EXPLOITING MOTION ESTIMATION RESILIENCE TO APPROXIMATED
METRICS ON SIMD-CAPABLE GENERAL PROCESSORS:
FROM ATOM TO NEHALEM

Steven Pigeon and Stéphane Coulombe

Department of Software and IT Engineering
Ecole de Technologie Supérieure
1100 Notre-Dame Ouest, Montréal, Qc, H3C 1K3

ABSTRACT While considerable effort has been made to develop fast

In the past, efforts to speed up motion estimation for videdind accurate motion estimation algorithms, the metrics use
encoding were directed at finding better predictive seakch ato estimate the goodness of match in such algorithms have
gorithms. Now, they are directed toward the shrewd exploitabeen studied comparatively little, even less so in combina-
tion of the machine’s advanced architectural features asch tion with efficient motion estimation algorithms. The mesxri
multimedia extensions, especially for the computatiorhef t available in most codecs are limited to the mean squared erro
error metric which is known to be expensive. In this paper(MSE) and the sum of absolute differences (SAD), with the
we extend previous work by further exploring efficientimple |atter usually favored, as it is deemed to be less expensive t
mentation of approximate fast metrics for motion estinmatio compute than the MSE [3], a hypothesis verified only if the
\é\ﬁ/ﬁ)h(?w that the proposed metrics can be implemented usingoe computer sports efficient absolute value instrastio

D instructions to yield impressive speed-ups, up to 12']Both are usually computed with high precision—at greater
relative to non-vectorized but otherwise optimized C c:odeC houah it is k h) e I
while sacrificing less than 0.1 dB on image quality. ost—even though it is known that motion estimation algo-

rithms are quite resilient to various types of errors in tht-e

Index Terms— video coding, SIMD, motion estimation, motion mation of the metric [4, 5].
compensation, error metric, approximate metric, comgilgovec-

torization, SSE, SSE2 Exploiting this resilience naturally leads to approxinthte
truncated, or even randomized algorithms for the evalnatio
1. INTRODUCTION of the metric, the goal being to balance the precision of the

. result with the cost of computation. Such algorithms have

Modern video codecs, such as MPEG-4 and H.264, relyjready been proposed but without any real regard to the
on motion-compensated predictive coding as their principgmplementation-specific impacts on the performance of the
means of achieving high compression ratios through spatig|ngerlying machine [6-9]. The proposed solutions often re-
and temporal redundancy reduction. To perform motion comgjt in highly branching code, or code that is difficult to @lar
pensation, the motion within a scene must first be estimatqgnze' mitigates or even nullifies speed-ups, as they fieter
using a motion estimation algorithm. Despite increasinglyyith, amongst other things, the processor’s branch predic-
sophisticated algorithms, motion estimation remains equitjgp, unit, thus yielding interesting but ultimately subiopal
computationally expensive, accounting for a large portbn egylts. Truly efficient implementations of approximategtm
the run-time in encoders—sometimes up to 60% [1, 2]. rics must consider implementation-specific techniqudsy; re

Motion estimation is an obvious target for speed opti-ing on the astute exploitation of the underlying machine’s
mization. Over the years, numerous methods have been dgrchitecture and instruction set (known collectively as th
vised to accelerate the process. The focus has shifted PIBA). In modern processors, this means that advantage
gressively from efficient search algorithms to predictive @ myst be taken of any machine-specific ISA extension, and,

gorithms where a number of probable locations for the besh particular, multimedia and single instruction, mulélata
matching block are generated. Predictive motion estimatio(s|mD) extensions.
combined with efficient search methods yields the best re-

sults, in both speed and quality. Alas, despite the algmiith In this paper, we extend previously presented work [4]
speed-ups offered by the most efficient algorithms, mot&en e py exploring the pragmatics of the implementation of fast
timation remains a very expensive step in video coding. gpproximated metrics and present new results. We show

This work was funded by Vantrix Corporation and by the Nat&®ei- that taking full a_ldvantage Of_ the ISA leads to |mpr_esswe
ences and Engineering Research Council of Canada undeotimb@ative ~ P€rformance gains on a variety of processors, while loss
Research and Development Program (NSERC-CRD 326637-06)aiE: ~ associated with the use of suitable approximated metrics
{steven. pi geon,st ephane. coul onbe}@tsnt | . ca) remains neg|igib|e_

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mstewart
Texte tapé à la machine
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

two 16 x 16 image patches andJ as:

16 16

SADM(I,J) =03 May |y — Juy| (1)

z=1y=1

whereM is al6 x 16 binary matrix conditionally enabling
comparison between pixels.

