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ABSTRACT Fast and accurate estimation of lightpaths’ quality of transmission (QoT) is crucial for
ensuring quality of service (QoS) and seamless operation in real-world optical networks. Machine learning
(ML) algorithms are promising tools for QoT estimation of lightpaths before their establishment. In multi-
domain optical networks, where learned QoT estimation models must be transferred between heterogeneous
environments with limited target data, deep neural networks (DNNs) have shown promising results.
However, DNN-based transfer learning (TL) approaches using fine-tuned artificial neural networks (ANNs)
and convolutional neural networks (CNNs), offer limited interpretability. Consequently, little insight into
the decision-making process is provided, and large labeled datasets as well as high computational resources
are required, limiting their suitability for real-time, large-scale deployment in production networks. To
address these challenges, we propose a novel lightweight and interpretable TL framework that integrates
the Boruta-SHAP algorithm for automated feature selection (FS) together with two domain adaptation
(DA) techniques: Feature Augmentation and Correlation Alignment. In contrast to the existing approaches
based on DNN, our strategy leverages interpretable and efficient ML models to enhance the adaptability
across diverse datasets in real-world network environments. We show that our random forest (RF)-based
models achieve better performance than the ANN-based models, without sacrificing the classification
accuracy. The FS via Boruta-SHAP allows for reducing dimensionality as well as training and inference
times up to 70.68%, and 41.64%, respectively. Our proposed framework outperforms DA baseline models
achieving 99.35% accuracy improvement in domain shift. Moreover, it offers 86% accuracy with a 99.83%
reduction in the size of the target domain.

INDEX TERMS Artificial neural networks, deep learning, domain adaptation, explainable artificial
intelligence, machine learning, optical fiber communication, performance metrics, quality of transmission,
random forests, support vector machines, transfer learning, WDM networks.

I. INTRODUCTION

RELIABLE optical networks are crucial for the rapid
development of emerging online services such as

the Internet of Things, 5G/6G applications, and edge
computing. These technologies require high bandwidth
and low latency connectivity while demanding excellent
transmission performance. Coherent optical networks with

flexible modulation and tunable transceivers enable reliable
high-speed and long-distance data transmission. However,
these technologies entail complex network architectures and
dynamic changes of parameters. Quality of transmission
(QoT) estimation of lightpaths before they are established
is an important task to guarantee the required connec-
tion reliability performance. Analytical solutions, based on
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mathematical models, have been developed to estimate linear
and nonlinear impairments (NLI) of lightpaths before their
establishment. Two commonly used methods are the split
step Fourier method (SSFM) and the Gaussian Noise (GN)
model. The SSFM has been proven to accurately estimate
the QoT but it suffers from the long computation time and
high complexity. Authors in [1] developed an optical fiber
simulator based on SSFM. The proposed software was tested
using graphical processing units (GPU) computation on a
standard desktop computer and a more robust server. Their
simulations showed good accuracy and speed improvement
in estimating the signal-to-NLI ratio on the server compared
to a baseline result obtained by central processing unit (CPU)
computation. Moreover, authors in [2] used the same SSFM
to generate data set through simulation to test a predictive
models proposed in their study. On the other hand, the
GN model, although less accurate, offers faster computation
than the SSMF method. In [3], the authors presented the
validation of an open-source network simulation application
that is called Gaussian noise simulation in Python (GNPy).
The tool is based on the GN model and is used to
generate QoT data in many research studies [4], [5], [6], [7],
[8], [9]. Due to its favorable trade-off between computational
efficiency and accuracy, the GN model is more commonly
employed than the SSFM for analytical QoT estimation of
unestablished lightpaths. However, the accuracy of analytical
QoT estimation methods is fundamentally constrained by the
quality of input parameters–such as span loss, dispersion,
and amplifier noise figures–whose precision and availability
are often limited in real-world network environments.
Recently, QoT estimation based on machine learning (ML)

gained high attention. In ML-based approaches, algorithms
learn the complex mapping between input features – such as
candidate lightpath characteristics and network configuration
parameters - and the corresponding QoT outcomes. Thus,
estimating the QoT of unestablished lightpaths involves
leveraging these features to predict the feasibility and
expected performance of the connection. By comparing the
predicted QoT against the receiver sensitivity threshold, the
viability of a potential lightpath can be assessed, which
is an essential step for efficient service provisioning. An
underestimated QoT may result in underutilized resources,
while overestimating it can lead to connection failures and
violations of service level agreements (SLAs). ML classifiers
based on K-nearest neighbors (KNN), random forest (RF),
and support vector machine (SVM) were proposed in [10],
[11], [12]. Additionally, a QoT estimation model using
artificial neural network (ANN) was introduced in [13].
All these models were trained with synthetic Bit-Error-
Rate (BER) data generated by using the additive Gaussian
white noise (AGWN) model. While the results demonstrated
the potential of ML techniques for efficient and automated
lightpath provisioning, these studies relied exclusively on
proprietary QoT datasets generated by individual research
groups. Consequently, the challenges related to reproducibil-
ity and independent validation of results persist.

In 2022, the Fraunhofer Heinrich Hertz Institute (HHI)
has made available a collection of four QoT datasets based
on the Core Optical Network of the United States (CONUS)
and Telefónica Spain National Network (TSNN) topologies,
intended for evaluating QoT estimation models [14]. The use
of the publicly accessible QoT datasets provides significant
benefits, enabling researchers to validate their findings,
benchmark models against existing methods, and compare
performance effectively. So far different approaches using
open QoT datasets to estimate the QoT for unestablished
lightpaths have been explored. However, most proposed solu-
tions rely on complex ML techniques that primarily focus on
improving predictive performance, often overlooking critical
aspects such as computation time (during both training and
inference) and model interpretability. While interpretability
is essential for building trust in model’s decisions, inference
time is directly linked to decision-making speed and can
significantly impact lightpath provisioning in real-world
applications. For network operators, short training times are
crucial for adapting quickly to changing network conditions
in dynamic, high-capacity optical networks. In addition,
during a real-time provisioning, low-latency inference is
essential to ensure SLA compliance and optimal resource
utilization. Therefore, minimizing ML model training and
inference times not only enhances operational efficiency
but also supports the deployment of cognitive manage-
ment systems in real-time optical network environments.
Additional strategies such as transfer learning (TL), active
learning, and meta-learning have been proposed to enable
practical deployment of ML-based QoT estimation models
in real-world networks [15]. These approaches address
the scarcity of field QoT datasets, as effective ML-based
QoT estimation models require both high-quality and large
volume of data. Active learning optimizes the selection
of informative samples, meta-learning extracts transferable
knowledge across tasks, and TL leverages prior knowledge
from related domains to improve learning efficiency and
generalization in new scenarios. Many TL solutions are
based on neural networks pre-trained on source domain data
and fine-tuned on target domain data [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26]. While these models
can achieve high accuracy, their deployment in production
networks is hindered by computational complexity, large
labeled data requirements [20], and limited generalizability
due to heterogeneous optical system configurations, as
highlighted in [7]. As a result, models often require full
retraining for each new system, leading to significant time
and resource overhead.
In this work, we propose a novel TL framework that

