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ABSTRACT The early detection and diagnosis of neonatal problems are critical to ensuring that an infant
receives timely medical attention, which greatly enhances health outcomes. In this study, we propose
a novel deep learning framework that listens to an infant’s cry to identify and diagnose six separate
conditions: one being healthy and the other five comprising sepsis, respiratory distress syndrome, jaundice,
hyperbilirubinemia, and vomiting. The study utilizes a rich dataset of infant cry recordings from which key
acoustic features such as spectrograms,Mel-spectrograms, and Gammatone Frequency Cepstral Coefficients
(GFCCs) are extracted. A sophisticated Vision Transformer (ViT) model was developed and meticulously
fine-tuned to achieve an impressive 99% classification accuracy through cross-validation. To enhance the
model’s interpretability, powerful explainable artificial intelligence (XAI) methods such as LRP, LIME,
and attention imaging were implemented to clarify the reasoning behind the model’s outputs. Through
cross-validation tests, the model’s trustworthiness and extensive generalizability were assessed. The findings
underscore the promising capabilities of employing transformer-based deep learning frameworks along with
multimodal acoustic features and explanatory methods to improve cry analysis in infants and their usable
scopes in pediatric medicine.

INDEX TERMS Infant cry classification, vision transformer (ViT), explainable AI (XAI), layer-wise
relevance propagation (LRP), local interpretable model-agnostic explanations (LIME), feature extraction,
spectrogram, Gammatone frequency cepstral coefficients (GFCC), mel-Spectrogram, multi-feature audio
representation.

I. INTRODUCTION
Neonatal mortality remains one of the most challenging pub-
lic health problems to tackle. The under-five mortality rate
has decreased to approximately 38 deaths per 1,000 live
births, whereas deaths of neonates within the first 28 days
of life are estimated at 17 per 1,000. An estimated 47% of
the total deaths of children under five in 2019 were neonatal
deaths, and this approximate triad can be observed within the
first week of life [1], [2]. Sepsis and Respiratory Distress
Syndrome (RDS) are the two most predominant causes of
neonatal death. Approximately 20% to 36% of deaths are
attributable to sepsis [3].
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In addition, the mortality rate of RDS can exceed 30%
without critical interventions [4]. Furthermore, neonatal jaun-
dice is a common condition, affecting about 60% of term
and up to 80% of preterm neonates worldwide, and can lead
to severe neurological complications if left untreated [5].
Hyperbilirubinemia, often associated with jaundice, affects
approximately 1.1 million neonates annually and can lead to
severe neurologic injury or death if left untreated [5], [6].
Vomiting in neonates may be indicative of severe underlying
disease, further contributing to neonatal morbidity and mor-
tality [7]. Current diagnostic techniques for these conditions
rely on blood tests, X-rays, and cultures, which are often non-
diagnostic and resource-intensive in low-income settings [8].
The potential for diagnosing health conditions from the

sound of an infant’s cry has been studied for quite some time.
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According to an early study, crying neonates with various
pathologies had different cry acoustics compared to healthy
infants [9]. Currently, advances inmachine learning (ML) and
deep learning (DL) have improved the processing of infant
cry signals, which holds great promise for non-invasive early
detection and diagnosis of neonatal diseases. However, even
with these advances, most studies focus on differentiating
healthy cries from a limited number of pathologies, usually
involving fewer pathologies and rarely incorporatingmultiple
acoustic features into a single model. In addition, there are
still significant gaps in the performance and explainability of
deep learning models that can be trusted in a clinical setting,
which may hinder adoption [10], [11].

This research aims to bridge the existing gaps by develop-
ing an advanced deep learning-based neonatal cry diagnostic
system (NCDS) designed to accurately distinguish between
six conditions: Healthy, Sepsis, RDS, Jaundice, Hyperbiliru-
binemia, and Vomiting. The contributions of this research
include the following:

1) An innovative multimodal framework that combines
spectrograms,Mel spectrograms, and Gammatone Frequency
Cepstral Coefficients (GFCC) derived from infant cries to
enhance diagnostic accuracy.

2) The application of cutting-edge Vision Transformer
(ViT) models, trained through rigorous cross-validation to
ensure the reliability and robustness of the model.

