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Context: Logs are vital to understanding a software system’s behavior, often being the only evidence available
to investigate failures.

Problem: Selecting a Log Severity Level (LSL) can be challenging for the following reasons: (i) the absence of
knowledge about how logs are used in production, (ii) the lack of understanding of how critical an event is,
and (iii) the lack of practical guidelines. This leads to frequent LSL adjustments during software development
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Misclassification and evolution.
Log analysis Objective: Our goal is to investigate the LSL adjustments between system releases and explore methods to
Logging improve LSL classification.

Software engineering Methods: We analyzed the log statements from different releases of open-source systems, focusing on their

LSL adjustments and examining the commit comments to understand the reasons for the adjustments.
Results: Our results show that most adjustments occur at the intersection of development and production
environment logs. Furthermore, the main guiding factors for the adjustments are the experience and logging
theory. Our contributions are (i) a description of trends and patterns in LSL adjustments and (ii) a set of 24
heuristics to guide the choice, review, and adjustments of LSL. We advise developers to adhere to the LSL
purposes, routinely review LSL settings, and remain adaptable to their mutability.

1. Introduction in the event, and a log message. Severity levels indicate the degree of

severity of the log message (Kim et al., 2020). For example, a less severe

Logs are often the primary source of information for operators to
understand and diagnose the behavior of a software system (El-Masri
et al., 2020). In many cases, logs are the only available evidence to
monitor a system’s runtime behavior and investigate its failures (Yuan
et al., 2012b; Yao et al., 2020). According to Lin et al. (2016), “engi-
neers need to examine the recorded logs to gain insight into the failure,
identify the problems, and perform troubleshooting.” For this reason,
it would be ideal to keep records of all evidence that can be analyzed
(at runtime or later) to capture valuable information throughout the
execution of software systems (Hassani et al., 2018). This evidence is
generated through logging: the developers choose the points in the code
where they add log statements, and these statements generate the log
entries at runtime (Candido et al., 2021; Li et al., 2018). The decision to
generate more or fewer log entries, thus more or less evidence, depends
on the choice of the log severity level (LSL).

As presented in Fig. 1, each log entry is usually composed of a
timestamp, severity level, name of the software component involved
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level is used to indicate that the system is behaving as expected, while a
more severe level is used to indicate that a problem has occurred (Chen
and Jiang, 2017a). A log entry will be added to the system log data
every time the execution reaches a log statement whose severity level
is equal to or exceeds that used to filter. These data can be parsed,
processed, and stored to be consumed by monitoring activities. Opera-
tions engineers use them to monitor, for example, whether the system is
functioning correctly, to analyze whether it is on the verge of failing, to
identify behavioral anomalies, and to understand particularities during
its operation through these data, or more generally, to understand how
the system behaves (Candido et al., 2021).

In system monitoring, system operators, having to deal with track-
ing various monitoring metrics, may receive a large volume of monitor-
ing information. This includes many false warnings and alerts (Farshchi
et al.,, 2018) and a high amount of noise, which affects log-based
monitoring and diagnostics (Hassani et al., 2018; Li et al., 2017a; Rong
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017-09-26 12:40:15, INFO impl.FsDatasetImpl - Time taken to scan block pool BP-805143380 on /home/data3/current 30ms
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Log Message

Fig. 1. Log severity level (LSL) in a log entry.
Source: Adapted from El-Masri et al. (2020).

et al,, 2018). Part of this problem may come from the LSL chosen
during development phase, which impacts the amount of log data that
a software system produces (Lin et al., 2016; Chen and Jiang, 2017a;
Chowdhury et al., 2018; Zeng et al., 2019). For example, if a system’s
logging verbosity is set to Warn level, only statements marked with
Warn and higher levels (e.g., Error, Fatal) will be output (Chen and
Jiang, 2017a).

In this sense, a software system with inappropriately chosen severity
levels can produce fewer log entries than it should, or on the con-
trary, more log entries. If the choice results in too much logging, the
system can produce two types of information in excess: (i) unneces-
sary information: the system produces log statements classified with
a higher severity level than the semantics of its log messages (Zeng
et al.,, 2019; Li et al., 2017a; Yuan et al., 2012a) and (ii) redundant
information: the system produces repeated information arranged in
different severity levels (Chen and Jiang, 2017a). On the other hand,
if inappropriate severity levels result in too little logging, the system
may hide critical information at lower severity levels (Hassani et al.,
2018; Fu et al., 2014). This imbalance in log data will impact system
performance (Chen and Jiang, 2017a; Li et al.,, 2017a; Yuan et al.,
2012a) and maintenance (Li et al., 2017a; He et al., 2018), as well as
affect log-based monitoring and diagnostics (Hassani et al., 2018; Li
et al., 2017a; Rong et al., 2018).

Several studies propose solutions for the correct use of the LSL. Kim
et al. (2020) propose an approach to verify the appropriateness of
the LSL. Li et al. (2017a) propose a deep learning approach for LSL
prediction using the logging locations. Li et al. (2020b) discuss where
to apply logging locations and proposes a learning approach to provide
code block logging suggestions. Other studies in the literature focus
on “where to log” such as Zhao et al. (2017), Fu et al. (2014) and Li
et al. (2020a). However, these works propose approaches that do not
thoroughly explore adjustments related to LSL or provide detailed
descriptions and categorizations.

Our research addresses this gap by proposing a comprehensive
framework for understanding and applying severity levels. Unlike stud-
ies focusing on specific scenarios, our work broadly categorizes devel-
opers’ intentions in changing LSL. We aim to examine LSL adjustments
between system releases and explore methods to enhance LSL clas-
sification. To reach this goal, we investigate the following Research
Questions (RQs):

* RQI1: What log severity adjustments occur between system releases?
* RQ2: Why do severity level adjustments occur?
* RQ3: How can we improve LSL classification?

To answer these questions, we use a three-phase methodology:

1. a descriptive phase to answer RQ1, which consists of examining
the repositories of open-source Java systems to identify severity
adjustments between different releases;

2. an explanatory phase to answer RQ2, which involves examining
the issue descriptions and comments on the commits of these
adjustments;

3. and finally, a prescriptive phase to answer RQ3, where we derive
a set of heuristics for log severity selection based on our results.

Our results show that most LSL adjustments happen at the intersec-
tion of development and production environment logs. In many cases,
developers may classify Debug messages as Info to enable debugging
in production environments, where excessive logging could otherwise
lead to issues. We also observed mutability in the LSL; the level may
attenuate or even aggravate, depending on the maturity of the systems.
Furthermore, the main guiding factors for the adjustments are the de-
veloper’s experience and logging theory rather than formal guidelines.
The results also show us that, in the absence of these formal guides,
records in the issue reports of the systems act as an essential guide for
understanding LSL.

The main contributions of this study are:

1. A description of tendencies and patterns in severity adjustments: Our
study reveals significant trends, such as the predominance of
experience-based adjustments and the changeability of severity
levels with software maturity. These findings are fundamental to
understanding how logs evolve in software development.

2. A set of 24 heuristics to guide the choice, review, and adjust-
ments of severity levels: These heuristics are based on detailed
analysis and provide practical guidance for developers and oper-
ations engineers to make informed decisions about log severity
classification.

Paper structure. The remainder of this paper is organized as fol-
lows: In Section 2, we outline background information. We present our
three-phase methodology in Section 3. In Section 4, we present the
results of the Descriptive Phase (Phase 1), in Section 5, the results of
the Explanatory Phase (Phase 2), and in Section 6, the results of the
Prescriptive Phase (Phase 3). In Section 7, we discuss the results of
all three phases. Related work is discussed in Section 8, and threats to
validity are detailed in Section 9. Finally, conclusions and future work
are presented in Section 10.

2. Background
2.1. Fundamental principles of log severity levels

In this section, we present the terms related to logging that are used
in this study.

2.1.1. Log statement

A log statement is an instruction used in the source code to log
a state, an event, or a behavior. Fig. 2 presents an example of a log
instruction that records a message at the Info level.

2.1.2. Log entry

A log entry is the product of the execution of a log statement; the
generated log entry can simply be displayed in the terminal during
execution, sent to a log file, or transmitted over a data stream if a
persistence strategy is used. Fig. 1 presents an example of a log entry.
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249

250 LOG.info("Processing the event " + event.toString());

251

Fig. 2. Log statement of Hadoop (Apache, 2006).
Table 1
Selected logging libraries (ordered by the number of log severity levels (LSL)).

# Library Language Levels
[LO1] Google Glog C/C++ 4
[L02] Golang Glog Golang 4
[L03] OSLogging Objective-C, Swifty 5
[LO4] Rust Lang Rust 5
[LO5] Logback Java 5
[LO6] SLF4J Java 5
[LO7] Ruby Logger Ruby 5
[LO8] LogLevel JavaScript 5
[L09] JS-logger JavaScript 5
[L10] CocoaLum Objective-C 5
[L11] Kotlin-logging Kotlin 5
[L12] SwiftyBeaver Swifty 5
[L13] Log4J Java 6
[L14] Commons Logging Java 6
[L15] Bunyan JavaScript 6
[L16] NLog/ C# 6
[L17] Python Lang Python 6
[L18] ME Logging .NET 6
[L19] Serilog .NET 6
[L20] Log4PHP PHP 6
[L21] PinoJS JavaScript 6
[L22] Log.c C/C++ 6
[L23] C-Logger C/C++ 6
[L24] Zlog C/C++ 6
[L25] Go-logging Golang 6
[L26] Log4m MatLab 6
[L27] Loguru C/C++ 6
[L28] Spdlog C/C++ 6
[L29] Java Util Logging Java 7
[L30] Logrus Golang 7
[L31] Uber-go/zap Golang 7
[L32] Bolterauer VBA 7
[L33] Swift-log Swifty 7
[L34] Loguru Python 7
[L35] Syslog-ng C/C++ 8
[L36] PHP PHP 8
[L37] Monolog PHP 8
[L38] Winston JavaScript 8
[L39] Log4C C/C++ 9
[L40] Log4Net C# 15

2.1.3. Log severity levels

The log severity levels (LSL) indicates the degree of severity of the
log message (Kim et al., 2020). For example, a less severe level is used
to indicate that the system behaves as expected. In contrast, a more
severe level is used to indicate that a problem has occurred (Chen and
Jiang, 2017a).

To provide an overview of logging libraries and the LSL they en-
compass, the following section presents the results from a mapping
of severity levels across various logging libraries, conducted in our
previous study.

2.2. Logging library mapping

To better understand how severity levels are used in the logging
libraries context, we mapped 40 logging libraries covering 14 pro-
gramming languages (Table 1) in a previous study (Mendes and Petrillo,
2021).

To find the appropriate logging libraries for these languages, we
conducted a Google Search. We used only the first page of results for
each language and obtained 160 hits, revealing more than 60 distinct
libraries. We filtered the results by analyzing code and documentation
repositories using the inclusion (IC) and exclusion (EC) criteria:
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Table 2
All severity levels found in logging libraries (ordered by severity).
# Level

Presence in libraries

1 Finest 3
2 Verbose 4
3 Finer 3
4 Trace 23
5 Debug 39
6 Basic 1
7 Fine 3
8 Config 1
9 Info 42
10 Success 1
11 Notice 10
12 Warn 41
13 Error 41
14 Fault 1
15 Severe

16 Critical 13
17 Alert

18 Fatal 22
19 Emergence 4

+ IC: The library/language has a set of log severity levels;
+ EC1: The library does not create log statements with LSL;
» EC2: The library is on GitHub and has less than 1,000 stars.

We found 19 different nomenclatures for severity levels (Table
2), grouped in libraries with severity sets ranging from four (4) to
fifteen (15) distinct levels, with 91% of the libraries having between
five (5) and eight (8).

Of the 19 levels, a group of six severity levels are present in more
than 50% of them, namely: Info (100%), Warn (98%), Error (98%),
Debug (93%), Trace (55%), and Fatal (52%). However, these levels
represent different degrees of severity depending on the library; for
example, the most severe level in 48% of the libraries is Fatal, but in
another 19%, it is Error.

The same variation occurs with less severe and intermediate levels,
considering the variation in severity levels per library. For instance,
one library uses one severity level for log debug instructions, while
another library might use six different levels for the same task. Severity
levels have associated numerical values in 38 of the 40 libraries, but
three libraries show redundancy for levels with different names but
equivalent semantics. Next, we present an overview of the definitions
of the levels found in the libraries.

(a) Debug As defined by the libraries, the Debug level is characterized
by detailed and low-priority or low-importance information, which is
useful for debugging activities.

(b) Trace The Trace level is characterized similarly to Debug, yet it
emphasizes an even lower priority than it.

(c) Info The Info level is associated with normal behavior, routine
operations, and messages that describe the overall progress of the
system. The level is also referenced as valuable for end users and system
administrators.

(d) Warn The Warn level is typically described as indicating a dan-
gerous situation, highlighting potential problems that might lead to a
failure. It is often characterized as ‘almost errors,” suggesting that while
the application continues to run, something unexpected has occurred.
This level is important for operators, end-users, or system managers as
it indicates potential issues that may require attention.

(e) Notice The Notice level is similar to the Info level in several aspects,
as it is used to describe normal events and highlight the application’s
progress. However, it also has a characteristic akin to the Warn level,
as it can be used to describe potential failures, indicating a blend of
both informational and warning functions.
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Table 3
Severity level definitions (Mendes and Petrillo, 2021).

Severity level Description

Describes variable states and details
about interesting events and decision
points in the execution flow of a
software system, which helps developers
to investigate internal system events.

Debug

Trace Broadly tracks variable states and events
in a software system.

Info Describes normal events, which inform
the expected progress and state of a
software system.

Warn Describes potentially dangerous
situations caused by unexpected events
and states. These must be observed,
even if they do not interrupt the
software system’s execution.

Error Describes the occurrence of unexpected
behavior of a software system. These
must be investigated, even if they do
not interrupt the software system’s
execution.

Fatal Describes critical events that bring a
software system to failure.

(f) Error The Error level is typically described with terms such as
‘major problem,’ ‘very serious error,” and ‘unexpected conditions.” Ad-
ditionally, it is noted that events registered at this level may or may
not interrupt the application’s operation. Even if they do not halt the
application entirely, they can impede the progress of a specific request.
In instances of logs at this level, it is crucial for an operator to be
informed as soon as possible.

(g) Severe, Critical, Alert, Fatal, Emergency These five levels are associ-
ated with extremely severe error events in various library definitions.
The Severe, Critical, Alert, Fatal, and Emergency levels each denote a very
severe event. Specifically, the Critical level is often linked to disastrous
occurrences and demands immediate attention. For the Fatal level, de-
scriptions are more detailed, indicating situations where the application
can no longer continue, may be forced to terminate prematurely, is on
the verge of shutting down or stopping, might need to be aborted, or
becomes completely unusable.

(h) Finest, Verbose, Finer, Fine These levels, found in a limited number
of libraries, are described in comparative terms, focusing on the volume
and detail of output, with an emphasis on their usefulness in debugging
applications.

(i) Basic, Config, Success, Fault These four levels, unique to different
libraries, include Basic, which is an alias for Debug, Config for detail-
ing static configuration information useful in debugging, and Success,
which is not specifically defined but numerically sits between Info
and Warn. Fault is used to capture information about faults and bugs,
without specified numerical values.

2.2.1. Log severity level convergence

The variation in the nomenclature of severity levels, the redun-
dancy of levels for logging purposes and in numerical values led us
to propose that the 19 severity levels can converge to higher levels of
abstraction (Mendes and Petrillo, 2021). We identified a trend toward
convergence into six severity levels, namely: Trace, Debug, Info, Warn,
Error, and Fatal (Table 3), which can be categorized into four meta-
levels, which we call purposes for log severity levels. The Debugging
Purpose encompasses levels focusing on variable states and internal
system behaviors. The Informational Purpose records expected software
behavior. The Warning Purpose highlights issues for investigation with-
out halting system execution. Lastly, the Failure Purpose encompasses
the most severe levels dedicated to logging system failures (Table 4).
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Table 4
Definitions of the purposes of log severity levels (Mendes and
Petrillo, 2021).

Purpose Description
Debugging Describes levels used to log variable
Purpose states and internal software system
behavior events. It groups Debug and
Trace, with Trace extrapolating Debug’s
characteristics of describing variables
and events.
Informational Describes levels used to record the
Purpose expected behavior of a software system.
Warning Describes levels used to warn of
Purpose unexpected software system behavior. It
groups Error and Warn levels as both
indicate issues (or potential issues) to be
investigated but do not interrupt the
system’s execution.
Failure Describes levels used to record software
Purpose system failures.
Severity
Environment Purpose : Levels
Prgductmn | | Warning
Environment :
Warn
Log
— I_-

Debug

Development 8
}()—i Debi
Environment : CREEI

Fig. 3. Log severity level taxonomy: Six log severity levels are divided into two
categories from left to right, first about environment and then about purpose.
*Depending on the logging library, the Error level purpose classification varies
between Warning and Failure.

