classify new, 
unseen classes without requiring explicit examples during 
training (Fig 7B) (33). This method reduces the need for ex-
tensive labeled datasets and improves the ability of the model 
to generalize across different tasks.

Models with zero-shot capabilities offer advantages in re-
al-world applications, where the potential number of classes 
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Figure 5.  Illustrations show the word 
embedding space. (A) In a word embed-
ding space, similar words are closer to 
each other, capturing their semantic sim-
ilarity, while words with different mean-
ings are positioned farther apart. The 
number of dimensions in the embedding 
space depends on the embedding model 
used. In this example, the space is limit-
ed to two dimensions, for simplicity. The 
X and Y axes in this space are new vari-
ables created by the embedding process, 
and they do not correspond to any spe-
cific, interpretable features of the words. 
(B) In word embedding, instead of using 
numbers that do not reflect relationships 
between words, the embedding model 
represents words in a more compact 
form by capturing their most relevant 
semantic relationships (23,24).

substantial domain shift between training and testing would 
make it difficult or impossible for the model to generalize. For 
example, if a model is trained only on a dataset of abdomi-
nal CT examinations and their radiology reports, it would not 
generalize to classify features in CT examinations of the head.

Model Architectures

Text-Image Alignment

Description.—Text-image alignment models link visual and 
textual information by associating the representations of im-
ages with the representations of their corresponding text de-
scriptions. These models are crucial in generative tasks con-
necting text and images.

Developed by OpenAI in 2021, the Contrastive Lan-
guage-Image Pretraining (CLIP) model is a text-image align-
ment model that has shown great generalizability in comput-
er vision tasks and has gained broad interest in the medical 
field (17–20,37,38). The success of CLIP stems from its ability 
to learn in a self-supervised manner from massive amounts 
of text and image pairs publicly available on the internet, such 
as images with captions, without needing intensive human 
labeling efforts (39). CLIP has shown outstanding perfor-
mance in zero-shot image classification predictions, where no 
labeled images are available for the target tasks (38).

Key Concepts.—CLIP, trained on a large dataset of images and 
their corresponding text descriptions, creates representa-
tions of text and images in a common embedding space. The 
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text descriptions may be phrased in natural language such 
as “A T2-weighted MR image of the liver.” The richness and 
diversity of the training labels are important to enable the 
zero-shot capabilities of CLIP (39).

CLIP could be viewed as a large-scale discriminative im-
age classifier, with text captions serving as noisy labels. They 
provide implicit but imperfect guidance for associating im-
ages with text. Unlike typical labeled datasets, where each 
image is associated with a specific human-curated label, the 
captions in CLIP are naturally occurring text that accompa-
nies images on the internet. They can vary in detail, accu-
racy, and relevance, often describing only parts of images or 
using ambiguous language. This variability introduces noise 
into the learning process, as the text does not always perfect-
ly align with the visual content. 

Despite this noise, CLIP is designed to learn robust associ-
ations between the image and text descriptions by leveraging 
a large-scale dataset of image-caption pairs. The noisy nature 
of the labels helps the model to generalize better as it learns to 
focus on the most relevant features across diverse and imper-
fect data. Through this self-supervised process, CLIP learns to 
create embeddings that capture the underlying relationships 
between images and their accompanying text, enabling it to 
perform tasks such as zero-shot image classification.

The architecture of CLIP combines a text encoder and an 
image encoder that create text and image embeddings in a 
shared embedding space. Training of the CLIP encoders is 
engineered to bring the embeddings of matching image-text 
pairs closer together in the embedding space, while pushing 
apart nonmatching pairs (Fig 10A). Once CLIP is trained, it 
can be used to sort images into classes based on text descrip-
tions of the classes. The text encoder is used to convert these 
class descriptions into class embeddings. When an image 
needs to be classified, the image encoder generates its em-
bedding, which is then compared with the class embeddings 
of interest using a similarity measure. The class with the 
highest similarity score is the predicted class for the image 
(Fig 10B). This configuration provides CLIP with zero-shot 
capabilities, allowing it potentially to classify images in cate-
gories for which it was not explicitly trained, based solely on 
textual descriptions of those categories (Fig 10C).