3) The application of Explainable Artificial Intelligence
(XAI) methods like Layer-wise Relevance Propagation
(LRP), Local Interpretable Model-Agnostic Explanations
(LIME), and attention maps adds reasoning capabilities
regarding how the model made its predictions.

4) A novel combination of LRP and LIME with a
multi-feature ViT model applied for the first time in infant-
cry diagnostics, delivering pixel-level explanations for each
individuals prediction.

The study results emphasize the promise of enhanced
non-invasive diagnostic techniques for neonates by syner-
gizing multi-modal acoustic features with interpretable deep
learning transformers, which may help decrease the global
neonatal mortality rate.

II. LITERATURE REVIEW
The analysis of infant cries has become a vital non-invasive
tool for early medical diagnostics, capturing the attention of
researchers for decades. Similar to many fields, it has evolved
from simple listening and observation to more sophisticated
processing systems that leverage machine learning (ML) and
deep learning (DL) algorithms.

Previous studies have demonstrated that specific acoustic
features of infant cries could indicate various health con-
dition [9]. Building on this idea, later research works have
mainly employed classical ML techniques. Early and com-
monly used acoustic features include Mel-frequency cepstral
coefficients (MFCC), Linear-frequency cepstral coefficients
(LFCC), and Bark frequency cepstral coefficients (BFCC)
[12], [13]. For instance, several studies [14], [15] utilized
MFCC features combined with traditional ML classifiers

such as support vector machine (SVM) and K-nearest
neighbor rule (KNN) along with Gaussian mixture models
(GMMs), achieving varying levels of success with classifi-
cation accuracies ranging from 71% to 78% for pathological
infant cries.

With the rise of deep learning methods, convolutional
neural networks (CNNs) started to outperform classical ML
approaches, particularly in cry classification tasks [16], [17],
[18], [19]. CNNs showed remarkable performance with Spec-
trogram, Mel-spectrograms, and GFCCs features, treating
these as image-based audio data [16], [17]. Also, the authors
in [18] used spectrogram images with CNNs for classification
tasks, achieving an accuracy of nearly 89% in distinguishing
cries for pain, hunger, and sleepiness, demonstrating a sig-
nificant improvement in the overall classification accuracy.
Similarly, the researchers in [19] achieved even higher classi-
fication accuracies, surpassing 97%, by using deep learning
models with GFCCs and spectrograms.

Other recent studies have taken a step further by proposing
the use of transformer models, particularly ViTs, to improve
the classification accuracy due to their ability to capture
complex patterns and dependencies in spectrogram data [20].
More precisely, the researchers in [20] have highlighted that
ViTs outperformed traditional CNNs in large-scale image
recognition tasks, which led to the adaptation of these ideas
for audio classification. In addition, the authors in [21]
have boldly applied transformers to audio classification,
reporting significant performance improvements compared
to CNNs-based approaches. Furthermore, in [22], the Audio
SpectrogramTransformer (AST), a variant of ViT designed to
process raw audio data, was recently applied to classify three
different classes and achieved an impressive 97% accuracy.

On the other hand, the application of XAI methods
to transformer architectures has significantly improved the
trustworthiness and explainability of audio diagnostics. Tech-
niques such as LRP, LIME, and attention mechanisms have
been used to provide explanations for the model’s decisions
[23], [24]. Recently, the authors in [25] have built upon these
advanced interpretability techniques, achieving significant
performance improvements (96.33% accuracy) and enhanced
interpretability in infant cry diagnostics using ViT models on
GFCCs and spectrogram representations.

Despite these advancements, there is a clear gap in the
literature. One can see that most current research works
have focused on a limited binary scope or multiclass set-
tings, such as healthy versus pathological cries, or comparing
minor conditions like RDS and sepsis [11]. Few studies
have explored multiclass classification involving multiple
common neonatal conditions. Moreover, while automated
machine learning (AutoML) approaches for combining mul-
timodal features (such as Spectrogram, Mel-spectrograms,
and GFCCs) showed promising results, however, very few
studies have attempted to incorporate these features into a
single cohesive model.