Trace

Furthermore, log severity levels have two primary target envi-
ronments: the development and production environments (Liu et al.,
2019). While development tasks can benefit from log entries generated
from all levels, the production environment requires only a subset of
these entries. Notably, the Info level marks the threshold of the higher
severity levels intended for the production environment. We present all
these concepts about log severity level through a taxonomy in Fig. 3.

These log severity levels must form a total order in the mathematical
sense, with each level considered strictly more severe than the previ-
ous one — in other words, there should not be two levels with the
same severity. However, certain severity levels from different logging
libraries may map to different purpose levels of our taxonomy.

2.3. Log severity level adjustments

In this work, we refer to a log severity level adjustment as a change
that occurs in a log statement between two releases of the source code
of an analyzed system.

This adjustment can be qualified with respect to the “direction”
of the level change. If the change occurs from a less severe level to
a more severe level, we shall call the adjustment an aggravation, e.g.,
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Info to Fatal; if the change downgrades the level from a more severe
to a less severe one, we shall call the adjustment an attenuation, e.g.,
Warn to Debug. For example, Listing 1 shows the same log statement in
two different releases of HBase: the first from release Hbase/2.0.0RCO,
and the second from release Hbase/2.5.0R0. In this case, there was a
severity level adjustment, an aggravation, as Info is a higher severity
level than Debug.

Listing 1: Severity level aggravation on Hbase

// Release Hbase/2.0.0RCO,
// TableAuthManager.java (line 188)
LOG.debug("Skipping permission cache refresh
because writable data is empty")
// Release Hbase/2.5.0RCO, TableAuthManager. java (line
136)
LOG.info("Skipping permission cache refresh
because writable data is empty")

For an example of severity level attenuation, see Listing 2, where a
log statement originally had a Warn level was changed to a Debug level
in a later release.

Listing 2: Severity level attenuation on Hadoop

// Release Hadoop/release-0.15.3,
PedingReplicationBlocks (line 186)
LOG.warn('"PendingReplicationMonitor thread received
exception. "+ ie)

// Release Hadoop/release-0.16.0,
PedingReplicationBlocks (line 187)
LOG.debug('PendingReplicationMonitor thread received
exception. "+ ie)

In addition to attenuation and aggravation categories, we refer to
“equivalences” as a severity adjustment characterized by levels with
different names but compatible severities, e.g., Debug to Fine; these
episodes occur, for example, when the logging library changes from
one release to another.

2.4. SLogAnalyzer

SLogAnalyzer is a tool developed in a previous work (M. Vascon-
cellos, 2023). SLogAnalyzer is designed to analyze the evolution of log
code. It allows for the extraction and comparison of log statements and
their semantic and syntactic characteristics in versions of open-source
Java systems hosted on GitHub.

The tool performs repository cloning, copying all branches of the
projects to be analyzed. After cloning the repositories, the SLogAnalyzer
begins the process of extracting log statements. For each extracted
statement, it detects a set of 21 pieces of information, including location
(file, line, code snippet), severity level, message, and message without
variables, when applicable. Additionally, it explores the source code to
extract information about the methods in the release, such as location,
number of log lines, cyclomatic complexity, and SLOC (Source Lines of
Code).

2.4.1. Release comparison

The version comparison pipeline of the SLogAnalyzer is responsible
for comparing files from different releases of the same project. It
orders the releases chronologically and compares each sequential pair
of releases in files common to both adjacent releases. For files present
in both releases, the pipeline uses the Difflib library' to compare
contents and identify changes. The similarity between log statements

1 https://docs.python.org/3/library/difflib.html
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is measured by cosine similarity, which is commonly used to assess the
similarity between texts (Singhal et al., 2001; Tan et al., 2005).

While several similarity measures exist, cosine similarity remains
particularly well-suited for comparing log statements in our context.
First, it is independent of vector magnitude, accommodating the variable-
length nature of log messages across software versions (Turney and
Pantel, 2010). Second, it effectively handles high-dimensional and
sparse representations, which are typical of textual data (Plattel, 2014).
Third, it focuses on relational patterns in vector space rather than
exact structural matching (Turney and Pantel, 2010), which is relevant
when detecting adjustments in log statements. These characteristics
make it a particularly appropriate metric for identifying log statement
modifications across software versions. In our implementation, changes
with a cosine similarity above 0.5 are considered adjustments.

The objective of this pipeline is to compare data extracted from lines
of code between consecutive versions of a project, categorizing changes
into modifications, additions, and removals. At the end of the process,
all information is stored in the database for further analysis. Refer to
the work of M. Vasconcellos (2023) for more detailed information.

3. Study design

Previous research has already found adjustments in severity levels
when comparing the source codes of different software versions (Anu
et al., 2019; Li et al.,, 2017a). In our work, we want to deepen and
broaden the knowledge about the adjustments and their causes, and
in this way to improve the choice process of the log severity level.
Our strategy uses a broad number of releases from the selected soft-
ware to build an extensive view of the adjustments, using a 3-phase
methodology (Fig. 4), preceded by an initial selection of projects (Phase
0).

In the descriptive phase, we examine the log severity level statically
(source code) to paint an overview of the log severity level’s distribu-
tion by release and the adjustments present in each selected software.
In the explanatory phase, we examine the Jira’s,” commit issue texts for
each log severity level adjustment associated with the first phase to
find the developers’ explanations. In the prescriptive phase we propose
heuristics based on the knowledge gained in the first two phases to
guide the choice of severity.

3.1. Project selection (phase 0)

Below, we describe how we selected the projects for this work and
the 3-phase methodology.

3.1.1. Criteria for project selection
To select the software systems for our study, we applied the follow-
ing set of criteria:

* (IC1) There must be documented evidence in academic litera-
ture (journal or conference publications) of adjustments in the
software’s log severity levels;

(IC2) The software must be open-source. Open-source software
allows us to access the source code, publicly available documen-
tation, and issue tracking.

(IC3) The software’s source code must be available on GitHub.
This accessibility facilitates the extraction and analysis of log
severity adjustments.

2 Jira (https://www.atlassian.com/software/jira) is software from Atlassian
that integrates with Git. It gives more context to commits, branches, tags, and
pull requests.


https://docs.python.org/3/library/difflib.html
https://www.atlassian.com/software/jira

E. Mendes et al.

Phase 0:

Project Selection

RQ1: What log severity
adjustments occur between
system releases?

RQ2: Why do severity level
adjustment occur?

RQ3: How to improve log
severity classification?

Phase 1:

Descriptive phase

Phase 2:

Explanatory phase

The Journal of Systems & Software 231 (2026) 112643

log statements
of system’s releases

texts
of issue registries

heuristics
to choice severity levels

Fig. 4. Study Design.

+ (IC4) The software must have issues registered on Jira®: Jira
records detailed information about software issues, including de-
velopers’ discussions about the commits.

(EC1) Incompatibility of the software’s log statements with the
templates used by SLogAnalyzer. This is the tool we use to analyze
log statements. If the software’s log statements are incompati-
ble with SLogAnalyzer’s templates, performing a consistent and
accurate analysis would be challenging.

(EC2) Limited activity or sparse documentation of issues in the
software’s Jira repository: Active projects with well-documented

issues are necessary to ensure a rich dataset for analysis. Projects
with limited activity or sparse documentation would not provide
sufficient data for a comprehensive study.

To meet the first inclusion criterion, we identified at least nine rele-
vant studies that document adjustments in log severity levels (Shang
et al.,, 2015; Chen and Jiang, 2017a,b; Zhao et al., 2017; Li et al.,
2017b; Kabinna et al., 2018; Li et al., 2020a, 2021c; Zhang et al., 2022).
Following the application of our selection criteria, approximately 60
software systems were found to meet the initial inclusion conditions.
However, due to the resource-intensive nature of manual curation and
analysis, it was not feasible to evaluate all of these systems. As a result,
we made a selective choice based largely on the impact and popularity
of the projects, ultimately focusing on three widely-used open-source
systems for detailed analysis. Next, we present each of the projects
selected for our study.

3 The selected projects use Jira as their issue tracking system, which is
common for many open-source and commercial projects on GitHub. This
integration allows for advanced project management features that Jira offers.
Therefore, only Jira issues were considered in our study.

Hadoop. The Apache Hadoop software library provides a framework
for processing large data sets across computer clusters using straight-
forward programming paradigms. Designed to extend from individual
servers to thousands, it emphasizes local computation and storage.
Instead of depending on high-availability hardware, Hadoop is engi-
neered to manage failures at the application layer, ensuring a resilient
service even with potentially unreliable computers.*

HBase. Apache HBase is a distributed, versioned, non-relational data-
base that offers real-time, random read/write access to Big Data. The
project aims to host extensive tables — encompassing billions of rows
and millions of columns - on clusters of commodity hardware. Modeled
after Google’s Bigtable, HBase provides Bigtable-like capabilities using
Hadoop and HDFS as its storage infrastructure.®

Kafka. Apache Kafka is an open-source platform specializing in dis-
tributed event streaming. Numerous companies utilize it for data
pipelines, streaming analytics, data integration, and vital applications.®

3.2. Descriptive phase (phase 1)

This phase aims to describe the adjustments in log severity between
system releases. To achieve this, we obtained log data from adjacent
releases and compared them. The outlined process can be seen in Fig.
5, and we will provide a detailed description of it below.

We analyzed only stable releases and discarded those designated as
release candidates. Table 5 shows the selected systems and the number
of versions and releases that are part of this study.”

https://hadoop.apache.org/
https://hbase.apache.org/
https://kafka.apache.org/
In this paper, we use the terms version and release as follows: Release is
part of a Version: e.g., system release 2.1.2 is a release of version 2.%, just as
release 3.3.4 is a release of version 3.*.

4
5
6
7


https://hadoop.apache.org/
https://hbase.apache.org/
https://kafka.apache.org/
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File: Foo.java

Line number: 12
Severity level: "INFO"
Message: "Value x .."

Info to Fatal - aggravation
Warn to Debug - attenuation
Debug to Fine - equivalence

Fig. 5. Overview of the descriptive phase (Phase 1). This phase analyzes log severity level (LSL) adjustments between adjacent software releases. The process
starts with SLogAnalyzer cloning the releases of selected open-source systems from GitHub. It then extracts log statements, capturing information such as severity
level, file name, line number, and log message. These statements are compared across releases to detect LSL adjustments, which are categorized as aggravation,
attenuation, or equivalence, and assigned a severity degree. Finally, all data is aggregated to support quantitative analysis of adjustment patterns across systems.

GitHub File

Log Severity
Level Adjustment

Jira Issue

Fig. 6. Relationship between Adjustments, GitHub Files, and Jira Issues: A file
on GitHub may contain adjustments and can be associated with one or more
issues in Jira. Conversely, a Jira issue is linked to one or more files on GitHub.

Table 5
Selected open-source systems.
# System Versions Releases Logging
Library

[S1] Hadoop 4 - [0.%, 1.%, 2.%, 3.%] 131 Commons Logging,

SLF4J + Log4J

[S2] Kafka 4 - [0.%, 1.%, 2.%, 3.%] 60 Log4J
[S3] HBase 3 - [0.%, 1.%, 2.%] 204 Log4J
Total 11 395

First, we cloned the releases of the chosen systems using SLog-
Analyzer (M. Vasconcellos, 2023). We retrieved all files from each
release on GitHub to extract the code related to log statements. This
extraction included details such as the severity level, message, file name,
line number, a surrounding code snippet for context, and other satellite
information. Focusing on log statements, we use the SLogAnalyzer to
detect LSL adjustments (aggravations, attenuations, and equivalences)
between different software system releases. We also added a degree to
each adjustment representing the distance from the initial to the final
severity level; equivalence adjustments receive degree 0O (zero) (see Table
6).

Using the data automatically processed through SLogAnalyzer, we
manually aggregated the adjustments’ data. This processing further
allowed us to quantify and understand the distribution of these adjust-
ments across the various releases analyzed. We have also compiled a
summary of metrics for each release, detailing the total number of log

Table 6
Explanation of LSL adjustments: “>" denotes adjustment to a lower severity
level, “<” denotes adjustment to a higher severity level, and “=” denotes

adjustment to an equivalent severity level.

Category Adjustment examples Degree

Attenuation Debug > Trace
Info > Trace

Fatal > Info

Equivalence Fine = Debug
Finer = Debug

Warning = Warn

Aggravation Trace < Debug
Debug < Warn

Info < Fatal

WNHIOOO[WwN -

statements, files affected by adjustments, the unique messages, and the
distribution of log severity levels (see Table 1).

3.3. Explanatory phase (phase 2)

Based on the LSL adjustments obtained in the previous phase, we
analyzed the Jira issue texts associated with these adjustments to
investigate and understand their causes. The relationship between the
adjustments, GitHub files, and Jira issues is depicted in Fig. 6.

3.3.1. Jira issues selection

In Fig. 7, we summarize the steps for selecting Jira issues to inves-
tigate, and below, we describe each of them.

From the SLogAnalyzer database, using manual SQL queries,® we
filtered the files from each selected software system to obtain the set
corresponding to the LSL adjustments. Then, using custom scripts based
on Puppeteer,’ a JavaScript library, we automatically retrieved the
corresponding Jira issue ID and associated link (URL) from the GitHub
file page, provided they were available.

In the following step, we engaged the Jira APL'® to glean the
summary (the issue title), summary relevance description, and comments

8 Available in our reproducibility kit: https://doi.org/10.6084,/m9.figshare.
26253776.v2

9 https://pptr.dev/

10 https://developer.atlassian.com/cloud/jira/software/rest/


https://doi.org/10.6084/m9.figshare.26253776.v2
https://doi.org/10.6084/m9.figshare.26253776.v2
https://pptr.dev/
https://developer.atlassian.com/cloud/jira/software/rest/
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Fig. 7. Process flow for selecting Jira issues to investigate (Explanatory Phase — Phase 2). Starting from 2228 log severity level (LSL) adjustments identified in
Phase 1, we used SQL queries to retrieve the corresponding GitHub file URLs (1132 in total). Using Puppeteer, we extracted Jira issue IDs and links from the
GitHub pages. Then, the Jira API was employed to collect issue metadata, including summaries, descriptions, and comments. A keyword-based regular expression
was applied to the comments to identify potential relevance to LSL adjustments. Finally, duplicate and irrelevant entries were manually filtered, resulting in 248

Jira issues selected for qualitative analysis.

for each issue. We collected only resolved issues. The summary relevance
field is derived by applying a regular expression to the comments field
to determine if the issue contains any evidence of LSL adjustments.
The regular expression used in this step is ¢ ¢ (fine|trace|debugl|
info|warn|error|fatal |loggingl| log | logs | logger
|log level|severity level | change level|change sever—
itylslf4jllogdjllogback |noisy| verbose|spammy|over
load|fail)’’:

2 & EUINTs 2 6

“logging”, “log”, “logs”, “logger”, “log level”’, and “‘severity level” are
common words that may be present in discussions about logging.
Keywords like “fine”, “trace”, “debug”, “info”, “warn”, “error”,
and “fatal” are also included to match with the severity levels.
Keywords to flag the log library names used by the systems are
“slf4j”, “log4j”, and “logback”.

We also include adjustment-related expressions such as “change
level”, and “change severity”.

Keywords like “noisy”, “verbose”, “spammy”, “overload”, and “fail”
represent common log issue words (Li et al., 2020a; Yang et al.,

2021).

Upon collecting the comments, we underwent a data cleanup pro-
cess that included extracting text markup tags (e.g., {color}, {no-
format}, {panell}).

The final filtering and validation of relevant issues were conducted
manually. All tagging, interpretation of issue content, and the deriva-
tion of severity adjustment motivations were performed manually as
part of our qualitative analysis.

3.3.2. Jira issues analysis

At this stage, we wanted to confirm that the developers’ discussion
focused on adjusting the severity level. This would enable us to locate
adjustment explanations, justifications for previous level assignments,
and potential heuristics to incorporate into Phase 3.

To perform this analysis, for each of the selected issues, we (i)
examined the summary, description, and comments, (ii) summarized
the content of the issue, and (iii) added tags to classify the issue
text relationship with the LSL adjustment. We tagged the issues using
a systematic process inspired by the keywording method of Petersen
et al. (2008). This process aims to create a classification framework
that separates the adjustments according to their focus. The process
followed the following steps:

1. Identification of tags and explanations. The first author (R1) ex-
amined each Hadoop issue, identifying explanations for adjustments,
potential heuristics, and assigning tags. After that, R1 presented 20% of

the results to the second author (R2) to create a shared understanding
of the process. Next, individually, R1 examined the remaining HBase
and Kafka issues, and R2 examined the issues from the three projects.
The results of the two authors were discussed to reach a consensus on
the analyses. The fourth author (R4) evaluated the results and resolved
conflicts between non-consensual results. Although we were inspired by
the keywording method proposed by Petersen et al. (2008), the initial
tags and adjustment explanations were not predefined. Instead, they
were inductively derived from developers’ justifications in the issue
reports. This allowed us to surface a wide variety of motivations for
log severity changes. Example of tags and explanations are:

» Tags: “Not related to the adjustment”, “Does not explain the reason
for the adjustment”, “Verbose ERROR”, “Event handled by client”,
“Masking DEBUG into an INFO”, “Not affect the normal service”.

