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A B S T R A C T

Urban Heat Islands (UHIs) pose a significant global urban challenge, exacerbating heat stress, increasing energy 
demand, and negatively impacting public health. This review critically analyzes the application of machine 
learning (ML) strategies for UHI mitigation through an integrated lens encompassing sensing, prediction, opti
mization, control, and adaptive management. This review starts with a comprehensive evaluation of various data 
acquisition techniques, such as remote sensing, mobile surveys, and ground-based sensor networks, along with 
their respective strengths and limitations. Subsequently, the review explores advanced data processing meth
odologies leveraging ML algorithms for the analysis and interpretation of complex UHI datasets, enabling ac
curate forecasting and timely interventions. ML-driven prediction and forecasting techniques for UHI are then 
presented, underscoring the importance of precise and timely predictions for effective mitigation. Further 
investigation delves into the optimization of UHI mitigation strategies, examining how ML can enhance the 
effectiveness of approaches such as green infrastructure, cool materials, urban water bodies, and urban planning 
and design. Finally, the integration of ML insights into flexible adaptation strategies and urban planning pro
cesses is discussed, highlighting the necessity for long-term, climate-responsive urban development. The review 
concludes by assessing the transformative potential and inherent limitations of ML approaches in this domain, 
outlining critical challenges and promising future research directions for advancing UHI mitigation within 
rapidly evolving urban environments and under changing climate conditions.

1. Introduction

The escalating convergence of rapid urbanization and global climate 
change is intensifying the Urban Heat Island (UHI) effect, presenting a 
critical and multifaceted challenge for cities worldwide (Leal Filho et al., 
2018; Aghamohammadi et al., 2021; Kim & Brown, 2021). The UHI is 
characterized by significantly higher temperatures in urban areas 
compared with their rural surroundings, a phenomenon driven by 
altered land cover and increased anthropogenic heat emissions (Jusuf 
et al., 2019; Nwakaire et al., 2020; Dijoo, 2021). This temperature 
disparity, often more pronounced during nighttime, leads to increased 
energy demand, compromised air quality, adverse human health out
comes, and reduced thermal comfort (Heaviside et al., 2017). Conse
quently, as cities continue to grow and climate change intensifies, a 
comprehensive understanding of the UHI effect and the development of 
effective mitigation approaches are crucial for building sustainable and 
resilient urban futures (Lee et al., 2014; Larsen, 2015; Irfeey et al., 2023; 
Han et al., 2023; Rajagopal et al., 2023; Yang et al., 2024).

Historically, UHI research has been predominantly conducted using 
a combination of experimental measurements, field observations, and 
computational modeling. These established methodologies have pro
vided valuable insights, with in situ measurements from sensor networks 
and mobile platforms capturing localized thermal variations (Rodríguez 
et al., 2020), and high-resolution remote sensing offering synoptic per
spectives on urban thermal patterns (Zhou et al., 2018; Almeida et al., 
2021). Furthermore, computational fluid dynamics (CFD) models have 
been instrumental in simulating complex urban airflow and heat trans
fer, elucidating the drivers of thermal accumulation in dense urban 
environments (Mirzaei & Haghighat, 2010; Silva et al., 2021). More
over, experimental wind tunnel studies and laboratory experiments have 
served to validate these models and deepen the understanding of 
microclimatic phenomena (Yan et al., 2022; Zhao et al., 2023). How
ever, the increasing availability of large and diverse datasets has spurred 
the adoption of machine learning (ML) techniques as a transformative 
paradigm in UHI research (Ngarambe et al., 2025). In the realm of 
environmental science and urban studies, ML has emerged as a powerful 
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paradigm for analyzing intricate environmental phenomena and 
extracting meaningful patterns from large, diverse datasets in urban 
contexts. The inherent complexity of the UHI effect, influenced by a 
multitude of interacting factors such as urban morphology, land cover 
characteristics, and prevailing meteorological conditions, makes it 
particularly amenable to analysis using advanced computational tech
niques like ML. These approaches leverage advanced analytical tools to 
process heterogeneous data from sources like satellite imagery and IoT 
sensor networks (Pioppi et al., 2020). ML models, including convolu
tional neural networks (CNNs), random forests (RF), and support vector 
machines (SVMs), are now being employed to predict urban heat pat
terns and optimize mitigation strategies, offering potentially faster and 
more adaptive solutions (Shi et al., 2021b; Zumwald et al., 2021; Du 
et al., 2024). The integration of these ML methods with established CFD 
models and experimental protocols holds significant promise for 
enhancing predictive accuracy, streamlining data processing, and 
achieving a more nuanced understanding of urban thermal dynamics. 
This synergy not only builds upon the strengths of conventional tech
niques but also opens new avenues for real-time monitoring, adaptive 
control, and informed urban planning, fundamentally reshaping the 
strategies for UHI mitigation (Milojevic-Dupont & Creutzig, 2021; Wang 
et al., 2022).

Building upon the increasing interest in ML for UHI research, this 
review paper presents a comprehensive review of ML strategies across 
various UHI applications, highlighting both their transformative po
tential and inherent limitations. Recognizing that robust data acquisi
tion is fundamental to the success of ML approaches, the review first 
examines diverse data collection techniques, including remote sensing, 
mobile testing, and ground-based sensor networks, emphasizing their 
relevance and reliability in capturing urban thermal dynamics. Subse
quently, the paper explores advanced data processing using ML tech
niques and their crucial role in extracting actionable insights from raw 
data. The application of ML for accurate and timely UHI prediction and 
forecasting, vital for effective intervention, is then reviewed. This is 
followed by a critical examination of ML optimization of UHI mitigation 
strategies, encompassing the strategic deployment of cool roofs, the 
placement of green infrastructure, improvements in building energy 
efficiency, and enhancements to urban ventilation. Furthermore, the 
review discusses the role of ML control and monitoring systems in 
enabling real-time management and adaptive responses to UHI. Finally, 
the integration of ML insights into flexible adaptation strategies and 
urban planning frameworks is explored to support long-term, climate- 
resilient urban development. By synthesizing existing literature and 
identifying key challenges and future research directions, this paper 
aims to advance the development of more effective and sustainable UHI 
mitigation strategies in the context of a changing climate.

2. Background and methodology

This section provides a concise overview of the UHI phenomenon 
and its analysis using ML. It reviews UHI origins, mechanisms, and im
pacts, and briefly outlines ML’s role in these studies. The methodology, 
covering the systematic literature search, selection criteria, and con
ceptual framework, is also detailed.

2.1. The UHI effect

The UHI effect is broadly characterized by higher temperatures in 
urban areas compared to their rural surroundings (Oke, 2011). This 
phenomenon is observed in two primary forms: the canopy-layer UHI, 
defined as an air-temperature difference between urban and rural sites, 
and the Surface Urban Heat Island (SUHI), quantified from land-surface 
temperature (LST) retrieved via thermal infrared remote sensing. The 
Surface Urban Heat Island Intensity (SUHII) is defined as the urban
–rural LST difference, (SUHII = LSTurban − LSTrural) (Santamouris et al., 
2015). It is crucial to distinguish their typical diurnal patterns: the 

canopy-layer UHI is most pronounced at night under calm, clear con
ditions due to the slow release of stored heat from urban materials, 
whereas SUHI often reaches its maximum intensity during the daytime 
when urban surfaces absorb intense solar radiation. Thus, UHI effect is 
amplified by numerous factors. First, urban landscapes, with prevalent 
impervious surfaces like roads and buildings, have high solar radiation 
absorption and thermal storage capacities (Zhao et al., 2018). Second, 
limited urban vegetation reduces evapotranspiration, decreasing natural 
cooling (Taha, 1997; Ramakreshnan et al., 2018). Third, anthropogenic 
heat from dense urban activities, including traffic, industry, and air 
conditioning, adds substantial heat (Sailor, 2011). Additionally, urban 
geometry, often involving the formation of deep street canyons, can 
impede ventilation and trap radiant heat (Rizwan et al., 2008). Finally, 
urban air pollution exacerbates UHI by absorbing and re-emitting 
longwave radiation (Wu et al., 2024).

2.2. Impacts of the UHI

The UHI intensifies environmental, health, and economic burdens. 
On the environmental side, elevated cooling demand increases elec
tricity consumption, driving higher greenhouse-gas emissions and urban 
air pollution (Li et al., 2019). UHI can exacerbate photochemical smog 
by promoting ground-level ozone and, through warmer stormwater and 
baseflow, degrade receiving-water quality (Mathew et al., 2024). Social 
and health impacts include greater risk of heat exhaustion and heat
stroke, with disproportionate effects on older adults, people with 
pre-existing conditions, and communities with limited access to cooling 
(Ebi et al., 2021). Thermal discomfort also reduces well-being and labor 
productivity (Aznarez et al., 2024). Population exposure is increasingly 
assessed with thermal comfort metrics such as Humidex, Wet-Bulb 
Globe Temperature (WBGT), Universal Thermal Comfort Index 
(UTCI), and Temperature–Humidity Index (THI) to quantify heat stress 
during hot spells (Kim et al., 2024). Economically, UHI-driven energy 
consumption raises electricity costs for individuals and businesses, and 
peak demand can strain energy infrastructure. Additionally, extreme 
heat can damage transportation and energy systems, increasing main
tenance costs. The combined effects of heat-related health issues and 
reduced worker productivity can also negatively impact economic 
output.