This research seeks to address existing gaps by build-
ing upon prior work, including [25] and developing a
more sophisticated multiclass diagnostic framework that
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automatically diagnoses six neonatal conditions: Healthy,
Sepsis, RDS, Jaundice, Hyperbilirubinemia, and Vomiting.
The research design incorporates advanced multimodal ViT
architectures combined with acoustic features to enhance
both accuracy and interpretability. Furthermore, the study
employs robust explanatory techniques such as LRP, LIME,
and attention mechanisms to enhance understanding of
decision-making process, fostering trust and facilitating the
use of the model in clinical settings.

As highlighted throughout this review, significant progress
has been made in cry-based infant diagnostic systems,
from traditional feature extraction methods to deep learning
and transformer-based models. However, more attention is
needed on multimodal feature fusion and improving model
explainability. This is especially critical in under-resourced
regions, where accurate and non-invasive neonatal diagnostic
tools could have a profound impact on reducing infant mor-
tality and improving early intervention outcomes.

III. MATERIAL AND METHODS
The proposed methodology for the classification of the infant
cry audio signals is systematic, as shown in Figure 1. First, the
audio signals were processed into three images representing
audio features: the spectrogram, associated with the Mel-
spectrogram, and GFCCs. These features were normalized
and combined into a feature image, which was represented
in an RGB color channel. This image was used to identify
six pathologies, as shown in Figure 2. In the next step, the
images were divided into training and test sets, which were
fed into the ViT model for evaluation. Cross-validation was
utilized to improve generalization. Finally, model decisions
were interpreted using XAI approaches, such as LIME and
LRP, to maintain model transparency and clinical relevance.

FIGURE 1. The workflow of the proposed methodology for classifying
infant cries.

A. DATASET DESCRIPTION
The audio data in this research was collected from Al-Raee
and Al-Sahel hospitals in Lebanon, as well as from
Saint-Justine Children’s Hospital in Montreal, Canada.

This dataset has already been utilized in several previous
studies [10], [11], [15], [19], [22], [25] and achieved promis-
ing results. It contains recordings of crying newborns from
diverse ethnic backgrounds, ranging in age from 1 to 53 days,
as summarized in Table 1. Each infant was recorded five
times, with each recording lasting approximately 90 seconds.
Data collection was conducted using a two-channel Olym-
pus digital recorder with 16-bit resolution and a 44,100 Hz
sampling rate, positioned 10-30 cm from the infant. This
dataset comprises 17 infants, of whom approximately 65%
(11 infants) are male and 35% (6 infants) are female. Six
pathological conditions are represented: Healthy, Sepsis,
Respiratory Distress Syndrome (RDS), Jaundice, Hyper-
bilirubinemia, and Vomiting. The audio files were segmented
and labeled using the WaveSurfer program (version 1.8.8).
To ensure fair and unbiased model training, the dataset was
randomly down-sampled to match the size of the smallest
class (929 records), so that each experimental scenario con-
tained an equal number of samples per class, as shown in
Figure 2.
Although the corpus contains recordings from only

17 neonates (approximately 1.3 hours of crying), it remains
a widely accepted benchmark. To reduce the risk of over-
fitting, we implemented subject-independent five-fold cross-
validation, balanced the classes through down-sampling
to 929 records, and applied extensive data augmentation
techniques.

TABLE 1. Demographic details of the dataset.

FIGURE 2. Class distribution of the dataset across the six neonatal
conditions.
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B. FEATURE EXTRACTION
In context of audio signal analysis of infant crying, the first
step of transforming the infant cry signals into their audio fea-
tures is called feature extraction, which in this case includes
the extraction of a spectrogram. As described in Figure 3,
three audio features were extracted: the spectrogram, theMel-
spectrogram, and GFCCs. The spectrogram is derived from
the Short-Time Fourier Transform (STFT) and provides a
visual representation of how the frequency spectrum of a
signal changes over time [26]. GFCC features are extracted
using a Gammatone filterbank (GF) followed by a Discrete
Cosine Transform (DCT), which captures the more subtle
changes in the sound [27]. The Mel-spectrogram is enhanced
by applying a Mel-scale filterbank to match the human audi-
tory perception of sound [28]. Each feature was normalized
and then stacked into the red channel (GFCC), green channel
(spectrogram), and blue channel (Mel-spectrogram), form-
ing a 224 × 224 RGB image. This representation enables
the Vision Transformer to perform two-dimensional self-
attention, effectively capturing both fine harmonic details and
long-range temporal context.