The matrixM allows us to define arbitrary masks for the
SAD. Masks can be designed based on a number of criteria, gy
maximizing sampling efficiency for a given number of pixels [

[1]]
S . A EEEEEEE
tested, for example. Another criterion of great interest is CITTIT]
maximizing evaluation speed by exploiting the machine’ IS (d) ()

under the constraint of minimizing loss of quality. In Fig. 1 Fig 1. approximate metrics. (a) Sparse; (b) Quincunx; (c) Sub-
we ShOYV the masks considered in this paper, as_well as in [4dampled deinterlaced: (d) Deinterlaced; (e) Interlac®dE(l SAD.

Of particular interest are the masks shown in Fig. 1 (c), (d)shaded squares represent non zero elements in mdtrix

and (e). The most important feature of these masks is that

they can be implemented using efficient machine instrustion FULL
to compute the SAD between two rows of eight or sixteen3§lB
pixels; instructions that are readily available on most BIM
capable general processors. 36
In previous work, in order to demonstrate that motion es-,,
timation algorithms are resilient to approximated metnes
performed motion compensation on a series of standard QCI#
and CIF video sequences, such as Akyio, Bus, Foreman, etGq 7=
using motion estimation algorithms such as EPZS [3], PMV- '
FAST [10], UMHexS [11], and Full Search, and measured™
the resulting compensated image quality in PSNR, withouts SAD Quin. Deint S-Deint Int. Sparse
any further quantization. Figures 2 and 3 show the compen:, - - - T
sated image quality for the various approximate SAD algo- 55 00 08 i Frames
rithms for Full Search and UMHexS. Tables 1, 2 and 3 sum-
marize the loss incurred by the approximate metrics on thgig. 2. PSNR resulting from the use of approximate metrics for the
standard CIF sequences using the Full Search, EPZS, aRrdreman CIF sequence using Full Search. Frames 90-110 shown
UMHexS motion estimation algorithms. More results can be
found in [4]. CPUs from a same family sporting compatible instruction
What the results indicate is that the use of the proposegets may have very different hardware implementations and
approximate metrics incur small losses, and that theeesi# ~ display very different performance characteristics. # t-
of motion estimation algorithms is confirmed. Even the most
important losses associated with the interlaced and thsespa
masks are shown to be less than 1dB before quantizationgs
while the loss associated with Subsampled Deintinterlaced®
and Deinterlaced masks is at most 0.1dB. The use of thes
proposed approximated metrics is therefore shown to be a
perfectly valid strategy for complexity reduction in matio
estimation algorithms. 32

UMHEXS

30l

3. IMPLEMENTATION DETAILS !
28
A machine-specific implementation must rely on the shrewd,
exploitation of the underlying machine’s ISA. However, mod
ern CPUs exhibit complex behavior in the interaction betwee **
the algorithms, the instruction set, and the underlyindpiarc 95 100 105 Tig e

tecture implementation and, consequently, a naive approac . .))
to implementation will often lead to unsatisfactory result Fig. 3. PSNR resulting from the use of approximate metrics for the
Foreman CIF sequence using UMHexS. Frames 90-110 shown.