+ Explanations: “Info causing a lot of noise”, “It can probably be
changed to log at DEBUG level instead”, “it doesn’t take any action
but logged in error mode”, “Moving logging APIs over to slf4j in
hadoop-mapreduce-client-app”.

A complete list of the 45 initial tags used for organizing and an-
alyzing severity adjustment motivations is provided in Appendix
A.

2. Determining the main categories. To derive the five main categories,
we followed an approach to iteratively refine and group tags and
explanations. The steps included:

» R1 identified tags and explanations with greater frequency and
relevance for severity level adjustments and proposed initial cat-
egories. The initial categories are: “Bad adjustments”, “Contex-
tual adaptation”, “Extraordinary exceptions”,“Historical relevance of
logs”, “Inconsistencies in project practice”, “Severity levels not appro-
priate for the situation”, “Silent Problems”, “Universal rules”, “Ver-
bose log”, “Wrong classification”. These initial categories emerged
from observed patterns across the dataset and served as an in-
termediary step in the construction of the five main categories
presented in Section 5.2.

Refinement through discussion: Authors R1 and R4 grouped the
results, identifying similarities and the main trends in adjusting
severity levels against the initial categories. For example, most of
the adjustments related to repetitive log entries were motivated
more by the realization of the enormous amount of data produced
by the system (“Verbose log”) than the content generated by the
log statement. In cases of adjustments like this, based on intuition
and practice, we grouped them under the Experience category.
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Fig. 8. Prescriptive phase process: deriving and standardizing LSL heuristics.

This iterative process helped merge overlapping themes and split
broad groups into more specific categories where necessary.

» Validation against issues: R1 and R2 validated each category by
mapping it against the relevant issues to ensure that it accurately
represented the underlying reasons for severity adjustments.

At the end of this analysis, we obtained a set of Jira issues tagged
according to their relevance to the severity adjustment and an overview
of the main reasons behind these adjustments.

3.4. Prescriptive phase (phase 3)

After describing and exploring the LSL adjustments in Phases 1 and
2, during the prescriptive phase, we employ, in the prescriptive phase
(Fig. 8), an approach inspired by Grounded Theory (Glaser and Strauss,
2017) to extract and formalize heuristics related to LSL. We use data
from two primary sources:

» The fundamental principles of log severity levels, produced in our
previous work (Mendes and Petrillo, 2021), as presented in the
background section.

» The results obtained in Phase 2 of the current work, which aimed
to understand the reasons for severity adjustments at the log level.

3.4.1. Generation of heuristics

Initially, three authors (R1, R2, and R4) independently reviewed the
results obtained in Phase 2, noting down potential patterns or rules that
could serve as heuristics. These patterns were mainly derived from the
recurring themes in the problem descriptions and comments, as well
as the researchers’ understanding of the severity level definitions. The
steps in this process are described below:

Step 1: Initial heuristic generation (open coding). Based on the previ-
ously established definitions of severity levels and purposes (Tables 3
and 4), we began the process of heuristic generation.

Step 2: Analysis of incident texts (open coding).

(a) Identification of potential heuristics. In this step, we extracted
potential heuristics (PH) from Phase 2 based on the analyzed
issues, when available. Generally, we looked for imperative
statements conveying best practices that could be associated
with patterns observed in other issues.

(b) Recording preliminary observations. Using the results from the
categorization of adjustments in Phase 2, authors R1 and R2
recorded general preliminary observations about LSL adjust-
ments as learnings from this phase. Each preliminary observation
(PO) was linked to the related issues. For instance:

« [PO1]: “There are instances of Debug to Info adjustments ex-
clusively to facilitate the debugging process”. (MAPREDUCE-
5766, HDFS-14759, FIO-1839, MAPREDUCE-3692)

Step 3: Grouping heuristics by similarity and severity level.

(a) Collaborative analysis and initial heuristic elaboration (axial cod-
ing): Next, authors R1, R2, and R4 met to discuss their findings.
Each PH and PO were reviewed, and potential heuristics were
designed based on their combination. Differences in the identi-
fied heuristics were debated, and through a consensus approach,
the team narrowed it down to a list of initial heuristics.

(b) Refinement and validation (selective coding): We further refined
the initial and derived heuristics by matching them to the as-
sociated incidents and preliminary observations to ensure that
multiple instances supported each heuristic. Statistical descrip-
tions of PH, PO, and incidents were used as indicators of each
heuristic’s validity. For example, H9, which states that “Impor-
tant information is unsuitable for Debugging Purpose severity levels”,
is supported by PH10 and PO5 and linked to several issues such
as HADOOP-12789 and HADOOP-1034. At this stage, we also
eliminated redundant heuristics.

Step 4: Heuristic standardization.

(a) Transition to impersonal form. Initially, heuristics were formu-
lated based on observations and identified patterns. These initial
formulations were not standardized and were sometimes ex-
pressed in imperative form. Subsequently, each heuristic was
revised to be presented impersonally, aiming to reinforce objec-
tivity and neutrality in the recommendations.

(b) Conformity to RFC 2119."" Finally, each heuristic was aligned
with the terms of RFC 2119 (Bradner, 1997), ensuring that
the expressed requirements were both clear and suitable for
practical application.

(¢) Final review and documentation. The final set of heuristics was
reviewed and documented. The frequency of issues related to
each heuristic was also observed, providing an overview of its
empirical basis.

11 RFC 2119 provides precise terminology to express requirements in a
technical context, which is essential to ensure that recommendations are cor-
rectly interpreted. Words such as MUST, MUST NOT, SHOULD, SHOULD NOT,
and MAY were used to indicate the level of obligation or recommendation
associated with each heuristic (Bradner, 1997).
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Table 7

System extractions.
System Number of Number of Number of

files distinct messages statements

Hadoop 2701 16,877 32,046
Hbase 1568 8755 17,278
Kafka 410 2769 5557
Total 4679 28,401 54,881

This iterative and collaborative approach contributed to the heuris-
tics being based on our study’s quantitative and qualitative data.

3.5. Toward results

Next sections present the results obtained from our comprehensive
analysis of LSL adjustments across multiple software releases. Leverag-
ing a 3-phase methodology, we delve into how severity levels shift over
software versions, shedding light on patterns and their implications.

4. Descriptive phase (phase 1) | results

This section describes the quantitative results of our analysis of the
log statements across 395 releases of the selected projects. In this phase,
we analyzed more than 54,000 log statements distributed in almost
5000 source files (Table 7) to establish a panorama of log severity
levels and their adjustments. We present the distribution of severity
levels throughout the releases, detailed data on severity adjustments,
and totals for the categories and each adjustment found.

4.1. Log severity level distribution by release

The following charts (Figs. 9, 10, and 11) provide an overview of
how the LSL distribution in analyzed systems has changed over time
as percentages. These percentages represent the proportion of each
severity level relative to the total number of log entries for each release.
For instance, a 40% value for the Debug severity level in a particular
release means that 40% of all log entries for that release were classified
as Debug. They show the frequency of each severity level across selected
releases, which helps understand patterns and trends. The main points
are:

Log statements classified with the Info severity level are prevalent
in most releases, highlighting their role in recording the standard
behavior of systems. The exception is in Kafka releases, where the
frequency of Info severity is similar to that of the Debug logs;
Debug log statements come in second place and suggest the im-
portance of logging as a debugging tool for developers;

In third place, Warn log statements record a relatively constant
occurrence, suggesting a certain regularity in problems or events
requiring attention;

The Error level log is the most severe level in the most recent
releases of the three systems. In Hadoop and HBase, the log
statements that use this level form the fourth largest group, while
in Kafka it is the third. Looking at the first two systems, this
suggests that the systems are healthy. In Kafka, on the other hand,
this may suggest a higher number of behaviors susceptible to
failure;

Trace, while less prevalent in Hadoop and HBase, is more promi-
nent in Kafka releases than the other systems;

Fatal logs are the least present LSL, which may suggest the in-
tegrity of system operations, or that the log library used does not
have this severity level. This is the case with Hadoop, which uses
SLF4J, featuring 5 levels of severity, not including Fatal,'? as a

12 www.slf4j.org/api/src-html/org/slf4j/spi/LocationAwareLogger.html
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Table 8

Adjustment categories on severity level.
# Category Adjustment Degree Total
1 Attenuation Debug > Trace 1 295
2 Info > Trace 2 57
3 Info > Debug 1 463
4 Info > Fine 1 2
5 Warn > Trace 3 10
6 Warn > Debug 2 93
7 Warn > Info 2 64
8 Error > Trace 4 4
9 Error > Debug 3 46
10 Error > Info 2 41
11 Error > Warn 1 66
12 Fatal > Info 3 1
13 Fatal > Warn 2 7
14 Fatal > Error 1 184
15 Equivalence Fine = Debug 0 55
16 Finer = Debug 0 16
17 Finest = Trace 0 2
18 Warning = Warn 0 51
19 Severe = Fatal 0 11
20 Aggravation Trace < Debug 1 133
21 Trace < Info 2 24
22 Trace < Warn 3 9
23 Trace < Error 4 3
24 Debug < Info 1 282
25 Debug < Warn 2 69
26 Debug < Error 3 29
27 Fine < Info 1 7
28 Finer < Info 1 3
29 Info < Warn 2 74
30 Info < Warning 1 2
31 Info < Error 2 48
32 Info < Fatal 3 3
33 Warn < Error 1 52
34 Warn < Fatal 2 7
35 Error < Fatal 1 15

Total 2,228

facade for the Log4J library. Previously, the facade was Commons
Logging which has 6 severity levels, including Fatal.

4.2. Log severity level adjustments overview

The analysis of LSL adjustments reveals the dynamic nature of
logging practices across different software releases. We categorize these
adjustments into three main types: aggravation, attenuation, and equiva-
lence. Each category reflects a strategic choice by developers, impacting
the log’s informativeness and diagnostics. Below, we provide an analy-
sis presenting the proportion and impact of each type of adjustment on
logging practices.

We have identified 35 types of adjustments in total: 14 attenuation
types, 16 aggravation types, and 5 equivalence types (Table 8). As we
analyzed the data, we found more instances of attenuation than ag-
gravation. Specifically, out of the 2228 adjustments we examined, we
saw 1333 occurrences of attenuation (roughly 60%), 760 occurrences of
aggravation (about 34%), and 135 occurrences of equivalence (roughly
6%). Regarding the adjustment degree, 1-degree adjustments make up
67.50% of the total, while 2-degree adjustments account for 21.72%
(Fig. 13).

The primary adjustments in log levels, particularly in terms of
attenuation and aggravation, are notably prevalent between the Debug -
Trace and Info - Debug levels, as illustrated in Fig. 12. These adjustments
are characterized by a degree of 1.

4.2.1. Hadoop

We evaluated 130 releases from four sets of Hadoop versions: 67
from version 0.*, 10 from version 1.*, 33 from version 2.*, and 20 from
version 3.* (Table 9).
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Fig. 10. Log severity level (LSL) distribution HBase. Data from all 203 HBase releases, with 11 labels shown for clarity.

The 1037 Hadoop adjustments are 587 attenuations, 315 aggra-
vations, and 135 equivalences. The equivalences are mainly due to a
change in the logging library.

Looking at Fig. 14, we mostly noticed attenuation adjustments in
the LSL as Hadoop versions evolved.

The adjustments with the most occurrences are Info > Debug (1-
degree, 303 occurrences), Fatal > Error (1-degree, 121 occurrences),

11

and Debug < Info (1-degree, 146 occurrences) (Fig. 15). The Fatal >
Error adjustment (1-degree) occurs only in versions 2.* and 3.*.

4.2.2. HBase

We evaluated 203 releases from three groups of HBase versions: 89
from versions 0.*, 58 from versions 1.*, and 56 from versions 2.* (Table
10).
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Table 9
Adjustments on Hadoop.
Version  Releases  Adjustments  Attenuation  Equivalence  Aggravation
0.* 67 395 127 135 133
1.% 10 13 6 0 7
2.* 33 379 290 0 89
3.* 20 250 164 0 86
Total 130 1037 587 135 315

The 972 HBase adjustments are 637 attenuations, 335 aggravations,
and 0 equivalences.

Looking at Fig. 16, we notice that in all versions there are more
attenuation than aggravation in LSL adjustments.

The adjustments with the most occurrences are Debug > Trace (1-
degree, 259 occurrences), Info > Debug (1-degree, 117 occurrences),
Trace < Debug (1-degree, 96 occurrences), Debug < Info (1-degree, 90
occurrences), and Fatal > Error (1-degree, 63 occurrences) (Fig. 17).

4.2.3. Kafka

We evaluated 49 releases from four sets of Kafka versions: 7 from
version 0.*% 5 from version 1.* 23 from version 2.*, and 14 from
version 3.* (Table 12).

The 219 Kafka adjustments are 109 attenuations, 110 aggravations,
and 0 equivalences.
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Table 10
Adjustments on HBase.

Releases

0.* 89
1.* 58
2.* 56

203

Version Adjustments

330
271
371

972

Attenuation Equivalent

224 0
178 0
235 0
637 0

Aggravation

106
93
136

335

Total

Table 11
Explanatory phase extraction numbers.

Metrics HBase Kafka

219
115
99

Hadoop

1037
502
483

Total

2228
1132
1096

Adjustments

Files with Adjustments
Files with an
Associated Jira Issue
Files without an
Associated Jira Issue
Jira Issues (without
duplicates)

Jira Issues

to Investigate
Adjustment-related
Jira Issues

972
515
514

19 1 9 29

366 326 85 776

135 94 19 248

77 36 6 119

Table 12
Adjustments on Kafka.

Version  Releases  Adjustments  Attenuation  Equivalence

62 52 0
22 4

103 42
32 11

219 109

Aggravation
10
18
61
21

110

0.* 7
1.* 5
2.* 23
3.* 14

oo oo

Total 49

Looking at Fig. 18, we notice that in the first set of versions (0.%),
there are more attenuations and in the last three sets of versions, there
are more aggravations adjustments to the LSL.

The adjustments with the most occurrences are Debug < Info (1-
degree, 46 occurrences), Info > Debug (1-degree, 43 occurrences), Debug
> Trace (1-degree, 30 occurrences), and Trace < Debug (1-degree, 29
occurrences) (Fig. 19).

5. Explanatory phase (phase 2) | results

In this section, we present the results of the Explanatory Phase of
our study, focusing on the reasons behind severity level adjustments
in the log records of Hadoop, HBase, and Kafka. First, we present the
quantitative data analyzed, starting from the adjustments identified in
Phase 1 to the issues that effectively contributed data to the study.

The topics are organized into five main categories: Fundamental
Principles Adjustments (§ 5.3), Historical Practice Adjustments (§ 5.4),
Experience-Driven Adjustments (§ 5.5), Logging Library Swap Adjust-
ments (§ 5.6), and Guideline-Based Adjustments (§ 5.7). Each category
is supported by specific issue reports illustrating the rationale be-
hind these adjustments, providing an overview of the diverse factors
influencing logging practices.

The final subsection synthesizes insights from the analyzed data,
proposing preliminary observations and potential heuristics that could
guide future log severity adjustments.

5.1. Data overview
From the 2228 adjustments in Phase 1, we obtained 1132 files

across the selected systems, totaling 502 for Hadoop, 515 for HBase,
and 115 for Kafka. When searching for the issues associated with these
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Fig. 16. HBase: Attenuation and aggravation.

files, removing duplicates and irrelevant entries, we got 248 Jira issues
— 135 for Hadoop, 94 for HBase, and 19 for Kafka. After manual anal-
ysis, excluding issues unrelated to the adjustment or when they were,
did not explain the reason for the adjustment, our final set consists of
119 adjustment-related issue reports, with 77 from Hadoop (Appendix
B), 36 from HBase (Appendix C), and six from Kafka (Appendix D). We
detailed these numbers in Table 11.

5.2. Adjustment categories

Throughout our investigation, we identified five distinct categories
of adjustments:

+ Fundamental principles adjustments: These adjustments are
based on the fundamental principles of log severity levels. They
happen when there is a disconnect between the choice of a
log’s severity level and the fundamental principles that govern
those levels. For example, a log statement may be mistakenly
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Debug > Trace G, 259
Info > Trace M 45
Info > Debug |G 117
Warn > Trace JI 8
Warn > Debug M 43
warn > Info Jlll 17
Error > Trace ] 4
Error > Debug Jlll 19
Error > Info Jlll 15
Error > Warn I 40
Fatal > Infoq1
Fatal > Warn{] 6
Fatal > Error N 63
Trace < Debug [N 96
Trace < Info I 18
Trace < Warn I 8
Trace < Error{1
Debug < Info {II 20
Debug < Warn I 36

Debug < Error Ji] 11
Info < Warn I 26
Info < Error 48 11

Warn < Error {0 26
Warn < Fatal |5

Error < Fatal {17 — Attenuation

== Aggravation
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Fig. 17. HBase: Adjustment occurrences.
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Fig. 18. Kafka: Attenuation and aggravation.

marked as critical e.g., Error or Fatal level, when, in reality, it
is an informative situation (Info level). This type of adjustment is
necessary to align log statements with the appropriate severity of
the events they represent.