includes a feature selection stage before applying DA
techniques with lightweight classifiers, improving model effi-
ciency and generalizability across different optical network
scenarios. We adopt an incremental approach. In the first
step, we select the best-performing low-complexity classifier
through a comparative performance analysis of three ML
techniques – KNN, SVM, and RF - with a more advanced
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deep learning ANN-based approach. In the second step,
we propose applying a feature selection strategy using the
recursive feature elimination with cross-validation (RFECV)
and Boruta-SHAP where SHAP (SHapley. Additive exPla-
nations) is a game-theoretic approach used for feature
importance. A comparative evaluation of model accuracy and
computation times across the four datasets enables finding
the most effective feature selection method. The feature
selection methods automatically identify the most relevant
features for the RF-based solution for each dataset. In the last
step, leveraging the RF classifiers, we implement a transfer
learning strategy that combines domain adaptation (DA)
techniques with feature space derived from the automated
feature selection process in the preceding phase.
This paper is organized as follows: Section II summarizes

the related works on lightpath QoT estimation. Section III
describes the methodology, as well as the dataset and
proposed framework for automated feature selection and
domain adaptation guided by reduced features. Section IV
details the results with a comparative analysis of the different
models as well as the performance achieved by our proposed
domain adaptation guided by feature selection framework in
an inter-network scenario. Finally, Section V offers some
conclusive remarks as well as future research directions.

II. RELATED WORKS
In this section, we review prior research on ML-based
lightpath QoT estimation, starting with general regression
and classification approaches, followed by studies using
the Fraunhofer QoT datasets. We then examine efforts to
enhance model trustworthiness through explainable artificial
intelligence (XAI) and to improve adaptability for addressing
data scarcity challenges in real-world deployment scenarios.
ML applications in management of optical networks

have gained interest in recent years. Leveraging recent
advancements in technologies and data accessibility, ML
uses algorithms to enable cognition in optical networks.
Four main categories of ML techniques are used in the
field, i.e., supervised learning, semi-supervised learning,
reinforcement learning and unsupervised learning. In super-
vised learning models are trained using labeled data to map
input parameters to correct outputs. It includes classifica-
tion and regression tasks. Semi-supervised learning trains
models using a combination of labeled and unlabeled data.
Reinforcement learning requires an agent to learn through
trial-and-error interactions within an environment and make
decisions, which can lead to rewards or penalties. Finally,
unsupervised learning allows to find hidden patterns by using
clustering and dimensionality reduction.
ML-based lightpath QoT estimation can be achieved

through a regression or a classification strategy. Supervised
learning is the most used approach to predict categorical
or continuous QoT indicators. Reference [27] presents an
overview of studies on the topic categorized into three
main groups: traditional regression methods, classification
approaches and deep learning-based regression architectures

such as recurrent neural networks (RNN)s and ANNs.
Numerous studies have proposed both regression [18],
[28], [29], [30], [31] and classification approaches [32],
[33], [34], [35], [36] for estimating the QoT of unestablished
lightpaths. However, as previously noted, these solutions
were developed using proprietary datasets, limiting the
reproducibility and independent validation of their results.
Most research on ML-based QoT estimation has focused

primarily on the predictive performance of the models.
In [37], the authors employed a regression approach to
predict the signal-to-noise ratio (SNR) of synthesized light-
paths, using data generated via the enhanced Gaussian
Nonlinear (EGN) model. This method is similar to the
one proposed in this paper. However, their solution suffers
from the comparability issue discussed in [14], while it is
addressed in the solution presented in this paper.
Moreover, researchers have often adopted complex ML

techniques such as deep learning, which offers improved
performance but come at the cost of interpretability and
transparency in the model’s decision-making process prior
to deployment. In [38], the authors addressed interpretability
and transparency challenges by proposing an Extreme
Gradient Boosting (XGBoost) model for lightpath QoT
estimation which incorporates XAI techniques. They used
SHAP as a framework for feature selection to identify a
subset of features sufficient for accurate QoT estimation.
Recognizing the benefits of reproducibility, validation,

and fair comparison, many researchers have leveraged the
publicly available Fraunhofer QoT datasets to propose a
variety of solutions for lightpath QoT estimation. Studies
such as [14], [39], [40], [41] introduced complex mod-
els based on ANN, deep convolution neural networks
(DCNN), vertical federated learning (VFL) and secure multi-
party computation (SMPC) techniques. In contrast, works
like [43], [44] proposed an AI/ML-as-a-service framework
for optical network automation, utilizing the Automated ML
(AutoML) libraries that favor simpler models such as RF.
However, RF was not selected as part of the final ensemble
applied in their framework. The evaluation of the frame-
work’s inference performance revealed persistent challenges,
particularly regarding inference speed, explainability and
model trustworthiness.
Although the authors in [38] also utilized the Fraunhofer

datasets to propose an XGBoost-based solution for QoT
estimation – incorporating explainable XAI techniques – they
employed a heuristic-based feature selection approach and
did not address computational efficiency in their proposed
solution. Furthermore, XGBoost is generally considered
more complex than RF, due to its greater number of
tuning parameters, more complex architecture, higher com-
putational cost, and lower interpretability. While RF trains
decision trees in parallel and aggregates predictions through
averaging, XGBoost builds tree training sequentially using
gradient boosting and regularization step, which - although
potentially more accurate - can hinder optimization and
interpretability.
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In production networks, adaptability - alongside inter-
pretability and computational efficiency - is crucial for
overcoming the scarcity of labeled QoT data. Many deep
learning-based TL solutions have been proposed to adapt
models from source domains with abundant labeled data
to target networks with limited datasets. Although these
approaches can achieve high prediction accuracy, their
substantial computational complexity often limits their
practical deployment in real-time or resource-constrained
environments. Reference [20] proposed a hybrid framework
combining knowledge distillation (KD) with TL to transfer
knowledge from a large, complex model to a smaller more
efficient one, thereby reducing computational complexity,
storage overhead, and dependence on large-scale training
datasets. In [45], a TL approach leveraging three standard
ML algorithms, i.e., SVM, RF, and logistic regression
(LR), was evaluated using two DA methods for transferring
knowledge between two network domains, with results
showing that DA outperformed simple mixing of source
and target data. In [24], a comparative study of DA and
active learning with Gaussian Processes (GPs) showed that
active learning achieved similar QoT estimation performance
improvements while requiring fewer labeled samples than
the domain adaptation, highlighting its effectiveness in data-
scarce scenarios.
In TL, DA facilitates knowledge transfer across network

domains, enabling models trained on large source datasets
to perform effectively in target domains with limited data.
This capability is vital for the practical deployment of QoT
estimation solutions in real-world optical networks where
labeled data are scarce. Our approach combines automated
feature selection with DA to enhance the generalization of
lightweight, interpretable models.
In this work, we address three key aspects of ML-based

lightpath QoT estimation with the goal of facilitating
real-world deployment by focusing on model complexity,
performance, benchmarking, interpretability as well as adapt-
ability. First, we present RF as a meaningful, interpretable,
and computationally efficient alternative for lightpath QoT
estimation. Rather than introducing yet another baseline,
our focus is on simpler ML models that have been
relatively overlooked in the prior works, especially in
comparison with more complex methods such as ANNs
and XGBoost [14], [38]. Although RF is a well-established
ML technique, our contribution lies in demonstrating its
effectiveness and practicality in the QoT estimation context,
highlighting how its architectural simplicity translates into
both operational efficiency and performance advantages. This
contribution is significant as it provides practical insights into
the operational feasibility and model selection criteria for
QoT estimation tasks in real-world optical networks. Second,
in contrast to the prior studies, we employ a fully auto-
mated and interpretable feature selection methodology, which
enhances model transparency, reduces manual intervention
in the modeling process, and supports scalable deployment
across diverse network environments. Our implementation of

