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We propose to model ice shedding trajectories by an innovative paradigm that is based on cartesian grids, penalization and level
sets. The use of cartesian grids bypasses the meshing issue, and penalization is an efficient alternative to explicitly impose boundary
conditions so that the body-fitted meshes can be avoided, making multifluid/multiphysics flows easy to set up and simulate. Level
sets describe the geometry in a nonparametric way so that geometrical and topological changes due to physics and in particular
shed ice pieces are straight forward to follow. The model results are verified against the case of a free falling sphere. The capabilities
of the proposed model are demonstrated on ice trajectories calculations for flow around iced cylinder and airfoil.

1. Introduction

Ice accretion on aerodynamic bodies is a serious and not yet
totally mastered meteorological hazard due to supercooled
water droplets (liquid water droplets at a temperature below
the dew point) that impact on surfaces. Ice accretion is a
multiphysics phenomenon [1] including fluid mechanics,
heat transfer, and solid mechanics. Ice accretions have
several negative effects, especially performance degradations
for both aircraft and wind turbine. For aircraft, sudden
performance degradations due to ice accretion cause several
incidents and accidents each year [2]. Performance degrada-
tions include substantial reduction of engine performance
and stability, reduction in aircraft maximum lift and stall
angle, and increase of drag. For wind turbine, ice accretion
on blades is a major concern in northern climate. When
adverse meteorological conditions occur, ice accretes at the
outer part of the blade with an approximately linear increase
with time [3]. With growing ice accretion, the blade drag

increases, diminishing the power output of the turbine and
eventually causing a complete loss of production [4]. Other
negative consequences include overloading due to delayed
stall [5], increasing fatigue of components due to imbalance
in the ice load, and damaging or harm caused by uncon-
trolled shedding of large ice chunks [6, 7].

In practice, ice accretion can be minimized by deicing
systems [8] or prevented by anti-icing systems. By reducing
the adhesive shear strength between ice and surface, de-
icing systems remove ice formed on the protected surfaces
following a periodic cycle. This cycle is defined such that
intercycle ice shapes remain acceptable from a performance
point of view. Because they are activated periodically, de-
icing systems require less energy than anti-icing systems.
Still, because of the enormous amounts of thermal or
mechanical energy that would be required, complete removal
of ice formation on large structure is not economically
feasible. Only areas sensible to ice accretion, such as wing or
blade leading edge, benefit from ice protection systems.
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Actual concerns about greenhouse gases will lead to
changes in the design of ice protection systems, thus renew-
ing interest in de-icing simulation tools. To save fuel burn,
aircraft manufacturers are investigating “new” ice protection
systems such as electrothermal or electromechanical de-
icing systems to replace anti-icing systems. One of the
drawbacks of de-icing device is the ice pieces shed into
the flow. The knowledge of ice shedding trajectories could
allow assessing the risk of impact/ingestion on/in aircraft
components located downstream [9]. When they leave the
aircraft surface, ice pieces become projectiles that can hit and
cause severe damage to aircraft surface or other components,
as aircraft horizontal and vertical tails, or aircraft engine
[10]. Aircraft certification authorities, such as FAA, have
specific requirements for large ice fragment ingestion during
engine certification. Control surfaces or wing flaps are also
sensitive to ice shedding because they can be blocked by
ice fragments. Aircraft manufacturers rely mainly on flight
tests to evaluate the potential negative effects of ice shedding
because of the lack of appropriate numerical tools [11]. The
random shape and size taken by ice shed particles together
with their rotation as they move make it difficult for classical
CFD tools to predict trajectories.

For the wind turbine industry, new environmental pre-
occupations mean building more wind turbines in less favor-
able sites, especially in northern countries like Canada. Wind
turbines are going to be built in sites prone to atmospheric
icing, and the use of de-icing systems may reduce production
losses. Even if no ice protection systems are installed,
vibration and aerodynamic forces can cause ice shedding.
Ice shed trajectory computations are then needed to reduce
damage risk.

Ice shedding phenomena is an emerging topic for re-
searchers working in numerical simulation of ice accretion.
Until recently, only a few research works have paid attention
to it. In one of the first numerical works published on
de-icing system, De Witt et al. [12] studied the three-
dimensional transient heat transfer in a multilayered body
that is ice covered. This work focuses mainly on modeling the
phase change in the ice layer with the movement of the solid-
liquid interface as the latent heat of fusion is absorbed or
released. In an article by Henry [13], criteria based on water
film thickness is used to predict ice break-up. Once the piece
of ice break up, it simply leaves the computational domain,
and no calculation of its trajectory is done. Stresses in
accreted ice caused by aerodynamic forces have been studied
by Scavuzzo et al. [14], and an ice failure criterion [15] based
on both normal and shear interface stresses has been used in
a finite elements code to simulate the electroimpulse deicing
process of aircraft wings.