SAD Quin. Deint ~ S—Deint Int. Sparse

CIF SAD | Quin. | Deint | S-Deint | Int. | Sparse ¥, of the time. On a system with a 128-bit memory bus, the

Akéyuos ‘z‘g-f '8-8? ‘8-82 '8-2(7) '8-22 '8-;11 same 64 bits reads result in two reads offly; of the time,
Foreman 322 T 003 0.10 o106 086 yielding better performance, even at same system speed.
News | 36.5 | -0.03 | -0.06 -0.09 | -0.10| -0.23 CISC CPUs achieve high performance by breaking down
Mobile | 25.2 | -0.04 | -007| -0.08] -0.09| -0.26 complex instructions into micro-instructions, which acbad-
Stefan| 26.0 | -001) -008| -0.10] -0.12] -0.25 uled for super-scalar out-of-order execution [12]. To maxi
Tempete| 27.0 | -0.01 | -0.04| -0.06 | -0.05| -0.12

mize throughput, instruction complexity and dependencies
Table 1. PSNR (B) for selected CIF sequences using Full Search..mUSt l?e kept to a minimum. Addressing mpde com.ple>.(|ty,
SAD, Quin., Deint, S-Deint, and Int. stand for the full SADet in particular, (_:an be s_lgnlflcantly r_educed usmg_compr‘mxatl
quincunx, the Deinterlaced, Sampled Deinterlaced andtéuted constant folding. While arbitrary image resolutions must b

patterns, respectively. expected for still image processing, for video coding we can
suppose that one of the few conventional formats—QCIF,
CIE SAD | Quin. | Deint | S-Deint | Int. | Sparse CIF, VGA, SD, etc.—is used, so it is quite conceivable to
Akiyo | 42.7 | -0.02 | -0.05 -0.07 | -0.06 | -0.11 specialize the most computationally intensive functionis f
Bus | 24.3] -0.00 | -0.05 -005] -017] -0.34 these resolutions. In this case, specialization is acHibye
Foreman| 319| -004) -011) -011)-073| -0.83 precomputing relative displacements within the imageduff

News | 36.2 | 003 | 008 | -0.12] -0.08| -0.24 : : : -
Mobile T 1T 003 T 06T 006 T 007 023 and propagating the constants as immediate values in the

Stefan | 257 001 009 009 01l =022 instructions themselves at compile time.

Tempete| 26.5| -0.02] 005] -0.07]-0.06] -0.13 Data dependencies can also be reduced or eliminated. In

) the case of the computation of the metric, the dependencies
Table 2. PSNR (B) for selected CIF sequences using EPZS. Seg, ¢ mostly read dependencies, as the pixels are read from
Table 1 for legend. memory without write-back, and the write dependencies are

| tati f 2 ai dec t ¢ ticular CPU thIimited to the computation of the sum. Due to the additive
plementation of a given codec targets a particuiar ' Nfature of the metrics considered, the computation can be

CPUr's particular features can be exploited very effectivel broken down inton independent sums (thereby reducing

but, in general, the_ |mplementat|on eﬁort VS resgltlng‘tple write dependencies by using separate registers), whichean
mance trade off will dictate that the implementation tasget later combined in at mos®(lg n) to obtain the final value.

CPU family, possibly of the same performance class, rather ROe . "
than a specific CPU. But, to optimize the implementation for A Modern processor minimizes the impact of conditional
a CPU family, one has several aspects to consider, which afémps by predicting whether or not jumps will be taken. The
discussed below. processor prepares for the most likely outcome—as deter-
Minimizing needed memory bandwidth and read Iatenc;[mned b.y its branch pre-dlctlo-n algorlthm—by prefetghlng th

is one such aspect. Bringing data into registers from memory]St;UC:r'wons altft:lhe pl;ed|ctﬁq Jutmlf location a:jr_ldts(tjar&ngxo
even when residing in cache, will incur a delay proportionaﬁCu € them. € branch IS taken as predicted, the execu-
to the width of the data read. To minimize read-relateqIIOn flows into th? pref_etch.ed (and possibly already execut-
delays, the number of times the memory is accessed can) code. If the jump is m|_spred|cted, however, severe per-
reduced by using alternative algorithms such as we propo grmance penalty may be mpurred. Not only doe§ the pro-
here. The impact on the memory hierarchy can be furthef&SSor need to fetch |nstr_uct|ons at the alternate jump Iopa
reduced by using non-temporal reads, hinting the memorgon' it may also h_ave to d.|sca-rd cpde already exe_zcutlngr |W'th
controller to optimize cache usage. While we must ultimatel ; penalty proportlonal to its pipelines’ depths. Mlspr . .
give up on aligned-only memory access, alignment remain&'MPS must be avoided and the surest way of achieving this

a concern. We can minimize alignment-related latency b)I/S to unroll loops, which eliminates conditional jumps alto

carefully choosing the width of the data read from memory,gether' While we now face a code size vs. speed trade off,

given the target architecture. For example, on a systemaNithumO"ing loops with a relatively small number of iterat®is