RFECV and Boruta-SHAP represents a novel advancement
over the heuristic-based method used in [38], providing a
replicable framework for other researchers working with
publicly available datasets. Third, we introduce a feature-
based DA approach that enhances alignment between source
and target domains by leveraging automated feature selection
to identify domain-invariant and relevant features prior to
applying TL. This contrasts with the source domain baseline
(SDB) approach described in [24], [45], [46] and proposed
in [14], to address the limited availability of datasets related
to topology, transceivers, and network status. Additionally,
our proposed solution enables more stable transfer between
domains by only sharing relevant features while applying
the DA techniques.
To support multi-domain infrastructure deployments,

network operators need fast, scalable and accurate decision-
making for real-time lightpath provisioning, as well as model
interpretability for easier troubleshooting and refinement.
Keeping in mind the above mentioned preferences, in this
paper we demonstrate the advantages of simpler models
in terms of performance, interpretability, and adaptability
across varied optical network architectures. Hence, the main
motivation and impact of our contribution is the relevance
for network operators, which has not yet been sufficiently
addressed by other existing works.

III. METHODOLOGY
This section outlines the methodology, beginning with a
description of the dataset, model selection, and comparative
assessment strategy. We then detail the automated feature
selection methods and DA techniques applied in this paper.
Finally, we present the procedures for data preprocessing,
feature selection, and feature-guided DA.
Fig. 1 shows the overall process of our proposed QoT

estimation approach with subprocesses such as data pre-
processing, model selection, automated feature selection
including the visualization of how the important features
impact the classification of lightpath instances. The figure
also illustrates the implementation of DA guided by the
Boruta-SHAP-based feature selection, and the performance
analysis of our proposed solution in inter-networks context.

A. DATASET DESCRIPTION
This study is conducted using the QoT datasets that are made
available to the research community in [14]. The synthetic
datasets are generated using the Fraunhofer Institute’s plan-
ning tool for optical networks (PLATON). More information
about the configuration and procedures to generate the data
are available in [14]. A QoT estimation (QOTE) module uses
the Gaussian-Noise-based nonlinear channel model proposed
by [47] to calculate the Optical Signal-to-Noise (OSNR) on
each link which helps estimating the QoT of lightpaths. The
QOTE module estimates the QoT of new lightpaths through
a provisioning procedure triggered by a traffic request. Based
on the estimated QoT values, the new lightpath can be
either established or blocked. QoT metrics of established and
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FIGURE 1. Overall process to implement automated, interpretable and adaptable lightpath QoT estimation models. Xsrc_cor and Xtgt_cor are source and target subsamples
transformed with CORAL; Xsrc_aug , yaug , and Xtgt_aug are source subsamples with labels and target subsamples transformed by feature augmentation.

rejected connection requests are documented in PLATON
along with numerous statistics in its Traffic Engineering
Database (TED).
The simulation scenarios behind the gathered QoT data

are based on elastic optical networks using the C-band. With
a fixed-grid flex-rate network scheme and a fixed channel
spacing of 37.5 GHz, the configuration allows for 96 chan-
nels carrying various data rates. Nominal central frequencies
range from 192.2 to 195.7625 THz with the frequency grid
anchored to 194 THz [14]. Possible modulation formats
include polarization-multiplexed binary phase-shift keying
(PM-BPSK), polarization-multiplexed quadrature phase-shift
keying (PM-QPSK), and higher-order quadrature ampli-
tude modulation (QAM) schemes such as PM-8QAM,
PM-16QAM, PM-32QAM, and PM-64QAM. Physical link
parameters are set as follows: the EDFA noise figure to 5 dB,
the amplifier gain to 16 dB, the fiber attenuation coefficient
to 0.2 dB/km, the fiber dispersion to 17 ps/nm/km, the fiber
nonlinear coefficient to 1.3 1/W/km, the noise bandwidth
to 12.5 GHz, and the reference wavelength to 1550 nm.
The symbol rate is set to 28 GBd and the channel launch
power to –3 dBm. All links consist of one or more
80-km spans of ITU-T G.652 SMF. Erbium-Doped Fiber
Amplifiers (EDFAs) are used to compensate for span loss.
A Hard Decision Forward Error Correction (HD-FEC) is
implemented for error correction with a required minimum
pre-FEC BER of 3.8 × 10–3. More details about the
simulations to build the four datasets can be found in [14],
included in the documentation provided with each dataset.
With almost 1.2 million samples each, these datasets provide
a wide range of simulated networking scenarios. Each dataset
contains QoT metrics such as the OSNR, SNR, and BER
as well as a binary class label indicating QoT compliance.
Although the GN model used in PLATON includes nei-
ther inter-channel stimulated Raman scattering (ISRS) nor
modulation format correction, these datasets include consis-
tent structure across multiple simulated network scenarios
and offer rich feature representation with topology-related,
network-related and transceiver-related characteristics to sup-
port both network-wide and lightpath-based QoT estimation
tasks, enabling diverse ML applications.

The lightpath dataset comprises 35 scalar features with
different numbers of instances. Each subset includes 31
lightpaths’ characteristics with 4 simulation-related meta-
data attributes. Four target variables are associated to each
instance: a binary class label based on a predefined BER
threshold (BERth = 0.0038), the BER, the OSNR and the
SNR of the lightpath. Binary class labels can be positive
(y = 1) or negative (y = 0). More information about the
features and labels can be found in [14].
For each dataset, we adopt the same strategy as in [14] to

have class-balanced subsets of 100,000 instances. We keep
the same names for Datasets 01, 02, and 04 which derive
from the CONUS optical network as well as Dataset 03
which is based on the TSNN. Table 1 shows a complete list
of the features used as the input to our models.

B. MODEL SELECTION AND COMPARATIVE
ASSESSMENT STRATEGY
As mentioned in the Introduction, we first implement twelve
models leveraging the four subsets of dataset 01, 02, 03,
and 04 using the three classical ML techniques KNN, SVM
and RF. After comparing their classification accuracies, the
RF models outperform the two other models for dataset 01,
02, and 04, while the SVM model performed better with the
dataset 03.
Table 2 shows a summary of the results obtained for each

scenario.
To ensure a fair comparative evaluation with the first

formulation of Occam’s Razor principle as stated in [48], we
compare models based on both classification performance
and computational efficiency within a consistent execution
environment. As in [14], we implement ANN models for
comparison with the RF classifiers. We use the SciKeras
library version 0.13.0 with the module scikeras.wrappers to
develop the classifiers. In the hyperparameter optimization
step, we consider 100 epochs with 128/256 hidden units,
the learning rate in {0.001, 0.01}, 0.1/0.2 for the model
dropout rate and the batch size in {50, 100}. The rectified
linear unit (ReLU) and the hyperbolic tangent (tanh) are
the two activation functions tested for the hidden layer.
For the RF models, we use the scikit-learn library version
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TABLE 1. Description of features representing lightpath instances in the datasets
with their measurement units.