Kohlman and Winn [16] proposed a trajectory simu-
lation method to compute the trajectories of ice particles,
represented by square plates of uniform thickness, into a
uniform velocity field. The lift and drag were obtained from
empirical correlations, and initial displacement and rotation
were imposed to initiate trajectory calculations. Santos et al.
[17] used a similar method but, this time, the trajectories
were calculated into a nonuniform flow field around a
wing. The ice fragment, a square flat plate, was released from

a point in front of the leading edge of a wing. Initial position
and velocities were varied, and the probabilities of ice impact
at a location two chords downstream of the leading edge
were obtained. Another method, based on a modified water
droplet trajectory code, was used by Chandrasekharan and
Hinson [18] to track trajectories of an ice disk and two ice
slabs. The drag of the disk was assumed to be that of a
sphere and the drag of the slabs to be that of a flat plate
normal to the flow. Recently, Papadakis et al. [9] presented
a statistical approach to perform trajectory computations
for ice fragments shed from the wing and fuselage surfaces
of a business jet. They carry an experimental study of
aerodynamic loads around a potential ice fragment and
derived empirical correlations. Those correlations have been
used into a methodology based on trajectory calculation and
probabilistic approach to identify areas where ice fragments
most likely strike the aircraft.

On one side, some numerical codes predict ice break-
up, and on the other side different numerical codes compute
ice shedding trajectory. The numerical simulation of a
full unsteady viscous flow, with a set of moving bodies
immersed within, shows several difficulties for grid-based
methods. Drawbacks income from the meshing procedure
for complex geometries and the regriding procedure in
tracing the body motion. A new approach capable of solving
the complete de-icing problem is proposed in this paper. The
approach is based on cartesian grids, penalization, and level
sets.

The objective of the present paper is to demonstrate the
approach capability to predict ice shedding trajectory, start-
ing just after the ice break-up. First, a vortex method [19]
is proposed to simulate the interaction of an incompressible
flow with rigid bodies. For our method, we followed the
innovative approach proposed by Coquerelle et al. [20, 21].
They propose an efficient and accurate technique to simulate
unsteady incompressible viscous flows using hybrid vortex
methods [22]. Hybrid vortex methods are based on the
combination of Lagrangian mesh-free schemes and Eulerian
grid-based schemes [22]. The Navier-Stokes equations are
formulated in terms of the vorticity formulation, and
the vorticity field is numerically determined by a particle
discretization. The two schemes solve different terms of the
equation, for example, the Lagrangian scheme is used to
solve the nonlinear advective part of the equation while the
Eulerian scheme is used to solve on the grid the diffusive part
of the equation and the velocity term. A penalization method
[23] is used to enforce the no-slip boundary condition inside
the solid wall boundaries. The bodies around which the
flow is computed are defined using the so-called penalization
method or Brinckman-Navier-Stokes equations in which the
bodies are considered as porous media with a very small
intrinsic permeability. Level set functions are used to capture
interfaces and compute rigid motions of the solid bodies
[24].

After presenting the model equations, the numerical pro-
cedure is exposed. Then, numerical trajectories results are
presented for sedimentation of a 2D cylinder on a flat plate,
flow around an iced cylinder and an iced airfoil.
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Figure 1: Schematic representation of a computational domain
Ω = Ω f ∪ S1 ∪ S2. Ω f : fluid domain, Si: solid domains.

2. Fluid-Solid Flow Model

2.1. Physical Model. Given a computational domain Ω, we
consider incompressible flow in Ω f around rigid solids
Si. A schematic representation of a computational domain
composed of two solids is sketched in Figure 1.

We assume that the density is constant in the fluid and
in the solids. The fluid-solid interaction problem can be
modeled by the incompressible Navier-Stokes equations

∂u
∂t

+ (u · ∇)u− ν∇2u +
1
ρ
∇p − g = 0 in Ω f ,

∇ · u = 0 in Ω f ,

u = usi on ∂Si,

u = u f on ∂Ω f .

(1)

In the above system u is the velocity, ν is the kinematic
viscosity, ρ is the density, g is the gravity vector, and p is the
pressure. Depending on the location in the computational
domain, the velocity is either the fluid velocity u f or the solid
velocity usi . The idea is to extend the velocity field inside the
solid body and to solve the flow equations with a penalization
term to enforce rigid motion inside the solid [21].