32-bit memory bus, reading 64 bits will result in three readsgenerally beneficial to execution speed.
High-level language features, like the calling conven-

tion, play a role in implementation-specific performance.

CIF SAD | Quin. | Deint | S-Deint | Int. | Sparse The calling convention determines how arguments are passed
Akiyo | 42.7| -002) 006 -0.07)-0.06| -0.12 and how functions are called. Favoring a faster calling con-
Fmei‘fﬂ ;i:g :8:85 :8:2? :g:ﬂ :8:% :g:gg vention whenever possible will lead to better performance.
News | 363 004 | 0041 007 | 009 024 For example, the default calling convention on 32-bit mode
Mobile | 25.2 | -0.04 | -0.07 -0.09 | -0.09| -0.33 x86 processors consists of pushing the function’s argusnent
Stefan | 25.9 | -0.01 | -0.08 -010 [-0.14] -0.24 onto the stack before the call is performed. On 64-bit mode

Tempete| 26.8 | -002 | 0.05] -007] 0.06] -0.15 x86_64 processors, the calling convention uses the more ef-

ficient passing by register strategy. Skipping the constinc

Table 3. PSNR (IB) for selected CIF sequences using UMHeXS. ot the local stack frame will also yield—although in this eas

See Table 1 for legend.

modest—performance improvements. Call convention and Processor Family | Clock (GHz) | Mode
stack frame building can be modified using compiler-specific Intel E5530 i7 2.40 x86_64
language extensions. Intel N270 Atom 1.60 x86
Most, but not all, optimization aspects we discussed can Intel 6700 Core 2 2.66 x86
be addressed through standard C (or C++) language program- | Intel 6400 Core 2 2.13 x86_64
ming and compiler extensions. A certain degree of control Intel T2500 Core 2.00 x86
over parallelism, call conventions, and instruction gatien Intel 5130 Core 2 2.00 x86_64
is afforded through library and compiler-specific extensio Intel P8700 Core 2 2.53 x86_64
such as “pragmas”. While an optimizing compiler will use Intel Mobile P4 | P4 3.06 x86
its knowledge about the target processor and sophisticated | AMD 3500+ Athlon 221 x86_64

heuristics to detect vectorization and generate code using
SIMD instructions, it will ultimately prove difficult to canol
for obtaining results that are always satisfactory, as we wi discuss them in section 5
show. '

The solution is to write a small set of critical routines for 4. RESULTS
the target processor(s), like the SAD, in assembly language

directly. Because the programmer has total control over thgig. 4 and Table 5 summarize the results for all the processor
instructions executed by the processor, it is possible ® fin gyajlable to our study. The absolute performances of the im-
tune the implementation until performance expectatioes arplementation of the approximated metrics, given the proces
met, a result that would otherwise be impossible to attaigrs, vary greatly, but a more careful examination of Fig-4 r
using only high level C code and relying on the compiler and,ea|s that the relative performance of the efficient impleme
its various extensions for auto-vectorization and ag@ress tation of approximate metrics remains about the same from
optimizations. one processor to another.