Each cry waveform was transformed into three comple-
mentary 2D time-frequency representations: (i) a linear-scale
spectrogram, (ii) a perceptually motivated Mel-spectrogram,
and (iii) a Gammatone Frequency Cepstral Coefficient
(GFCC) map. These three views were stacked as sepa-
rate input channels to form a unified representation. This
approach offers several advantages over using raw audio
inputs. First, it enables the reuse of ImageNet-pretrained
Vision Transformer weights, thereby reducing the number of
randomly initialized parameters and significantly lowering
computational and training resource requirements. Second,
the combined views capture diverse acoustic characteristics
(harmonic structure, perceptual loudness cues, and cepstral
dynamics) resulting in a richer, more informative represen-
tation that enhances robustness to background noise. Third,
prior research has demonstrated that spectrogram-based
Vision Transformers can achieve competitive accuracy with
lower GPUmemory usage and faster training times compared
to models that operate directly on raw audio signals [22].
This modification increased the ability of the model to

identify different pathologies, as shown in Figures 2 and 3.

FIGURE 3. Examples of extracted audio features: Spectrogram,
Mel-spectrogram, and GFCC from the audio signals.

From an acoustic perspective, stacking the spectrogram,
Mel-spectrogram, and GFCC channels allows the model to
capture locally correlated patterns that are expressed differ-
ently across feature types. While the spectrogram reflects the

FIGURE 4. Normalization and combination of audio features into a single
RGB image. Each feature serves a distinct role: the spectrogram captures
energy patterns, the Mel-spectrogram reflects perceptual features, and
GFCC represents compact speech features. Their combination provides
richer input for the model.

full linear frequency content, the Mel-spectrogram empha-
sizes perceptually important bands, and GFCCs model
cochlear filtering to capture fine spectral cues. By aligning
and stacking these features, shared acoustic structures, such
as harmonics, formant trajectories, and onset patterns, are
preserved. This integration enables the Vision Transformer
to leverage complementary acoustic cues, enabling its ability
to accurately detect pathological conditions.

In this study, the pathology–spectrum design bridge was
made explicit: Sepsis and respiratory distress syndrome have
been associatedwith irregular harmonics and attenuated high-
frequency energy, which are captured by the spectrogram
and Mel channels; jaundice and hyperbilirubinemia have
been associated with reduced pitch variability and a nar-
rower spectral spread, which are captured by the Mel and
GFCC channels; and vomiting has been associated with
time-localized broadband onsets and pitch breaks, which are
captured by the spectrogram. These mappings were subse-
quently corroborated by LRP, LIME, and attention maps.

C. VISION TRANSFORMER
The selection of the ViT model is driven by its unique
ability to capture both global and local contextual informa-
tion through self-attention mechanisms, often outperforming
traditional CNNs. ViT processes input by dividing images
into non-overlapping patches, effectively addressing limita-
tions related to regional interactions [20]. This technique
works particularly well in identifying features of audio from
spectrograms and results in greatly improved classification
performance.

The implementation of the model included 12 transformer
encoder layers, each incorporating multi-head self-attention
and feed-forward networks. Input RGB images (224 ×

224 pixels) were divided into 16 × 16 non-overlapping
patches, which were then flattened and linearly embedded.
Class tokens for each image patch were included, along
with positional embeddings to preserve spatial relationships.
These embeddings were processed through the transformer
layers and a final classification head. To enhance perfor-
mance on the limited dataset, transfer learning was applied
using pre-trained ImageNet weights, enabling the model to
achieve high accuracy and efficiency with minimal data.
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The model parameters configuration is illustrated in Table 2.
These values were determined through preliminary experi-
ments and guided by the findings in Study [25], ensuring a
balance between accuracy and training efficiency.

TABLE 2. Training parameters for the ViT model.

D. MODEL TRAINING AND EVALUATION
The ViT model was trained using the timm library, specifi-
cally with the pre-trained ViT-Base Patch16 224 weights for
ImageNet. Hyperparameter tuning after initial experiments
resulted in a batch size of 32, a learning rate of 7.9 × 10−5,
a weight decay of 6 × 10−3, and an AdamW optimizer with
OneCycleLR learning rate scheduler. Mixed precision train-
ing was used for cost-efficient computation. The model was
trained for 8 epochs while training loss and validation accu-
racy were monitored. CrossEntropyLoss was implemented
due to its efficient operation in multiclass complications.