Historical practice adjustments: Adjustments in this category
come from an analysis of the code history and project issues. For
instance, if certain log severity levels were adjusted in specific
scenarios in the past, similar adjustments might be applied in
current situations to maintain coherence and adherence to the
project’s historical practices.

Experience-driven adjustments: Unlike the previous categories,
these adjustments arise from the practical experience of devel-
opers and system operators in troubleshooting and diagnosing
faults. They reflect a deep understanding of actual log needs
when specific information may become more critical over time
or in certain contexts. For example, a log initially considered
low severity level (Trace or Debug level) may be elevated to a
higher level (Info or Warn level) based on experience, knowing
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that this information is often valuable for troubleshooting specific
problems.

* Guideline-based adjustments: Here, the project prescribes ad-
justments by official documentation, which provides directives on
logging practices.

» Logging library swap adjustments: Adjustments caused by swi-
tching logging libraries with different severity level sets.

Fig. 20 presents an overview of the adjustment categories by each
selected system.

5.3. Fundamental principles adjustments

This category covers adjustments related to a lack of respect for
the application fundamentals of each severity level. It also includes
cases that show a lack of comprehension of how critical an event or
information is in system behavior analysis activities during the choice
of the initial severity level.

5.3.1. Misconception of log severity levels

In the selected systems, we frequently encountered evidence of
errors in choosing log severity levels. This evidence is present in
discussions explaining why the log statement does not align with the
initially assigned severity level.

For example, we have found cases where a severity level adjustment
for Info happens deliberately exclusively to facilitate debugging on
YARN-1839:

Debug < Info'®

““Changed some NMToken related debug level to info so as to make debug
easier”.

13 Each citation in this section is preceded by the type of severity level
adjustment it discusses.
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In another issue (HDFS-14759), the severity level of a log statement
with only state values is reset to Debug after being changed to Info
without previous discussion, indicating the inadequacy of the first
severity level adjustment.

We also found very specific values registered at the Info level, which
recall a type of over detailing (MAPREDUCE-5766, YARN-1022), and
even values that do not seem to be missing from any software process,
as described in issue YARN-10369:

Info > Debug

“We changed this to DEBUG internally years ago and haven’t missed it”.

Some of the discussions revealed intentionality to maintain certain
severity levels for analysis or debugging purposes despite them being
inappropriate for the situation, as present in the following statement
from an attenuation adjustment on MAPREDUCE-5766:

Info > Debug

“I understand the desire to move ping requests and JVM asking for task
messages to debug, but do we really want to move status updates to
debug? They are particularly useful for debugging ... ”'*

All these issues illustrate developers’ dilemma in categorizing log
severity: balancing the need for detailed information during debugging
with the risk of cluttering the log with too many details.

But this misconception about LSL does not just happen between
the Debug and Info levels. It also occurs when developers classify
benign messages as troubles (HDFS-6998, MAPREDUCE-4570), error
events that the client can handle or do not require immediate ac-
tion, are classified as an Error, but rather a Warn (HADOOP-10274,
HDFS-14760).

Error > Warmn

«

. at this point, our hdfs installation wants to make sure no ‘ERROR’
is logged if it’s not really an error that should/can be actionized”.
(HDFS-14760)

5.3.2. Valuable information

We identified adjustments when valuable troubleshooting informa-
tion was hidden from the production environment log due to the use
of a Debug level, as shown in (HADOOP-12789):

Debug < Info

“Knowing exactly what classpath ApplicationClassLoader has is a criti-
cal piece of information for troubleshooting. We should log it at the INFO
level”.

This sentence shows a lack of understanding of system behavior and
the importance of information when the severity level was initially cho-
sen. In the same context of troubleshooting, events causing execution
errors did not leave clear clues about the problem that occurred, which
led to an escalation of Warn to Error to facilitate the understanding of
unexpected behaviors:

Warn < Error

“The socket is closed silently and nothing and an non understandable
exception will be thrown”. (HADOOP-1034)

14 Please note that the citations from Jira in this article are faithful repro-
ductions of the original texts. As such, they may contain grammatical errors
and awkward language constructions that are inherent in the source material.
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Fig. 20. Adjustment categories by system.

Identifying which information is more critical than others is impor-
tant to avoid unintended consequences in log data. Such is the case
with HADOOP-14987, an issue that was opened to enhance logging
for troubleshooting purposes. In this issue, the developers reach a
consensus on adjusting a single log statement from Debug to Info within
a cluster of Debug statements. At first glance, the log statement could be
mistaken for another Debug level entry due to its surrounding context.
However, this targeted adjustment adds significant information to the
production log without creating excess verbosity.

5.4. Historical practice adjustments

Nowadays, Incident Management Systems (IMS) like Jira play an
essential role in creating a knowledge base by compiling code changes
during the development and evolution of software systems. This database
becomes a valuable tool for developers, not only for consultations when
implementing new changes but also for supporting discussions with
historical practices.

This principle also applies to adjusting LSL. Generally, discussions
in this context are briefer, as they often reflect previously debated
issues. Below, we highlight excerpts from some issues that exemplify
this modus operandi.

In the two first situations, we find a direct comparison of the same
situation with different severity levels:

Debug < Error

«@

. and each of them contains a log statement, most of them set the
logging level to ERROR. However, when catches RuntimeErrorException
in line 348 (r1839798), the logging level of log statement in this catch
clause is DEBUG ...” (HADOOP-15942)

Warn < Error

“Therefore, I think these 3 log statements should be assigned ERROR
level to keep consistent with other code snippets”. (YARN-9349)
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In the next one, rather than analyzing the context of the message
and the log statement, the developer prefers to rely on the frequency
of one severity level compared to another in the same situation:

Warn < Error

“After had a look on whole project, I found that there are 8 similar
code snippets assign the ERROR level, when doTransition() occurs In-
validStateTransitionException. And there are just 3 places choose the
WARN level when in same situations. Therefore, I think these 3 log
statements should be assigned ERROR level to keep consistent with other
code snippets”. (YARN-9349)

Sometimes, there are situations where the assigned level of an event
is clearly wrong, such as an Error level given to an event that does not
affect the system’s normal functioning. In these cases, the decision on
how to handle the event can be based more on existing system practices
rather than on logical reasoning:

Error > Info

“I think the logging practices should be consistent in similar contexts
... Checking more code, indeed there are inconsistency in those codes
write() with info log level, create with error log info, while others with
warn and info log level”. (HDFS-14340)

5.5. Experience-driven adjustments

This category includes adjustments motivated by observing log data
generated by software systems. Among them are some of the most
apparent reasons to adjust LSL, as well as extraordinary exceptions that
seem to deny the fundamental principles of the log.
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5.5.1. Excessive logging

The leading cause of LSL adjustments is the production of excessive
log entries, which we refer to as “verbose logging”. We found issues
indicating verbosity for the Error, Warn, Info, and Debug levels. A spe-
cific characteristic of this situation is that the adjustments are always
attenuated toward the Debug level, except when the source level is
Debug, which attenuates toward the Trace level.

Except for Debug > Trace attenuation, the motivation for adjust-
ments of this type aims to avoid overloading the production of log data,
which impacts system performance and requires strategies to persist
challenging amounts of data. The excessive amount of logs produced is
explicitly mentioned in the issues excerpts below:

Info > Debug

“«

. we get this log printed about 50,000 times per second per thread”
(KAFKA-13037)

Info > Debug

“I’'m seeing 8gb resourcemanager out files and big log files, seeing lots
of repeated logs (eg every rpc call or event) looks like we’re being too
verbose in a couple of places”. (MAPREDUCE-3692)

Warn > Debug

“Each input record will contribute to one line of such log, leading to most
of the tasks’ syslog > 1GB”. (HADOOP-11085)

Warn > Debug

“We saw an instance where this log message was generated millions of
times in a short time interval, slowing the NameNode to a crawl. It can
probably be changed to log at DEBUG level instead”. (HDFS-11054)

Error > Trace

@

. at the end of the test 1M rows always have arrived at the target
cluster”. (HBASE-12419)

The last quotes present different metrics to record excessive log
production in production: “50000 times per second”, output files between
1 GB and 8 GB of data, “generated millions of times”. This excessive
generation can impact the tasks that consume this data in production.

In this same context, we found issues that aim to solve the problem
of excessive logging in production through an Info > Debug setting.
However, there is resistance from developers who argue that if the
adjustment remains, important information for debugging will be lost,
suggesting that debugging is being done in a production environment
(MAPREDUCE-3692), as described previously.

However, as previously stated, we also encounter situations in
which the Debug log statement was explicitly labeled as “verbose” in
the issue discussions (HADOOP-10015, HADOOP-18574, HBASE-9371,
HBASE-16220, HBASE-17540), making the data so “obscure” that it
makes debugging difficult:

Debug > Trace

“... logs too much, so much so it obscures all else that is going on”.
(HBASE-7214)

5.5.2. Exceptional adjustments

We found evidence that adjusting log levels is a strategic decision
that varies with the system’s development stage. We observed instances
where messages typically associated with the Debug level were tem-
porarily escalated to a higher severity level. This approach differs from
the “crutch” method in debugging, discussed earlier under Fundamental
Principles Adjustments.

For example, during the initial stages of system development, cer-
tain information might be really important for monitoring and is thus
logged at a more severe level, like Info or Error, to ensure visibility. As
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the system stabilizes, these logs can generate excessive data or become
less critical, warranting a reversion to the Debug level.

This practice is evident in MAPREDUCE-4614, where developers
decided to keep a Debug statement at the Info level temporarily for
system stabilization:

Debug < Info

173

. maybe we can have them at INFO level while stabilizing the system,
and change them to DEBUG at a later point. Otherwise, DEBUG level +
a change in the client log level should work ... I'm ok with INFO during
stabilization”. (MAPREDUCE-4614)

We found a similar situation in (YARN-2704), where a Debug log
was initially proposed to be escalated to Info but ultimately adjusted
to Error. The motivation behind this decision reflects an understanding
of the log’s frequency and the importance of its visibility for effective
analysis:

Debug < Error

“Regarding the info/debug level logs, these logs are all low frequency
logs, by default it’s only 1 day a time(renew interval). And it’s so much
easier to debug in info level than debug level. maybe in info level while
stabilizing this feature?” (YARN-2704)

In this case, the decision to aggravate the log severity was driven by
the recognition that rare yet important logs could be overlooked if left
at the Debug level amidst a large volume of log entries.

5.5.3. Understanding the functioning and usage of the system

The user’s experience utilizing a system’s functionalities also con-
tributes to the log adjustment process. For example, understanding
which steps must be followed for a system process to be successful:

Info < Warn

“If users don’t create all topics before starting a streams application, they
could get unexpected results ... Also, this PR changes the log level from
‘INFO’ to ‘WARN’ when metadata does not have partitions for a given
topic” (KAFKA-6802)

In this case, the log severity adjustment will help identify the reason
for possible unexpected behavior in the application stream due to
mandatory resources not created by the user.

Another example of experience with the system is issue HDFS-14760
initially requesting an Error > Info attenuation. However, a developer
clarifies the understanding of the event’s consequences, and the log
statement goes to the Warn level:

Error > Warmn

“I think at least WARN level is warranted, given that this is an issue
which could potentially cause directories to exceed their quota or be
blocked even though their quota is not yet met”. (HDFS-14760)

5.5.4. Exceptions from legacy code in evolving systems

As systems evolve, new software components often must communi-
cate with pre-existing legacy components. This evolution, while neces-
sary, can sometimes lead to communication failures between new and
old interfaces, potentially causing disruptions in the entire process.

A notable instance of this challenge is documented in the issue
KAFKA-5704. Kafka is a distributed streaming platform; in this case,
older versions of Kafka brokers could not handle new requests for
checking and creating missing topics, resulting in an UnsupportedVer-
sionException that halted the entire process. The solution proposed in
the issue reflects a nuanced understanding of both software evolution
and effective logging practices:
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Table 13
Preliminary observations.

# Text Issue

[PO1] There are instances of Debug to Info adjustments exclusively to facilitate the MAPREDUCE-5766, HDFS-14759,
debugging process. YARN-1839, MAPREDUCE-3692

[PO2] Log statements consisting solely of state values are frequently associated with HDFS-14759
debugging.

[PO3] Logs that excessively detail events and states were generally classified as debug logs, MAPREDUCE-5766, YARN-1022
indicating a possible preference for finer granularity at this severity level.

[PO4] Assigning client-handled errors to levels intended for reporting system failures may HADOOP-10274,HDFS-14760
not be appropriate, as these errors might be more suitably logged at a less severe
level.

[PO5] Vital information should avoid being logged at the Debugging Purpose severity levels HADOOP-1034, HADOOP-12789,
to ensure that essential events are not obscured and remain readily identifiable. HADOOP-14987, KAFKA-6802

[PO6] The significance and rarity of logged information should be directly proportional to HADOOP-12789, YARN-2704
the severity level chosen; more critical and uncommon events warrant higher
severity levels.

[PO7] Log entries that occur frequently are best suited for Debugging Purpose severity levels, KAFKA-13037,
facilitating a focused analysis without overwhelming the log with less critical MAPREDUCE-3692,
information. HADOOP-11085, HDFS-11054,

HBASE-12419, HBASE-7214,
HBASE-15954

[PO8] The severity level chosen for a log statement can change as the system matures, MAPREDUCE-4614,HDFS-14760,
reflecting the change in the importance and frequency of logged events. YARN-2704

[PO9] Normal and benign behaviors are not compatible with the levels of Warning and HDFS-6998, MAPREDUCE-4570
Failure Purposes.

Error > Debug 5.7. Guideline-based adjustments

“We should probably just catch it, log a message, and allow things to
proceed ... This change handles the UnsupportedVersionException by
logging a debug message and doing nothing” KAFKA-5704

This approach entails catching the exception and logging a Debug
message, a strategy that balances the need for error tracking with
the necessity of maintaining system functionality. By choosing a De-
bug level log, the developers demonstrated an informed decision to
prioritize system continuity while still keeping a record of the issue
for future diagnostics. This decision illustrates a practical resolution to
the challenges posed by legacy systems in modern software develop-
ment, ensuring system robustness and user continuity despite potential
incompatibilities.

5.6. Logging library swap adjustments

Log libraries have different severity levels. Therefore, when we
switch from one logging library to another, there is no guarantee that
the current severity levels will be maintained. This event happened, for
example, in Hadoop, where at least two logging library substitutions
occurred: first from Java Util Logging (seven severity levels) to Apache
Commons Logging (six severity levels) and then from Apache Commons
Logging to SLF4J (five severity levels). To map the levels between
the different libraries, we used the concepts of equivalence between
severity levels presented in our previous study (Mendes and Petrillo,
2021). These circumstances came up with the following adjustments:

» Equivalence adjustments: Fine = Debug, Finer = Debug, Finest =
Trace, Warning = Warn, Severe = Fatal. These updates refer to
the swap from Java Util Logging to Apache Commons Logging.
Each update indicates an equivalence of severity levels between
the two libraries.

Attenuation adjustment: Fatal > Error. The second highest update
occurrence in Hadoop, Fatal > Error (65), is caused by swapping
the code to the SLF4J library in the log statements, which has only
five severity levels, not including Fatal — its most severe level is
Error; the library previously used was Apache Commons Logging.

18

A guideline can be a written document, or it can also be one of the
initial issues of the project that seeks to establish the standard for how
to log in.

A logging guideline was proposed in version 0.3.0 of Hadoop
through issue HADOOP-211 endorsing a comprehensive and unified
approach to logging. The key aspects of this guideline focus on estab-
lishing a consistent logging format across all Hadoop subsystems. This
proposal aims to enhance log analysis and debugging by ensuring that
logs are structured and emphasizes the importance of clear annotation
in log entries, including timestamps, logging levels, and traceability to
the originating subsystem. This initiative represents a significant step
in standardizing logging practices within Hadoop.

There are also references to conventions’® not respected in HBase
issues, as in this adjustment to reduce the amount of logs generated by
default:

Debug > Trace

“We should bring REST server to be on par with the RS (RegionServer)
level log conventions. Individual requests to be only logged at the TRACE
level”. (HBASE-15954)

5.8. Preliminary observations and potential heuristics

Throughout the analysis of adjustments in Phase 2, we found in-
sights that suggest patterns in how severity levels are assigned and
adjusted during software development and operations. We group these
insights into Table 13 and refer to them as “preliminary observations”
(PO).