Given a penalization parameter λ � 1 and denoting
by χsi the characteristic function of the solid Si, the model
equation is the following:

∂u
∂t

+ (u · ∇)u− ν∇2u +
1
ρ
∇p− g

=
Ns∑

i=1

λχsi(usi − u) for x ∈ Ω, t > 0,

(2)

coupled with the incompressible mass conservation equation

∇ · u = 0 for x ∈ Ω. (3)

The velocity of the moving rigid motion usi is obtained
by averaging translation and angular velocities over the solid,
with the following equation:

usi = 1
|Si|

∫

Ω
χsiudx

+
(
J−1

∫

Ω
χsiu× (x− xG)dx

)
× (x − xG),

(4)

where xG is Si center of gravity, J , its inertia matrix, and x is
the coordinate at calculation point inside the domain. The
rigid body Si follows the trajectories of the flow with the
advection velocity usi . Therefore, Si characteristic function
can be obtained by solving the advection equation

∂χsi

∂t
+ (usi · ∇)χsi = 0 for x ∈ Ω. (5)

In this paper χsi is computed from a level set function Φsi

satisfying the same advection equation

∂Φsi

∂t
+ (usi · ∇)Φsi = 0 for x ∈ Ω. (6)

We initialize Φsi as the signed distance function to the
boundary of Si, because φsi is negative outside Si and positive
inside the solid:

χsi = H(Φsi), (7)

where H is the Heaviside function.
It is important to notice here that, because usi is a rigid

body motion, one can guarantee that Φsi remains a signed
distance for all time. To summarize, each body-fluid interface
is captured by a level set function. These level set functions
are moved in rigid motion by advection.

2.2. Ice Shedding Law. Ice accreted remains attached to sur-
face until the adhesive bond between ice and substrate fails
or until a fracture occurs in the ice. The ice adhesive shear
strength may depend on substance, surface roughnesses, and
coating on the surface side. The ice adhesive shear strength
depends also on atmospheric conditions present during the
accretion process: temperature, liquid water content, air
velocity, and so forth [25]. Generally, the adhesive shear
strength for rime ice is lower than for glaze ice.

Usually, the aerodynamic forces alone are not sufficient
to detach accreted ice from airfoil. To deice airfoil, either
the adhesive shear strength of the ice is reduced almost to
zero by heating and melting the accreted ice, or mechanical
forces break the ice and give an impulsion sufficient to detach
ice from surface. In the two cases, shear stress inside the ice
and, to a lesser extent, normal stress play a critical role in
shedding.

The choice of an ice shedding law dictates the initial
conditions for the ice trajectory calculation. At the end of the
break-up process, an ice piece will have a definite shape, a
translational velocity, and a rotational velocity that becomes
input for the trajectory calculations, see [9, 14]. Although
some researchers have proposed models [26], these models



4 Modelling and Simulation in Engineering

are not commonly accepted and used to predict ice break up
by the aircraft icing community.

In this paper we concentrate on ice trajectory calculation,
and a method similar to the one proposed in [16, 17] is used
to initiate trajectory calculations. In these papers, a statistical
approach is used, and ice fragments are launched from
several location points near an aircraft body. From the several
trajectories, the probability of having an ice fragment in a
given area near the aircraft is devised. In the present paper,
an initial displacement, together with an initial velocity and
initial rotation velocity equal to zero, is imposed on the ice
piece to make it leave the body surface.

2.3. Numerical Method. In this paper, the penalized Navier-
Stokes equation is defined in terms of a vorticity formulation,
and the vorticity field is numerically determined by a particle
discretization [19]. Let us consider the penalized Navier-
Stokes equation in the vorticity formulation by applying the
curl operator to (2)

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω −∇p

×∇
(

1
ρ

)
+ λ∇×

⎡
⎣
Ns∑

i=1

H(Φsi)(usi − u)

⎤
⎦

(8)

with

∇ · u = 0 in Ω,

∇× u = ω in Ω.
(9)

The density ρ is computed from the fluid and solid densities,
respectively, ρF and ρsi , using the following equation:

ρ = ρF

⎛
⎝1−

Ns∑

i=1

χsi

⎞
⎠ +

Ns∑

i=1

ρsi χsi . (10)

Equation (8) is required to compute the variation of the pres-
sure. Usually, in vorticity formulation, this is not necessary.
Indeed if the density is constant the term ∇p × ∇(1/ρ)
vanishes. To avoid an explicit computation of the pressure,
(8) can be reformulated using (1), in the following way:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω − ∇ρ

ρ

×
(
∂u
∂t

+ u · ∇u− ν∇2u− g
)

+ λ∇×
⎡
⎣
Ns∑

i=1

H(Φsi)(usi − u)

⎤
⎦.