2.3. Background of machine learning

Machine learning (ML), a dynamic branch of artificial intelligence, 
develops algorithms to learn patterns and make predictions from data 
(Tyagi & Chahal, 2020; Sarker, 2021). Urban studies has seen a signif
icant transformation with increasing integration of ML techniques in 
recent decades (You et al., 2021). Initially reliant on traditional statis
tical methods and simulation models, urban analysis now widely adopts 
ML algorithms, due to the growing availability of large, diverse datasets 
and increased computational power (Ghorbany et al., 2024). This shift 
acknowledges ML’s capacity to provide novel insights into urban phe
nomena that conventional approaches may find difficult to obtain. 
Specifically, in UHI studies, ML has become a powerful tool to unravel 
the complex interplay between urban form, land use, and microclimatic 
processes (Bansal & Quan, 2024). The vast data from satellite imagery, 
in situ sensors, and simulation outputs enables ML methods to model 
spatial and temporal variations in urban temperatures with high 
precision.

ML methodology encompasses a sequential process of data collec
tion, preprocessing, training, evaluation, and hyperparameter tuning. 
ML model performance depends on input data quality and quantity. In 
UHI research, high-resolution thermal maps, environmental datasets, 
and building/surface characteristics are crucial inputs for training al
gorithms. These trained models predict temperature distributions, 
identify high-risk areas, and provide insights for urban planning. ML 
methods are categorized into supervised, unsupervised, semi- 
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supervised, and reinforcement learning (Fig. 1), each offering distinct 
analytical strategies for contemporary UHI studies.

Supervised learning employs labeled datasets for predictive tasks like 
regression and classification (Cunningham et al., 2008; Nasteski, 2017). 
In UHI research, regression models, such as feed-forward and deep 
neural networks, forecast surface temperature variations (Tran et al., 
2024; Zaka et al., 2025). Similarly, classification models like support 
vector machines (Suthaharan, 2016) and random forests (Breiman, 
2001) segment urban areas by thermal characteristics, identifying heat 
islands and cooler islands (Li et al., 2024b; González-Collazo et al., 
2024). Unsupervised learning offers alternatives when labeled datasets 
are limited (Boccalatte et al., 2023; Naeem et al., 2023). These methods 
automatically discern data patterns without predefined labels. Clus
tering algorithms, like k-means (Hartigan & Wong, 1979), group areas 
by thermal characteristics (Chen et al., 2024a). Furthermore, dimen
sionality reduction techniques, including principal component analysis 
(Abdi & Williams, 2010) and autoencoders (Zhai et al., 2018), extract 
features from high-dimensional urban datasets, simplifying analyses.

Semi-supervised learning combines supervised and unsupervised 
methods, using a small amount of labeled data with a larger pool of 
unlabeled data (Van Engelen & Hoos, 2020). This is advantageous in 
UHI research, where annotating large datasets is challenging. Various 
techniques fall under this category, including self-training (Amini et al., 
2025), where models refine predictions by labeling unlabeled data, and 
co-training (Zhou & Li, 2005), which uses multiple models to improve 
label accuracy. Graph-based methods propagate labels across networks 
of similar data points (Song et al., 2022), while generative models, like 
variational autoencoders (Kingma & Welling, 2019) and generative 
adversarial networks (Goodfellow et al., 2020), learn data distributions 
to create synthetic examples for augmenting labeled data. Reinforce
ment learning (RL) trains agents to make decisions through environ
mental interaction, guided by rewards and penalties (Kaelbling et al., 
1996; Sutton & Barto, 1998). In urban planning, RL can develop 

adaptive control strategies for mitigating UHI, such as optimizing green 
space or reflective surface placement (Vázquez-Canteli & Nagy, 2019). 
RL methods include model-based approaches (Moerland et al., 2023), 
which construct environment models for planning future actions, and 
model-free approaches (Huang, 2020), which learn policies from inter
action experiences. These are divided into value-based methods, esti
mating state rewards (Byeon, 2023); policy-based methods, optimizing 
actions (Nachum et al., 2017); and actor-critic methods, integrating 
value and policy learning (Grondman et al., 2012).

2.4. Methodology

This review follows a structured literature-search and evidence- 
synthesis workflow designed to remain distinct from the background 
material. Records were retrieved from Scopus, Web of Science, and IEEE 
Xplore using combinations of urban-heat terms (e.g., urban heat island, 
surface urban heat island, sensing, prediction/forecasting, optimization, 
mitigation, control, adaptation) and machine-learning terms (e.g., ma
chine learning, physics-informed machine learning, deep learning, 
random forest, convolutional neural network), with database-specific 
syntax. Studies were eligible for the core synthesis if they directly 
applied ML to a UHI question and reported quantitative results. Papers 
that were purely conceptual, addressed non-UHI topics, or discussed ML 
without a relevant application were excluded from the core but could be 
retained for contextual framing. The search yielded approximately 350 
records; after deduplication, titles and abstracts were screened and 280 
articles proceeded to full-text assessment. Following full-text review, 
187 studies met the inclusion criteria and formed the core evidence set 
used for the synthesis, with an additional 64 publications retained for 
background/context, for a total of 251 cited works. Each core study was 
coded to one of the review’s organizing themes, which align with the 
conceptual framework in Fig. 2 and structure the synthesis that follows.

The resulting distribution is: Sensing & Data Analysis (n = 52), 

Fig. 1. Machine learning categories.
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Fig. 2. Conceptual framework of the methodology.
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Prediction & Forecasting (n = 53), Optimization & Control (n = 59), and 
Flexible Adaptation (n = 23). These counts are used descriptively to map 
research activity across subfields and to guide the narrative emphasis in 
Sections 3–6, where representative works are synthesized to charac
terize datasets and methods, compare performance and limitations, and 
identify gaps that motivate future directions. The thematic distribution 
is visualized in Fig. 3, which complements the conceptual framework 
(Fig. 2) and connects the evidence base to the review’s structure.

3. Machine learning for sensing and data analysis

3.1. Data acquisition techniques

Effective UHI monitoring requires diverse data sources with unique 
spatiotemporal resolutions and coverage. A comprehensive under
standing of UHI is best achieved by integrating data from remote 
sensing, mobile measurement campaigns, and ground-based sensor 
networks. This integration enhances analysis reliability and facilitates 
calibration and validation across platforms.

3.1.1. Remote sensing
Remote sensing is fundamental to SUHI research, providing consis

tent observations of urban features, especially land-surface temperature 
(LST) which serves as a primary proxy for the broader UHI phenomenon 
(Azevedo et al., 2016; Fernandes et al., 2023). Satellite observations 
offer a broad view of urban areas, capturing LST, land cover, and 
vegetation indices. Moderate-resolution sensors (e.g., Landsat) provide 
long-term data for trend analysis, while higher-resolution sensors (e.g., 
Sentinel-2) enable detailed mapping (Santra, 2017). For instance, 
several studies using MODIS LST data show that urban structures and 
materials significantly influence thermal retention (Zhou et al., 2018; 
Qiao et al., 2024).

Contemporary satellite platforms also offer multi-spectral capabil
ities for computing indices like the Normalized Difference Vegetation 
Index (NDVI) or the Enhanced Vegetation Index (EVI) and the 
Normalized Difference Water Index (NDWI), which are crucial for 
assessing factors influencing SUHI intensity (Almeida et al., 2021). 
Advanced processing algorithms correct for atmospheric distortions, 
cloud masking, and calibrates thermal infrared data to enhance LST 
measurement accuracy (Ayanlade & Jegede, 2015). Recent advance
ments, like geostationary satellites, enable near real-time monitoring of 
SUHI dynamics, beneficial for understanding diurnal temperature fluc
tuations (Hurduc et al., 2024). Combining data from multiple missions, 
such as MODIS and Sentinel-2, overcomes individual sensor limitations, 
improving spatial detail and temporal frequency in SUHI monitoring. 

Despite these advancements, trade-offs exist between resolution, revisit 
times, and sensitivity, necessitating sophisticated data assimilation and 
ML techniques to refine UHI assessments (Zhou et al., 2018).

3.1.2. Ground-based sensors
Ground-based sensor networks provide continuous, high-resolution 

measurements of essential meteorological parameters (Pathak et al., 
2022; Cheval et al., 2024). Traditional meteorological stations provide 
essential data like temperature, humidity, wind speed, and solar radia
tion for long-term analyses. However, their often sparse distribution can 
limit the capture of fine-scale microclimatic variations (Nguyen & 
Henebry, 2016). To address this limitation, specialized sensors and 
recent technological advancements, including infrared radiometers, 
miniaturized energy-efficient sensors, and low-cost IoT networks, are 
increasingly deployed (Fauzandi et al., 2021; Xia et al., 2022; Hu & 
Uejio, 2024). Despite these advancements, challenges persist in sensor 
calibration, data management, and security (Mendez-Astudillo et al., 
2021). Regular recalibration is essential to prevent measurement errors 
from drift and interference. Additionally, handling large IoT data vol
umes while ensuring security and privacy requires standardized 
frameworks and strong cybersecurity measures (Malings et al., 2018).