Complementary to the insights, we also found some textual frag-
ments in the issues with a more imperative nature, containing direct
recommendations regarding adjusting the LSL. We refer to these texts,
grouped in Table 14, as “potential heuristics” (PH) because they suggest
direct applicability.

15 We were unable to find a record of these conventions.
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Table 14
Potential heuristics (PH).

# Adjustment Potential raw heuristic Issue

[PH1] Warn<Fatal “ReplicationPeer logs at WARN level aborting server instead of at FATAL” HBASE-7037

[PH2] Warn<Error “Only IOException is catched and logged (in warn). Every Throwable should be logged HADOOP-1034
in error. Eg: a RuntimeException occurs in the writeBlock() method. The exception will
not be logged, but simply ignored. The socket is closed silently and nothing and an non
understandable exception will be thrown in the DFSClient sending the block....”

[PH3] Info<Warn “I’d up the info on JettyBugMonitor line 80 a warning since it’s logged once and MAPREDUCE-3184
perhaps disabling a feature the user thinks they have. [...] I changed the “info” to
“warn” as you suggested on commit.”

[PH4] Debug<Info “This message should be at INFO. it doesn’t happen often and knowing what plugins HBASE-23250
decide about file deletions is important all the time.”

[PH5] Error>Warn “so the error may not really be an error if client code can handle it” HADOOP-10274

[PH6] Error>Info “There’s a warn log before that exception. The code still work well even with HDFS-14340
exception thrown out. [...] yes, the code still works well in all of three situations [...]
Thus, it seems that the first log statement should be assigned to a lower level, INFO ”

[PH7] Error>Warn, “ClassFinder logs error messages that are not actionable, so they just cause distraction HBASE-9120

Error>Info [...] Simple patch that changes lines to warn and info depending on how likely it is to

be actually worth looking at.”

[PH8] Warn>Debug “We will need to change the log level to debug to avoid such excessive logging.” HADOOP-11085

[PHI] Warn>Debug “There are many exceptions that the client can automatically handle [...] Attaching a HADOOP-13552
patch that changes the warning log to a debug log [...]”

[PH10] Warn>Debug “If this is really harmless, why do we log? [...] Just change it to debug? Ok” HBASE-25642

[PH11] Info>Debug “DEBUG level is good for frequently logged messages, but the shutdown message is HDFS-10377
logged once and should be INFO level the same as the startup”

[PH12] Info>Debug “That’s why we have the debug log level right? Devs can toggle it if you want to see MAPREDUCE-3692
all AM transitions but doesn’t inflict huge logs on normal users. ”

[PH13] Info>Debug “we get this log printed about 50,000 times per second per thread [...] I completely KAFKA-13037
agree that logging this at INFO on every iteration is wildly inappropriate, I just didn’t
push it at the time since I figured someone would file a ticket if it was really bothering
people. And here we are”

[PH14] Debug>Trace “CleanerChore logs too much, so much so it obscures all else that is going on. [...] HBASE-7214
Dropped the most prominent logs to trace, so if you really need the info, you can get
at it (helpful for debugging), but shouldn’t come up in most cases.”

[PH15] Debug>Trace “Messages like this can significantly accumulate in regionserver logs when a cluster is HBASE-16220
carrying empty tables. [...] Because many deployments run with DEBUG as the default
log level, especially when trying to track down other production issues, this message is
better logged at TRACE level.”

[PH16] Debug>Trace “We should bring REST server to be on par with the RS level log conventions. HBASE-15954

Individual requests to be only logged at the TRACE level.[...]”

Each table entry (Tables 13 and 14) represents filtered content from
discussions found in the selected Jira issues.'® Although insights are
not yet definitive heuristics, they form the foundations that will be
iteratively examined and refined in Phase 3 to formalize them.

6. Prescriptive phase (phase 3) | results

In this section, we present the results of the Prescriptive Phase of
our study, where we transform insights and patterns identified in the
Fundamental Principles of Log Severity Levels (Section 2.1) and the
Explanatory Phase (Phase 2) into practical heuristics for LSL decisions.
We synthesize a set of heuristics that reflect the complexities and
nuances of log severity adjustments, providing a structured path for
making informed decisions in log severity classification.

The relationship between the final heuristics, potential heuristics,
preliminary observations, and the studied issues is detailed in Table
15, as discussed in Section 3.4.1.

6.1. Fundamental principles based heuristics
From the fundamentals principles, we classify the severity levels

into two categories, first about the environment and then about their
purpose according to Fig. 3. We generate specific heuristics for each

16 The citations from Jira in this article are faithful reproductions of the
original texts.
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category that help classify log statements within that category. How-
ever, considering that the set of log severity levels depends on the
used library,'” we present heuristics aimed at the purpose of the level
(Debugging, Informational, Warning, and Failure) rather than the level
itself.

6.1.1. Environment heuristics

The initial heuristic separates the log statements into two groups:
sentences targeting the system development environment (Debugging pur-
pose) and sentences targeting the production environment (Informational,
Warning and Failure purposes). The log statements of each group have
different target audiences, and this, in addition to implying the choice
of the LSL, also impacts the construction of their messages. Therefore,
the construction of log messages is a key factor in achieving accurate
severity classification.

For example, a message made up only of state or variable values
can be effective in helping to solve specific development environment
problems; these targeted details support developers in identifying and
addressing issues during the development process. However, for system
managers, in a production environment, who need to analyze the
behavior of systems without having developed them, the messages must
be written clearly to help them troubleshoot tasks. These messages
must be written to provide a quick and accurate interpretation of the
recorded events, helping to identify and effectively resolve problems.

17 For example, while the most severe level in one logging library is the
Fatal level, it may be the Error level in another.
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Table 15
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The relationship between heuristics, potential heuristics (PH), preliminary observations (PO), and Jira issues. The “Related Issue” column presents the issues that
support the heuristic. The “Freq(HD/HB/K)” column shows the frequencies of issues related to the Hadoop (“HP”), HBase (“HB”), and Kafka (“K”) projects.

Heuristic Related PHs Related POs Related issues Freq HP/HB/K
[H1] - - - -
[H2] - - - -
[H3] - HDFS-14759, MAPREDUCE-5766, YARN-1022 3/0/0
[H4] - - - -
[H5] - - HADOOP-10274, HADOOP-1034, HADOOP-10657, HADOOP-96, HDFS-14238, HDFS-14395, 18/8/1
HDFS-14521, HDFS-14759, HDFS-14760, HDFS-6998, MAPREDUCE-3348,
MAPREDUCE-4570, MAPREDUCE-5766, MAPREDUCE-7063, YARN-1022, YARN-10369,
YARN-1608, YARN-1839, HBASE-20665, HBASE-7037, HBASE-9120, HBASE-23047,
HBASE-14042, HBASE-8940, HBASE-10906, HBASE-20447, KAFKA-9540
[H6] - [PO1] HDFS-11593, HDFS-14759, MAPREDUCE-3692, MAPREDUCE-5766, MAPREDUCE-7063, 7/2/0
YARN-1608, YARN-1839, HBASE-20554, HBASE-20665
[H7] - [PO2] HDFS-14759, MAPREDUCE-5766, YARN-1022 3/0/0
[H8] - [PO4] HADOOP-10274, HADOOP-13552, HADOOP-17597, HDFS-14760 4/0/0
[H9] - [PO5] HADOOP-1034, HDFS-11593, HADOOP-12789, HBASE-13675, HADOOP-14987 5/0/0
[H10] - [PO8] HDFS-14760, MAPREDUCE-4614, YARN-2704, KAFKA-5704 3/0/1
[H11] [PH1], [PH2] - HADOOP-1034, HBASE-7037 1/1/0
[H12] [PH5] [PO4] HADOOP-10274, HDFS-14760, HBASE-10906, HBASE-14042, HBASE-16589, HBASE-27391, 2/4/1
KAFKA-9540
[H13] [PH6] - HADOOP-17597, HDFS-6998, HBASE-27391 2/1/0
[H14] [PH7] HADOOP-17597, HDFS-6998 2/0/0
[H15] [PH7] [PO4] HADOOP-10274, HADOOP-17597, HDFS-14760, HBASE-9120, HBASE-26189, HBASE-27391 3/3/0
[H16] [PH3] - HDFS-14760, KAFKA-5704, KAFKA-6802 1/0/2
[H17] [PH4], [PO6] HADOOP-10657, HADOOP-12789, YARN-2704, HBASE-23250 3/1/0
[PH11]
[H18] [PH4], [PO6] HADOOP-10657, HADOOP-12789, MAPREDUCE-3184, YARN-2704, HBASE-5582, 4/4/1
[PH11] HBASE-7037, HBASE-8940, HBASE-23250, KAFKA-6802
[H19] [PH11] - HDFS-10377 1/0/0
[H20] [PHS8], [PO7] HADOOP-7858, HADOOP-8075, HADOOP-8932, HADOOP-9135, HADOOP-9582, 27/11/3
[PH11] HADOOP-10015, HADOOP-11085, HADOOP-15441, HADOOP-17836, HADOOP-18065,
HADOOP-18574, HDFS-8659, HDFS-9906, HDFS-10377, HDFS-13692, HDFS-15197,
MAPREDUCE-3265, MAPREDUCE-3692, MAPREDUCE-3748, YARN-1892, YARN-2213,
YARN-3350, YARN-4115, YARN-5693, YARN-7727, YARN-8459, YARN-10997,
HBASE-12419, HBASE-12539, HBASE-12461, HBASE-15582, HBASE-15954, HBASE-24524,
HBASE-25483, HBASE-25556, HBASE-25642, HBASE-26443, HBASE-27588, KAFKA-4829,
KAFKA-13037, KAFKA-13669
[H21] [PH8], [PO2], [PO3] HDFS-11593, HDFS-14759, MAPREDUCE-5766, YARN-1022 4/0/0
[PH13]
[H22] [PHS8], [PO7] HADOOP-7858, HADOOP-10015, HADOOP-10343, HADOOP-11085, HADOOP-16708, 7/3/1
[PH12] HDFS-11054, MAPREDUCE-3692, HBASE-12419, HBASE-15954, HBASE-20554,
KAFKA-13037
[H23] [PH12], [PO2], HADOOP-11085, HADOOP-18574, HDFS-11054, MAPREDUCE-3692, HDFS-14759, 7/9/1
[PH15] [PO3], [PO7] MAPREDUCE-5766, YARN-1022, HBASE-7214, HBASE-9371, HBASE-12419, HBASE-12461,
HBASE-15954, HBASE-16220, HBASE-20701, HBASE-20770, HBASE-23687, HBASE-27079,
KAFKA-13037
[H24] [PH15], [PO3], [PO7] HADOOP-10015, HADOOP-11085, HADOOP-18574, HDFS-11054, MAPREDUCE-3692, 7/10/1
[PH16] MAPREDUCE-5766, YARN-1022, HBASE-7214, HBASE-9371, HBASE-12419, HBASE-12461,

HBASE-15954, HBASE-16220, HBASE-20701, HBASE-20770, HBASE-23687, HBASE-27079,
KAFKA-13037

Heuristic #1: The Trace and Debug levels MUST classify log statements
targeting exclusively the development process.

Heuristic #2: The Info, Warn, Error, and Fatal levels MUST classify
log statements targeting the production environment.

Heuristic #4: Log statements intended for the production environment
MUST have messages written in well-structured and clear sentences,
aiming to facilitate human understanding.

Next, we move on to the second category of heuristics, relating to
the purpose of log severity levels.

6.1.2. Purposes’ heuristic

The four logging purposes (Debugging, Informational, Warning, and
Failure) encompass intent for all severity levels in the log libraries and
suggest the main reason we log framing log statements objectively.
Those purposes generated the following heuristic.

Heuristic #3: Log statements intended for the development environment

MAY focus on specific aspects of system states, such as variable values,
without requiring the broader context generally necessary for a wider
understanding.

Heuristic #5: The intent behind logging MUST be analyzed when
selecting severity levels, ensuring they are chosen according to their
intended purposes (Debugging, Informational, Warning, and Failure).
The purposes SHOULD guide the selection of severity levels to maintain
clarity and usefulness of log data.
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6.2. Heuristics from the phase 2 | heuristics from the insights

The investigation into the causes of LSL adjustment also contributed
to heuristics, namely:

Heuristic #6: Debug levels MUST NOT be masked as Info, as this may
generate excessive logs.

Heuristic #7: Log statements composed solely of state values SHOULD
be classified with Debugging Purpose levels.

Heuristic #8: Errors that the client can handle MUST NOT be classified
with Failure Purpose severity levels.

Heuristic #9: Important information SHOULD NOT be classified with
Debugging Purpose severity levels, as this may make it difficult to
recognize the occurrence of the event.

Heuristic #10: Log statements strategically adjusted in previous ver-
sions SHOULD be periodically reviewed to ensure they remain relevant
and do not contribute to log overflow. The appropriate severity level for
a log statement MAY change as the system evolves.

6.3. Heuristics from the phase 2 | potential heuristics

In this section, we propose heuristics based on the issue excerpts
presented in Table 14.

6.3.1. Heuristics related to exceptions

By its very nature, there is a tendency to link exceptions to the
severity levels of the Failure purpose, as Fatal and Error. However, it is
important to consider the context and consequences of exceptions, as
many cases do not result in critical situations for the system. In other
cases, they do.

PH1 and PH2 are examples of exceptions causing software in-
terruptions, such as server aborts (described in PH1) or socket clo-
sures (described in PH2), which should interrupt significant software
operations.

Despite this, these log statements had a less critical severity level,
and therefore, both underwent a severity aggravation, from a Warning
level to a Failure level. Furthermore, both are involved in throwing
Throwable'® class exceptions, described in other Jira issues as events
aligned with the levels of the Failure Purpose, adding concrete examples
of application.

Heuristic #11: Log statements indicating server shutdown or failure, or
socket closures, MUST be aligned with the Failure Purpose levels.

Following, we will enumerate some of the cases in which exceptions
are not so critical from the point of view of LSL:

+ An exception was thrown, but the user can deal with the gener-
ated situation himself [PH5];

+ An exception was thrown, but the ‘code’ continues to work well
[PH6];

18 «“The Throwable class is the superclass of all errors and exceptions in the
Java language” (Oracle, 2018)
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» An exception was thrown, but the situation caused by it does
not require immediate action for the system to remain functional
[PH7].

From the situations listed above, we can infer new heuristics:

Heuristic #12: Severity MUST be classified with Failure Purpose levels
only if it is a real issue that impacts code functionality and cannot be
handled by the user or client.

Heuristic #13: If an exception is thrown, but the system continues
to operate normally without impacting its functionality, then the log
statement SHOULD NOT be classified with a failure-finality level.

Heuristic #14: If a log statement reports an issue but the system does
not stop, it SHOULD be classified with a Warning Purpose level rather
than a Failure Purpose level.

Heuristic #15: In exception events that do not require immediate
action, this event SHOULD NOT be classified at a Failure Purpose level.
Less severe log severity levels MUST be considered.

6.3.2. Disabling features

PH3 reports a case about an event that turns off a feature that users
may think they will have access to. We can consider this situation an
unexpected event, as described in Warning Purpose definition. However,
the event was initially logged with severity level Info despite being
described as low frequency and may go unnoticed.

The adjustment in this case was an aggravation for Warning, and
from it we can suggest the following heuristics:

Heuristic #16: If an event can disable a functionality expected by users,
this event MUST be classified with a Warning Purpose severity level.

6.3.3. Uncommon events

Continuing with the idea that important information can go unno-
ticed depending on the severity level used, PH4 describes a situation
regarding deleting files, classifying them as “important all the time”,
but which is at the Debug level.

PH11 describes a similar situation concerning shutdown logs, which
are recorded only once and would have a severity corresponding to
a startup message. As described before, statements that describe the
starts and ends of expected events by the system are suitable for the
Informational Purpose severity level.

Heuristic #17: Uncommon events SHOULD NOT be classified with
Debugging Purpose levels. More severe log levels SHOULD be considered.

Heuristic #18: Log statements reporting rare but significant events
SHOULD be classified with Informational and Warning Purpose levels.

Heuristic #19: Expected startup and shutdown messages SHOULD be
classified with Informational Purpose severity levels.

6.3.4. Frequent and detailed logs

Among the potential heuristics in Table 14, we found repeated
indications that frequent messages are suitable for Debugging Purpose
severity levels [PH8, PH9, PH10, PH11, PH12, PH13]. At the same
time, they are entirely inappropriate for the Informational Purpose level
[PH13], as they can overload users with messages that do not have
criticality [PH12], in addition to having the capacity to make it chal-
lenging to understand logs destined for the production environment
[PH14]. As described in PH13, frequent messages can be associated
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with log statements in iteration regions to detail the events and states
that occurred, which explains their high incidence.

Heuristic #20: Debugging Purpose levels MUST classify messages that
are logged frequently.