For instance, during training, CLIP might see concepts such 
as “pancreas” and “T1-weighted MR image,” along with various 
images representing these. However, it may not encounter a 
combined concept such as “T1-weighted MR image of the pan-
creas.” Despite this, the zero-shot capability of CLIP allows it to 
predict new concepts by leveraging its understanding of the re-
lationships and similarities between learned concepts. While 

Figure 6.  Illustrations show the image embed-
ding space. (A) Similar to the word embedding 
space, images that depict the same organ (eg, 
liver or kidney) or type of lesion are closer in 
the embedding space, while dissimilar images 
are more distant. Image embedding follows a 
similar process as text embedding. (B) In image 
embedding, the image is first preprocessed to 
prepare it for embedding. The image embed-
ding is then extracted from the image using a 
pretrained neural network model (23). 
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CLIP might not have explicitly learned “T1-weighted MR image 
of the pancreas,” it can use its knowledge of individual compo-
nents to infer that an image shows these elements, even if it has 
never seen that exact combination before. 

Conversely, if “pancreas” is an entirely new concept that 
CLIP has never encountered, it may not identify the image as 
a pancreas but can still recognize that it is not a liver or a kid-
ney based on its learned associations. This is why “pancreas” 
must be a concept that CLIP encountered during training.

Applications.—Contrastive learning from paired images and 
text is appealing in radiology (17–20,37), given the scarcity 

of expert-labeled data; this type of learning can leverage do-
main-specific knowledge found in the association of radiolo-
gy images with reports. This has prompted an emerging liter-
ature on CLIP models specialized for medical image domains 
(17–20,37). However, most of these developments are still 
nascent, focusing mostly on chest radiography applications 
(17–20,37).

Although CLIP is a versatile model, there are several areas 
where it has constraints and potential drawbacks. While CLIP 
has zero-shot capabilities, its performance is often lower than 
that of task-specific models when ample task-specific train-
ing data are available (39). The model’s performance can also 

Figure 7.  Illustrations show differences between task-specific machine learning and zero-shot learning. (A) Task-specific machine learning 
requires a large, labeled training dataset with all relevant classes to accurately classify new examples during prediction. For accurate prediction, 
the input image during the prediction phase must be a variation of the classes seen during training, such as different images of the liver in this 
case. (B) Zero-shot learning overcomes the need for labeled examples of unseen classes by enabling the model to generalize from what it has al-
ready learned. In this example, the model is trained on a dataset with various radiologic images. During the prediction phase, when it encounters 
an unseen image (eg, one of the pancreas), the model classifies it based on prior knowledge. It does not specifically recognize or label the image 
as “pancreas”; instead, it identifies that the image does not match any of the known classes (eg, liver or kidney). Essentially, it performs outlier 
detection, and it is up to the user to determine that the outlier is the pancreas (33).

Figure 8.  Zero-shot learning. Alongside the 
labeled data, zero-shot learning requires aux-
iliary information about the classes, referred 
to as class (or semantic) attributes. These 
attributes describe the characteristics or prop-
erties associated with each class. For exam-
ple, the liver (upper images) is an abdominal, 
single, right-sided lobulated organ without 
retroperitoneal localization. By generating 
attributes for each set of images, semantic 
embeddings are created by mapping these 
attributes to an embedding space. During 
training, the model learns to associate the 
attributes with the class labels using labeled 
data (35).
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decrease substantially with shifts in data distribution, where 
the test data differ greatly from the training data. This lim-
its its reliability in real-world applications where such shifts 
are expected. To improve its performance in a medical set-
ting, versions of the CLIP model for medical domains have 
been trained on images and captions extracted from PubMed 
(40,41).

Image-to-Text Models

Description.—Image-to-text models are generative mod-
els designed to generate textual descriptions from images. 
These models take an image as input and create text de-
scriptions as output.