To assess the performance of the proposed model, accu-
racy, precision, recall, and F1-score were computed and these
metrics are described as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Recall =
TP

TP+ FN
(2)

Precision =
TP

TP+ FP
(3)

F1score = 2×
Precision×Recall
Precision+ Recall

(4)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

E. CROSS VALIDATION
Validation using a five-fold cross-validation approach was
rigorously applied to test the generalizability of the model.
In each iteration, the data were divided into five subsets; four
of them were used to train the model while the fifth would be
used to validate it. All variations were taken into account such
as 3-class, 4-class, 5-class, and 6-class problems to ensure
thorough testing. The measures that were calculated within
the folds were averaged to evaluate the overall accuracy and
stability of the model.

F. PATHOLOGICAL INTERPRETATION
Before applying XAI methods, the known clinical and
acoustic characteristics of each class in the dataset were

thoroughly reviewed. Healthy infant cries typically exhibit a
balanced energy distribution and stable harmonic structure.
In contrast, cries from infants with Sepsis and RDS often
show irregular harmonic spacing; notably, RDS cries tend
to have reduced high-frequency energy due to respiratory
compromise. Jaundice and hyperbilirubinemia are commonly
associated with a monotonic pitch and a narrower spectral
range, reflecting diminished neuromuscular control. Cries
during vomiting are characterized by brief pitch breaks and
fluctuating amplitude caused by abdominal strain. In our
experiments, the LRP and LIME attention maps consis-
tently highlighted frequency regions corresponding to these
established acoustic patterns, demonstrating that the model’s
attention aligned well with known pathological markers.

Accordingly, clinical descriptors were linked to specific
spectral correlates in the fused representation—stable har-
monic stacks in healthy cries; aperiodicity and mid-band
emphasis in sepsis; high-frequency attenuation in respiratory
distress syndrome; bandwidth narrowing in jaundice and
hyperbilirubinemia; and transient onsets in vomiting—and
the same regions were highlighted by LRP, LIME, and atten-
tion maps, indicating that pathophysiologically consistent
cues were used by the model.

G. EXPLAINABLE AI
In order to enhance explainability and transparency of the ViT
model’s actions, three XAI techniques were adopted: LIME,
LRP, and transformer attention visualization. The explana-
tions offered by LIME and LRP were tailored to the specific
needs of the study and provided the versatility needed to
better understand not only how the model works but also
how and why decisions were made during the classification
of infant cry audio features.

To understand the impact of specific audio features on
singular predictions, LIME was applied. In this case, the
ViT model was locally approximated with an interpretable
one. LIME draws attention to the most relevant portions
of the input—such as spectrograms, mel-spectrograms, and
GFCCs—and classifies them according to their contribution
to the classification outcome. This greatly assisted in under-
standing the attention mechanisms employed by the model,
and, more importantly, the parts that played a critical role in
the decision-making [29].

LRP identified the model’s audial image inputs along with
their respective relevance scores, tracing back estimation pro-
cesses expertly. Assigning relevance via LRP enables output
visualization through input image portions (constructed from
audio features) across distinct layers to track back predictions
made by the model. This technique enables analysis of the
reasoning behind decisions made by the model, focusing
attention on critical inputs instrumental to final outputs [23].

Using attention visualization within the transformer archi-
tecture, input spectrogram areas that the ViT model utilized
during estimation processes were analyzed. Within the self-
attention layers, attention maps synthesized by the model
articulate the model’s focus, shedding light on significant
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frequency- and time-associated elements. Thus, this method
offers insightful interpretation.

For the improvement of clinical interpretability, model
transparency, and explainability, LIME and LRPwere applied
under the principles of XAI. For LIME, local surrogate mod-
els were designed for the machine learning model trained
on the audio features to identify specific regions of inter-
est, and for LRP, the model’s predictions were dissected
in layers to distribute a relevance score among the features
that contributed to the outcome. The attention layers of the
transformer further assisted in the visualization of critical
sections of the spectrogram that were significant in forming
the model’s predictions. Collectively, these methods provided
an understanding of the model’s workings, reducing clinical
distrust toward the use of sophisticated medical technologies
and fostering their adoption in practice.

