Modeling the Influence of Stool Volume on Flow Behavior and Defect Formation in a 20 MT Steel Ingot

Lydia Benazzouz¹, Mounir Baiteche¹, Patrice Ménard², Mohammad Jahazi¹

¹Department of Mechanical Engineering, École de technologie supérieur, 1100 Notre-Dame St W, Montreal, Quebec H3C 1K3, Canada

²Finkl Steel -Sorel, 100McCarthy, Saint-Joseph-de-Sorel, QC,J3R3M8, Canada

Abstract.

The mold geometry directly influences the final quality of steel parts made from large cast ingots. During the casting of large steel ingots, changes in mold geometry appear to have a significant impact on reducing defects such as shrinkage cavities, porosity, and piping. In this study, the effect of stool volume was analyzed. A three-dimensional and transient finite element model of a 20 MT ingot was used to predict the liquid steel flow and the evolution of solute transport during the filling and solidification phases. The established multi-domain model was used to simulate the thermal and thermomechanical behavior of the metal during solidification. Two cases, with a stool volume of 32 L and a larger replica of 64 L, were compared and simulated using THERCAST® (FEM) software. The evolution of temperature and liquid velocity inside the ingot was discussed. The simulation results provide a understanding of the influence of the stool on reducing the risk of microporosity formation in the centerline and shrinkage cavities. A correlation was established for the liquid flow between the ingot stool dimensions.

Keywords: Finite Element Modeling, Ingot casting, Stool, Liquid velocity, Microporosity, Shrinkage cavity