3.1.3. Mobile testing methods
Mobile testing, including vehicle-mounted sensors and drone-based 

thermal imaging, dynamically captures urban temperature variations 
at high spatial and temporal resolution (Rodríguez et al., 2020; Lee & 
Lee, 2024). Vehicle-mounted sensors in mobile transects record tem
perature fluctuations to identify thermal hotspots (Sun et al., 2019; Yin 
et al., 2020). Drones with thermal cameras provide ultra-high-resolution 
data at the neighborhood scale, enabling detailed analyses of microen
vironmental variations (Henn & Peduzzi, 2024; Hu et al., 2024). These 
platforms may also carry other sensors for humidity, wind speed, and air 
quality, offering a multidimensional perspective on urban climate dy
namics (Hu et al., 2024) and enabling researchers to assess environ
mental interactions affecting UHI intensity, guiding urban planning and 
public health strategies (Rickens & Tonekaboni, 2023). To manage and 
analyze the large volumes of high-resolution imagery from mobile sur
veys, advanced ML algorithms are increasingly employed (Kim et al., 
2021). Despite their advantages, mobile testing methods face limitations 
like restricted drone flight durations, limited spatial coverage, and 
intensive computational resources for processing complex datasets 
(Kaya & Erener, 2024).

Fig. 3. Thematic distribution of the reviewed papers.
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3.2. ML-based data analysis

UHI analysis increasingly uses a multi-step ML approach, integrating 
and refining diverse datasets like satellite imagery, land cover maps, 
ground sensor measurements, and socio-economic data. These are 
merged using a geographic information system (GIS) for detailed UHI 
maps, capturing macro- and micro-scale temperature variations (Du 
et al., 2024). Advanced ML techniques, such as neural and Bayesian 
networks, and ensemble methods, are then applied to identify complex 
patterns and correlations often missed by traditional statistics (Zhang 
et al., 2018; Ghorbany et al., 2024). By automating the processing and 
analysis of large, heterogeneous datasets, these methods improve UHI 
prediction accuracy and provide insights into relationships between 
urban morphology, land use, and thermal dynamics (Liu et al., 2024b), 
supporting better urban planning and targeted heat mitigation (Liu 
et al., 2021; Eslamirad et al., 2023). ML models also correct bias and 
downscale temperature predictions, improving urban heat map resolu
tion (Blunn et al., 2024).

3.2.1. Data preprocessing
Raw urban environmental data requires preprocessing for reliable 

analysis. UHI datasets often have missing values, such as from cloud 
obstruction or sensor malfunctions. ML techniques, like K-Nearest 
Neighbors (KNN), can impute these missing values (Shi et al., 2021a; 
Tanoori et al., 2024). Data cleaning also involves removing noise and 
outliers using methods like Gaussian or median filters (Sailaja et al., 
2024). Normalization, scaling data to a common range, is crucial for 
many ML algorithms. Specific normalization strategies may be needed 
for certain data, like remote sensing imagery (Bhamjee et al., 2023). 
Additionally, geometric corrections use ground control points to rectify 
spatial distortions in remotely sensed imagery from satellites, Un
manned Aerial Vehicles (UAVs), and ground sensors (Miniandi et al., 
2025). Radiometric corrections also normalize sensor outputs across 
platforms and time, ensuring temperature measurement consistency 
(Zhou et al., 2018). These steps create a strong foundation for ML models 
to accurately predict and analyze UHI dynamics (Almeida et al., 2021; 
Addas, 2023).

3.2.2. Data fusion
Data fusion integrates data from multiple heterogeneous sources for 

more comprehensive and accurate information. This approach leverages 
diverse data acquisition techniques to create unified, high-resolution 
representations of the urban thermal environment by combining data 
from sources like satellite imagery, UAV surveys, ground sensors, and 
IoT networks (Shen et al., 2016; Shi et al., 2021a; Ezimand et al., 2021; 
Miniandi et al., 2025). It addresses challenges related to varying spatial 
and temporal resolutions, data formats, and uncertainties. For instance, 
satellite-derived LST data can be fused with more accurate ground-based 
air temperature measurements.

ML algorithms, including neural and Bayesian networks, are well- 
suited for data fusion, learning interrelationships between data sour
ces to generate more reliable UHI maps and datasets. Specialized data 
fusion algorithms, like the extreme learning machine and spatiotem
poral adaptive data fusion algorithm for temperature mapping (STAFF), 
enhance LST retrieval using multi-source data, refining LST maps (Weng 
et al., 2014; Bai et al., 2015). Similarly, ensemble methods and Bayesian 
networks integrate socio-economic variables with thermal data to reveal 
UHI drivers (Addas, 2023). Techniques like ML-adapted Kalman 
filtering facilitate real-time updates of fused datasets for continuous 
monitoring of urban heat patterns (Acosta et al., 2021). These strategies 
improve predictive accuracy and help urban planners design 
climate-resilient cities (Wang et al., 2017; Pan et al., 2023).

3.2.3. Feature extraction and data analysis
Feature extraction and data analysis convert processed data into 

model-ready predictors and insights for urban heat studies. Feature 

extraction creates input variables (features) from raw data and derived 
layers. Common features include vegetation indices (e.g. NDVI), built- 
up indices (e.g., NDBI), water indices (e.g., NDWI), land-cover classes, 
urban density metrics (e.g., impervious fraction, floor-area ratio), 
building height and morphology (plan/frontal-area indices), sky-view- 
factor (SVF) proxies, long- and short- wave radiation factors including 
surface albedo; emissivity and absorptivity and distance-to-water/green 
space. These capture key characteristics of the urban environment that 
influence temperature. Beyond hand-crafted variables, ML can learn 
features automatically: convolutional/attention networks extract hier
archical spatial-spectral representations directly from multispectral and 
thermal tiles, while dimensionality-reduction models (e.g., PCA or 
autoencoders) compress inputs into informative latent embeddings that 
can be used alone or concatenated with tabular features.

Advanced ML models then perform data analytics. CNNs classify 
urban materials from multispectral and thermal imagery, enabling 
detailed urban surface maps to predict temperature distributions 
(Johannsen et al., 2024; Mohamed & Zahidi, 2024). For example, CNNs 
detect building footprints in satellite imagery to show how urban 
morphology impacts heat distribution (Ramani et al., 2024; Li & Stouffs, 
2024). Deep learning models also automate the identification of urban 
hotspots and cool zones. Time-series analyses further reveal UHI effects 
over time (Xiong et al., 2022). Clustering algorithms can also be 
employed to classify urban thermal environments (Chen et al., 2024a). 
Additionally, statistical and geostatistical methods, like kriging and 
spatial regression, interpolate temperature data in areas with sparse 
measurements (Wang & Zhang, 2023). GIS remains a central tool in 
these efforts, integrating spatial datasets, from temperature readings to 
land use patterns, and vegetation indices. By analyzing these layers, 
researchers visualize correlations between urban features and thermal 
behavior, generating essential heat maps for decision-making and urban 
planning (Eslamirad et al., 2023). These analytical processes consider 
data and model uncertainties to ensure robust conclusions.

4. Prediction and forecasting of UHI

Accurate prediction and forecasting of UHI intensity are of para
mount importance for the development and implementation of proac
tive mitigation and adaptation strategies. The ability to identify the 
timing and spatial extent of severe UHI effects enables targeted in
terventions, such as the activation of public cooling centers, optimiza
tion of energy consumption, and implementation of adaptive traffic 
management plans. However, the prediction of UHI phenomena pre
sents inherent complexities due to the intricate interactions between 
urban morphology, meteorological factors, land cover dynamics, and 
anthropogenic activities (Oliveira et al., 2022). Contemporary predic
tive frameworks increasingly leverage ML methodologies that integrate 
diverse datasets, ranging from satellite-derived LST measurements to 
socio-economic indicators, to generate detailed and actionable insights 
(Fig. 4). The efficacy of these models is contingent not only on the so
phistication of the algorithms employed but also on the spatial and 
temporal fidelity of the input data.

4.1. ML predictive frameworks

ML paradigms have become pivotal tools in the accurate forecasting 
of UHI intensities (Ashtiani et al., 2014; Han et al., 2022; Yin et al., 2023; 
Wang et al., 2025). These methodologies typically establish functional 
relationships between urban features, with LST as a primary target 
variable, and a range of environmental determinants. These de
terminants encompass meteorological factors such as air temperature, 
humidity, wind speed, and solar radiation; land cover transformations, 
including changes in vegetation, impervious surfaces, and water bodies; 
and anthropogenic impacts, such as urban development metrics like 
building density, energy consumption, and traffic patterns (Rehman 
et al., 2022; Suthar et al., 2024; Tanoori et al., 2024).
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A diverse spectrum of ML and deep learning algorithms has been 
employed to model these complex relationships. These include multi
layer perceptrons (Li et al., 2021), decision trees (DT) 
(Samardžić-Petrović et al., 2017; Phiri et al., 2020; Karimi et al., 2021), 
random forests (RF) (Li et al., 2021; Suthar et al., 2024), support vector 
machines (SVM) (Karimi et al., 2019), XGBoost regression (XGB) 
(Madaan et al., 2021; Mohammad et al., 2022; Khanifar & Khade
malrasoul, 2022), and AdaBoost (Chen et al., 2017). The advent of deep 
learning has further refined LST prediction by effectively modeling 
intricate nonlinear relationships and leveraging high-dimensional 
remote sensing data. CNNs have proven particularly effective in this 
domain Li et al. (2024a), while ensemble techniques such as adaptive 
boosting further enhance forecasting accuracy (Bhandari et al., 2022; Li 
et al., 2022; Pande et al., 2023; Siqi et al., 2023; Tanoori et al., 2024). 
These advanced methodologies enable the detection of subtle patterns 
and complex correlations that traditional statistical methods might 
overlook, ultimately leading to more precise and reliable UHI forecasts.