IV. EXPERIMENTAL RESULTS
A. PREFORMANCE EVALUATION
The Vision Transformer model was first tested for per-
formance on an infant cry pathology classification task in
different scenarios (3, 4, 5, and 6 class problems). Each
scenario was optimized based on the maximum number of
records available per class. For three classes, each class had
3000 records; four classes had 1158 records per class, five
classes were balanced at 993 records per class, and six classes
had 929 records per class.

Overall, the model performed impressively across all sce-
narios. For the three-class classification scenario, the model
performed optimally, reporting an accuracy of 99.78% with
precision, recall, and an F1-score of 100%. The model also
performed optimally in the four-class scenario, achieving
an accuracy of 99.42% with all other measures at 99%.
The five-class scenario showed further improvement with
99.73% accuracy and precision, recall, and an F1-score of
1.00. In the six-class scenario, there was a slight drop in
accuracy to 98.92%. However, this was accompanied by high
precision, recall, and F1-score of 99% each, as shown in
Table 3. Figure 5 contains confusion matrices alongside the
loss and accuracy for each classification scenario for each
epoch. From these results, it can be seen that the model
was able to achieve high accuracy in relatively few epochs.
For the three-class problem, the confusion matrix appears to
illustrate perfect classification with almost no error made in
distinguishing ‘‘Sepsis’’ from other classes. The loss curves
also show an apparent convergence by the end of the 3rd
epoch, and the accuracy curves provide clear indications of
stabilization at near 100% starting from the 4th epoch. In the
four-class problem, minor confusion is observed between
classes such as ‘‘Jaundice’’ and other pathologies. The train-
ing and validation loss exhibit a peak in the second epoch and
a sharp decrease later. At the same time, the accuracy seems
to increase steadily, stabilizing at over 99% after the initial
fluctuation.

For the five-class classification, some minor misclassifi-
cations occur between ‘‘Vomiting’’ and other classes, but
these occurrences are very sparse, as shown in the confusion

matrix. In this case, both the training and validation loss
curves consistently declined and approached zero around the
8th epoch. The accuracy appears to have a steep increase and
stabilizes around 99%, but this happened after the 4th epoch.
In the six-class classification scenario, the minor confusion
becomes slightly worse, especially between ‘‘Hyperbiliru-
binemia’’ and other classes. The training and validation losses
dropped steadily and plateaued at low values by the end of
training. Throughout the epochs, accuracy improved contin-
uously until it plateaued at just under 99%, suggesting strong
performance due to the added complexity.

The model was evaluated across four progressively chal-
lenging scenarios: starting with three-class (Healthy, Sepsis,
and RDS), then adding Jaundice for a four-class setup,
followed by the inclusion of Hyperbilirubinemia for five
classes, and finally incorporating Vomiting to form a six-class
classification.

TABLE 3. Performance results of VIT model without cross-validation.

B. CROSS VALIDATION RESULTS
To further evaluate the robustness and generalizability of
the ViT model, a five-fold cross-validation was conducted
on four balanced classification scenarios (three, four, five,
and six classes). The results are shown in Table 4. In the
three-class scenario (Healthy, RDS, Sepsis), the average
accuracy in the five folds was 99.82%, while precision,
recall, and F1-score maintained a perfect score of 100%.
This result was consistent with minor fluctuations, indicating
a very high level of reliability. In the four-class scenario
(Healthy, RDS, Sepsis, Jaundice), the model achieved an
average accuracy of 99.55% with class values for precision,
recall, and F1-score also approaching a perfect score of
100%. Performance across folds was consistent and stable,
with maximum accuracy of 100% achieved in fold 5. For
the five-class classification scenario (Healthy, RDS, Sepsis,
Jaundice, Hyperbilirubinemia), the average accuracy leveled
off slightly to 99.05%, still achieving precision, recall, and
F1-score of 99%. Variability between the folds was minimal,
indicating strong performance even with increasing complex-
ity. The six-class scenario (Healthy, RDS, Sepsis, Jaundice,
Vomit, Hyperbilirubinemia) achieved an average accuracy
of 99.34%, with precision, recall, and F1-score of 99%.
Although the number of classes has increased, the results
indicate a stable performance, strengthening the case in terms
for model reliability in real-world testing.