TABLE 2. Classification accuracy (%) .

1.7.1. In the hyperparameter tuning for the RF classifiers
we take two values for number of estimators {50, 75},
as well as for the maximum depth {27, 30} and three
values for the maximum leaf nodes {66, 72, 80}. We keep
the default values for the other parameters. We consider a
5-fold cross-validation using GridSearchCV from the scikit-
learn library for both techniques. The performance results
in terms of classification accuracy and computation time for

TABLE 3. Performance comparison of RF and ANN models.

the new ANN and RF models are shown in Table 3. Only
the classification performances are available for the models
presented in [14]. Our proposed RF models outperform both
their and our ANN models for dataset 01, 02 and 04.
However, our ANN model for dataset 03 performs better
than both the ANN proposed in [14] and our RF models
(with classification accuracy of 99.34%, 99.03% and 99.24%
respectively).
Moreover, as expected, the RF models consistently have

faster computation times than the ANN models in all
scenarios. The computation time presented in Table 3 for
each scenario is achieved on a workstation using an Intel
Core i5-8250U 1.6 GHz CPU and 16 GB RAM. These
findings reveal that RF-based models significantly reduce
training time (by 10 to 33 times) and inference time (by 6
to 11 times) while maintaining classification accuracy.
We also perform a comparison of our RF-based models

with the XGBoost models. To validate the replication of the
solution proposed in [38], we use a similar approach with
the whole set of features for Datasets 03 and 04, including
the simulation-related meta-data attributes, and without any
pre-processing of the class-imbalanced instances in the two
datasets. The replicated XGBoost models perform similarly
to [38] with accuracies of 99.60% and 99.84%, compared
to 99.70% and 99.80% for Datasets 03 and 04, respectively.
Moreover, to allow a fair comparison between our simpler
RF-based solution and the proposed XGBoost-based models,
we use our class-balanced sub-samples with the selected
features from [38]. The RF-based models achieve almost
similar accuracies with differences of 0.01% and 0.02% for
Datasets 03 and 04, respectively, making it a formidable
choice to assess how a simple approach compares to a
complex one in a context of lightpath’s QoT estimation,
leveraging the available QoT datasets proposed in [14].

C. AUTOMATED FEATURE SELECTION METHODS AND
DOMAIN ADAPTATION TECHNIQUES
In [38], the authors applied the recursive feature elimination
(RFE) method to select important features from the datasets
used to build their classifiers. But this method is only rec-
ommended when prior knowledge of the optimal number of
features is available. We implement an automated approach
using the following two methods.
RFECV is a feature selection method that automatically

determines the most relevant features for a specific model.
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An RFE selector is used on different cross-validation splits.
The number of selected features is set to the number of
features that maximize the cross-validation score, obtained
by evaluating the performance for different numbers of
selected features and averaged across folds. This algorithm
uses a supervised learning estimator that returns information
about feature importance.
Boruta-SHAP is proposed here in order to leverage the

robustness of the Boruta method and the interpretability
of SHAP values. Boruta is a tree-based method working
for tree models and other classification models that output
feature importance measure. The algorithm shuffles original
features to create shadow attributes at each iteration. The
algorithm iteratively compares the importance of the features
with the importance of the shadow attributes. Features are
consecutively dropped or admitted when their importance
compared to the shadow ones is worse or better, respectively.
The algorithm stops either when all features are covered, or
it reaches a specified limit. SHAP values help to determine
feature importance based on principles of cooperative game
theory. They allow a better understanding of the model’s
decisions by measuring the contribution of each feature to
the classifiers’ performance.
In [37], the authors used another automated version of the

techniques, namely BoostRFE, and BoostBoruta, applying
SHAP values, but the solutions were designed for gradient
boosting models such as light gradient boosting (LGBM) and
XGBoost. With our RF-based models, we explore the two
automated methods for the feature selection, i.e., RFECV
and Boruta-SHAP, which both are compatible with RF.
The fully automated feature selection process retains

only statistically significant features, eliminating the need
to manually specify their number. This brings a notable
improvement over the manual approaches used in the
previous studies, e.g., in [38].
We evaluate two DA methods as in [24], [45], [46].
Feature Augmentation (FA) encodes the domain of a

sample by augmenting its feature vector. In particular, the
length of the original feature vector x is tripled with a rule
that depends on the domain. This way, both commonalities
between the two domains and the unique characteristics of
each domain are captured. While for sample coming from
the source domain S, the triple feature vector is defined as
x′ = 〈x, x, 0〉, for sample coming from the target domain
T, the triple feature vector is defined as x′ = 〈x, 0, x〉. It
is a supervised DA technique.
Correlation Alignment (CORAL) transforms the features

in the source domain to match the second-order statistics of
the features in the target domain. This allows minimizing the
domain shift. A transformation is applied that re-colors the
whitened features of the samples in S with the covariance
computed from the feature distribution of the samples in T.
The transformed data is used to train the model. This
method does not require any information about the labels
of samples in T; thus, it is considered an unsupervised DA
technique.

In this study, we implement the source domain baseline
(SDB) where the model is trained only with source domain
data, for comparison with the two DA techniques. The other
baseline scenarios such as target domain baseline (TDB) or
dataset mixing baseline (DMB) are not considered in our
assessment.
To improve the model’s ability to find patterns, FA adds

domain-specific information, such as statistical summaries or
domain markers, to the original feature collection. CORAL
applies a linear adjustment to align the second-order statistics
(covariance) of the source and target feature distributions,
minimizing domain shift [45].

D. DATA PREPROCESSING, AUTOMATED FEATURE
SELECTION AND THE FEATURE-SELECTION-BASED
DOMAIN ADAPTATION
The four gathered class-balanced subsets of data used in
this work include 50,000 instances of each class, forming
four sub-samples of 100,000 instances as in [14]. The
StandardScaler class from the sklearn package in Python is
used to remove the mean and scale the data to unit variance
as a way of standardizing the features. It is worth noting that
while data scaling benefits techniques such as KNN, SVM,
and ANN, it is intentionally not applied to the RF technique
in order to preserve the interpretability of feature importance.
Data scaling can improve gradient convergence in ANN,
facilitate the construction of decision boundaries in SVM,
and enhance distance calculations in KNN for more accurate
neighbor selection. In contrast, RF does not rely on distance-
based or gradient-based computations and therefore does not
benefit from feature scaling. Furthermore, scaling the data
can obscure the real-world meaning of feature values, making
SHAP-based explanations less intuitive.
1) Automated Feature Selection: Reducing the number

of features when building ML models simplifies the resulting
models. This can lead to faster training and prediction time as
well as easier interpretation and reduced risk of overfitting.
Two methods, compatible with RF, are explored for an
automated feature selection to have a better insight to how
the parameters affect the lightpaths’ QoT. We applied the
RFECV and Boruta-SHAP methods to the four datasets
and built RF-based classifiers using the reduced data sets
obtained with the two methods.
After the model selection process, we perform the

automated feature selection process. We start with the
RFECV method, where we apply the scikit-learn ML
library in Python, using the RFECV class. We pass our
previously created RF-based estimator into the RFE with
cross-validation instance to find the optimal number of
features for each of the four class-balanced sub-samples. We
keep the number of folds (cv parameter) to 5, its default
value. The most relevant features are obtained by fitting
the RFECV model. We then transform the training and test
data using the RFECV model with the ‘transform()’ method.
Next, we train the final model using the transformed dataset
with selected features to perform final classification of the
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TABLE 4. Performance comparison of RFECV and Boruta-SHAP.