Heuristic #21: Summary logs and detailed logs SHOULD correspond
to Debugging Purpose levels.

Heuristic #22: Users MUST NOT be overwhelmed by excessive logs
under normal circumstances unless it is critical for the user to be aware
of the event.

In this context, we must also consider the severity level chosen for
producing logs in a production environment. The default is the Info
severity level. However, in PH15, we see deployments with the Debug
level by default. This choice leads us to consider the severity of the
more detailed events and states that should be logged, whether at the
Debug or Trace level.

Heuristic #23: When the standard for log generation in a production
environment is the Info level, the Debug level SHOULD be preferred for
detailed information. If the standard is the Debug level, the Trace level
SHOULD be considered to avoid generating excessive Debug logs.

We should also consider how to choose between Debug and Trace
levels on frequent log occasions, as even the same debug process
can become obscure when faced with excessive logs [PH15]. In these
situations, we can resort to the following heuristic:

Heuristic #24: In cases of excessive logs that make the debugging
process unclear, the severity level of the most prominent log statements
SHOULD be downgraded to the Trace severity level.

7. Discussion

In this section, we discuss our study’s results and main findings of
each of our three-phase methodology.

7.1. Descriptive phase (phase 1)

During the first phase, we presented quantitative data that provide
an overview of LSL adjustments in the selected systems. Next, we will
present the key findings of this phase.

7.1.1. The distribution of severity levels reinforces the idea of severity
purposes

The percentage distribution of severity levels in the selected systems
throughout the releases reinforces the concept of severity purposes
presented in Section 2.1. The investigated systems’ four most present
severity levels, namely Info, Debug, Warning, and Error (in this order),
go toward the proposed log purposes.

As the multiple severity levels found in the set of log libraries stud-
ied converge to the four most used severity levels in the investigated
systems, be it Info, Debug, Warning, and Error (in this order), those
go toward the proposed purposes: Informative, Debugging, Warning, and
Failure, respectively.

7.1.2. There is a trend to take debugging-exclusive logs to the production
environment

Info and Debug are the predominant severity levels in the log state-
ments of the selected systems, as are the adjustments involving these
two levels: Info > Debug and Debug < Info, in this order. In some cases,
developers may choose to classify Debug messages as Info to capture
more detailed information in production environments. However, this
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practice can lead to potential challenges, such as the generation of ex-
cessive logs that obscure critical events or add unnecessary load to the
system. While this adjustment may be useful for debugging purposes, it
highlights the need for more structured guidelines to balance verbosity
and performance in production logging.

7.1.3. There is difficulty in distinguishing log statements between adjacent
severity levels

1-degree severity adjustments, whether attenuating or aggravating,
constitute the majority of the adjustments observed. This finding sup-
ports the idea that understanding adjacent severity levels is nuanced,
and there may even be a biased understanding of them, complicating
the choice of severity level.

As also noted by Li et al. (2017a), developers often make adjust-
ments between adjacent severity levels in an effort to fine-tune log
granularity without causing overload. However, this subtle distinction
may lead to inconsistencies, especially in the absence of clear guidelines
regarding the use of each level. The frequent adjustments between
Info and Debug, often without a well-defined technical justification,
suggest that individual interpretation plays a significant role. This trend
highlights the need to clarify the roles of each severity level to reduce
ambiguity and improve consistency in log management.

7.1.4. There is a tendency to assign excessively high severity levels to log
statements initially

There is a prevalence of adjustments in the attenuation category.
This prevalence suggests that developers tend to assign higher severity
levels than necessary, which explains the need to reduce these levels
over time. Additionally, this could indicate a tendency for some log
statements to be perceived as less severe in subsequent releases or
that, when writing new code, we need to observe its execution more
carefully than when it becomes mature and potentially contains fewer
bugs.

As observed by Li et al. (2020a), developers often perform reactive
adjustments of log severity levels, especially during the final integration
stages, to align them with production needs. However, when such
adjustments are not part of a continuous review process, they may
introduce technical debt by accumulating log statements whose severity
levels are inadequate for their actual usage context.

7.2. Explanatory phase (phase 2)

In this phase, we focused on qualitative data, analyzing the text of
the issues related to adjustments in the severity level of logs found dur-
ing Phase 1 in order to find the reasons that guided such adjustments.
Next, we present the main conclusions.

7.2.1. Dominance of experience-driven and fundamental logging principles
adjustments

Phase 2 reveals that experience-driven adjustments constitute the
bulk of the adjustments in all three projects. This trend suggests that
practical, hands-on experience in troubleshooting and system operation
significantly influences decisions related to LSL. As observed by Li
et al. (2020a), developers often adopt improvised strategies for logging
adjustments, proactively deciding where and when to log, or reactively
adjusting severity levels during integration to meet production needs.

This intuitive and flexible approach is reflected in our study, where
a large portion of observed adjustments respond to production demands
and developer information needs. For instance, developers frequently
adjust severity levels to highlight critical events or suppress excessive
log output, thereby facilitating more efficient log management. While
often improvised, such adjustments demonstrate a pragmatic use of
logging to adapt to the specific conditions of each project.

Although adjustments guided by experience are more numerous,
adjustments based on fundamental principles also have a substantial
presence. These indicate a significant number of technically oriented
adjustments aimed at aligning log statements with appropriate severity
levels, supporting consistency and clarity in logging practices.
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7.2.2. Lower incidence of guideline-based and historical practice adjust-
ments

Adjustments based on guidelines and historical practices are the
least prevalent. Interestingly, the former group is the rarest across
all three projects. This fact could imply that formal guidelines and
historical precedents play a relatively minor role in the decision-making
processes for log adjustments compared to practical experience and
fundamental logging principles.

However, these findings reveal a lack of guidelines for the project’s
logging practices. In this context, the recurrence of similar decisions
across issues suggests that developers often rely on historical prac-
tices, documented implicitly in Jira issues, as a substitute for formal
guidance.

These observations align with findings by Li et al. (2021a), who
noted that duplicated log statements and code clones can lead to
inconsistencies in severity levels. In our study, we similarly observed
that, when facing similar events, developers tend to reuse severity
levels from prior cases to promote consistency. While this pragmatic
behavior aims at uniformity, it may also mask misclassifications and
result in code smells, e.g., logging non-critical events with high severity
levels, contributing to log overload.

These results highlight the importance of having well-defined doc-
umentation or guidelines for severity level usage. Without them, the
accumulation of adjustments based on precedent alone may introduce
long-term maintenance issues and reduce the effectiveness of logging
practices.

7.2.3. The prevalence of adjustments between info and debug levels

Phase 2 revealed that the reason for the adjustments between Debug
and Info levels, mostly attenuations, is not guided by the fundamentals
of logging. At the same time, they cannot be justified by experience
either. Log statements at the Debug level tend to be aggravated to Info
with the “excuse” that it would be easier debugging at the Info level.
However, this practice is questionable, as such adjustments may lead
to data overload and indicate a misinterpretation of the intended use
of log severity levels.

7.2.4. Past strategic adjustments

Some logs were added in previous software releases to address
challenges specific to that period. However, as software evolves, the
relevance of these records may decrease, or their verbosity may become
excessive. Periodically reviewing and adjusting these logs can help
maintain the efficiency of the logging system.

7.2.5. Excessive production logs due to incorrectly classified debug -level
statements

There are many adjustments made to address the excessive produc-
tion of log entries in a production environment. In all cases found in
our study, the solution was to attenuate the severity levels to those
of the Debugging Purpose, which reveals an initial misclassification of
severity level. These excessive logs can be helpful during development
or debugging but can become an overhead in production environments.

This issue aligns with previous findings by Li et al. (2017b), who
reported an attenuation from Info to Debug due to excessive logging
noise. Our study reveals similar adjustments involving not only Info
but also Warn and Error levels. In all such cases, severity levels were
attenuated to reflect debugging purposes, suggesting that the initial
classification was overly aggressive.

While excessive logs are useful during development, their presence
in production can significantly impact performance and readability.
These findings reinforce the need more rigorous strategies and clearer
guidelines to manage severity levels effectively across environments.
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7.2.6. More severe levels for silent problems

Silent issues can be challenging to diagnose due to log sparsity
associated with more verbose severity levels, such as Debug or Trace.
Identifying and properly handling these scenarios helps improve trou-
bleshooting tasks. Using a more severe level can be crucial in these
cases.

7.2.7. The log severity level is mutable

Phase 2 also reveals that in software development, adjusting log
levels is a strategic decision that varies according to the development
stage of the system. We observed cases where log statements carrying
Debug level information, which are satellites to events associated with
more severe levels, were temporarily escalated to a higher severity
level. This approach differs from the “forced” adjustments from Debug
to Info in debugging, discussed earlier in the previous subsection, by
escalating the severity level of a log statement arbitrarily, which do
not add value to log statements of other severity levels.

This mutability led us to understand that in a log statement, the
severity level is not entirely dictated by its message. Rather, the severity
level can vary as the system develops and evolves, even though the mes-
sage itself remains the same. With each software version, the severity
may attenuate or escalate depending on the circumstances in which the
log statement is applied.

This observation is consistent with findings from Tang et al. (2022),
who used Git history and a Degree of Interest (DOI) model to dynam-
ically identify areas of code that require more attention. Their system
automatically adjusts the severity levels of associated log statements,
reflecting the developers’ increasing interest in specific portions of the
code as the importance of features evolves — even when the content
of the log message remains unchanged.

7.3. Prescriptive phase (phase 3)

The Prescriptive Phase of our research highlights the challenges
when choosing LSL. During our process of deriving heuristics from pre-
vious phases’ insights, we encountered issues reflecting the dynamics
of developers when creating and adjusting LSL.

7.3.1. Adapting log messages for target-environments

Our heuristic set begins by considering the importance of adapting
log statements to the target environment, whether the development
or production environment. During our investigation, it became clear
that the relevance of a log entry is linked to the intended audience.
Echoing the observations of Shang et al. (2015), who noted that “high-
level logs are intended for system operators, and low-level logs are for
developers and testers”, we found that developers often need granular
details for debugging, while system administrators require clear and
concise logs to effectively troubleshoot problems. These two sides of
the logs are translated by the ambient heuristics, which highlight the
need to construct messages compatible with the chosen severity level.

7.3.2. Adaptation to the purpose of severity levels

Our proposal to group log severity levels by purpose - Debug, Infor-
mational, Warning, and Failure - provides a guiding tool for classifying
log severity levels. This tool respects the diversity of sets of severity
level sets across the different log libraries. Furthermore, it emphasizes
that the concept of the log purposes is more important than specific
level names, which are divergent across libraries. Our purpose-driven
heuristics make it easier to select severity levels by focusing on a more
comprehensive approach.
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7.3.3. Dynamic nature of severity levels

Our results also highlight the importance of understanding the mu-
tability to which severity levels are subject depending on the software
development stage and the evolution of its functionalities. This obser-
vation aligns with the findings of Ding et al. (2015), who noted that
log statements are often left in the code after their initial insertion, with
severity level adjustments typically made during final code integration.

As a strategic measure, we observed that it is valid to aggravate
severity levels temporarily to help troubleshoot unstable phases, and
that certain log statements can become less severe from a strategic point
of view as the system evolves.

7.3.4. Challenges of excessive logging

The most common severity adjustment context was excessive log-
ging in production environments. This issue has been widely recognized
in prior studies as a source of system overload and reduced log util-
ity (Yuan et al., 2012a; Chen and Jiang, 2017a; Hassani et al., 2018;
Zeng et al., 2019; Li et al., 2020a).

Sometimes, a temporary strategic measure can become an unde-
sirable modus operandi, causing unwanted effects such as excessive
log production. Based on this, we derive heuristics that recognize the
fine line between temporary strategy and over-logging. Our heuristics
advise Debugging Purpose levels for recurring details and more severe
severity levels for events that, despite being rare, can be significant in
elucidating problems.

7.3.5. The role of experience and knowledge

Experience has proven to play a fundamental role in discussions of
log severity adjustments. It reflects the in-depth day-to-day knowledge
of logging while also demonstrating absorption and constant reflection
on the fundamental principles of logging. Sharing doubts and searching
for practical solutions recorded, as recorded in system issues, were
important for reflecting on and refining our heuristics.

7.3.6. Preliminary observations as heuristic foundations

The preliminary observations that emerged from our analysis of
Phase 2 adjustments were instrumental in developing our final set of
heuristics. These preliminary insights set the stage for exploration and
synthesis in Phase 3.

7.3.7. Relation to automated classification approaches

While several recent studies have proposed automated methods for
log severity classification using machine learning or large language
models (e.g., UniLog (Xu et al.,, 2024), DeepLV (Li et al., 2021b)),
our approach serves a different purpose. Instead of automatically
assigning severity levels, our heuristics aim to support developers’
decision-making with interpretable, empirically grounded guidance.
These heuristics are not designed for systematic enforcement in day-
to-day development but rather to complement existing practices, espe-
cially in environments lacking formal guidelines. They can also serve
as a foundation for future guidelines or assist in validating outputs
from automated tools. These approaches are not mutually exclusive and
may benefit from being combined in future tools, where automated
suggestions can be checked against human-understandable logging
principles.

In summary, the Prescriptive Phase of our study produced a com-
prehensive set of heuristics that address the specifics and the broader
principles of LSL classification.

8. Related work
In this section, we review previous studies that explored software

logging practices and proposed automated solutions for enhancing
logging while considering the context of log severity levels.
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8.1. Logging practices

Previous studies on logging practices have primarily focused on the
modifications and maintenance associated with logging, without delv-
ing deeply into the motivations behind developers’ choices regarding
LSL adjustments.

Yuan et al. (2012a) analyzed four C/C++ systems and found that
developers spend significant effort adjusting LSL. The study noted that
26% of log improvements involve severity level changes, and in 28%
of these modifications, developers reconsider the trade-offs between
different verbosity levels, indicating confusion about evaluating the
costs (e.g., excessive messages, overhead) and benefits of each severity
level. Chen and Jiang (2017b) replicated this study using Java systems
classified severity level adjustments into two categories: error-level
updates (changes to or from error-levels for Failure purposes) and non-
error-level updates (neither the previous nor the current severity levels
are errors). Building on these findings, Zeng et al. (2019) also repli-
cated Yuan et al. (2012a)’s study for Android applications, finding less
frequent severity adjustments compared to previous studies. Addition-
ally, adjustments in the error-level category were less common, aligning
with Chen and Jiang (2017b)’s findings. These studies demonstrate
that, while adjustments are common, the underlying reasons behind
these changes are not always well understood.

Li et al. (2020a) investigated the trade-offs reported in Yuan et al.
(2012a)’s study by analyzing 223 issue reports and surveying 66 de-
velopers. They concluded that developers often balance the costs and
benefits of logging by appropriately assigning severity levels. Building
on these insights, our study delves deeper into the reasons behind these
severity level adjustments, using issue reports to explore the specific
motivations for these changes.

Li et al. (2017b) identify four categories for log changes, subdivided
into 20 reasons, with only one addressing inappropriate severity levels,
highlighting that a more detailed understanding of severity adjustments
remains limited. Similarly, Zhang et al. (2022) investigated differences
in logging characteristics between production and test environments,
conducting a quantitative analysis of severity levels in both contexts. Li
et al. (2021c) provide a broader discussion on severity levels, focus-
ing on logging exception stack traces. They identify how developers
log and modify exceptions, including severity levels and changes to
those levels. The study suggests that exception stack traces should be
avoided or logged at low levels for user errors, normal executions,
and expected exceptions, emphasizing the importance of guidelines for
logging, including severity levels. Their work emphasizes the impor-
tance of guidelines for logging practices; we investigate severity level
changes across various contexts and explore the specific reasons behind
these adjustments, complementing the guidelines they suggested and
applying them to a broader range of logging scenarios.

Similarly, Patel et al. (2022) studied logging practices in the Linux
kernel, observing changes in log statements across 22 releases, includ-
ing severity adjustments. However, they did not explore the underlying
causes of these changes, attributing adjustments solely to the difficulty
in deciding the appropriate severity level. Our study not only addresses
this but also expands on it by analyzing the reasons behind these
adjustments, as documented in issue reports.

In terms of addressing logging-related issues, Chen and Jiang (2017a)
and Hassani et al. (2018), identified several problems in open-source
projects, including inappropriate log levels and proposed automated
solutions to detect and correct mismatches between log messages and
their severity levels. Chen and Jiang (2017a) further analyzed logging
code changes in three open-source systems and identified six anti-
patterns, including incorrect severity levels, underscoring the need
for more specific guidelines for associating information with severity
levels.

While previous studies have provided valuable insights into devel-
opers’ intentions and practices when adjusting severity levels, they
have not thoroughly explored the reasons behind these adjustments
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or provided a detailed categorization of them. Our research fills this
gap by proposing a comprehensive framework for understanding and
applying severity levels. Unlike studies that focus on specific scenarios,
such as exception stack traces in Java systems, our work categorizes de-
velopers’ intentions in changing severity levels across various situations
and provides practical heuristics to guide these decisions.