From the cross-validation results, it is clear that the ViT
model is able to achieve accuracy, precision, recall, and
F1-scores regardless of the challenge posed by the scenario’s
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FIGURE 5. Training and validation loss, accuracy curves, and confusion matrices for the three, four, five, and six-class classification scenarios.

TABLE 4. Cross-validation results across different classification scenarios
across 5 folds.

complexity. The strength demonstrated by cross-validation
also reflects the appropriateness of the model for clinical use
in classifying infant cry pathologies.

C. EXPLAINABLE AI ANALYSIS
XAI methods such as LIME, LRP, and attention-based mod-
els were utilized to explain the decision processes of the ViT
model. Aggregate results for each method across all classes
are displayed in Figures 6, 7, and 8.

According to the LRP analysis (Figure 7), some spectral
regions had a high power for class separation. For exam-
ple, healthy cry signals activated upper-frequency ranges,
suggesting stable and distinctive low-level patterns asso-
ciated with non-pathological crying. In contrast, classes
like RDS and Sepsis showed strong activation across many
frequency bands, indicating of important discriminative
low- and mid-frequency pathologic ranges.
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FIGURE 6. Explainable AI for Combined Audio Features: GFCC, Spectrogram, and Mel-Spectrogram Using LRP, LIME, and
Attention Mechanisms.

LIME diagrams, as shown in Figure 8, provide class-level
explanations and support this analysis by showing which

parts of each spectrogram affected the model decision
most. For example, LIME provided the most relevant
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FIGURE 7. Visualization of ViT model interpretations using LRP.
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FIGURE 8. Visualization of ViT model interpretations using LIME.

temporal-frequency region for Jaundice and Hyperbiliru-
binemia, which was a natural inference given the high
classification accuracy achieved.

On the other hand, attention-based models, shown in
Figure 6, also provided a global view of the effects, with

the output of the Attention LSTM revealing more broadly
associated features and helping to make correct predictions,
showing disparity for all audio inputs of Sepsis, RDS, and
revealing powerful spectral structures unique to the above
pathologies.

161112 VOLUME 13, 2025



A. Hasasneh et al.: Unveiling Hidden Patterns in Infant Cry Audio: A Multi-Feature ViT Approach

TABLE 5. Comparison of classification results of the proposed study with previous studies.

In summary, the integration of LRP with LIME and the
infusion of attentional mechanisms allowed for a complete
understanding of how the ViTmodel works. These visual elu-
cidations substantiated the model’s dependencies on relevant
clinical audio features, further enhancing its interpretability
and credibility in medical diagnostics.

V. DISCUSSION
By incorporating a multi-channel approach that combines
three key audio features- Spectrogram,Mel-spectrogram, and
GFCCs- into a single RGB image, this system marks a sig-
nificant advancement over previous infant cry classification
methods. As demonstrated in Table 5, earlier studies con-
sistently suffered in improving accuracy, precision, recall,
and F1-score, and none successfully classified more than six
pathological classes, which is an achievement realized in this
study. A superior efficiency/accuracy trade-off is obtained
through the fusion of spectrogram, Mel-spectrogram and
GFCC representations when compared with the use of any
single view or raw audio alone.

In study [11], the authors employed GFCC features in
combination with heart rate (HR) data, applying them to
a Multi-Layer Perceptron (MLP) model. This approach
achieved an accuracy of 95.92%, though it was limited to only
two classes. While the integration of physiological data (HR)
contributed to a higher level of accuracy, however the model
lacked generalizability. In contrast, the proposed approach in

this study demonstrated the ability to handle larger number
of classes with even higher accuracy, offering a more robust
and scalable solution to the problem of infant cry-based
diagnostics.

In study [19], the authors applied a fusion deep learn-
ing approach that integrated GFCC, HR, and spectrogram
features for three-class classification. While higher accuracy
was reported (97.50%), the added data modalities (audio and
HR) introduced additional difficulties in implementation and
clinical use. The proposed model showed better performance
with added ease of implementation, using only audio features
processed straightforwardly directly by a ViT.

With a hybrid of CNN and SVM, with spectrogram clas-
sifier features were used in [18], yielding an accuracy of
92.50% for three classes. This combination provided addi-
tional complexity and relatively lower performance than the
streamlined version of the ViT model presented here. Again,
this model showed superior accuracy along with ease of
deployment and training.