4.2. Integration of high-resolution data and temporal dynamics

High-resolution remote sensing data (e.g., Landsat, Sentinel, LiDAR) 

has markedly improved urban-heat prediction at fine spatial scales, 
enabling observation of temperature variations down to individual 
buildings (Rodríguez et al., 2020). ML models leverage this detail for 
more accurate LST and air temperature predictions. For example, 
LiDAR-derived 3D metrics combined with RF accurately predict tem
perature variations (Voelkel et al., 2016). Consistent with 3D LiDAR 
information, recent ML studies show that building height and its vari
ability are among the most influential predictors of (S)UHI when 3D 
morphology is included. This is because incorporating mean building 
height (MBH) and height variability (e.g., standard deviation/differ
ence) substantially improves SUHI/LST modeling over 2D-only land
scapes (Han, 2023; Yuan et al., 2024; Zhu et al., 2023; He et al., 2025; 
Zhou et al., 2022b; Chen et al., 2023b). Explainable-ML analyses (partial 
dependence/SHAP) reveal non-linear, scale-dependent responses; that 
is, cooling often emerges once low-rise thresholds are exceeded, with 
strongest predictability at neighborhood scales (hundreds of meters) 
(Han, 2023; He et al., 2025; Chen et al., 2023b). Empirically, low-rise, 
high-density blocks tend to warm more, whereas taller or more 
height-variable blocks can reduce LST via shading and canyon ventila
tion, with direction and magnitude varying by season and urban context 
(Zeng et al., 2022; Zhou et al., 2022b; Chen et al., 2023b). In practice, 

Fig. 4. Machine learning for UHI prediction.
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height/morphology descriptors can be ingested as tabular features 
computed from 3D footprints or learned as embeddings from rasterized 
3D/DSM tiles via convolution/attention encoders; ensemble models (e. 
g., Random Forest, XGBoost) repeatedly rank building height and its 
variability among dominant SUHI drivers, particularly in dense cores 
(Han, 2023; He et al., 2023; Ding et al., 2025). Model accuracy increases 
with data resolution, which enables detection of localized thermal var
iations crucial for understanding urban structure (Liu et al., 2023; Zhong 
et al., 2024). Combining high-resolution LST data with urban feature 
details (e.g., green spaces, building materials, street design) significantly 
improves prediction accuracy by capturing these fine-scale thermal 
variations.

Incorporating temporal dynamics is essential for capturing the 
changing nature of urban heat. UHI intensity varies diurnally, season
ally, and interannually (Das & Ghosh, 2019; Lee et al., 2019; Cureau 
et al., 2024). Short-term changes driven by weather can be analyzed 
with time-series methods and RNN/LSTM models, while long-term 
trends linked to urbanization (Zhou et al., 2024) and climate change 
(Eunice Lo et al., 2020) are better captured by models that incorporate 
socio-economic drivers and climate projections. Processing 
high-resolution spatiotemporal data is computationally intensive (Shi 
et al., 2021a); efficient algorithms and optimized data pipelines, often 
leveraging high-performance computing (HPC) systems and GPUs, are 
therefore critical. Considering both high spatial resolution and temporal 
dynamics enables spatially precise and temporally robust predictions 
that support real-time heat responses and long-term urban planning.

4.3. Modeling positive feedbacks

Urban heat can be self-reinforcing: higher outdoor temperatures in
crease cooling demand, and Air-conditioning systems (AC) waste heat in 
turn warms the near-surface environment, especially under weak winds. 
Data-driven studies operationalize this pathway by estimating anthro
pogenic heat flux (AHF) with ML and embedding it as a dynamic pre
dictor in UHI/SUHI models. Recent work produces fine, spatiotemporal 
AHF maps, capturing building/energy ’metabolic’ heat and mobility 
signals that scale with AC use (Qian et al., 2022; Ao et al., 2024). ML 
temperature models that include AHF and related human-activity vari
ables reveal non-linear relations consistent with AC–UHI feedbacks (Kim 
et al., 2022), while explainable learners (e.g., histogram-based gradient 
boosting with SHAP) quantify interaction effects between energy/hu
man drivers and urban morphology (Hoang, 2025; Yang et al., 2025). 
ML models trained on long time series of urban–rural temperature dif
ferences (ΔT) can capture temporal persistence pathways through which 
feedback mechanisms manifest (Varentsov et al., 2023). Although fully 
closed-loop feedbacks are often simulated with coupled urban-climate 
and building-energy models, these ML approaches provide opera
tional, data-driven representations of feedback-amplified heating for 
predictive UHI/SUHI frameworks.

4.4. Model validation and uncertainty analysis

A critical step in UHI prediction is to rigorously validate models and 
analyze associated uncertainties. Given the complexity of the data and 
the non-linear dynamics of UHI, robust validation techniques are 
essential (Vogel & Afshari, 2020). Common methods include splitting 
data into training and testing sets (Coproski et al., 2024), and 
cross-validation. Quantifying uncertainty in UHI predictions is also very 
important (Narock et al., 2025). Uncertainty analysis measures confi
dence in model outputs and helps understand possible outcomes. 
Sensitivity analysis identifies how input parameters affect model out
puts (Bavarsad et al., 2023), while methods like Monte Carlo simulations 
and Bayesian inference provide a clear understanding of confidence 
levels and potential error margins (Maracchini et al., 2022). Some ML 
techniques, such as Bayesian methods and ensemble models, inherently 
estimate prediction uncertainty (Shafi et al., 2022). Understanding 

uncertainty is essential for informed decision-making and risk assess
ment, especially for extreme heat events (Narock et al., 2025).

Common performance metrics for ML models in UHI prediction 
include Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), 
and R-squared. High R-squared values and low MAE and RMSE values 
indicate better model performance. These practices ensure ML models 
reliably capture urban thermal dynamics, highlight limitations, and 
guide improvements. Ultimately, thorough validation and uncertainty 
analysis ensure credible and actionable predictive insights, informing 
effective urban planning and heat mitigation strategies.

5. Optimization of UHI mitigation strategies

5.1. UHI mitigation strategies

A range of strategies has been advanced to mitigate the UHI effect 
(Fig. 5). A cornerstone approach is the expansion of vegetation and 
green infrastructure through policies that support interconnected green 
corridors, urban parks, street trees, green roofs and walls, and perme
able pavements (Mitra et al., 2024; Karan et al., 2025). Vegetation cools 
primarily via latent heat flux (evapotranspiration), and it also provides 
shade, reduces short-wave thermal radiation absorbed by built surfaces, 
and improves outdoor air quality. Co-benefits include better stormwater 
management, enhanced biodiversity, and carbon sequestration. Cool 
materials represent a complementary pathway. High-albedo and other 
reflective surfaces, implemented as cool roofs, reflective paints, cool 
pavements, and spectrally selective façade coatings, reduce shortwave 
solar absorption and sensible heat storage, lowering surface and 
near-surface temperatures (Li et al., 2025).

Improved urban planning and design approaches are also crucial for 
achieving better natural ventilation and diminishing the "urban canyon 
effect" (Chen et al., 2024b). This involves designing building and street 
layouts to maximize airflow, reducing the trapping of hot air between 
tall structures. Techniques include orienting buildings to prevailing 
winds, creating wider streets, and incorporating open spaces to facilitate 
air circulation. The urban canyon effect, created by tall buildings lining 
narrow streets, can impede airflow and trap heat, an effect these plan
ning strategies aim to mitigate. Digital twins, which are virtual repre
sentations of urban environments, can be used to test the impact of 
different planning decisions on UHI before physical implementation 
(Koeva et al., 2024).

Urban waterbodies and blue-green spaces, such as ponds, lakes, 
rivers, canals, wetlands, and vegetated riparian zones, can cool sur
rounding areas primarily via evaporative cooling and enhanced heat 
storage–release cycles (Ramaiah, 2021; Manteghi et al., 2015; Liu & 
Weng, 2008; Zhao et al., 2017; Kang et al., 2023). Water absorbs heat 
and releases it more slowly than most built surfaces, moderating local 
temperatures, while permeable pavements that promote infiltration and 
evaporation can further aid cooling. Because evaporative cooling adds 
moisture to the near-surface air, the net benefit depends on background 
humidity and wind that increase or decrease the absorbed latent heat 
compared to the sensible heat. In arid and semi-arid climates (or dry 
summer conditions), large vapor-pressure deficits support stronger 
evaporation and typically yield larger air-temperature reductions and 
improved thermal comfort indices; however, in humid climates, the 
added moisture can offset air-temperature decreases and, under weak 
winds, may increase heat-stress indices even when air temperature 
drops. Cooling footprints and magnitudes vary with waterbody size and 
shape, wind exposure and orientation to prevailing winds (downwind 
advection), edge shading and adjacent vegetation, and seasonal hydro
climate. Accordingly, evaluations should pair temperature-based in
dicators with heat-stress metrics (e.g., Heat Index) and report both 
microclimatic and comfort outcomes to determine when and where 
waterbodies provide net benefits (He et al., 2023).