instances in the feature-reduced test dataset. For the Boruta-
SHAP implementation, we install the package and import
the method. Similarly to the RFECV implementation, we
pass our RF-based estimator into the BorutaSHAP instance.
We set the importance measure parameter to ‘shap’, and
classification to ‘True’. We transform the training and test
datasets in this case by dropping the less relevant features: we
use the attribute ‘features_to_remove’ from the BorutaSHAP
class which tracks the rejected features during the selection
process. And for the final steps, as with the RFECV method,
we train the model with the selected features then we predict
the class for the transformed test dataset. These final steps
allow us to compare the two strategies and establish our
choice. While RFECV is inherently more efficient when used
with large datasets, our findings show that simpler models
built using class-balanced sub-samples can achieve better
overall classification accuracy and reduced computation time.
This makes them a more practical option for real-world appli-
cations where both efficiency and performance are critical.
To interpret the ML models built with reduced fea-

ture sets, we install the SHAP framework and use its
explainer interface. The interface supports both local and
global explanations: local explanations allow to visualize
and interpret the model’s decision for a specific instance,
while global explanations reveal the contribution of each
feature to the models’ predictions. In our study, we use
‘beeswarm’ for global explanations and ‘forceplot’ plots for
local explanations.
2) Selected-Feature-Based DA: We propose a DA frame-

work based on the Boruta-SHAP feature selection performed
in previous step. We integrate the Boruta-SHAP-based
feature selection with the DA transformation into an efficient,
explainable, and adaptable RF-based solution, addressing
computational complexity and opacity in DL-based mod-
els while lowering the requirement for large amounts of
training data in the development of supervised learning
models. The pseudo-code of our approach is shown in
Algorithm 1. We determine the source and target domains
based on the worst-case scenario for domain adaptation inter-
networks, namely with Dataset 03 from TSNN as the source
domain and the Dataset 02 from CONUS as the target
domain. Then we assess the two methods FA and CORAL,
commonly used for transfer learning in QoT estimation
to test our selected-feature-based models’ generalization

between different networks. In this case, we consider the
scenario where the source domain is gathered from the
small network TSNN, and the target domain from the more
comprehensive network CONUS. We pick three different
target sample sizes of 50, 100, and 1000 instances. After the
first transformation performed using the Boruta-SHAP-based
feature selection, we perform the second transformation
using the CORAL method, then we fit the RF-based model
using the transformed data. We predict the class for new
data instances from the target domain. For the FA method,
the outputs from the first transformation are used along with
the labels to build the augmented feature vectors. The RF-
based model is then fit using the new augmented data, and
the resulting model is used to predict the class for unseen
instances from the target dataset. Moreover, we implement
the SDB scenario, where only source domain data is used
to build the model, with the reduced feature set. While
the feature sets were arbitrarily chosen to build the models
in [45], our solution leverages a more comprehensive feature
set, where the automated feature selection Boruta-SHAP
allows transferring only relevant attributes.
We test our models using different sizes of target domain

datasets and we present different performance parameters,
along with the classification accuracy, to have better insight
on the models’ decision.

IV. NUMERICAL RESULTS AND COMPARATIVE
ANALYSIS
This section highlights the performance of automated feature
selection and evaluates the effectiveness of the proposed
feature-guided DA framework in an inter-network scenario.

A. BORUTA-SHAP-BASED FEATURE SELECTION
The two aforementioned feature selection methods, i.e.,
Boruta-SHAP and RFECV, are used to select relevant
features from the four datasets. In the context of lightpath
QoT estimation, both the classification accuracy and the
training time are good parameters to evaluate models’
performance.
As shown in Table 4 the Boruta-SHAP method achieves

better performance than the RFECV method with slightly
higher classification accuracy and faster training time for
Datasets 02 (99.68% and 8.89 seconds against 99.67% and
10.3 seconds) and 04 (99.56% and 10.01 seconds against
99.55% and 15.62 seconds), while the RFECV method
performs better for Datasets 01 (98.59% and 7.14 seconds
against 98.55% and 17.98 seconds) and 03 (99.29% and
7.82 seconds against 99.25% and 14.91 seconds). We
pick the Boruta-SHAP method for the rest of this study
because it provides superior global and local interpretability
compared to the alternative RFECV method used in this
context of explainable models for lightpath’s QoT estimation
using the Fraunhofer QoT datasets. Indeed, while RFECV
focuses on eliminating features based on the model’s internal
feature importance, Boruta-SHAP uses the SHAP values for
consistent feature attributions and interpretability.
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TABLE 5. Selected features from the most to the least significant in model’s decision for each dataset.

FIGURE 2. SHAP summary plots for the RF-based models using: (a) Dataset 01 and (b) Dataset 02.

The resulting sets of features obtained with Boruta-SHAP
are of 14 features, 10 features, 17 features, and 10 features
for Dataset 01, 02, 03, and 04 respectively. The rankings
of selected features for the four datasets are displayed in
Table 5.

With the class-balanced sub-samples, we can see that the
same more important attributes appear for the four datasets
with similar ranking for the first four features, with the
exception for Dataset 03 where the sum of the spectral
occupation of the links traversed by the lightpath (Sum Link
Occ) is ranked 3rd while it is ranked 7th for the other 3
datasets. And the path length (Path Len) is ranked 7th for
Dataset 03 while it is third for all other datasets. This can
be supported by the path length distributions per modulation
format and data rate displayed in [14] for the two network
topologies CONUS and TSNN. The first four important
features for the sub-samples gathered from the CONUS
topology are the cardinality of the modulation format (Mod
Order), the number of spans (Num Spans), the path length
(Path Length), and the average link occupation (Avg Link
Occ). And for Dataset 03 from TSNN topology, the four most

important features are Mod order, Num Spans, Sum Link
Occ, and minimum link occupation (Min Link Occ). This
confirms that datasets from CONUS exhibit greater variation
in Path Len than the one from TSNN, and the distributions
of Sum Link Occ and Min Link Occ are more heterogeneous
in Dataset 03. Despite using class-balanced subsamples of
the datasets and a fully automated feature selection process,
we obtained similar results for the top three most important
features across Dataset 03 (Mod Order, Num Spans, Sum
Link Occ) and Dataset 04 (Mod Order, Num Spans, and Path
Len), aligning closely with the outcomes reported by the
solution proposed in [38]. This highlights one of the key
advantages of using publicly available datasets: it increases
our confidence in the outcomes of the proposed solution.
More importantly, the process enables us to focus on the
most informative features, reducing feature-space noise and
improving computational efficiency. Additionally, leveraging
only relevant features enhances model interpretability.
Fig. 2 and Fig. 3 show the SHAP summary plots for

the models built with the reduced feature sets for global
explanation purposes. The figures show only the most
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FIGURE 3. SHAP summary plots for the RF-based models using: (a) Dataset 03 and (b) Dataset 04.