In study [30], the XGBoost algorithm was used in com-
bination with LFCC features for four-class classification,
achieving an accuracy of 92%.Despite utilizing this advanced
boosting algorithm, the performance did not surpass that of
the currentmethod. In contrast, the proposedViT-based archi-
tecture, combined with a multi-feature approach, demon-
strated superior accuracy and reliability across a broader set
of classes, delivering performance that remains unmatched
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by previous methods. Study [22] utilized an AST model,
which processed audio signals in their raw form through
a succession of computational steps without prior adjust-
ment or feature extraction, achieving an accuracy of 98.69%
for three classes (Healthy, Sepsis, and RDS). While the
AST model performed remarkably well with the raw audio,
it was extremely overengineered and required too much
optimization. On the other hand, the current study used a
ViT model that worked with processed spectrogram-based
features, greatly simplifying the training required and the
computations needed. This approach improved the accuracy,
as well as the efficiency, scalability, and resource require-
ments of the model.

In study [25], the authors implemented a ViT model for
audio classification; however, the audio features were eval-
uated separately, achieving the highest accuracy of 96.33%
with the GFCC-based model. In contrast, the current research
employed a synergistic approach by integrating all three
audio features (GFCC, Mel-spectrogram, and spectrogram)
within the ViT model. This fusion led to unprecedented
performance, with a classification accuracy reaching 99%.
Additionally, the study utilized exhaustive cross-validation,
ensuring that each feature channel was thoroughly evaluated,
thereby enhancing the model’s generalization capabilities
beyond the isolated feature approach used in study [25].

Study [31] had several models utilizing more advanced
self-supervised learning techniques like wav2vec 2.0,
WavLM, and HuBERT with convolutional transformers as
encoders, which yielded accuracies of 89.76%. While these
methods were able to extract deep audio features using
advanced SSL techniques, the approach proposed in this
study achieved higher accuracy results in terms of precision,
recall, and F1 score using a combination of simpler robust
audio features and a ViT architecture. These results signifi-
cantly outperformed the other techniques.

Through the use of explainable AI techniques such as LRP,
LIME, and attention mechanisms, XAI provided complete
transparency that set this research apart from others and justi-
fied its use. Figures 6–8 provide detailed visualizations of the
model’s explanations. In particular, the LRP heat maps high-
light low- to mid-frequency bands when classifying Sepsis
and RDS, while relevance for Healthy cries is primarily con-
centrated in higher-frequency regions. Similarly, the LIME
overlays isolate these discriminative areas, reinforcing the
importance of those spectral cues. Attention roll-outs further
demonstrate that the Vision Transformer focuses on specific
time-frequency regions where pathological cries differ from
healthy patterns, offering insight into the model’s high preci-
sion. These powerful interpretability methods helped uncover
the constituent and most critical audio features on which the
model relied on for its predictions, enhancing both trust in
and understanding of the model within a clinical setting.

VI. CONCLUSION AND FUTURE WORK
A novel framework for infant-cry classification has been
introduced, leveraging an RGB image representation that
integrates Spectrogram, Mel-spectrogram, and GFCCs

features. Using a ViT model, the proposed model achieved
significantly higher classification accuracy compared to pre-
vious recent CNN-based approaches due to ViT’s ability
to aggregate contextual information at a global scale. The
tri-modal representation harnesses complementary acoustic
cues, while the self-attention mechanism of the ViT captures
long-range temporal patterns, resulting in a classification
accuracy of 99% across six neonatal conditions. This demon-
strates not only the performance advantage of the proposed
model, but also the effectiveness of multi-feature representa-
tions in audio diagnostics.

The integration of XAI techniques, such as LRP, LIME,
and attention, enhances model interpretability. These tech-
niques provide a pixel-level visual explanation that offer
transparency into the model’s decision-making process,
thereby fostering greater trust in automated neonatal
diagnostic systems in particular.

Future work will focus on three key directions: (i) devel-
oping lightweight GRU-augmented or Tiny-ViT variants
appropriate for real-time embedded deployment; (ii) con-
structing a larger multimodal dataset that combines cry
acoustics with respiration signals, facial expressions, and
realistic background noise; and (iii) exploring self-supervised
and semi-supervised learning strategies to improve model
robustness under varied clinical recording conditions.
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