Additionally, the use of district cooling systems, which distribute 
chilled water from a central plant to buildings, can reduce energy 
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consumption and heat emissions compared to individual AC units (Gros 
et al., 2016; Lake et al., 2017; Eveloy & Ayou, 2019). Furthermore, the 
implementation of smart monitoring technologies, such as sensors and 
data analytics, can optimize energy use and urban planning to mitigate 
UHI effects by monitoring temperature variations and adjusting urban 
systems accordingly (MacLachlan et al., 2021; Lyu et al., 2022; Jang 
et al., 2024; Chakrabortty et al., 2025). Other control strategies include 
the use of irrigation systems (Gao et al., 2020) to cool surfaces through 
evaporation and the implementation of artificial shading structures 
(Balany et al., 2020). Finally, reducing anthropogenic heat emissions 
through energy efficiency measures in buildings and transportation can 
contribute to overall UHI mitigation.

5.2. ML applications in UHI mitigation and control

ML optimization is reshaping UHI mitigation by enabling targeted 
and multi-objective interventions (Islam et al., 2024; Guan et al., 2025). 
Integrations of LST, detailed building attributes, and solar radiation 
maps within GIS and ML frameworks help identify locations with the 
highest potential for cool-roof deployment, thereby maximizing re
ductions in heat exposure. When LST is combined with 

urban-morphology metrics and microclimate modeling, planners can 
position parks, green roofs, and street trees to enhance cooling while 
improving air quality. At the building scale, ML models trained on his
torical and real-time energy data reveal opportunities for retrofits and 
operational adjustments that reduce cooling demand. Surrogate models 
and flow-aware learners further support the design of block layouts and 
street orientations that strengthen natural ventilation within urban 
canopies. In practice, multi-objective optimization driven by ML pre
dictions helps balance implementation costs, energy and comfort gains, 
and environmental co-benefits so that strategies are both effective and 
feasible at city scale. Table 1 summarizes the principal ML applications 
for UHI mitigation and control; detailed treatments are provided in 
Sections 5.2.1–5.2.5

5.2.1. ML applications for green infrastructure
ML provides scalable tools to site, size, and manage green infra

structure for UHI mitigation (Koeva et al., 2024; Zhang et al., 2025b; 
Ganjirad et al., 2025). Tree-based surrogates such as Random Forest and 
XGBoost accelerate design exploration when compared with workflows 
that rely solely on computational fluid dynamics, which reduces 
computational burdens while preserving fidelity for decision support 

Fig. 5. Illustrative non-exhaustive examples of key UHI mitigation strategies.

Table 1 
ML applications in UHI mitigation and control.

Area ML objectives Typical inputs Representative methods Targets / metrics

Green infrastructure Site, size, and manage trees/parks/green 
roofs; accelerate design vs CFD (e.g. Envi- 
met® tool) only workflows; monitor and 
operate assets

LST; NDVI/EVI; 3D morphology 
(height, density, SVF); LCZ; street 
geometry; meteorology; in-situ/RS time 
series

RF, XGBoost; CNN/attention 
surrogates; time-series learners; 
SHAP for attribution

ΔLST/SUHII; UTCI/WBGT/ 
Heat Index; mortality risk; 
and ventilation potential

Cool materials Infer material properties and siting; 
evaluate lifecycle performance and cost 
trade-offs

Albedo/emittance; solar exposure; 
orientation; building density; pavement 
type; aging/soiling; and energy demand

Neural net works; RF; meta- 
models; evolutionary search

ΔLST; building energy; net 
GHG impact; durability/ 
cost

Urban water bodies Design and place blue infrastructure; 
quantify cooling drivers; monitor 
performance

NDWI/MNDWI; water area/shape/ 
dispersion/depth; winds; adjacency 
vegetation; LST/ET; land-use and 
hydrologic constraints

RF/ExtraTrees; CNNs for ET 
with footprint/physics; PSO +
microclimate or LST surrogate

ΔLST/SUHII; UTCI; cooling 
footprint radius; land/cost

Planning and design Evaluate scenarios and optimize urban 
form; identify ventilation corridors; and 
enable morphology-aware comparability

3D morphology (MBH, BHSD, H/W, 
SVF); LCZ; LST; winds; land use; and 
socio-economic layers

Surrogates + genetic algorithms; 
ridge/SVR/GBDT; UVNM; and 
digital twins

Urban thermal comfort; 
energy/emissions; 
ventilation; multi-objective 
trade-offs

UHI control Forecast-informed, real-time adaptive 
operations at building/district/city scales

Dense sensors; short-term forecasts; 
mobility and load data; and building 
telemetry

Model predictive control; 
supervised controllers; hotspot 
prediction; and traffic flow ML

Peak demand; comfort; 
congestion heat; and spatial 
targeting efficacy
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(Ahn et al., 2024). Recent applications illustrate these advantages. In 
Turin, a GIS-integrated ML assessment of urban regeneration docu
mented a 19.46 % increase in vegetation cover accompanied by a 
measurable reduction in SUHII (Mutani et al., 2024). In Tokyo, 
ML-based scenario evaluation indicated that ground-surface greening 
and related measures reduce outdoor temperatures and associated 
heat-related mortality (Ohashi et al., 2025).

Model choice also informs species and trait selection. ML analyses 
rank vegetation types by evapotranspiration and shading potential 
under local climate conditions (Marando et al., 2022) and identify tree 
traits such as trunk circumference and crown volume that most strongly 
predict cooling outcomes (Helletsgruber et al., 2020). For green roofs, 
hybrid deep models such as SSA-CNN-LSTM provide accurate 
thermal-performance predictions that aid both design and operation 
(Wang et al., 2024a; J. Wang et al., 2024b). During implementation and 
maintenance, ML applied to remote-sensing and in-situ data streams 
supports continuous monitoring of green-infrastructure performance 
and enables adaptive interventions. Learning-based controllers can also 
optimize irrigation schedules, improving cooling efficiency while 
reducing resource consumption.

5.2.2. ML applications for cool materials
ML supports the design and deployment of cool materials by relating 

spectral and thermal properties, such as albedo and thermal emittance, 
to surface and air temperature responses under diverse urban condi
tions. Data-driven models help identify properties and configurations 
that minimize heat absorption and maximize cooling benefits at building 
and street scales. Neural-network models have been used to predict 
urban albedo for reflective coatings with good accuracy, including 
Gaussian-process and hyperbolic-tangent architectures conditioned on 
solar radiation and surface orientation (Yuan et al., 2023). 
Random-forest analyses of surface modifications report that modest al
bedo increases (about 3.09 %) are associated with measurable SUHII 
reductions (Mutani et al., 2024). Meta-modeling has been applied to 
estimate the net greenhouse-gas impact of pavement albedo changes by 
jointly accounting for air temperature and building energy demand at 
high resolution (Xu et al., 2020). Evolutionary search has also been used 
to optimize paving layouts by assigning materials with different albedo 
levels while considering material costs (Green et al., 2019). Beyond 
material selection, ML can target deployment by ranking locations 
where reflective roofs and pavements yield the largest impact given 
building density, solar exposure, and baseline LST, and it can forecast 
long-term performance and energy savings to inform cost–benefit and 
policy decisions (Visvanathan et al., 2024).

A central challenge is balancing multiple objectives. Materials should 
maximize solar reflectance and thermal emittance, retain performance 
under aging, soiling, and weathering, and remain cost-effective to install 
and maintain. ML frameworks are well suited to this trade-space because 
they can fuse laboratory measurements with field observations, learn 
degradation trajectories, and drive multi-objective optimization that 
evaluates cooling, durability, and cost simultaneously. Such workflows 
support choices that perform well in controlled tests and remain robust 
in the complex operating conditions of real urban environments.

5.2.3. ML applications for monitoring and managing urban water bodies
Urban blue-green spaces, including water bodies, are recognized as 

effective elements in mitigating UHI effects by reducing LST (Budzik 
et al., 2025; Wang et al., 2024c; Zhang et al., 2025a). Cooling efficiency 
depends on physical characteristics and spatial configuration, with size, 
shape, depth, and distribution all influencing performance and more 
complex shapes often enhancing cooling (Liu et al., 2024a). ML supports 
planning and design by linking water features to observed thermal re
sponses, frequently within GIS and digital-twin environments. 
Tree-based learners such as Random Forest and Extremely Randomized 
Trees capture the relationship between water presence and LST with 
high robustness, enabling city-scale prediction of cooling effects (Wang 

et al., 2024c). Convolutional models assist mechanistic understanding 
by estimating urban evapotranspiration (ET); incorporating 
flux-footprint information and basic physical constraints improves the 
fidelity of ET simulations and clarifies the role of blue infrastructure in 
surface cooling (Chen et al., 2023a).

Optimization workflows increasingly pair ML with population-based 
search to design waterbody layouts that maximize cooling under prac
tical constraints. Particle swarm optimization (PSO) encodes decision 
variables such as water area share, centroid locations, shape or 
compactness, and dispersion, and evaluates candidates with a micro
climate model or LST-based surrogate subject to land-use and hydrologic 
limits. At city scale, PSO has been used to allocate land-use classes, 
explicitly including waterbodies, to reduce LST (Xiao et al., 2025). At 
microclimate scale, PSO has optimized tree placement to lower UTCI 
(Shaamala et al., 2024), illustrating a simulation–optimization pattern 
that extends directly to waterbody layout for UHI and SUHI mitigation. 
In operation, ML applied to remote-sensing and in-situ networks sup
ports continuous monitoring of waterbody performance, detection of 
deterioration or anomalies, and adaptive management. Together, these 
ML-driven approaches enable more informed and efficient use of urban 
waterbodies as a core element of UHI mitigation.