Figure 9.  Illustration of semantic embedding. Semantic embedding is a way to represent data (ie, images or words) that 
captures their meaning. A special set of numerical values is assigned to each example based on its features and relation-
ships with other examples. Examples that have similar characteristics have similar numbers, and examples with different 
characteristics have different numbers. For instance, both the liver and the kidney shown are right-sided organs (value of 1 
for each image), but they differ in their localization (ie, retroperitoneal; divergent values of 1 and 0). By using semantic em-
bedding, models can compare and analyze the content of different examples, even if they have never seen those specific 
examples before. This is typically achieved through deep learning techniques, where neural networks are trained on large 
datasets to learn to extract meaningful features that are then transformed into vectors that capture the information in a 
compact representation (33).

Figure 10.  Illustrations show contrastive language-image pretraining (CLIP). CLIP is a text-image alignment model that pairs embeddings 
of text and images. (A) The architecture of CLIP features a text encoder and an image encoder that produce embeddings in a common space. 
The training process aligns embeddings of matching image-text pairs while separating those of nonmatching pairs. (B) After training, CLIP can 
classify images based on text descriptions. It converts class descriptions into embeddings with its text encoder and compares them to the image 
embeddings generated by its image encoder. The image is assigned to the class with the highest similarity score. (C) This setup gives CLIP ze-
ro-shot capabilities, enabling it to classify images into new categories based only on textual descriptions. For example, to identify axial images of 
the pancreas, CLIP can use the class description “an axial image of the pancreas” even if it wasn’t specifically trained for that category (39).
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Key Concepts.—Image-to-text models have two key compo-
nents: an image encoder and a text decoder. The image encod-
er first converts the image input into an image embedding. 
The image encoder of most current text-to-image models is 
based on transformers. The text decoder uses the image en-
coder output (ie, the compact image representation) to pro-
duce text descriptions of the input image. The text decoder is 
also typically based on transformers.

The transformer is a deep learning architecture introduced 
for natural language processing in 2017 in a now-famous arti-
cle titled “Attention Is All You Need”(42). Transformer models 
have been proven to be both effective and efficient in under-
standing the meaning of words in their larger contexts (42) and 
are now pervasive in natural language processing applications.

A key idea behind the transformer model is self-attention, 
a computational mechanism that allows the model to focus 
on different parts of the input data by weighing their relative 
importance. Attention in deep learning is motivated by how 
humans pay visual attention to specific parts of an input. An 
attention component enables the model to “attend” to differ-
ent parts of the input data, thereby capturing the relation-
ships among these elements, regardless of their distance (Fig 
11A) (43).

The Vision Transformer (ViT; https://github.com/google-re-
search/vision_transformer) adapts the transformer architec-
ture to images (Fig 11B) (44). Instead of processing an image as 
a whole, it divides the image into a sequence of smaller patch-
es. Each patch is converted into an embedding, and self-at-
tention can be understood to facilitate “communication” 
among these embeddings to capture the spatial and contex-
tual relationships among the patches. Given sufficient train-
ing data, ViTs have been found to outperform convolutional 
neural networks in some image-processing contexts (45). The 
self-attention mechanism may allow the ViT, compared with 
convolutional neural networks, to more flexibly integrate the 
global image context in the analysis of image details.

Applications.—Applications of image-to-text models include 
image captioning (ie, generation of a textual description for a 
given image) and optical character recognition (ie, conversion 
of different types of documents into editable and searchable 
data) (46). These models have the potential for use in medical 
imaging to generate preliminary radiology reports from im-
aging studies (47–49).

Text-to-Image Models

Description.—Text-to-image models are generative models 
designed to generate synthetic images from text descriptions.

Key Concepts.—Similar to image-to-text models, text-to-im-
age models have two key parts: a text encoder and an image 
decoder. The text encoder usually employs a transformer 
architecture to convert the text input into a text embedding. 
The image decoder uses the text embedding to guide the pro-
duction of synthetic images.