relevant features, amongst the 31 attributes, for lightpath QoT
estimation using the four datasets. These two figures display
bee swarm plots, with features ordered by their impact on the
classifier’s decisions as measured by SHAP values. Each dot
represents an individual observation, with color indicating
whether the corresponding feature is high or low relative
to other instances in the dataset. Negative SHAP values
indicate a negative impact on the model’s decision, while
positive values correspond to a positive impact. For all four
datasets, high values of Mod Order contribute negatively to
the classification. In other words, a higher modulation format
leads the model to assign a negative class label (class 0) to
the corresponding instance. Similarly, high values of Num
Spans exhibit a similar pattern across all datasets, with the
exception of Dataset 02 shown in Fig. 2 (b). This aligns with
the observation that, in this specific subsample, all instances
with a class 0 label have low Num Spans values ranging
from 23 to 39, while the instances with a positive class label
(class 1) have Num Spans values between 1 to 102. Another
interesting observation in Figures 2 (a), 2 (b), and 3 (b),
concerns the feature Path Len, which ranks as the third most
important feature across all datasets, with the exception of
Dataset 03 in Fig. 3 (a). The visualization proposed in [14]
shows Path Len values ranging from 84 to 1382 km for
Dataset 03 while the feature values range from 24 to more
than 7000 km for the three other datasets. Although this
feature is ranked seventh in Dataset 03, its contribution to
the model’s decisions remains consistent across Dataset 01
and Dataset 04. High values of Path Len are associated to
class 0 while low values tend to lead the model toward
class 1, as seen in Fig. 2 (a), Fig. 3(a) and (b). For the
model built with Dataset 02, we can see in Fig. 2 (b) that
high values of Path Len have no significant impact on the
model’s decision. This is consistent with the observation that
most of the instances in the subsample with high values of
Path Len (values greater than 2640 km) are labeled as class
1, as clearly shown in Fig. 4 published in [14].

In real-world scenarios, this Boruta-SHAP-based feature
selection integration allows not only to identify the relevant
features for QoT estimation of unestablished lightpaths
while preserving the classification performance, but with the
knowledge provided on the impact of important features
on each model, network operators can develop domain-
specific strategies to address different SHAP patterns for
different network topologies. Also, Figures 2 and 3 can help
in prioritizing features with high impact on the models in
provisioning decisions.
The shap package in Python allows displaying local

explanation about the classifier’s decision built with selected
features using the Boruta-SHAP method. Fig. 4 shows
examples of misclassified instances for Dataset 01 for a false
positive and a false negative case respectively, namely local
explanation examples. Fig. 4 (a) illustrates a false positive
case in which the modulation order, the path length and
the number of spans increase the model’s confidence in
predicting class 1. For this particular instance, only the Avg
Link Occ contributes negatively to the model’s prediction
score. A lightpath instance, characterized by a Path Len of
3462 km, Num Spans of 48 and Mod Order of 8, supports
a prediction of “class 1”. However, an Avg Link Occ of
66.22 reduces the model’s confidence in this prediction.
Notably, the ground truth label for this instance is class 0.
Fig. 4 (b) shows a false negative case in which Mod Order
of 8 increases the model’s confidence in predicting class
1. But the values for Num Spans of 51, Avg Link Occ of
53.22, Path Len of 3686.93 km, and Freq of 193.88 THz
all contribute negatively to the model’s prediction score,
leading to a “class 0” label. The ground truth label in this
case is class 1. The length of the bar, representing a feature
in the figure, indicates the magnitude of its impact on the
classifier’s decision. The Mod Order is the most influential
feature contributing to the false positive shown in Fig. 4(a),
while the Num Spans, Avg Link Occ, and Path Len have a
greater impact on the false negative shown in Fig. 4 (b).
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FIGURE 4. Examples of misclassification from Dataset 01: (a) False positive and (b) False negative.

This transparency in the decision-making process enables a
deeper understanding of model misclassification and supports
further analysis and strategies to complement the automation
provided by ML. A step added to the lightpaths’ provisioning
process where the knowledge provided by the Boruta-SHAP
feature selection can be used to review lightpaths’ requests
presenting specific feature values as the ones shown in
Figures 4 (a) and (b). Reviewed requests can be added back
to the training set to improve the ML models.
The RF-based model constructed with the 14 selected

features outperforms the model built with all 31 features for
Dataset 01, with accuracies of 98.64% and 98.6% respec-
tively. And the classifier built with 10 features from Dataset
02 performs slightly better than the 31-feature classifier, with
99.65% and 99.64% respectively. The model built with 17
features from Dataset 03 achieves a classification accuracy of
99.27%, which is better than the performance of the model
with all features, which is 99.24%. Lastly, we observe a
difference of 0.02% between the model built with 10 features
from Dataset 04 and the one built with 31 features (99.52%
and 99.5%, respectively).
Although there is only a slight improvement in the

classification accuracy for each model, while running on a
workstation using an Intel Core i7-9700T 2.00GHz CPU
and 16 GB RAM, they show clear reductions in the
training times: from 21.98 to 10.38 seconds for Dataset
01, from 11.44 to 4.43 seconds for Dataset 02, from
16.24 to 11.14 seconds for Dataset 03, and from 21.18
to 6.21 seconds for Dataset 04. This represents reductions
of 52.78%, 61.28%, 31.40%, and 70.68%, respectively.
Moreover, inference times decrease from 73.8 to 71.8 mil-
liseconds for Dataset 01, from 47.8 to 33 milliseconds for
Dataset 02, from 60.8 to 41.9 milliseconds for Dataset
03, and from 71.8 to 41.9 milliseconds for Dataset 04.
This represents reductions of 2.71%, 30.96%, 31.09%, and

TABLE 6. Performance of the RF-based models using complete vs. reduced features
sets.