5.2.4. ML applications for urban planning & design approaches
ML is increasingly central to optimizing planning and design stra

tegies for UHI mitigation (Koomen & Diogo, 2017). Models trained on 
historical links between urban morphology and observed temperatures 
enable rapid evaluation of counterfactual layouts and development 
scenarios (Koomen & Diogo, 2017). Digital twins that integrate 
three-dimensional city models enriched with synoptic real-time data and 
ML provide practical platforms to visualize and predict cooling out
comes under alternative plans (Koeva et al., 2024).

Recent applications illustrate the breadth of ML-enabled planning 
tools. Hao et al. (2023) introduced an ML-Enhanced Design Optimizer 
that couples a neural-network surrogate with a genetic algorithm to 
explore cooling strategies efficiently, demonstrating advantages for 
early-stage decision making in Southern China. López-Guerrero et al. 
(2024) combined several ML models, including SVR, MLP, and Gradient 
Boosting with the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) and the Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) to optimize building and district-scale designs, 
yielding notable reductions in energy loads and heat emissions. Okumus 
and Terzi (2021) used Ridge Regression to quantify the contribution of 
urban fabric components (e.g., building coverage ratio, vegetation 
index) to surface UHI formation, providing actionable guidance for 
climate-sensitive layouts. For wind-driven relief, an Urban Ventilation 
Network Model (UVNM) identified ventilation corridors by accounting 
for building height and prevailing winds, subsequently validated with 
LST patterns (Qiao et al., 2017). At the block scale, a performance-based 
workflow integrating CFD with evolutionary algorithms improved 
ventilation potential by ~16 % relative to initial layouts (Lim & Ooka, 
2021). Genetic algorithms have also been used to optimize land-use 
patterns for thermal benefit by exploring scenarios that minimize heat 
accumulation.

The Local Climate Zones (LCZ) framework provides a standardized, 
morphology-aware typology that pairs naturally with ML for climate- 
aware planning and attribution. Global ~100 m LCZ layers produced 
with Random Forests are now available (Demuzere et al., 2022), while 
deep-learning benchmarks such as So2Sat LCZ42 have accelerated 
cross-city LCZ classification using Sentinel-1/2 (Zhu et al., 2019; Zhou 
et al., 2022a; Liu & Shi, 2020; Cui et al., 2022). In UHI/SUHI modeling, 
LCZ can function as a categorical feature, a stratification layer for 
training/evaluation within homogeneous forms, or a bridge integrating 
morphology with spectral/land-cover indices. LCZ-aware ML has been 
shown to improve skill and interpretability, including diurnal cycle 
characterization (Oliveira et al., 2022). Building on this framework, a 
recent study proposed a multi-scenario optimization method based on 
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local climate zones, employing genetic algorithms to adjust the quantity 
and structure of these zones, thereby enhancing the overall urban 
thermal environment (Chen et al., 2024c). More broadly, ML can 
analyze airflow patterns in urban environments to identify layouts that 
promote better ventilation, aiding in heat dissipation (Koomen & Diogo, 
2017), and can support sustainable urban transformation by analyzing 
various layers of environmental, social, and economic data to guide the 
development of urban plans and designs that minimize UHI effects and 
enhance overall urban resilience.

5.2.5. ML applications for UHI control
ML enables a shift from static mitigation to adaptive control guided 

by real-time data. Dense sensor networks and short-term weather fore
casts feed ML models that anticipate heat intensity and spatial patterns, 
allowing city services to target interventions where they matter most. 
Examples include dynamically operating misting systems and deploy
able shading in public spaces, and prioritizing streets or plazas with the 
highest projected thermal stress. Such workflows coordinate actions 
across departments while balancing comfort gains, water use, and 
operational constraints.

At the building and district scale, ML-based controllers improve the 
efficiency of cooling systems by learning the relationship between out
door conditions, UHI amplification, and indoor demand. Studies 
demonstrate adaptive HVAC control that responds to moment-to- 
moment conditions to optimize energy use and comfort (Hassan & 
Abdelaziz, 2022; Gaidhani et al., 2024). Forecast-informed building 
management systems further adjust setpoints and schedules in antici
pation of UHI-driven peaks, reducing electricity demand and costs while 
maintaining thermal comfort (Attarhay Tehrani et al., 2024). In parallel, 
mobility analytics use ML to redistribute traffic flows in real time, easing 
congestion hotspots and associated anthropogenic heat emissions at 
street level (Vihurskyi, 2024). Together these dynamic control strategies 
extend the impact of traditional measures by delivering timely, 
location-aware responses to evolving urban heat conditions.

6. Flexible adaptation for UHI mitigation

Traditional UHI mitigation strategies often rely on static in
terventions, such as fixed cool roofs, predetermined green spaces, and 
permanent urban layouts (Chen & You, 2020). However, UHI mitigation 
necessitates not only immediate interventions but also long-term plan
ning and flexible adaptation strategies that can dynamically adjust and 
evolve in response to changing climate conditions and urban develop
ment patterns (Cakmakli & Rashed-Ali, 2022). Unlike mitigation stra
tegies that aim to reduce the root causes of UHI, adaptation focuses on 
adjusting to the effects of increased urban heat to minimize negative 
impacts (He et al., 2023). Adaptive measures offer a dynamic approach, 
enabling cities to respond in real-time to fluctuating environmental 
conditions. These measures involve deploying smart materials that 
dynamically adjust their thermal properties in response to ambient 
temperature and sunlight intensity (Irfeey et al., 2023; Turhan et al., 
2023), alongside sustainable techniques such as incorporating recycled 
aggregates (Moretti & Loprencipe, 2018; Jeong et al., 2019), 
phase-change materials (PCMs) (Reyez-Araiza et al., 2021; Marani & 
Nehdi, 2019; Wong et al., 2021), and thermochromic coatings (Jamei & 
Tapper, 2019; Hu & Yu, 2020). These materials can modulate surface 
temperatures by reflecting more solar radiation, storing and releasing 
latent heat, or even changing color to optimize thermal absorption based 
on the time of day and season (Irfeey et al., 2023; Andoni & Wonor
ahardjo, 2018). Such adaptive systems not only reduce surface tem
peratures and greenhouse gas emissions but also enhance overall energy 
efficiency by using locally sourced, eco-friendly building components 
(Santamouris et al., 2019; Irfeey et al., 2023). Moreover, adaptive urban 
design can integrate modular green spaces that expand or contract based 
on real-time thermal data, and ventilation corridors that adjust with 
evolving wind patterns and urban growth (Fadhil et al., 2023). By 

continuously monitoring and responding to fluctuating urban climate 
conditions, adaptive strategies provide a more resilient and flexible 
framework to mitigate the effects of UHI (Qi et al., 2020).

ML plays an increasingly important role in enabling these flexible 
adaptation strategies for UHI (Ghorbany et al., 2024). One key appli
cation lies in the dynamic deployment of resources based on real-time 
UHI data and heat wave predictions generated by ML models. For 
example, ML can analyze sensor network data and weather forecasts to 
predict periods of extreme heat, triggering the activation of cooling 
centers in vulnerable neighborhoods or the deployment of additional 
emergency medical services. ML algorithms can analyze the large vol
umes of real-time data from sensors, satellites, and IoT devices across 
urban environments to identify emerging heat patterns, predict 
short-term temperature fluctuations, and determine the optimal timing 
for activating adaptive cooling systems (Liu et al., 2021; Zumwald et al., 
2021). Predictive models can forecast when and where a city might 
experience a heat surge, allowing automated systems to dynamically 
deploy smart materials or adjust ventilation pathways. Furthermore, ML 
can optimize the performance of adaptive infrastructures by learning 
from historical data and continuously refining intervention strategies 
(Okumus & Terzi, 2021).

ML-based simulations can also help urban planners develop adaptive 
urban planning and design solutions (Koomen & Diogo, 2017). By 
modeling different climate change scenarios and urban growth pro
jections, ML can inform the design of flexible infrastructure and green 
spaces that can effectively mitigate heat under a range of future condi
tions. Additionally, ML can be used to identify vulnerable populations 
within cities based on factors like age, income, and health status, 
allowing for the tailoring of adaptation strategies to their specific needs. 
This could include targeted heat alert systems delivered via mobile apps 
or the provision of cooling assistance programs for low-income house
holds. Community involvement and citizen science initiatives, poten
tially facilitated by ML-powered data collection and analysis tools, can 
also contribute to flexible adaptation by empowering local communities 
to monitor heat conditions and implement localized solutions 
(Zuccarini, 2024).