(11)

Following Cottet and Koumoutsakos [22], the hybrid
vortex methods are based on the combination of Lagrangian
mesh-free schemes and Eulerian grid-based schemes on the
same flow region. The Vortex-In-Cell (VIC) scheme is an
example of hybrid vortex method: the non linear advection
is computed by tracking the trajectories of the Lagrangian

particles through a set of ODEs, whereas an Eulerian grid
is adopted to solve efficiently the velocity field, the diffu-
sive term, and the penalization term. Given D/Dt(·), the
material derivative, by expanding the penalization term, (11)
becomes

Dω

Dt
= (ω · ∇)u + ν∇2ω − ∇ρ

ρ

×
(
∂u
∂t

+ u · ∇u− ν∇2u + g
)

+ λ
Ns∑

i=1

H(Φsi)(ωsi − ω)

+ λ
Ns∑

i=1

δ(Φsi)[∇(Φsi)× (usi − u)],

(12)

where δ(Φsi) is the 1D Dirac delta function and ωsi = ∇ ×
usi . We recall that with level-set functions, ∇Φsi is the unit
normal to the interface ∂Si oriented towards the solid. The
last two terms on the right of (12) play a significant physical
role in the model. The first term clears the vorticity difference
within the bodies, whereas the second member represents
a vorticity generation term that is localized on the solid
boundaries and allows the no-slip condition to be imposed.
The penalized vorticity equation means that the rate of
change of the vorticity, advected by the fluid in a Lagrangian
frame of reference, is governed by the diffusive effects, the
stretching effects, the production of bound vorticity, and the
vorticity cancellation within the solid bodies.

Let us introduce the level-set Vortex-In-Cell (VIC)
algorithm. The domain Ω is meshed using a uniform fixed
cartesian grid. We denote byΔt the time step such as tn = nΔt
and Φn

si , un, ωn are grid values of the level set functions,
velocity and vorticity, respectively. In vortex methods, the
rate of change of vorticity is modeled by means of discrete
vortex particles, such that the solution of (12) is localized
only in the rotational regions of the flow field. This is the
most important advantage of the vortex methods, that is, the
computational efforts are naturally addressed only to specific
flow field zones. The vorticity field ω is represented by a set
of particles

ω(x) =
N∑

p=1

vpωpζ
(

x− xp
)

, (13)

where N is the number of particles, xp the particle location,
and vp, ωp are, respectively, the volume (constant due to the
incompressibility) and the strength of a general particle p.
ζ is a smooth distribution function such that

∫
ζ(x)dx =

1 which acts on the vortex support. The interpolating-
remeshing scheme is a fundamental tool for the accuracy of
the whole method.

We propose a splitting algorithm to solve (8). Each time
step Δt is solved using four substeps.
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(a) (b) (c)

Figure 2: Particles interpolation scheme. The circle’s size denotes the strength of the particle, and the solid circles represent the advected
particles. (a) Vortex particles and velocity field; (b) advection step; (c) remesh-diffusion step.

Substep 1 (advection). During the first substep, the vortex
elements are advected by the local flow velocity

Dω

Dt
= ∂ω

∂t
+ (u · ∇)ω = 0. (14)

Grid vorticity above a certain cut-off is used to create particle
at grid point locations [27], as shown in Figure 2(a). Using
(14), particles are displaced with a fourth-order Runge-Kutta
time-stepping scheme (Figure 2(b)). From the new vortex
particles’s locations, the vorticity field is remeshed on the
grid by means of an interpolation procedure (Figure 2(c)).

The interpolation order is directly linked to the number
of moments preserved by the new particles’ distribution by
comparison with the former one. In this paper, we used
the following third-order interpolation kernel introduced by
Monaghan [28]:

M′
4(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if |x| > 2,

(2− |x|)2(1− |x|)
2

if 1 ≤ |x| ≤ 2,

1− 5x2

2
+

3|x|3
2

if |x| ≤ 1,

(15)

where x is the distance from the point to interpolate. In
this 1D example, the influenced stencil consists of four
surrounding grid points. In the 2D case, the M′

4 scheme
takes into account the sixteen closest grid points around
the particle to interpolate/remesh. In Figure 2(c) the particle
interpolating/remeshing scheme is illustrated.