There are several types of generative text-to-image mod-
el architectures, each with its own distinctive approach, al-

though the details are beyond the scope of this article. Ex-
amples include DALL-E (OpenAI), Stable Diffusion (www.
stablediffusion.com), and Imagen (https://imagen.ai.com) (50–
52). Diffusion models, in particular, have recently gained pop-
ularity for image generation. A diffusion model iteratively re-
fines a noisy image into a clear image using the text encoding 
to guide the denoising process (Fig 12) (53,54).

Applications.—Applications of text-to-image models include 
computer-aided design (eg, creative prototyping by turning 
textual concepts into visual representations), art generation, 
and data augmentation (eg, production of synthetic data to 
train deep learning models) (55). In medical imaging, these 
models can be used for dataset creation in research or educa-
tional settings (56). One example of dataset creation is Roent-
Gen (https://stanfordmimi.github.io/RoentGen/), a text-to-image 
medical domain-adapted model that can generate synthetic 
chest radiographs when given text prompts (15, 21).

Challenges include possible poor representation of the text 
description in the generated images and the potential for bi-
ased or unrealistic images (57). Biases in training data may 
contribute to problems with undesired outputs.

Multimodal Models

Description.—Multimodal models integrate multiple types of 
data such as images, videos, text, and numbers into a unified 
framework (Fig 13A, 13B).

Key Concepts.—To be integrated together, all data types share 
a joint embedding space (58). Combining various data types 
enables multimodal models to have a more comprehensive 
understanding of input context, potentially leading to a more 
nuanced output.

Multimodal models have the potential to achieve high-
er understanding of the input than unimodal models do. By 
analogy, radiologists review not only images but also associ-
ated electronic health records and laboratory results to refine 
the differential diagnosis. A multimodal model has the poten-
tial to combine keywords from the patient history (eg, “right 
lower quadrant pain”) with the content of US images (eg, “ad-
nexal mass”) and laboratory results (eg, “elevated beta HCG” 
[human chorionic gonadotropin level]) to produce a predic-
tion (eg, “ectopic pregnancy”).

The architecture of multimodal models extends previously 
explained concepts (59). At a high level, each type of data (image 
and text) is processed separately using a specialized encoder 
to create embeddings. The embeddings from the encoders are 
combined using a unified multimodal encoder (58). This step 
aligns the different data embeddings into a joint multimodal 
representation. A decoder then uses this integrated multimod-
al embedding to generate the final output, typically text (60).

Applications.—Recent development models connecting imag-
es and text have primarily focused on models that take both 
image and text inputs to generate text outputs. OpenAI re-
cently released the generative pretrained transformer (GPT)-4 
Vision (GPT-4 V; https://openai.com/index/gpt-4v-system-card/) 
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Figure 12.  Illustration shows diffusion model architecture. The diffusion model is a type of generative model. It starts with a clear image and 
gradually adds noise until the image becomes unrecognizable through a forward diffusion process. It then learns to reverse this process by start-
ing with the noisy image and progressively removing the noise to recreate a clear image through a reverse diffusion process. From a technical 
standpoint, the model generates a series (N) of increasingly noisy images by adding Gaussian (random) noise and then reverses this process to 
produce a series (N) of less noisy images, ultimately recovering the original image (54).

Figure 11.  Conceptual illustration of the self-attention mechanism 
and Vision Transformer (ViT) model. (A) For example, the main inter-
est of an image of the upper abdomen could be a liver mass (arrow). 
Therefore, an image-to-text model trained to describe findings 
related to the liver could include a self-attention layer focusing on 
liver structures (green squares) while downweighting the importance 
of the kidney and spine (red crosses). (B) ViT is a transformer model 
specifically designed for processing visual data, such as images. It 
divides the input image into smaller patches and processes them 
individually. These patches are then transformed into embeddings. In 
the encoder of ViT, self-attention is a key component that allows the 
model to capture spatial relationships and global context within the 
image. Some layers include a multilayer perceptron (MLP), a type of 
artificial neural network, that contributes to deeper feature learning. 
At the end of the encoder, a classification layer is added, which takes 
the final representations to predict the image’s content (43,44). FNH = 
focal nodular hyperplasia, HCC = hepatocellular carcinoma.
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Figure 13.  Illustrations show multimodal models. In multimodal models, the input, the output, or both 
the inputs and output are multimodal. This means that the model can process both image and text data (A), 
generate both image and text data (B), or process and generate both image and text data (not shown). Imag-
es and text are used to show this multimodality, but these models can extend to other types of data, such as 
video, audio, frequency, and sequencing data. ADC = apparent diffusion coefficient, DWI = diffusion-weighted 
imaging, fat-sat = fat-saturated, T1 = T1-weighted, T2 = T2-weighted.