Finally, ML can be applied to enhance the resilience of urban infra
structure to extreme heat. By analyzing historical data on infrastructure 
failures during heat waves and incorporating climate projections, ML 
models can predict the potential impacts of future heat events on roads, 
power grids, and other critical systems. This information can then 
inform the development and deployment of more heat-tolerant mate
rials and proactive maintenance strategies. Developing digital twins of 
cities that integrate real-time data, urban models, and climate change 
projections provides a powerful tool for testing and evaluating different 
urban planning and adaptation scenarios (Du et al., 2024). Moreover, 
ML models can be trained on urban data to identify effective policy in
terventions for UHI mitigation, such as assessing the impact of different 
incentives for cool roof adoption or green infrastructure development. 
By integrating real-time environmental feedback with adaptive control 
systems, ML not only enhances the efficiency of UHI mitigation mea
sures but also supports the development of a responsive urban envi
ronment capable of evolving with climate challenges.

7. Discussion and synthesis

This review has illuminated the progressively central role of ML 
methodologies in the comprehension, prediction, mitigation, and 
adaptation strategies concerning the UHI effect. The synergistic inte
gration of diverse data streams, sophisticated analytical techniques, and 
advanced modeling tools has unlocked novel avenues for tackling this 
complex and multifaceted urban challenge. This section synthesizes the 
key findings of the review, critically evaluates the potential and inherent 
limitations of ML approaches in this context, and proposes promising 
directions for future research endeavors.

A significant portion of the current body of research on ML 
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applications in UHI has been dedicated to data analysis, prediction, and 
forecasting. These efforts have yielded a more granular and nuanced 
understanding of UHI dynamics by uncovering intricate relationships 
between urban morphology, land cover characteristics, and meteoro
logical variables. Furthermore, the enhanced accuracy and timeliness of 
ML-driven forecasts are enabling more proactive and targeted mitiga
tion measures through improved predictions of urban temperature dis
tributions (Ghorbany et al., 2024). However, this review has revealed a 
notable imbalance in the current research landscape. While predictive 
capabilities have advanced considerably, there is a comparatively 
limited focus on leveraging ML for the optimization of UHI mitigation 
strategies. Even fewer studies have explored flexible, adaptive ap
proaches that can dynamically respond to evolving climate conditions 
and shifting urban development patterns. Given that effective UHI 
management necessitates not only precise forecasting but also the ca
pacity to optimize interventions and adjust strategies in real time, this 
disparity represents a critical area demanding greater scholarly atten
tion in the future.

In light of this identified gap, future research efforts should prioritize 
the development of ML-based frameworks that extend beyond the realm 
of prediction. Such frameworks should integrate robust optimization 
tools to maximize the effectiveness of mitigation measures while care
fully considering and minimizing associated costs and potential trade- 
offs (Turhan et al., 2023). Moreover, these frameworks should actively 
support adaptive urban planning strategies capable of responding to 
dynamic environmental and socio-economic changes. By incorporating 
socio-economic and behavioral data alongside traditional environ
mental variables, these sophisticated models can inform the develop
ment of more equitable and resilient long-term urban policies (Parsaee 
et al., 2019; Liu & Morawska, 2020).

Overall, while ML methods have undeniably made substantial con
tributions to the understanding and forecasting of UHI, a greater 
emphasis on the application of ML for optimizing and flexibly adapting 
UHI mitigation strategies is urgently needed. Addressing this critical gap 
will be essential for the development of holistic and sustainable solu
tions to effectively manage urban heat in the face of a rapidly changing 
climate. In the subsequent section, and as visually summarized in Fig. 6, 
a more in-depth discussion of the key challenges and research gaps 
identified throughout this review will be presented, along with prom
ising prospects and future directions for advancing the impactful 
application of ML in UHI mitigation.

7.1. Challenges and research gaps

7.1.1. Challenges in UHI data acquisition and quality
UHI research relies on a diverse and often fragmented collection of 

data sources, including high-resolution remote sensing imagery, ground- 
based sensor networks, and outputs from numerical models. While these 
sources provide rich spatial and temporal information, several funda
mental challenges persist in acquiring and ensuring the quality of UHI 
data.

One significant challenge lies in the heterogeneous and sparse nature 
of observations. Remote sensing platforms, although offering high 
spatial resolution, often have limitations in temporal frequency and can 
be affected by factors such as cloud cover and calibration in
consistencies. Ground-based weather stations provide valuable near- 
surface air temperature data but are frequently spatially sparse, 
exhibit wide variations in data quality, and can be influenced by sensor 
placement and maintenance protocols. These disparities across data 
sources necessitate careful consideration during integration and 
analysis.

Another critical challenge is multi-scale and multi-format data 
integration. Urban areas are characterized by complex and highly het
erogeneous features arising from variations in land cover, building ge
ometry, and surface materials. This inherent variability leads to 
significant microclimatic differences that are not easily captured by any 

single data source. Integrating structured numerical data from simula
tions, semi-structured remote sensing products, and unstructured met
adata presents considerable hurdles in terms of data cleaning, 
standardization, and effective aggregation to facilitate meaningful 
analysis.

Temporal limitations and the scarcity of long-term records also pose 
a substantial challenge. Many currently available datasets have rela
tively short record periods compared to the extended time scales 
required to thoroughly assess the impacts of long-term climate change 
on UHI intensity. This limitation restricts the ability to examine long- 
term variations and trends. Furthermore, capturing the full spectrum 
of diurnal, seasonal, and interannual temperature variations, particu
larly during nighttime when UHI effects are often most pronounced, 
remains a significant hurdle.

Finally, the density and strategic placement of sensing infrastructure 
constrain the comprehensive evaluation of the UHI effect. Existing 
sensor networks may not adequately cover all targeted regions, limiting 
the understanding of localized variations. A more comprehensive 
assessment necessitates both an increase in the density of measurement 
stations and the implementation of strategic placement planning in 
adjacent areas to enable robust comparative analysis. This enhanced 
data collection would facilitate a more thorough examination of the 
various factors influencing UHI.

Collectively, these challenges underscore the pressing need for 
improved data collection protocols, the establishment of longer-term 
observational networks, and the development of sophisticated data 
fusion techniques capable of effectively bridging the existing gaps in the 
spatial, temporal, and qualitative dimensions of UHI data.

7.1.2. Challenges in ML algorithm application for UHI analysis
While ML offers powerful tools for advancing the understanding and 

analysis of UHIs, its application presents several significant algorithmic 
challenges that must be addressed to fully realize its potential in this 
domain. One major hurdle stems from the complex, nonlinear, and 
nonstationary dynamics inherent in UHI phenomena. These phenomena 
arise from intricate and dynamic interactions among urban morphology, 
land cover, meteorological conditions, and human activities. Many 
standard ML algorithms, originally developed for fields like image 
recognition or natural language processing, often struggle to effectively 
capture these complex, nonlinear, and time-varying relationships.

Another significant challenge lies in the dependence on limited and 
potentially biased labeled data. Supervised ML techniques typically 
require substantial amounts of high-quality, labeled data. However, UHI 
datasets frequently suffer from issues such as sparsity, uneven spatial 
and temporal distribution, and a lack of comprehensive labeling for 
specific UHI-related tasks. This scarcity of suitable data can lead to 
problems like model overfitting, where the model performs well on the 
training data but poorly on unseen data, or poor generalization in re
gions or time periods that are underrepresented in the training data. 
Furthermore, ML models trained on data from one city or climate zone 
may face limitations in their generalization and transferability across 
diverse urban environments. Differences in urban morphology, land 
cover characteristics, and meteorological conditions necessitate region- 
specific training data.

Furthermore, the interpretability challenges and the ’black box’ 
nature of many advanced ML models pose a significant obstacle. Com
plex models, such as deep learning architectures and ensemble methods, 
often operate as "black boxes," making it difficult to understand the 
underlying physical mechanisms driving their predictions. In critical 
applications like urban planning and climate adaptation, the ability to 
understand and explain predictions is paramount for building trust and 
gaining scientific insights. Consequently, there is a growing need for 
more interpretable ML approaches in UHI research (Ang et al., 2024; Wu 
& Snaiki, 2022).

Beyond these issues, practical challenges also exist in terms of 
hyperparameter tuning, uncertainty quantification, and computational 
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Fig. 6. Mind map of challenges, research gaps and future perspectives.
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demands. Choosing the most appropriate model architecture and tuning 
its hyperparameters often remains a largely trial-and-error process. 
Moreover, while robust uncertainty quantification is essential, particu
larly when ML predictions inform policy decisions, systematic ap
proaches for assessing and propagating uncertainty in UHI predictions 
are still underdeveloped. Additionally, processing and training complex 
ML models, especially when dealing with high-resolution spatiotem
poral data, can be computationally demanding, requiring significant 
resources (Shi et al., 2021a). Finally, it is important to be mindful of the 
distinction between correlation and causation when interpreting the 
results of ML models, as purely data-driven approaches may sometimes 
identify spurious relationships without capturing the underlying phys
ical processes.

Addressing these multifaceted challenges will necessitate the devel
opment of specialized ML frameworks specifically tailored for the 
complex dynamics of UHIs. These frameworks should not only excel in 
predictive performance but also incorporate physical principles, provide 
transparent and robust uncertainty estimates, and be computationally 
feasible for practical applications.

7.2. Prospects and future directions

While the application of ML to the study of UHIs has yielded 
considerable progress, many challenges remain that also open up 
exciting new avenues for research. This section outlines key prospects 
for advancing the field, focusing on improvements in UHI data acqui
sition and processing, the enhancement of ML algorithm performance, 
the integration of physical principles into ML approaches, and the 
incorporation of socio-behavioral insights through interdisciplinary 
collaboration.