Substep 2 (diffusion). Once Substep 1 is done, the remaining
parts of the governing equation (11) can be solved. The
equation to solve for the viscous contribution is then

∂ω

∂t
= (ω · ∇)u + ν∇2ω. (16)

Equation (16) is approximated onto the grid by means of an
Euler explicit scheme, while the Laplacian is evaluated, with
a second-order accurate standard centered finite differences
five points stencil.

Substep 3 (pressure gradient contribution). The equation to
solve for the pressure gradient contribution is

∂ω

∂t
= −∇ρ

ρ

(
∂u
∂t

+ u · ∇u− ν∇2u− g
)
. (17)

To solve (17), density values are obtained from (10). Grid
values of un and un−1 are used to compute ∂u/∂t and centered
finite differences at tn are used to compute u · ∇u− ν∇2u.

Substep 4 (penalization). Finally, the penalization term is
evaluated using

∂ω

∂t
= λ∇×

⎛
⎝
Ns∑

i=1

H(Φsi)(usi − u)

⎞
⎠. (18)

The discretization and the integration of the penalization
term affect the choice of the penalization parameter λ
(the larger the parameter λ, the better the quality of the
penalization in practice in our simulations λ is fixed to 108).
An Euler explicit time discretization of (18) does not allow
to use λ > 1/Δt. An implicit Euler time discretization is
therefore used for the penalization term in the Navier-Stokes
equation:

un+1 = u� + λΔt
∑Ns

i=1 H(Φsi)unsi

1 + Δt
∑Ns

i=1 H(Φsi)
. (19)

The vorticity field at tn+1 is evaluated on the grid by taking
the curl of the velocity

ωn+1 = ∇× un+1 (20)

and computing the derivative though the second-order cen-
tered finite differences approximation, while usi is evaluated
using (4). This method is unconditionally stable.

Because the equations are not written in primitive
variables, special treatments are needed to recover the
velocity field and to impose the boundary conditions. Since
the incompressible velocity field is divergence-free, from the
vector field theory, we can define a vector potential ψ such
that

u = ∇× ψ . (21)
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Figure 3: 2D cut of v component of velocity at time t = 0.3.

The vector potential ψ is a 3D extension of the so-called
stream function ψ. This potential vector is imposed to be
solenoidal ∇ · ψ = 0 and given ωn+1 the updated vorticity
field, the stream function field is computed by solving the
linear Poisson equation,

∇2ψ = −ω, (22)

on the cartesian grid with boundary conditions on ∂Ω.
In (19), u� is computed using (21) and (22) with ω� the

vorticity resulting from Substep 3.
In vortex methods, boundary conditions are explicitly

used only to solve the Poisson equation and are enforced
on the nonprimitive variable ψ. In the present method, on
the upstream and downstream boundaries (right and left
boundaries on Figure 1), a Neumann condition, ∂ψ/∂n = 0,
is enforced. On the lower and upper boundaries, a Dirichlet
condition sets the flow mass rate through the domain.

In our simulations, a Fast Poisson Solver is adopted
(Fishpack90 library [29]).

For the present method, following [30], the forces can
be evaluated without any information on the pressure field
but only through the knowledge of the velocity and vorticity
fields.

3. Numerical Simulations

The proposed approach results are validated against available
literature results for the sedimentation of a 2D cylinder on
a flat plate. Then, ice trajectory prediction capabilities are
verified for two test cases at low Reynolds number. The first
one, an iced cylinder, is representative of an unsteady flow
around a bluff body. The second one, an iced airfoil, is more
representative of the flow around an aerodynamic body,
although with the attached ice shape, it behaves initially like
a bluff body. For sake of aerodynamic force computations
verification, the fluid and solid densities are assumed to be

the same in the ice trajectory calculations. Inertia and gravity
effects are thus negligible.

3.1. Sedimentation of a 2D Cylinder on a Flat Plane. We con-
sider the case of a 2D cylinder in a square cavity, falling under
gravity on a flat plane. This test is used to verify the method
by a comparison with Glowinski [31] and Coquerelle et
al. [20]. The dimension of the cavity is [0, 2] × [0, 6]. The
viscosity is 0.01. The density inside and outside the cylinder
is, respectively, 1.5 and 1. The cylinder has a radius of 0.125,
no roughness, and is initially located at the point (1, 4). It
accelerates under gravity, set to g = −980, then settles to a
steady velocity, due to the friction forces, and eventually hit
the bottom of the cavity and stops.