We implemented the proposed approximate metrics (the Figs. 5 and 6 present the relative performance of our pro-
sparse, quincunx, subsampled deinterlaced, deintetlaneld posed metrics implemented in SSE2-level assembly language
interlaced metrics), as well as the fllAD, as shown in versus what is gained through autovectorization and optimi
Fig. 1, using three techniques. The first is an implementaing compilers. Again, the IPP implementation is used as the
tion in C++ language using non-vectorized but otherwiseyenchmark. Finally, Fig. 7 compares the Intel E5530 proces-
optimized compilation with ICC and G++. The second usessor (i7 architecture) against the Intel N270 (Atom) on the
the same compilers but with vectorization and aggressivgame scale. The performance of the E5530 dwarfs that of the
optimizations enabled. The third consists of an assembly270, but again we observe that the relative performances

Ianguage implementation using SSE2-level instr_uctiorlt anof methods $AD vs. Sparse, for example) remains similar
omitted stack frames. The assembly language implementacross processors.

tions address the concerns discussed in this section for bes

Table 4. Processors considered in our study.

performance. All implementations were ported to both x86 5. DISCUSSION
and x86_64 CPUs using the most adequate calling conven-
tions. Unless special quality requirements are set for coding or

The choice of a CPU to conduct a representative perfotranscoding, the loss incurred by the use of the proposed
mance test is an arduous one. Rather than targeting a speetrics is quite acceptable, as we have shown in previous
cific CPU or assuming a particular application (for exam-work [4]. While the approximate metrics using the interice
ple, high-end server for bulk coding or transcoding), we eomand sparse masks are the fastest methods, their potentially
pared the speed-ups obtained on a number of readily availabsignificant losses, although always less than 1dB, makes
CPUs, covering the performance spectrum as widely as pothem comparatively uninteresting as the S-Deint method,
sible, ranging from the Intel Atom N270 to the Xeon E5530which is only slightly slower, incurs losses of at most 0.1 dB

(using the i7 architecture, codenamiéhalen), including From the various tables and figures, we can gather than
other CPUs such as the Intel Mobile Pentium 4 and the AMDhe auto-vectorizing compiler does not always recognize th
3500+. The full list is found in Table 4. potential for vectorization from the C code, even though

Tests were conducted on the GNU/Linux operating sys#t was carefully crafted to help the compiler detect auto-
tem, specifically the Ubuntu distribution, version 8.04 | TS vectorization. In Fig. 6, we see that both compilers fail to
using the GNU C++ compiler (g++) v4.2 and the Intel C produce auto-vectorized code that comes even close to the
Compiler v11.0. We used the function computing 8D proposed or IPP implementations. These results indicate th
(i ppi SAD16x16_8u32s with option | PPVC_MC_APX_FF) in fact, the compilers either failed to recognize the poten-
from the Intel Performance Primitives Libraries v6.0 as@-us tial for vectorization (for G++ 4.2) or failed to recognize
ful benchmark. Timings were obtained using an OS-specifithe machine’s full capabilities (for ICC 11.0) to generate
timing function get t i meof day) and are accurate t82%. efficient code. Examining Table 5, we see that on other ma-
We present the performance results obtained in section 4 amthines, where vectorization succeeded the auto-vectimiza

Number of calls peps

Processor§y GHz | C++ | C++* | SAD | Sparse| Quin. | S-Deint | Deint | Int IPP

Intel Xeon E5530| 2.40 | 2.32 | 3.30 | 18.82| 39.47 | 18.26 | 34.41 26.15| 42.26 | 16.16
Intel Atom N270| 1.60 | 0.75 | 0.75 | 1.82 | 3.12 171 | 2.94 259 | 3.07 | 1.56
Intel Core 2 6700| 2.66 | 2.38 | 3.36 | 7.89 | 14.46 | 7.71 | 13.40 11.14 | 14.83| 6.89
Intel Core 26400| 2.13 | 1.95| 2.73 | 6.15 | 10.97 | 6.05 | 10.38 8.60 | 11.00| 5.83
Intel Core T2500| 2.00 | 1.31 | 1.77 | 6.00 | 10.44 | 5.89 | 10.05 8.43 | 10.64 | 5.42
Intel Xeon 5130| 2.00 | 2.55 | 2.55 | 5.79 | 10.70 | 5.77 | 10.90 8.82 | 10.90 | 4.97
Intel Centrino P8700 2.53 | 2.32 | 3.27 | 7.70 | 14.22 | 7.68 | 12.75 10.71| 14.10| 7.47
Mobile Pentium 4| 3.06 | 1.58 | 1.58 | 8.21 | 12.70 | 7.28 | 13.95 12.09 | 14.07| 7.05
AMD Athlon 3500+ | 2.21 | 1.32 | 1.32 | 3.99 | 7.35 3.95 | 6.09 5,55 | 759 | 3.43

Table 5. Performance results for all tested processors on CIF imageasetric computation pens. C++ are results from the full SAD
without vectorization, using G++ 4.2.x. C++* results arerfr the full SAD using G++ 4.2.x with vectorization. Other ineds are SSE2
optimized. Results in italics because IPP was not availaibldne machine tested.