chatbot, which allows the user to converse with the model 
using either text or uploaded images. There are also a few 
models in the open-source space, such as Large Language 
and Vision Assistant (LLaVA; https://github.com/haotian-liu/
LLaVA) (61), Bootstrapping Language-Image Pretraining 
(BLIP; https://github.com/salesforce/BLIP) (62), and Flamin-
go (https://github.com/mlfoundations/open_flamingo) (63). 
A biomedical version is available for each of these models, 
including LLaVA-Med (https://github.com/microsoft/LLa-
VA-Med) (64), MedBLIP (https://github.com/qybc/medblip)
(65), and Med-Flamingo (https://github.com/snap-stanford/
med-flamingo) (66).

By integrating information from various data sources, 
multimodal models can act as general-purpose assistants, 
which can be used in multiple domains such as robotics, au-
tonomous driving, e-commerce, and health care (Fig 14) (67). 
Potential applications in health care include virtual health 
assistance and clinical decision support, where diverse pa-
tient data sources such as medical images, electronic health 
records, and laboratory results are analyzed to provide more 
comprehensive and personalized insights (68). The ultimate 

vision of these models is to augment health care by provid-
ing a comprehensive and versatile understanding of medi-
cal information across various domains of medicine (15).

Most models linking images and text are trained on in-
ternet data, making them successful in general domains. 
However, models must be fine-tuned with medical data to be 
suitable for biomedical applications (Fig 15). Domain-specif-
ic training by fine-tuning these models on smaller medical 
datasets is necessary to make them more relevant to radiolog-
ic applications. Although data availability hinders the devel-
opment of these models, authors of some studies (40,41) have 
pretrained these models on biomedical text and image data.

Conclusion
The integration of both image and text data is an area of recent 
innovation in AI. Deep learning models connecting images 
and text data may have great potential to assist radiologists 
as they face ever-growing volumes of imaging studies and 
ancillary data. The integration of imaging data with textual 
clinical information may facilitate automated captioning of 
medical images, generation of preliminary radiology reports, 
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and creation of educational images. These advances may en-
able applications in prioritization of cases, streamlining of 
clinical workflows, and improvement in diagnostic accuracy. 
Recognizing the concepts underlying these models can help 
radiologists in adapting to these new tools and techniques in 
the future.
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Figure 14.  Illustration shows an overview of a generalist medicine AI (GMAI) model pipeline. A GMAI model is trained through techniques such 
as self-supervised learning on various types of medical data such as imaging, laboratory results, and electronic medical records. To perform clini-
cal reasoning, the model accesses a variety of available medical knowledge including the medical literature and clinical notes. The model can 
then generate outputs based on inputs that the physician provides (67). (Icons made by surang, Freepik, max.icons, RaftelDesign, and Smashi-
cons from www.flaticon.com.)

Figure 15.  Examples of synthetic images generated by two text-to-image models, DALL-E 2 (top row) and Stable Diffusion (bottom row), given 
simple prompts related to medical imaging (50,51). Since these models are trained on large datasets of text and image pairs from the internet, 
they cannot generalize well to radiology because of the scarcity of openly available medical imaging data, hence the departure from anatomic 
reality. Future directions include the creation of annotated datasets combining radiology reports and medical images as well as training of these 
models on these datasets. 
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