In Figure 3, the evolution ofV velocity component along
a line, y = 0.9, cutting the middle of the cylinder is drawn
at time 0.3. The cylinder has almost reached its final velocity.
Between x = 0.875 and x = 1.125 the velocity is the one
inside the solid cylinder. Fluid is accelerated around the
cylinder due to mass conservation principle. On the side of
the cavity, fluid sticks to the wall, and thus the velocity is
0. To impose this boundary condition on the cavity walls a
penalization technique has also been used.

In Figure 4, the barycenter computed position and the
evolution of its vertical velocity as a function of time are
plotted. The solution is in agreement with Coquerelle et al.
[20] and Glowinski [31] solutions. Contrary to literature
results, our cylinder simply stops when it hits the wall
instead of bouncing. This is to be expected because no
collision model is used in our simulation. Nevertheless, result
comparisons indicate that inertia, gravity, and drag forces are
correctly implemented in our code.

3.2. Iced Cylinder. We consider first an incompressible flow
around two static rigid solids, the cylinder S1 and the ice
piece S2, in Ω f . A schematic representation of the computa-
tional domain Ω composed of these two solids is sketched in
Figure 1. The domain is a rectangular box [−3, 15]× [−6, 6].
The diameter d of the circular cylinder is one unit, the free
stream velocity u∞ is one velocity unit, and the Reynolds
number is defined by Re = u∞d/ν. The whole computational
domain is meshed by an equispaced Cartesian orthogonal
grid 1801× 1201. The choice of this mesh spacing is justified
by a grid sensitivity study presented further in this section.

The ice piece, solid S2, is defined by the area between the
curve of (23) and the line of equation y = 0.3 followed by a
rotation of 45 degrees around cylinder center:

y = 0.9− 4
0.3

x2 for x ∈ [−0.15; 0.15]. (23)

For the subsequent simulations, the flow field is com-
puted by solving the Poisson problem ∇2ψ = −ω with
a homogeneous Neumann condition, ∂ψ/∂n = 0, at
downstream and upstream boundaries, while a Dirichlet
condition of the stream function, ψ, is imposed on top and
bottom boundaries. In particular the potential flow around
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Figure 4: Sedimentation of a 2D cylinder on a flat plate.
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Figure 5: Cylinder distance level set function (negative inside the
bodies positive outside) used in the penalization: iso-line 0 in black
(color map from −0.5 in blue to 0.25 in red).

the cylinder is considered, and the value of the associated
stream function is enforced, that is,

ψ = u∞y

(
1− (d/2)2

x2 + y2

)
. (24)

This is equivalent to imposing a symmetry condition on top
and bottom.

The undisturbed stream u∞ passing through the cylinder
is used as initialization. The Reynolds number of the flow is
Re = 550. Following [32], the time step for calculations is
evaluated with the aim of solving with accuracy the diffusive

Time
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l

20 40 60 80 100 120 140
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Mesh 1
Mesh 2

Mesh 3
Mesh 4

Figure 6: Grid sensitivity on lift coefficient around the iced
cylinder.

phenomena. Since for detecting the principal diffusive scales
with efficiency and accuracy the Von Neumann number
(VNN) νΔt/Δx2 has to be in the order of unit, the
nondimensional time step Δt is given by

Δt = VNNΔx2 Re . (25)

In present computations VNN = 0.25, then Δt = 0.01375.
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Figure 7: Lift and drag coefficients around the iced cylinder.

(a) Initial solution (b) Solution after 2800 time steps

(c) Solution after 5600 time steps (d) Solution after 8400 time steps

Figure 8: Cylinder at Re = 550. Vorticity contours corresponding to shed 13: green positive vorticity and blue negative vorticity.

Figure 5 shows the distance level set function used for the
penalization. The black line corresponds to the isoline 0, that
is, it represents the fluid solid interfaces.

A grid sensitivity analysis using Mesh 1: 901× 601, Mesh
2: 1126×751, Mesh 3: 1801×1201, and Mesh 4: 2251×1501
has been performed to select the appropriate grid. Figure 6
shows the evolution in time of the lift coefficient, Cl =
l/0.5ρu∞d, around both the cylinder and the ice chunk for
the four different meshes. Numerical solutions obtained with
Mesh 3 and Mesh 4 are in very good agreement for the
lift coefficient amplitude. A slight frequency difference is
still visible, causing a shift in the maxima and the minima
position between Mesh 3 and Mesh 4, visible for time greater

than 80. For the following study, Mesh 3 has been selected to
perform ice shedding trajectory calculations.