Comparison of Implementations
All Machines

AMD Athlon 3500+ [z

Mobile Pentium 4

Intel Centrino P8700

Intel Xeon 5130

Intel Core T2500

Intel Core 2 6400

Intel Core 2 6700

Intel Atom N270 [

Intel Xeon E5530

Il SAD
Sparse
Quincunx
S-Deint
% Deint
Inter.

] 1PP

SSE2 Implementations

T
0

T
10

T T T
20 30 40
Calls per ps

50

SAD

Sparse

W SSE2

) Autovect., G++ 4.2.x
Quincunx JIpp

S-Deint
Deint
Int

T T T T T

0 0.5 1 15 2 2.5
Calls per ps

SAD Autovectorization vs SSE2
Atom N270

A —

3.5

Fig. 5. Performance of autovectorization vs. proposed implementa

tions for the Atom N270, in calls bys (more is better).

Fig. 4. Performance of SSE2-level implementations on all the

machine considered, in calls hys (more is better). IPP denotes

Intel's Implementation of the fulbAD.

SAD ¥

Sparse F

yielded modest speed-ups, not even 2:1, while the care-

fully crafted SSE2-level assembly language implementatio

Quincunx

yielded speed-ups ranging from 6:1 to over 12:1 relative to
auto-vectorized C code, depending on the sparseness of th

approximated metric considered. Fig. 6 compares the auto
vectorization results from G++ with ICC. ICC bests G++ in
most cases, but not by very much. The experiments therefort
show that our remark that it will ultimately prove difficult

to coax the compiler into generating efficient code is well

founded.

The figures show that the constant-propagatedSAD
implementation beats the IPP v6.0 implementatiortls %.

The generic nature of IPP precludes the use of full consta

propagation and instruction simplification, resulting arfor-

S-Deint

Deint [

SAD Autovectorization vs SSE2
Nehalem E5530

Pt
SR

e,
Int

Il SSE2

Autovectorized, ICC 11.0.x
Autovectorized, G++ 4.2.x

iep

Calls per ps

50

rﬁig. 6. Performance of autovectorization vs. proposed implementa
tions for the Xeon E5530, in calls hys (more is better).

Relative Performance
of Implementations

H SAD

[} Sparse

4 Quincunx
S-Deint
Deint

B8 Inter.

IPP

] G++ 4.2.x
ICC 11.x

s,
R

7

0 10 20 30 40 50
Calls per ps

6. CONCLUSIONS

In this paper, we have shown that the proposed implemen-
tations yield consistent speed-ups across many processors
different generations, families, and even makers. We hiaee a
shown that the use of approximate metrics and SSE2-level im-
plementations addressing many architectural concernd yie
speed-ups of as much as 12:1 relative to non-vectorized C
code depending on the best approximated metrics considered
Future work will include characterization of speed-upsigsi
approximated metrics in codecs such as MPEG-4 and MPEG-
4 AVC/H.264.

7. REFERENCES

[1] P. M. Kuhn, G. Diebel, S. Hermann, A. Keil, H. Mooshofer,
A. Kaup, R. Mayer, and W. Stechele, “Complexity and
PSNR comparison of several motion estimation algorithms fo

Fig. 7. Performance of implementations for the Xeon E5530 vs. the MPEG-4,” Procs. SPIEpp. 486-489, 1998.