8.2. Automated approaches

Previous research on automated approaches for managing LSL has
focused on developing tools and models to recommend, validate, and
correct log severity decisions, but has often overlooked the underlying
motivations behind these adjustments, which are crucial for improving
manual logging practices.

Yuan et al. (2012a) developed a verbosity level checker to identify
inconsistencies in severity levels across similar code snippets, detecting
code clones and ensuring that their logging code maintained consistent
verbosity. Chen and Jiang (2017a) introduced LCAnalyzer, a static
code analysis tool designed to detect anti-patterns, including incorrect
verbosity levels in logging practices. Building on these automated
solutions, Li et al. (2017a) proposed an approach to automatically
recommend appropriate severity levels for new log statements. Their
method analyzes contextual features such as log churn, dynamic vari-
able counts, and static text length, ensuring consistency with existing
logging practices within a project. In a similar vein, Anu et al. (2019)
proposed an automatic approach to assist developers in distinguishing
ambiguous severity levels by extracting contextual features from log-
ging code snippets and using a machine learning model to predict the
appropriate level.

Expanding on this, Kim et al. (2020) developed an approach to
validate and recommend log levels based on semantic and syntactic fea-
tures, using feature vectors to quantify similarities among log messages
and their surrounding code. Li et al. (2021a) analyzed inconsistencies
in severity levels in duplicate log statements, presenting an automated
tool to detect and correct them. Likewise, Li et al. (2021b) proposed
DeepLV, a deep learning-based approach to suggest severity levels
using syntactic context and log message attributes, though this work
does not explain why levels like Trace, Debug, and Warn describe
certain operations. Tang et al. (2022) introduced a model that adjusts
severity levels based on the Mylyn DOI model, which adapts the
severity according to the perceived relevance of the surrounding code.
In a related study, Liu et al. (2022) proposed TeLL, an approach that
uses multi-level block information to predict LSL. More recently, Xu
et al. (2024) introduced UniLog, an LLM-based framework that predicts
logging positions, severity levels, and messages. Evaluated on over
12,000 code snippets, UniLog achieved 72.3% accuracy for severity
level prediction, illustrating the growing use of large language models
in logging automation.

While these studies focus on developing automated tools to recom-
mend, validate, or correct LSL, our study takes a different approach
by focusing on the developers’ intentions behind log severity adjust-
ments. Instead of automating the process, we analyzed issue reports
to investigate the reasons developers make these changes and distilled
this understanding into 24 heuristics. These heuristics provide devel-
opers with structured guidelines for making more informed decisions
regarding LSL.

By broadening the scope beyond specific automated tools and in-
corporating a variety of logging scenarios our study contributes sig-
nificantly to improving the practical application of logging practices.
This human-centered approach complements existing automated solu-
tions by offering a structured framework that helps developers make
informed decisions about LSL in real-world scenarios.
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9. Threats to validity

It is important to acknowledge that there will always be potential
threats to the validity of a study. However, we work carefully to
identify and address eventual issues that could compromise the validity
of our results or conclusions. In the following discussion, we outline the
main threats to the validity of our study and describe the strategies we
have implemented to mitigate them.

9.1. Internal validity

Threats to internal validity are concerned with the rigor (and thus
the degree of control) of the study design.

Log statement selection method. The detection of log statements using
SLogAnalyzer employs regular expressions; therefore, some of them
may be missing in the selected set used for each system. To mitigate
this problem, SLogAnalyzer makes use of a well-defined pipeline for
extracting instructions, including cleaning non-relevant data, capturing
the structure of each source file, identifying the maximum code blocks
present, and only then applying a regular expression that identifies the
log statements in the detected blocks.

Adjustments tracking. Comparison of logging statements between re-
leases may have incorrectly identified log severity adjustments by
associating non-matching code snippets. However, the SLogAnalyzer
pipeline identifies the blocks in which each log instruction is located,
comparing the instructions and the blocks that contain them. Addition-
ally, we manually validated the adjustments associated with the issues
used for our analyses to increase validity.

Issues selection method. Issues were also filtered using a regular expres-
sion, potentially missing some relevant issues concerning severity level
adjustments or logging practices. Prior to this approach, we tested some
techniques based on three machine learning algorithms on an initial set
and analyzed the results. In this case, regular expression proved to be
more efficient when selecting a larger group of issues for subsequent
analysis, which increases the validity of the results.

Stable releases selection. We limited our study to stable releases of
the selected systems, which may have caused us to miss some trends
regarding log severity adjustments in “intra-release” adjustments. To
mitigate this problem, inspired by the backward snowballing method
of systematic literary reviews (Keele et al., 2007), we also analyzed the
issues cited in the descriptions and comments of the selected issues.

Bias in data analysis. The process of interpreting Jira issue text is
inherently subjective and can lead to biased results. To mitigate this,
we adopted a systematic approach to data analysis. Issues were an-
alyzed independently by the authors R1 e R2, to reduce bias. After
discussions to converge interpretations, the results were revisited to
exclude potential biases, thus increase validity. Additionally, all issues
were rigorously evaluated by at least two authors.

Reliability of data sources. The accuracy and completeness of issue de-
scriptions and comments in Jira can significantly influence our findings.
There is a risk that misinterpretations may arise due to incomplete
or misleading descriptions of issues. To mitigate this problem, we
excluded from our evaluation issues that lacked explanations about the
severity adjustment, despite the title being explicitly about the topic.

Bias in heuristic selection. The internal validity of this study may be
influenced by methodological limitations, particularly in the selection
of heuristics. This process relied on the interpretation of data from
incident reports and logs, which could have introduced interpretative
bias. While the heuristics were derived from recurring observations and
consistent pattern analysis, certain severity classification decisions may
reflect contexts specific to the analyzed projects. However, in the three
systems studied, each commit is associated with an incident report.
Therefore, we expect that the heuristics derived from these reports
accurately represent the developers’ intentions when adjusting LSL.
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Generalization of findings. Another threat to internal validity is the
generalization of observations drawn from a subset of projects. Al-
though the set of open-source projects analyzed is well-established,
the diversity of practices and maturity levels across systems may have
influenced the derivation of heuristics. In cases where severity adjust-
ments reflect individual preferences or informal organizational policies,
the recommendations may not fully generalize to similar systems. To
address this limitation, the heuristic construction followed an iterative
process that combined multiple perspectives from the reports, including
potential heuristics and preliminary observations.

9.2. External validity

Threats to external validity are any factors within a study that
reduce the generality of the results.

Diversity of logging libraries. We focus on a limited range of logging
libraries, which may not represent the full spectrum of logging prac-
tices. This limitation could affect the accuracy of our severity level
categorization. However, we employed a methodology to select a rep-
resentative library set and applied validated criteria for inclusion,
enhancing the validity of our results.

Diversity of selected systems. Our findings are based on a specific set
of open-source Java systems, which may not represent other software
systems or programming languages. Our objective is to understand the
state of practice based on a significant set of closed system releases,
and generate heuristics that can contribute as guides in the logging
process. It is not our goal to find results that can be generalized to
all LSL choice situations. Furthermore, we apply validated and well-
defined inclusion and exclusion criteria, selecting only closed issues to
increase the validity of our results. In future work, we will confirm our
conclusions by researching a wide range of systems, and therefore, issue
texts.

Applicability across development contexts. Our analysis focused on spe-
cific open-source systems maintained by a single organization, which
may not translate directly to enterprise environments or closed-source
systems. Developers from other software systems or organizations may
follow different logging practices and considerations. Additionally,
severity levels and their nomenclature can vary significantly between
logging libraries and frameworks, requiring adaptations of the heuris-
tics to the specifics of these environments. This limited project scope
may restrict the generalizability of our results to other systems.

For example, while mobile applications follow structured logging
models, their practices are influenced by platform constraints such
as energy and privacy (Zeng et al.,, 2019). Similarly, a study con-
ducted on logging practices in proprietary software systems highlighted
challenges similar to those found in open-source projects, such as
inconsistent use of severity levels and balancing verbosity with useful-
ness (Fu et al., 2014). These findings suggest that our heuristics may be
relevant beyond open-source environments, although adaptations may
be required to address domain-specific constraints.

In addition, the logging model targeted in our study, i.e., structured
logging systems with explicit severity levels, is widely adopted. As
discussed in Section 2.2.1, despite the variation in severity level nomen-
clature, we observed a trend toward convergence around six levels:
Trace, Debug, Info, Warn, Error, and Fatal. This consistency suggests that
our heuristics may be applicable to other systems that follow similar
conventions.

That said, certain types of logs, such as those used for security
auditing or low-level monitoring, may not incorporate hierarchical
severity levels. In such cases, the direct application of our heuristics
is limited.

The three open-source projects studied, although actively developed
and maintained, do not necessarily guarantee full compliance with best
logging practices. However, the decision to focus on resolved incident

26

The Journal of Systems & Software 231 (2026) 112643

reports mitigates this bias by providing a more reliable perspective on
severity adjustments successfully applied and validated by experienced
developers. Furthermore, these projects are widely used in the industry
as components of solutions developed by other companies, imposing
high-quality requirements on the systems analyzed. These characteris-
tics increase the credibility of our findings, although further validation
in additional domains remains necessary.

9.3. Construct validity

Threats to construct validity refer to the degree to which the con-
structs used in the study truly represent what is intended to be mea-
sured.

Severity level and adjustment constructs. This concerns whether the
severity adjustments and their motivations, as analyzed from issue
reports and commits, accurately reflect the developers’ rationale. To
mitigate this risk, we grounded our interpretation of severity levels
in definitions established through a previous systematic review and a
mapping study of 40 logging libraries. These served as the conceptual
basis for our classification and analysis throughout the study.

Impact of incorrect initial severity levels. Another concern is the assump-
tion that severity levels present in each release accurately reflect de-
velopers’ original intent. In reality, several issue reports in our dataset
describe severity levels that were later acknowledged as inadequate,
prompting an adjustment. This raises the possibility that some of our
heuristics may reflect corrective patterns rather than ideal classification
strategies. In other words, our analysis may capture how develop-
ers respond to misclassifications, not how they would assign severity
correctly from the beginning. We consider this a threat to construct va-
lidity. Nonetheless, by identifying recurring justifications across many
cases, i.e., such as reducing noise or increasing clarity, we aim to derive
heuristics that anticipate and prevent these misclassifications in future
practice.

9.4. Conclusion validity

Threats to conclusion validity relate to the extent to which the
results and interpretations are credible and justifiable.

Use of resolved issue reports. To mitigate this risk, we limited our
analysis to adjustments associated with resolved issue reports. This
approach ensures that the studied severity level changes reflect actual
decisions made and validated by developers in response to real scenar-
ios. These reports provide justifications for severity changes, reducing
the likelihood of misinterpreting speculative or temporary edits.

Iterative analysis and researcher triangulation. The derivation of heuris-
tics followed an iterative process involving multiple researchers, com-
bining frequency analysis with qualitative validation of issue content.
This approach ensured that interpretations were not based on a single
perspective, increasing the robustness of the findings.

Severity level accuracy in release versions. We acknowledge that some
log severity levels present in release versions may have been incor-
rectly assigned. However, our methodology focused on the subsequent
adjustments justified in issue reports, which helps mitigate this risk.
These adjustments reflect informed corrections by developers and offer
a more reliable foundation for deriving heuristics.

Limitations of generalizability. Our conclusions are based on patterns
observed in three open-source projects and should not be interpreted
as statistical generalizations. Because we did not conduct controlled
experiments, the observed relationships, such as the dominance of ex-
perience, driven adjustments or the prevalence of 1-degree adjustments,
should be considered contextual insights rather than causal claims.
Furthermore, the effectiveness of the proposed heuristics remains the-
oretical at this stage and will require future empirical validation in
real-world settings.
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10. Conclusion

In production software systems, logs are crucial for developers and
operations engineers to diagnose system behavior and investigate fail-
ures. In this context, choosing log severity level (LSL) is fundamental to
determining the relevance and visibility of log entries in development
and production environments.

In this study, we proposed a three-phase methodology to investigate
LSL based on severity adjustments observed in open-source projects.
Our investigation of source code and associated issue reports supports
the concept of logging’s four primary purposes: Debugging, Informa-
tional, Warning, and Failure. These adjustments were grouped into cat-
egories reflecting distinct motivations, such as fundamental principles,
historical practices, developer experience, and guideline adherence.

Our findings highlight the prevalence of experience-driven adjust-
ments, the dominance of 1-degree adjustments (notably between Debug
and Info), the need to reduce log verbosity in production, and the
mutability of severity levels based on system maturity.

From our observations, we derived a set of 24 heuristics to guide
the classification, review, and adjustment of severity levels. While not
exhaustive, we believe these heuristics provide a flexible yet structured
foundation for interpreting log messages according to their severity
level. They are grounded in real-world practices observed across three
mature Apache projects (Hadoop, HBase, Kafka), but we caution that
these results may not generalize to all software systems. Projects from
different domains (e.g., web applications, embedded systems) or using
other logging frameworks (e.g., Python or .NET) may exhibit differ-
ent logging behaviors. As such, our heuristics should be seen as a
hypothesis of best practices that requires validation in broader contexts.

In future work, we are committed to rigorously evaluating the
practicality and effectiveness of these heuristics. We plan to apply
these heuristics in real-world scenarios and in a survey with software
developers and operators, and in a controlled experiment. This experi-
ment would compare severity level classifications performed with and
without the heuristics, allowing us to assess their impact on consistency
and correctness. We also consider their potential integration into static
analysis tools to support automated review of log statements or con-
tinuous integration pipelines. Although this would require formalizing
the heuristics into machine-readable rules and addressing the inherent
contextual nuances of logging. Furthermore, future work should include
the analysis of additional systems, particularly from different organiza-
tions and domains, to assess whether the observed severity adjustment
patterns and proposed heuristics generalize beyond the three Apache
projects studied. Another route for future work involves developing a
formal theory of severity levels, considering assigning a level to a log
statement as an optimization problem. This approach aims to optimize
the balance between the informativeness of log data and resource
constraints, such as storage and processing overhead.

Through these efforts, we aim to contribute to a broader under-
standing of log management in software systems, offering tools and
theoretical knowledge that improve the diagnostic capabilities of devel-
opers and system operators. By bridging the gap between theory and
practice in logging, our work strives to pave the way for more effi-
cient and effective log analysis strategies in the ever-evolving software
development landscape.
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Appendix A. Initial tags for log severity adjustments
The table below lists the 45 descriptive tags used in the initial stage

of our analysis. These labels summarize the motivations extracted from
issue reports concerning log severity level changes.

+ Bad adjustment

* Benign message at WARN level
« Critical information to
troubleshooting

+ Data absence to DEBUG

+ INFO not justified
« Large volume of logs
+ Library swapping

» Masking DEBUG into an

INFO

 Debug masked as INFO » Misconception about error
level

* Details at INFO level * Noise

» Non-existent level
» Normally behavior at

* Disabled feature
* Discussion about another level

WARN level
» Don’t explain about the * Not affect the normal
adjustment reason service
« Event handled by client * Not a frequently log
message
- Event is not quite right but * Not related to the
doesn’t require any action adjustment

- Potential Verbose INFO
» Silent problem

+ Spammy logging

» Swapping library

» Temporary INFO

» Verbose DEBUG

» Verbose ERROR

» Verbose WARN

» Verbose INFO

» Weak information

« Excessive logging

+ Expensive INFO

* Flooding log

* General Guideline

* Heuristic

« Ignored interruptions at WARN
+ Inconsistency

« Inconsistent practice

« Inconsistent log practice

« INFO classified as DEBUG

« INFO level for analysis purpose

These tags were grouped into intermediate categories, which in
turn served as the basis for the five main categories described in
Section 3.3.2.

Appendix B. Hadoop issues

See Table B.1.

Appendix C. HBase issues

See Table C.1.

Appendix D. Kafka issues

See Table D.1.
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Table B.1
Hadoop issues.