Using Mesh 3, the evolution of the lift coefficient, Cl, and
drag coefficient, Cd = d/0.5ρu∞d, around cylinder and ice
piece is presented in Figure 7(a). The flow is well established
around the two static solids at about nondimensional time
t = 40. On the drag coefficient curve, there is two maximum
values, indicating two distinct vortex shedding time. This is
different from the usual drag coefficient curve obtained for a
single cylinder in a flow.

Once the flow is established, the ice piece is released in
the flow. Because of the vortex shedding induced by both the
cylinder and the ice piece, several times of shedding start-up
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Figure 9: Ice piece trajectories.

are investigated. More precisely seventeen starting times are
equally distributed (every 24 time steps) along an established
Cd period (Figure 7(b)) to observe the effects of the vortex
shedding on the ice trajectory. For the present paper, the 17
numerical simulations of ice shedding will be termed as shed
1, shed 2, . . ., and shed 17, each one corresponding to the
starting time 1, 2, . . ., and 17 of Figure 7(b).

Once ice shedding starts, the ice piece S2 freely evolves
in the incompressible flow contained in Ω f , whereas the
cylinder S1 remains static, modeling a simplified situation of
ice shedding. For the static body S1, us1 = 0 is fixed at any
time. The ice piece velocity, us2 , and angle of rotation are
computed according to (4) and injected in the penalization
term. Recall that the ice piece is assumed to be a rigid

solid body without any deformation. Figure 8 shows the
vorticity contours of the flow corresponding to shed 13. In
this figure, green contours correspond to positive vorticity
whereas blue contours correspond to negative vorticity.
Notice that once ice shedding starts, the time step does not
remain constant and depends on the ice moving velocity
us2 .

As it is usually the case for flow around bluff bodies, the
ice body creates its own vortex shedding. The ice initially
moves downstream, for the first 2800 time steps. Then it
gets trapped by the flow in one of the vortices behind the
cylinder and start moving downward until around 5600 time
steps, then upward around 8400 time steps, almost stopping
its downstream motion.
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Figure 10: Iced NACA 0012.

In Figure 9, we investigate the effects of the vortex shed-
ding on the ice trajectories. For the 17 simulations, the
ice piece barycenter trajectories are drawn in Figure 9(a).
As expected, the ice trajectory is quite different from one
solution to another, especially behind the cylinder, around
x = 2.5. This random aspect of the trajectories calculations is
also observed by Papadakis et al. [9], and they use a statistical
approach to take into account the randomness of the
shedding process around an aircraft. Farther downstream,
after x = 4, trajectories tend to get closer. In all the cases,
no ice trajectory goes below y = 0. Details on the top
trajectory (shed 3) in red, the bottom trajectory (shed 13) in
blue and a middle trajectory (shed 10) in green are drawn in
Figure 9(b).

Vortex shedding has also a significant influence on the
ice angle of rotation. Due to the low ice density used in
this verification, inertia forces are negligible, and ice piece
align quickly with the flow. The ice piece rotates and tends to

keep its round side upstream, in a low drag orientation. The
present method enables us to plot the rotation together with
the displacement on Figure 9(c).

3.3. Iced NACA 0012. The computational domain shown in
Figure 1 can be adopted for the ice shedding test over an
infinite wing, by replacing the circular cylinder with an iced
NACA 0012 airfoil. For this numerical test, the ice piece
geometry (see Figures 10(a) and 10(b)) is numerized from
Papadakis et al. [9] and scaled to be placed on a NACA 0012
airfoil of chord unity. The ice piece geometry with its horn
shape is representative of a large glaze ice accretion. This
kind of ice shape is more susceptible to break up due to
aerodynamic forces. Such a large ice shape tends to have high
pressure forces on the upstream side and low pressure forces
on the downstream side, creating a strong bending moment
at airfoil surface. In Figure 10(c), the initial displacement of
the ice shape, just after breakup, is shown. This kind of initial
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Figure 13: Established iced NACA 0012 solution at Re = 1000. Vor-
ticity contours: green positive vorticity and blue negative vorticity.
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displacement may be generated by mechanical devices, such
as inflatable boot.

In such case the boundary conditions for the Poisson
problem are modified as follows.

(i) Dirichlet condition ψ = u∞y in order to enforce the
mass flow at upstream (left boundary).

(ii) Neumann condition ∂ψ/∂x = 0 at downstream (right
boundary).