41.64% for reduced feature sets of Dataset 01, 02, 03, and 04
respectively.
Table 6 shows a summary of the training time and

inference speed of the classical RF-based classifiers built
with the complete sets of data and with the reduced
feature sets for comparison. These findings show that, with
automated feature selection, simpler RF-based models can
achieve accuracy comparable to full-feature models while
significantly reducing training and inference times. This
highlights the practical advantages of using lightweight,
interpretable models in time-sensitive applications such as
real-time QoT estimation without sacrificing classification
performance.
The inference times in Table 6 are achieved with 30,000

test samples. Consequently, the times from 33 to 72 ms
presented are the total inference times for the whole test
datasets. Thus, on a workstation using an Intel Core i7-9700T
2.00GHz CPU and 16 GB RAM, the average inference times
per lightpath vary from 1.1 µs to 2.4 µs. These values are
acceptable for practical real-world scenarios if we consider
the target of well below one second per lightpath set for the
computational time by the Open Optical & Packet Transport–
Physical Simulation Environment (OOPT–PSE) group within
the Telecom Infra Project (TIP) [3].
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Algorithm 1: Feature-Selection-Based Domain Adaptation
1: Input:
2: Source dataset: X_src, y_src
3: Target dataset: X_tgt, y_tgt
4: Target sample sizes: TS = {50, 100, 1000}
5: Output:
6: {accuracy, precision, recall, f1_score, auc, compu-

tation time}
7: Feature selection phase
8: Initialize Boruta-SHAP selector
9: Selected_features ← BorutaSHAP.fit_transform(X_src,
y_src)

10: X_src_sel← X_src[:,Selected_features]
11: X_tgt_sel← X_tgt[:,Selected_features]
12: Domain adaptation phase
13: for each num in TS do
14: Generate target samples based on the size

X_tgt_num, y_tgt_num
15: Method 1: CORAL Domain Adaptation
16: Initialize CORAL transformer COR
17: Fit COR model using (X_src_sel,X_tgt_num)
18: Transform the two data samples
19: Train the RF-based model using transformed source

samples and labels
20: Predict classes for transformed target samples
21: Method 2: FA Domain Adaptation
22: Generate domain indicators for source and target

domains
23: Concatenate the source samples with the source

domain indicators and the target samples with the
target domain indicators

24: Combine the obtained augmented data samples
25: Combine the source and target domain labels
26: Train the RF models using the augmented data and

combined labels
27: Predict classes for transformed target samples
28: Jump to performance evaluation
29: end for
30: Performance evaluation
31: for each method m ∈ {CORAL,FA} do
32: Compute performance_metrics_m
33: Store metrics in results[num][m]
34: end for

It is worth noting that the order of magnitude of the
average inference times per lightpath achieved by our RF-
based classifiers is comparable to those reported in [37],
where the models were evaluated using a more powerful
environment (T4 GPU as the primary hardware accelerator,
13 GB of RAM, and approximately 80 GB of disk space)
and a smaller, in-house dataset of 10,000 instances. The
CatBoost model with a FS using the model’s built-in feature
importance ranking in [37], achieves the lowest inference
time of 0.49 ms for a 2000-instance test dataset (average 0.24

TABLE 7. Classification accuracies of the RF-based models trained on source
datasets on target datasets.

µs per lightpath), while the lowest inference time achieved
by our RF-based model is 33 ms for a 30,000-instance test
dataset (in average 1.1 µs per lightpath).

B. RF-BASED TRANSFER LEARNING GUIDED BY
SELECTED FEATURES
In this section, we describe the case where we apply a TL
approach by utilizing the selected features to construct four
source models, each corresponding to one of the datasets. As
mentioned in Section III-B, we apply a feature-representation
transfer strategy, where the features selected from each
source domain with the pre-trained RF models are used to
transform the target domain. We perform a transformation of
the target domain to find shared representation in the data, as
explained in the section about the DA in shallow or classical
learning presented in [42]. This feature transformation
method corresponds to the SDB presented in [45]. We then
evaluate each pre-trained RF model against the three other
datasets with reduced feature sets. The outcome of this study
is shown in Table 8.

Our results confirm that Dataset 01 is the most compre-
hensive of the four subsamples, with classification accuracies
above 99% on Dataset 02 and Dataset 04
In addition, with the selected features the proposed RF-

based models achieve 98.62% on Dataset 03, which is better
than the performance obtained in [14]. Moreover, models
built with Dataset 02 and Dataset 03 achieve classification
accuracies below 71% on each of the other datasets. It is
worth noting that our RF-based model trained with Dataset
04 achieves an accuracy of 98.19% on Dataset 01, while the
model trained with Dataset 01 achieves 99.17% accuracy on
Dataset 04. Similarly to the results in [14], the model trained
with Dataset 01 achieves more than 99% accuracy in classi-
fying test instances from Dataset 04, even though the BPSK
modulation format does not appear in Dataset 01. However,
we could see an increase in classification accuracy (from
73.3% to 98.19%) for the transfer learning on the target
domain Dataset 01 using the model trained with Dataset 04,
as compared to the performance obtained in [14]. This may
be because of the applied feature selection process which,
with the class-balanced subsamples, allows to find new
feature combinations to gain better insight on how to apply
feature-based transfer learning as well as which attributes
are important for QoT estimation in optical networks.
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TABLE 8. Performance metrics of the DA models with Dataset 03 as source domain and Dataset 02 as target domain.

These results show that RF can face generalization
challenges when DA is performed across heterogeneous
domains using the SDB approach, in contrast to the con-
clusions reported in [45]. Nonetheless, the results obtained
using the FA and CORAL feature-selection-based methods
exhibit a significant improvement in classification accuracy
for one of the worst-case scenarios presented in Table 6.
This worst-case scenario corresponds to TL from source
Dataset 03, representing the smaller TSNN network, to
target Dataset 02, associated with the larger CONUS
network.
Our novel TL framework integrates the feature selection

and domain adaptation into a unified algorithm. We use
the Boruta-SHAP technique to build a feature importance
mask that captures the most relevant features from the source
domain while providing insights on classification decision
made by the model. By using the mask to transform both
the source and target domain data, we ensure that adaptation
is performed only over the most meaningful and statistically
stable features. Following the first transformation using the
Boruta-SHAP to select only relevant features, the solution
further adjusts the joint source and target data to minimize
domain shift, allowing the model to learn transferable
relationships. Rather than applying the two components inde-
pendently, our approach combines them into an integrated
transformation that aligns domains, improves generalization
on small target samples, and provides interpretability of
classification outcomes.
Overall better accuracies of 86%, 98%, and 99.10%

are achieved with FS-FA as compared to 82%, 97%,
and 99% obtained with the standard feature augmentation
technique for target domains of 50, 100, and 1000 instances
respectively as shown in Table 8.

We test our proposed feature-selection-based feature aug-
mentation (FS-FA) DA framework with the same source
and target domain sizes used with the SDB approach.
The proposed solution achieved a classification accuracy
of 99.54% with Dataset 03 as the source domain and
Dataset 02 as the target domain. That is an increase of
99.35% in classification accuracy when we compare it
to the 49.93% achieved with the source domain baseline
approach.
The results show that increasing in the number of samples

in the target domain allows the combined (FS-FA) framework
to achieve better performance, with a slight increase in
training time ranging from 10.42 to 10.68 and 10.91 seconds
for 50, 100, and 1000 instances, respectively. The same
trend is observed for the inference time which varies from
10.1 to 10.9, and 15.9 milliseconds for target domain sizes
of 50, 100, and 1000 instances, respectively. For a better
view of trade-offs between sensitivity and specificity, we
calculate the area under the curve (AUC) for each scenario.
A similar trend is observed for target domain sizes of
50, 100, and 1000 instances with AUC values of 94.16%,
99.75%, and 99.84% respectively. The proposed framework
achieves faster training times in the three scenarios and faster
inference times in average, along with the combined feature
selection with CORAL with 12.3 seconds as compared to
12.8 and 13.4 milliseconds for standard FA and CORAL
respectively.
Moreover, while the model built with the CORAL method