Atom N270, to scale, in calls bys. Results from G++ 4.2 and ICC

11.0 correspond to non-vectorized optimized C++ code ferftitl
SAD. Other methods are SSE2 optimized.

mance pessimization. While a gain sf15% is interesting,

[2] Y.-L. Lai, Y.-Y. Tseng, C.-W. Lin, Z. Zhou, and M.-T. Sun,
“H.264 encoder speed-up via joint algorithm/code-leveti-op
mization,” Procs. SPIE VCIPJuly 2005.

[3] A. M. Tourapis, “Enhanced predictive zonal search forgée
and multiple frame motion estimation,” Misual Communica-

the speed-ups obtained by using the proposed approximate tions and Image Processingan. 2002, pp. 1069—1079.

metrics are even more so, as they reach as much as 2.6:[11]
relative to IPP’s fullSAD implementation, while leading to a

negligible loss in quality, as shown in Tables 1-3.

S. Pigeon and S. Coulombe, “Speeding up motion estimatio
modern video encoders using approximate metrics and SIMD
processors,”|[EEE Symposium on Industrial Electronics and

While each of the CPU tested sports conspicuously differ- Applications (ISIEA)pp. 233-238, Oct. 2009.

ent characteristics—architecture, power consumptian,-et

[5] H.-Y.Cheong, I. S. Cheng, and A. Ortega, “Computatiater

the results indicate that in all cases there is a performance tolerance in motion estimation algorithmsiit. Conference on
gain to be had by using SSE2-level implementations of ap- Image Processing (ICIPpp. 3289-3292, Oct. 2006.

proximated metrics, and that the relative speed-ups aiitasim
regardless of architecture. While exact magnitudes vamy fr

[6] F. Tombari and S. Mattoccia, “Template matching based
on thel, norm using sufficient conditions with incremental

processor to processor, the SSE2 implementation of the full approximations,” irProcs. IEEE int. Conf. on Advanced Video
SAD beats the IPP implementation by the same 10 to 15%, and Signal-Based Surveillancdov. 2006, pp. 20-26.

and the Interlaced, Sparse, and Subsampled Deinterlaced ajp7] B. Liu and A. Zaccarin, “New fast algorithms for the esti-
proximated metrics remain much faster than the other ap- mation of block motion vectors,”IEEE Trans. Circuits and

proximated metrics. These results indicate that we camaffo

Systems For Video Technologyl. 3, no. 2, pp. 148-157, Apr.

considerable code specialization before seeing any machin 1993.

specific impact on performance, as the performance characg] c.-K. Cheung and L. m. Po, “A hierarchical block motion
teristics remain similar across a wide range of processors 0 estimation algorithm using partial distortion measurefjt.

different generations, families, and even makers.

We have shown that using the machine ISA to its full ex-

Conference on Image Processing (ICIR)I. 3, pp. 606-609,
1997.

tent allows access to speed-ups that are impossible tonobtail9] Y.-L. Chan and W.-C. Siu, “New adaptive pixel decimation

with C++ compiled with optimizations and auto-vectoripati

enabled. One reason for this is that the compilers are not al-
ways able to exploit the SIMD potential of C++ code. We also

for block motion vector estimation/EEE Trans. Circuits and
Systems For Video Technologwl. 6, no. 1, pp. 113-118, Jan.
1996.

have shown that, if we are willing to sacrifice motion estima-[10] A. M. Tourapis, O. C. Au, and M. Liou, “Predictive motion

tion precision by using approximate metrics, there are @apr
sive speed-ups available. However, since we will also want t
minimize the maximum average error, approximated metrics

vector field adaptive search technique (PMVFAST) - enhanc-
ing block based motion estimation,” int. Conference on Im-
age Processing (ICIRYan. 2001.

such as the Interlaced and Sparse approximated metrias arelt1] Z. Chen, P. Zhou, and Y. He, “Fast integer and fractique!
be avoided. The Subsampled Deinterlaced and Deinterlaced Mmotion estimation for JVT,” Tech. Rep. JVT-F017, Dec. 2002.
metrics simultaneously afford large speed-ups and veryismg12] J. Hennessy and D. PattersonComputer Architecture: A

quality loss—less than about 0.1 dB.

guantitative ApproachMorgan Kauffman, 4th edition, 2006.