(iii) On the bottom and top boundaries Dirichlet bound-
aries conditions are prescribed (ψ = 0 and ψ =
q∞(ytop− ybottom), resp.) in order to enforce a far-field
undisturbed flow condition.
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Figure 15: Ice shedding around NACA 0012 at Re = 1000. On the left: vorticity contours (green positive, blue negative). On the right: U
velocity component.

First the flow is computed around the static iced NACA
0012 airfoil. The domain is a rectangular box of size [−3, 8]×
[−3, 3] and the size of the cartesian grid used is 2751× 1501.
The Reynolds number of the flow, based on airfoil chord c,
Re = u∞c/ν, is 1000, and the dimensionless time step is Δt =
0.001. For this case, the distance level set function used for

the penalization is plotted in Figure 11(a) for initial flow and
in Figure 11(b) for the start of trajectory calculation.

The periodic flow is well established at about t = 50, see
Figure 12. Because of the ice shape, the drag is higher than
on a clean airfoil, and a positive lift coefficient is generated,
even if the airfoil’s angle of attack is 0.
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Figure 16: NACA 0012 airfoil: Ice piece trajectory details.

Figures 13 and 14 show, respectively, the vorticity and the
u velocity for this established solution. In blue, the vorticity
is negative, and in green, the vorticity is positive. The ice
shape creates massive flow separation on the upper side of
the airfoil, and large vortices of opposite vorticity sign are
shed. As expected in the case of massive separation, there is a
wake of vortices behind the airfoil. The velocity is accelerated
outside of the separation area on the upper side of the airfoil.
The separation area is indicated by the negative U velocity
component area behind the ice shape. This negative area
extend all over the airfoil upper side.

Then ice shedding is initiated. To model ice shedding and
be sure that the ice piece will not collide with airfoil, we
simply give an impulsion to the ice chunk, as if a deicing boot
device has been used. The presented method can handle col-
lisions between bodies, but it would involve defining an addi-
tional physical model. For sake of trajectory verification, the
problem is kept as simple as possible. The impulsion is given

by the vector (5Δx, 5Δy), see Figure 10(c). The distance level
set function, after shedding, is presented in Figure 11(b),
and the level set changes with the ice piece motion.

Details of the first moments after ice shedding are shown
in Figure 15. On the left, vorticity contours are plotted and,
on the right, U velocity components. The ice shape starts to
move in the normal direction from the airfoil, then, it starts
to rotate to align itself with the flow field around airfoil.
Obviously, the vorticity field and the velocity field change
drastically between initial time (Figures 15(a) and 15(b)) and
final time (Figures 15(e) and 15(f)). The vorticity pattern, for
example, in Figure 15(c), shows that the ice piece is slower
than airflow because a secondary wake is created around the
shape.

Finally, a sample trajectory is studied in more detail in
Figure 16. Because the flow field around the clean airfoil
is simpler than around a cylinder, the ice shape simply
flows downstream in Figure 16(a). The details of the initial
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movement of the shape gravity center are plotted as a red
line. The shape slowly rotates and moves downstream, as
Figure 16(c) shows. After a quick rotation between time 50
and 60, because of the low inertia of the ice piece, the angle
of rotation becomes almost constant. The ice shape is outside
of the boundary layer, even if this one is thick due to the low
Reynolds number of the flow.

4. Conclusions

The proposed approach based on cartesian grids, penal-
ization, and level sets is promising. The originality of the
numerical tools used enables to take easily into account
the topology changes. The fluid-solid flow model has been
described in detail together with the numerical method used
to solve the problem. The trajectory calculation capabilities
have been verified against other numerical results for the
sedimentation of a cylinder on a flat plate. The approach
enable us to calculate ice shedding trajectory around aero-
dynamic shape and bluff body. Verification of the results
for bluff body calculation shows that trajectories depends
strongly on flow condition at the shedding time for unsteady
problem. Ice piece trajectories distribute themselves almost
randomly around an area. For the rotation angle however,
the ice chunks tend to orient themselves with the flow such
as to reduce the drag. Further verifications of the approach
for trajectory calculations around an iced airfoil show first
that large separation occurs on the upper side of the airfoil,
making the flow unsteady at the low Reynolds number
studied. Secondly, ice trajectories are much simpler due to
the fact that once ice separates from the airfoil, large vortex
disappears from the flow.

The next step is to add high Reynolds number capabilities
to the flow solver, more representative of wind turbine or
aircraft physics. Model developments are also needed to
study ice break-up and predict the correct initial conditions
for trajectory calculations.
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