exhibits reduced training times after combining it with the
feature selection (FS-CORAL) compared to its counter-
part without feature selection, the results indicate that its
performance degrades as the size and the complexity of the
associated feature-space of the target domain increases. The
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classification performance for the CORAL method decreases
from 80% to 55% and from 84.3% to 64.7% for the
model without feature selection and the feature-selected-
based model with target domain sizes of 100 and 1000
respectively.
Ultimately, we obtain overall better results while applying

the proposed (FS-FA) DA framework using RF-based model
than when applying the standard DA methods (CORAL or
FA) without prior feature selection. Thus, we conclude that
the proposed FS-FA framework significantly outperforms
standard DA methods, which use FA and CORAL without
applying the FS method, in classification performance as well
as computational efficiency for QoT estimation of lightpaths
before their establishment. We perform additional tests using
Dataset 01 as the source domain and subsamples from
the three other datasets (Dataset 02, 03, and 04) as target
domains. An ablation style comparison of the standard DA
techniques (standard FA) with our proposed framework (FS-
FA) shows consistent improvements in the computation times
with the small subsamples of 50 instances. The training time
decreases from 17.41 to 10.20 seconds and the inference time
from 8.97 to 8.49 ms for DA between Dataset 01 and Dataset
02. The same trend is seen for DA between Dataset 01 to
Dataset 03 and Dataset 04 with the training time decreasing
from 17.48 to 10.16 seconds and 17.0 to 10.39 seconds, and
the inference time reductions from 9.97 to 8.97 ms and 9.47
to 8.99 ms, respectively, without sacrificing the classification
accuracy. Our Boruta-SHAP-based method yields shorter
computation times while maintaining the same classification
accuracy of 98% for both DA approaches, when using the
standard feature augmentation and the Boruta-SHAP-based
feature augmentation schemes, with Dataset 01 as the source
domain and Datasets 02, 03, and 04 as target domains.
In contrast to the hybrid solution integrating KD with

TL proposed in [20] where knowledge is transferred from a
bigger “teacher” ANN model to a smaller “student” ANN
model, our proposed approach leverages RF-based classifiers
with Boruta-SHAP-based feature selection providing model
transparency with lower complexity. Our TL framework
automatically identifies important features while in previous
works the authors manually build feature vector with
characteristics of the considered lightpath as well as the
ones of the neighboring channels [45], and other scholars
filter samples by manually selecting length and number of
adjacent channels features [21].

Our framework achieves reduction in both training and
inference times while preserving the classification accuracy
with 99.83% reduction in the size of the target domain. The
Boruta-SHAP-based feature augmentation (FS-FA) achieves
reduction of the training times by 41.41%, 41.89%, and
38.88%, as well as reduction of the inference times by
5.35%, 10.03%, and 5.07% for Dataset 01 to Dataset 02,
03, and 04, respectively. Although the authors of [20] used
a workstation with a 12th Generation Intel Core i7 12700F
2.10 GHz CPU and 32GB RAM, which is superior to our
workstation with an Intel Core i7-9700T 2.00GHz CPU

and 16 GB RAM, their proposed KD+TL model, with
their 6,000-instance target data samples, achieves training
time of 6.7 seconds and prediction time of 0.09 seconds
while our framework achieves training and inference times
of 2.51 and 0.04 seconds when we use a 12,000-instance
subsample from Dataset 01 as source domain and a 6,000-
instance subsample from Dataset 03 as target domain.
Moreover, while a direct comparison with [44] is not entirely
feasible due to differences in the experimental environments,
datasets, and ML methods, our lightweight RF-based model
nonetheless achieves a better inference time - by an order of
magnitude - than the AI/ML-as-a-service framework reported
therein. In [44], the average inference time achieved by
the ANN model, tested with a 10,000-instance subsample
gathered from Dataset 01 on an Ubuntu 22.04 AMD Ryzen
Threadripper 3960X 24-Core Processor is 40 ms while their
proposed AI/ML-as-a-service framework achieves 553 ms
per inference, due in part, to the ensemble of models
implemented in the framework. We demonstrate that our
framework achieves similar order of magnitude for both the
training and the inference times when compared to [20] for
domain adaptation. When compared to [44], our lightweight
RF-based model achieves better inference times than the
proposed AI/ML-as-a-service framework. This shows the
benefits of lightweight RF-based models compared to ANN-
based models for QoT estimation of unestablished lightpaths.

V. CONCLUSION AND FUTURE RESEARCH DIRECTION
We develop an interpretable and efficient QoT estimation
framework tailored in particular for the real-world use cases,
where the training datasets are scarce and the training time
is a critical factor. A comparative analysis using the four
publicly available datasets from the Fraunhofer Institute
with different representative techniques clearly demonstrates
the advantages of our approach. In particular, we show
effectiveness of classical RF-based models in estimating
the QoT of unestablished lightpaths, offering enhanced
efficiency and interpretability while preserving classification
accuracy.
We propose an efficient automated approach to select the

most important features, guiding the models in classifying
test instances across each class-balanced sub-dataset. Our
approach reduces the dimensionality of the training data
(from 31 features to 14, 10, 17, and 10 for Datasets 01,
02, 03, and 04, respectively), thereby significantly lowering
processing time while preserving, or even slightly improving,
classification accuracy. Moreover, the combination of SHAP
values with the Boruta technique, referred to as the Boruta-
SHAP method, provides deeper insights into how important
features influence the model’s classification decisions for
test instances. Basic visual error analysis helps uncover
potential explanations for the two misclassification cases
presented in Fig. 4 (a) and (b). The RF-based models, built
with reduced feature sets, show clear reductions in the
training times of 52.78%, 61.28%, 31.40%, and 70.68% for
the four sub-samples obtained from Datasets 01, 02, 03,
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and 04, respectively. Additionally, the inference times also
show reductions of 2.71%, 30.96%, 31.09%, and 41.64%
for the four sub-samples, respectively. This demonstrates
the practical applicability of RF-based models in real-world
scenarios.
Furthermore, we implement a feature-selection-driven

feature augmentation (FS-FA) domain adaptation framework
to evaluate the cross-domain performance of models trained
on one dataset and tested on others. In this approach, Boruta-
SHAP-based feature selection is applied prior to the feature
transformation step for transfer learning. Depending on the
subsample used as the source domain, a pre-trained models
achieve accuracies ranging from 49.93% to 99.50% with
an SDB approach. Our framework reaches a classification
accuracy of 99.54% with the complete 30,000 samples target
domain used with the SDB approach and of 86% with a
small target domain of 50 samples. Moreover, our framework
shows a reduction in training time of 77.44%, 16.52%,
and 64.11% for the small target dataset, when compared
to the standard CORAL, the standard FA, and the FS-
CORAL methods, respectively. The framework also exhibits
fast inference time of 10.10 milliseconds, which makes it
an efficient solution for deployment in real-world optical
networks.
As a future research direction, we plan to explore more

advanced DA strategies to improve the generalizability
of QoT estimation models across diverse network scenar-
ios. And we will perform simulations with other target
domain sizes to determine appropriate sizes for real-world
implementations.
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