# D URL Summary

#1 HADOOP-96 https://issues.apache.org/jira/browse/HADOOP-96 name server should log decisions that affect data: block creation, removal,
replication

#2 HADOOP-211 https://issues.apache.org/jira/browse/HADOOP-211 logging improvements for Hadoop

#3 HADOOP-1034 https://issues.apache.org/jira/browse/HADOOP-1034 RuntimeException and Error not catched in DataNode.DataXceiver.run()

#4 HADOOP-7858 https://issues.apache.org/jira/browse/HADOOP-7858 Drop some info logging to DEBUG level in IPC, metrics, and HTTP

#5 HADOOP-8075 https://issues.apache.org/jira/browse/HADOOP-8075 Lower native-hadoop library log from info to debug

#6 HADOOP-8932 https://issues.apache.org/jira/browse/HADOOP-8932 JNI-based user-group mapping modules can be too chatty on lookup failures

#7 HADOOP-9135 https://issues.apache.org/jira/browse/HADOOP-9135 JniBasedUnixGroupsMappingWithFallback should log at debug rather than info
during fallback

#8 HADOOP-9582 https://issues.apache.org/jira/browse/HADOOP-9582 Non-existent file to “hadoop fs -conf” doesn’t throw error

#9 HADOOP-10015 https://issues.apache.org/jira/browse/HADOOP-10015 UserGroupInformation prints out excessive ERROR warnings

#10 HADOOP-10274 https://issues.apache.org/jira/browse/HADOOP-10274 Lower the logging level from ERROR to WARN for UGI.doAs method

#11 HADOOP-10343 https://issues.apache.org/jira/browse/HADOOP-10343 Change info to debug log in LossyRetrylnvocationHandler

#12 HADOOP-10466 https://issues.apache.org/jira/browse/HADOOP-10466 Lower the log level in UserGroupInformation

#13 HADOOP-10657 https://issues.apache.org/jira/browse/HADOOP-10657 Have RetrylnvocationHandler log failover attempt at INFO level

#14 HADOOP-11085 https://issues.apache.org/jira/browse/HADOOP-11085 Excessive logging by org.apache.hadoop.util.Progress when value is NaN

#15 HADOOP-12789 https://issues.apache.org/jira/browse/HADOOP-12789 log classpath of ApplicationClassLoader at INFO level

#16 HADOOP-13552 https://issues.apache.org/jira/browse/HADOOP-13552 RetryInvocationHandler logs all remote exceptions

#17 HADOOP-14539 https://issues.apache.org/jira/browse/HADOOP-14539 Move commons logging APIs over to slf4j in hadoop-common

#18 HADOOP-14987 https://issues.apache.org/jira/browse/HADOOP-14987 Improve KMSClientProvider log around delegation token checking

#19 HADOOP-15441 https://issues.apache.org/jira/browse/HADOOP-15441 Log kms url and token service at debug level.

#20 HADOOP-15942 https://issues.apache.org/jira/browse/HADOOP-15942 Change the logging level form DEBUG to ERROR for RuntimeErrorException in
JMXJsonServlet

#21 HADOOP-17597 https://issues.apache.org/jira/browse/HADOOP-17597 Add option to downgrade S3A rejection of Syncable to warning

#22 HADOOP-17836 https://issues.apache.org/jira/browse/HADOOP-17836 Improve logging on ABFS error reporting

#23 HADOOP-18065 https://issues.apache.org/jira/browse/HADOOP-18065 ExecutorHelper.logThrowableFromAfterExecute() is too noisy.

#24 HADOOP-18574 https://issues.apache.org/jira/browse/HADOOP-18574 Changing log level of IOStatistics increment to make the DEBUG logs less noisy

#25 HDFS-6085 https://issues.apache.org/jira/browse/HDFS-6085 Improve Cach: licati itor log a bit

#26 HDFS-6998 https://issues.apache.org/jira/browse/HDFS-6998 warning message ’ssl.client.truststore.location has not been set’ gets printed for hftp
command

#27 HDFS-8659 https://issues.apache.org/jira/browse/HDFS-8659 Block scanner INFO message is spamming logs

#28 HDFS-9906 https://issues.apache.org/jira/browse/HDFS-9906 Remove spammy log spew when a datanode is restarted

#29 HDFS-10377 https://issues.apache.org/jira/browse/HDFS-10377 CacheReplicationMonitor shutdown log message should use INFO level.

#30 HDFS-10752 https://issues.apache.org/jira/browse/HDFS-10752 Several log refactoring/improvement suggestion in HDFS

#31 HDFS-11054 https://issues.apache.org/jira/browse/HDFS-11054 Suppress verbose log message in BlockPlacementPolicyDefault

#32 HDFS-11593 https://issues.apache.org/jira/browse/HDFS-11593 Change SimpleHttpProxyHandler#exceptionCaught log level from info to debug

#33 HDFS-13692 https://issues.apache.org/jira/browse/HDFS-13692 StorageInfoDefragmenter floods log when compacting Storagelnfo TreeSet

#34 HDFS-13695 https://issues.apache.org/jira/browse/HDFS-13695 Move logging to slf4j in HDFS package

#35 HDFS-14238 https://issues.apache.org/jira/browse/HDFS-14238 A log in NNThroughputBenchmark should change log level to “INFO” instead of
“ERROR”

#36 HDFS-14339 https://issues.apache.org/jira/browse/HDFS-14339 Inconsistent log level practices in RpcProgramNfs3.java

#37 HDFS-14340 s://issues.apache.org/jira/browse/HDFS-14340 Lower the log level when can’t get postOpAttr

#38 HDFS-14395 https://issues.apache.org/jira/browse/HDFS-14395 Remove WARN Logging From Interrupts in DataStreamer

#39 HDFS-14521 https://issues.apache.org/jira/browse/HDFS-14521 Suppress setReplication logging.

#40 HDFS-14759 https://issues.apache.org/jira/browse/HDFS-14759 HDFS cat logs an info message

#41 HDFS-14760 https://issues.apache.org/jira/browse/HDFS-14760 Log INFO mode if snapshot usage and actual usage differ

#42 HDFS-15197 https://issues.apache.org/jira/browse/HDFS-15197 [SBN read] Change ObserverRetryOnActiveException log to debug

#43 MAPREDUCE-3184 https://issues.apache.org/jira/browse/MAPREDUCE-3184 Improve handling of fetch failures when a tasktracker is not responding on HTTP

#44 MAPREDUCE-3265 https://issues.apache.org/jira/browse/MAPREDUCE-3265 Reduce log level on MR2 IPC construction, etc

#45 MAPREDUCE-3348 https://issues.apache.org/jira/browse/MAPREDUCE-3348 mapred job -status fails to give info even if the job is present in History

#46 MAPREDUCE-3692 https://issues.apache.org/jira/browse/MAPREDUCE-3692 yarn-resourcemanager out and log files can get big

#47 MAPREDUCE-3748 https://issues.apache.org/jira/browse/MAPREDUCE-3748 Move CS related nodeUpdate log messages to DEBUG

#48 MAPREDUCE-4570 https://issues.apache.org/jira/browse/MAPREDUCE-4570 ProcfsBasedProcessTree#constructProcessinfo() prints a warning if
procfsDir/<pid>/stat is not found.

#49 MAPREDUCE-4614 https://issues.apache.org/jira/browse/MAPREDUCE-4614 Simplify debugging a job’s tokens

#50 MAPREDUCE-5766 https://issues.apache.org/jira/browse/MAPREDUCE-5766 Ping messages from attempts should be moved to DEBUG

#51 MAPREDUCE-6971 https://issues.apache.org/jira/browse/MAPREDUCE-6971 Moving logging APIs over to slf4j in hadoop-mapreduce-client-app

#52 MAPREDUCE-6983 https://issues.apache.org/jira/browse/MAPREDUCE-6983 Moving logging APIs over to slf4j in hadoop-mapreduce-client-core

#53 MAPREDUCE-6997 https://issues.apache.org/jira/browse/MAPREDUCE-6997 Moving logging APIs over to slf4j in hadoop-mapreduce-client-hs

#54 MAPREDUCE-6998 https://issues.apache.org/jira/browse/MAPREDUCE-6998 Moving logging APIs over to slf4j in hadoop-mapreduce-client-jobclient

#55 MAPREDUCE-7022 https://issues.apache.org/jira/browse/MAPREDUCE-7022 Fast fail rogue jobs based on task scratch dir size

#56 MAPREDUCE-7063 https://issues.apache.org/jira/browse/MAPREDUCE-7063 Fix log level inconsistency in CombineFileInputFormat.java

#57 YARN-1022 https://issues.apache.org/jira/browse/YARN-1022 Unnecessary INFO logs in AMRMClientAsync

#58 YARN-1608 https://issues.apache.org/jira/browse/YARN-1608 LinuxContainerExecutor has a few DEBUG messages at INFO level

#59 YARN-1839 https://issues.apache.org/jira/browse/YARN-1839 Capacity scheduler preempts an AM out. AM attempt 2 fails to launch task
container with SecretManager$InvalidToken: No NMToken sent

#60 YARN-1892 https://issues.apache.org/jira/browse/YARN-1892 Excessive logging in RM

#61 YARN-2213 https://issues.apache.org/jira/browse/YARN-2213 Change proxy-user cookie log in AmlIpFilter to DEBUG

#62 YARN-2704 https://issues.apache.org/jira/browse/YARN-2704 Localization and log-aggregation will fail if hdfs delegation token expired after
token-max-life-time

#63 YARN-3350 https://issues.apache.org/jira/browse/YARN-3350 YARN RackResolver spams logs with messages at info level

#64 YARN-4115 https://issues.apache.org/jira/browse/YARN-4115 Reduce loglevel of Ci i ProtocolProxy to Debug

#65 YARN-5693 https://issues.apache.org/jira/browse/YARN-5693 Reduce loglevel to Debug in C i ProtocolProxy and
AMRMClientImpl

#66 YARN-6068 https://issues.apache.org/jira/browse/YARN-6068 Log aggregation get failed when NM restart even with recovery

#67 YARN-6873 https://issues.apache.org/jira/browse/YARN-6873 Moving logging APIs over to slf4j in hadoop-yarn-server-applicationhistoryservice

#68 YARN-6957 https://issues.apache.org/jira/browse/YARN-6957 Moving logging APIs over to slf4j in hadoop-yarn-server-sharedcachemanager

#69 YARN-7047 https://issues.apache.org/jira/browse/YARN-7047 Moving logging APIs over to slf4j in hadoop-yarn-server-nodemanager

#70 YARN-7243 https://issues.apache.org/jira/browse/YARN-7243 Moving logging APIs over to slf4j in hadoop-yarn-server-resourcemanager

#71 YARN-7407 https://issues.apache.org/jira/browse/YARN-7407 Moving logging APIs over to slf4j in hadoop-yarn-applications

#72 YARN-7477 https://issues.apache.org/jira/browse/YARN-7477 Moving logging APIs over to slf4j in hadoop-yarn-common

#73 YARN-7727 https://issues.apache.org/jira/browse/YARN-7727 Incorrect log levels in few logs with QueuePriorityContainerCandidateSelector

#74 YARN-8459 https://issues.apache.org/jira/browse/YARN-8459 Improve Capacity Scheduler logs to debug invalid states

#75 YARN-9349 https://issues.apache.org/jira/browse/YARN-9349 When doTransition() method occurs exception, the log level practices are inconsistent

#76 YARN-10369 https://issues.apache.org/jira/browse/YARN-10369 Make NMTokenSecretManagerInRM sending NMToken for nodeld DEBUG

#77 YARN-10997 https://issues.apache.org/jira/browse/YARN-10997 Revisit allocation and reservation logging
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Table C.1
HBase issues.
# D URL Summary
#1 HBASE-5582 https://issues.apache.org/jira/browse/HBASE-5582 “No HServerInfo found for” should be a WARNING message
#2 HBASE-6023 https://issues.apache.org/jira/browse/HBASE-6023 Normalize security audit logging level with Hadoop
#3 HBASE-7037 https://issues.apache.org/jira/browse/HBASE-7037 ReplicationPeer logs at WARN level aborting server instead of at FATAL
#4 HBASE-7214 https://issues.apache.org/jira/browse/HBASE-7214 CleanerChore logs too much, so much so it obscures all else that is going on
#5 HBASE-8940 https://issues.apache.org/jira/browse/HBASE-8940 TestRegionMergeTransactionOnCluster#testWholesomeMerge may fail due to race in
opening region
#6 HBASE-9120 https://issues.apache.org/jira/browse/HBASE-9120 ClassFinder logs errors that are not
#7 HBASE-9371 https://issues.apache.org/jira/browse/HBASE-9371 Eliminate log spam when tailing files
#8 HBASE-10092 https://issues.apache.org/jira/browse/HBASE-10092 Move to slf4j
#9 HBASE-10906 https://issues.apache.org/jira/browse/HBASE-10906 Change error log for tion in Tabl FormatBase to WARN level
#10 HBASE-12419 https://issues.apache.org/jira/browse/HBASE-12419 “Partial cell read caused by EOF” ERRORs on replication source during replication
#11 HBASE-12461 https://issues.apache.org/jira/browse/HBASE-12461 FSVisitor logging is excessive
#12 HBASE-12539 https://issues.apache.org/jira/browse/HBASE-12539 HFileLinkCleaner logs are uselessly noisy
#13 HBASE-13675 https://issues.apache.org/jira/browse/HBASE-13675 ProcedureExecutor completion report should be at DEBUG log level
#14 HBASE-14042 https://issues.apache.org/jira/browse/HBASE-14042 Fix FATAL level logging in FSHLog where logged for non fatal exceptions
#15 HBASE-15582 https://issues.apache.org/jira/browse/HBASE-15582 SnapshotManifestV1 too verbose when there are no regions
#16 HBASE-15954 https://issues.apache.org/jira/browse/HBASE-15954 REST server should log requests with TRACE instead of DEBUG
#17 HBASE-16220 https://issues.apache.org/jira/browse/HBASE-16220 Demote log level for “HRegionFileSystem - No StoreFiles for” messages to TRACE
#18 HBASE-17540 https://issues.apache.org/jira/browse/HBASE-17540 Change SASL server GSSAPI callback log line from DEBUG to TRACE in
RegionServer to reduce log volumes in DEBUG mode
#19 HBASE-20447 https://issues.apache.org/jira/browse/HBASE-20447 Only fail cacheBlock if block collisions aren’t related to next block metadata
#20 HBASE-20554 https://issues.apache.org/jira/browse/HBASE-20554 “WALs outstanding” message from CleanerChore is noisy
#21 HBASE-20665 https://issues.apache.org/jira/browse/HBASE-20665 “Already cached block XXX” message should be DEBUG
#22 HBASE-20701 https://issues.apache.org/jira/browse/HBASE-20701 too much logging when balancer runs from BaseLoadBalancer
#23 HBASE-20770 https://issues.apache.org/jira/browse/HBASE-20770 WAL cleaner logs way too much; gets clogged when lots of work to do
#24 HBASE-21524 https://issues.apache.org/jira/browse/HBASE-21524 Unnecessary DEBUG log in Connecti 1 ion#isTabl, bled
#25 HBASE-23047 https://issues.apache.org/jira/browse/HBASE-23047 ChecksumUtil.validateChecksum logs an INFO message inside a
“if(LOG.isTraceEnabled())” block.
#26 HBASE-23250 https://issues.apache.org/jira/browse/HBASE-23250 Log message about CleanerChore delegate initialization should be at INFO
#27 HBASE-23687 https://issues.apache.org/jira/browse/HBASE-23687 DEBUG logging cleanup
#28 HBASE-24524 https://issues.apache.org/jira/browse/HBASE-24524 SyncTable logging improvements
#29 HBASE-25483 https://issues.apache.org/jira/browse/HBASE-25483 set the loadMeta log level to debug.
#30 HBASE-25556 https://issues.apache.org/jira/browse/HBASE-25556 Frequent replication “Encountered a malformed edit” warnings
#31 HBASE-25642 https://issues.apache.org/jira/browse/HBASE-25642 Fix or stop warning about already cached block
#32 HBASE-26189 https://issues.apache.org/jira/browse/HBASE-26189 Reduce log level of CompactionProgress notice to DEBUG
#33 HBASE-26443 https://issues.apache.org/jira/browse/HBASE-26443 Some BaseLoadBalancer log lines should be at DEBUG level
#34 HBASE-27079 https://issues.apache.org/jira/browse/HBASE-27079 Lower some DEBUG level logs in ReplicationSourceWALReader to TRACE
#35 HBASE-27391 https://issues.apache.org/jira/browse/HBASE-27391 Downgrade ERROR log to DEBUG in ConnectionUtils.updateStats
#36 HBASE-27588 https://issues.apache.org/jira/browse/HBASE-27588 “Instantiating StoreFileTracker impl” INFO level logging is too chatty
Table D.1
Kafka issues.
# ID URL Summary
#1 KAFKA-5704 https://issues.apache.org/jira/browse/KAFKA-5704 Auto topic creation causes failure with older clusters
#2 KAFKA-4829 https://issues.apache.org/jira/browse/KAFKA-4829 Improve logging of StreamTask commits
#3 KAFKA-6802 https://issues.apache.org/jira/browse/KAFKA-6802 Improve logging when topics aren’t known and assignments skipped
#4 KAFKA-9540 https://issues.apache.org/jira/browse/KAFKA-9540 Application getting “Could not find the standby task 0_4 while closing it” error
#5 KAFKA-13037 https://issues.apache.org/jira/browse/KAFKA-13037 “Thread state is already PENDING_ SHUTDOWN” log spam
#6 KAFKA-13669 https://issues.apache.org/jira/browse/KAFKA-13669 Log messages for source tasks with no offsets to commit are noisy and confusing

Data availability

The data and analytic code for this study are available on the
FigShare repository, accessible at https://doi.org/10.6084,/m9.figshare.
26253776.v2.
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