7.2.1. Prospects for UHI data
The future of UHI research is poised for significant advancements 

driven by enhanced data acquisition capabilities and a growing 
emphasis on integrating diverse data sources. To address current limi
tations in UHI data, future work should prioritize the development and 
integration of new data sources alongside sophisticated processing 
techniques. Enhanced data acquisition will play a crucial role, with next- 
generation satellite platforms and high-resolution aerial imagery 
providing more detailed and frequent observations of land surface 
temperature. Innovations in sensor technology and deployment strate
gies will enable more accurate and continuous monitoring of urban 
thermal environments, while advanced thermal imaging techniques will 
further contribute to improved data quality. The deployment of denser 
networks of low-cost ground-based sensors, including the expansion of 
community-based monitoring initiatives, offers a practical solution to 
fill observational gaps and provide near real-time air temperature data 
at unprecedented spatial resolutions.

Furthermore, future research will increasingly focus on multi-scale 
data integration to gain a more holistic understanding of UHI. UHI 
phenomena manifest across a wide range of scales, from building-level 
variations within neighborhoods to city-wide patterns. Advanced data 
fusion techniques, such as advanced data assimilation techniques, ML- 
based fusion algorithms, clustering, and dimensionality reduction, will 
be essential to effectively integrate high-resolution remote sensing data 
with in situ measurements and numerical simulation outputs. Beyond 
these sources, there will be a growing emphasis on integrating diverse 
data, including meteorological data, detailed urban morphology infor
mation like building footprints and land use maps, socioeconomic data 
to understand vulnerability, and even potentially incorporating social 
media data to capture human experiences of urban heat. Establishing 
common data standards and interoperable platforms will be critical to 
facilitate the seamless aggregation, cleaning, and integration of data 
from these diverse sources, ultimately improving the robustness and 
coverage of UHI datasets.

Finally, given the profound impacts of climate change on urban 

thermal behavior, it is critical to establish long-term and heterogeneous 
records. Long-term observational networks are necessary to capture 
diurnal, seasonal, and interannual variations, enabling the study of long- 
term trends and extreme events. In addition, creating standardized 
protocols for data collection and processing will be essential to harmo
nize heterogeneous datasets derived from different instruments and 
sources, ensuring the consistency and comparability of data over time 
and across various studies.

7.2.2. Prospects for ML algorithms
The continuous evolution of ML presents promising avenues to 

address the complex, nonlinear nature of UHI phenomena and signifi
cantly benefit future research in this area. It is anticipated that more 
robust and generalizable ML models will be developed, exhibiting less 
susceptibility to overfitting and greater applicability across diverse 
urban environments. One key direction involves adopting advanced ML 
architectures. Emerging ML algorithms, such as generative adversarial 
networks (GANs), convolutional neural networks (CNNs), recurrent 
networks like LSTMs, and reinforcement learning, hold significant po
tential for capturing the intricate spatiotemporal patterns characteristic 
of urban thermal environments. These methods can be specifically 
tailored to efficiently process grid-based data, like high-resolution maps 
of land cover and temperature, as well as time-series measurements. 
Furthermore, the continued development and application of advanced 
deep learning architectures, such as graph neural networks (GNN) and 
transformer networks, alongside ensemble learning methods, are likely 
to lead to further improvements in UHI prediction and analysis.

Another crucial area of progress lies in reducing data dependency 
and enhancing explainability. Given the challenges associated with 
acquiring densely labeled UHI datasets, unsupervised and semi- 
supervised learning techniques offer appealing alternatives. Tech
niques such as self-supervised learning, active learning, and reservoir 
computing may enable effective model training even when labeled data 
are scarce. Moreover, there will be a growing focus on explainable AI 
(XAI) methods (Attarhay Tehrani et al., 2024) to enhance the inter
pretability of complex ML models used in UHI research. This will allow 
researchers and practitioners to better understand the factors driving 
urban heat and to have greater confidence in model predictions. Tech
niques like sensitivity analysis and layer-wise relevance propagation 
will be vital in this regard. Additionally, techniques like domain adap
tation and meta-learning will likely play a key role in improving model 
transferability across different urban environments. The integration of 
physical constraints and knowledge into ML models, through the bur
geoning field of physics-informed machine learning (PIML) (Shaeri 
et al., 2025), holds significant promise for generating more accurate, 
physically consistent, and interpretable UHI predictions.

Finally, developing robust and generalizable ML models for UHI 
analysis will necessitate systematic hyperparameter optimization and 
model selection. The use of automated optimization methods, such as 
Bayesian optimization, grid or random search, or population-based 
training, can help identify optimal model configurations that strike a 
balance between performance and generalizability while mitigating the 
risk of overfitting. This systematic approach to model development will 
be crucial for building reliable and trustworthy ML tools for UHI 
research and urban planning applications.

7.2.3. Prospects for physics-informed ML
Integrating physical principles into ML models represents a prom

ising direction for UHI research, offering a way to bridge the gap be
tween purely data-driven ML models and traditional physics-based 
models (Shaeri et al., 2025). Embedding physical laws into ML frame
works, known as physics-informed machine learning (PIML), involves 
incorporating known physical constraints, such as energy conservation, 
radiative balance, and heat transfer equations, directly into the learning 
process (Snaiki & Wu, 2019). This can be achieved by adding 
physics-based regularization terms to the loss function, ensuring that 
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model predictions remain consistent with established thermal dynamics 
even when observational data are sparse. One such option is illustrated 
in Fig. 7, where the network takes as input various factors, including 
meteorological variables (e.g., air temperature, humidity, wind speed, 
and solar radiation), land cover transformations, and anthropogenic 
factors. The model predicts the spatial distribution of LST while also 
minimizing residuals from the corresponding partial differential equa
tions. This approach not only enforces physical consistency, even in 
data-sparse regions, but also improves extrapolation to unseen urban 
conditions. By incorporating known physical laws and principles, such 
as those governing heat transfer and fluid dynamics, into the learning 
process of neural networks and other ML architectures, PIML can lead to 
models that are not only accurate in fitting observed data but also 
respect the underlying physical processes (Shaeri et al., 2025). This 
integration can significantly improve the interpretability of ML models 
and enhance their ability to generalize to unseen urban environments 
and future climate scenarios (Shaeri et al., 2025).

Hybrid and transfer learning models also present a valuable avenue 
for future research. A hybrid modeling framework that combines 
physics-based numerical simulations (e.g., a CFD or energy balance 
simulation) with ML bias-correction techniques can leverage the 
strengths of both approaches. For example, high-fidelity urban energy 
balance simulations can be used to pre-train ML models, which are then 
fine-tuned using observational data with embedded physical con
straints. Another approach consists of constructing a two-stage frame
work where a conventional physics-based urban climate model produces 
a baseline temperature field. An ML model is then trained to “correct” 
this output by learning the biases between the simulation and observed 
data. Such models not only improve prediction accuracy but also 
enhance interpretability by ensuring that predictions adhere to the un
derlying physics.

Furthermore, ML discovery of new physical insights is a compelling 
prospect of PIML. By jointly learning from data and enforcing physical 
constraints, these models can reveal unexpected interactions between 
urban morphology, land cover, and meteorological conditions that 
might be overlooked by traditional analysis methods, thereby advancing 
the fundamental understanding of UHI dynamics.

Finally, enhanced uncertainty quantification can be achieved by 
embedding physics into ML models. This approach can constrain the 
solution space to physically plausible regimes, which improves the 
reliability of uncertainty estimates. Further research is needed to 
develop systematic methods for propagating uncertainties from both 
data and model parameters, a critical requirement for decision making 
in urban planning. PIML also has the potential for accurate estimation of 
urban thermal comfort metrics (such as UTCI) by directly embedding 
physical relationships into the model structure. Furthermore, PIML can 
be used to downscale coarse-resolution climate model outputs to the 
urban scale while ensuring that the downscaled data adheres to funda
mental physical constraints.

Each of these approaches brings the strengths of both ML and 
established physical theory, potentially reducing the reliance on large 
training datasets while also increasing interpretability and extrapolation 
ability for urban climate predictions.

7.2.4. Socio-behavioral insights and interdisciplinary collaboration
Beyond technical advancements in data acquisition and ML algo

rithms, effective UHI mitigation increasingly recognizes the importance 
of understanding the human and social dimensions that influence urban 
climate dynamics. Future research should consider proactive human- 
centered approaches by integrating socio-behavioral insights. Miti
gating UHI is not solely a technical challenge; it also involves under
standing human behavior and community dynamics. Incorporating 
socio-behavioral data, such as patterns of energy use, population expo
sure, thermal comfort, vulnerability, and community response strate
gies, into UHI analyses can yield more effective and equitable mitigation 
measures. By capturing the interplay between built environments and 
human activity, models can better inform policy decisions that address 
both physical and social vulnerabilities (Degirmenci et al., 2021). This 
integration should also include socioeconomic factors, such as income 
levels, racial demographics, and age distributions, along with behavioral 
data related to energy consumption patterns and adaptation strategies, 
to provide a more nuanced understanding of vulnerability and inform 
more equitable mitigation efforts.

Addressing the complex challenges of UHI effectively requires 
fostering interdisciplinary collaboration between experts from diverse 
fields, including urban planning, climate science, computer science, 
social science, public health, and engineering (Zuccarini, 2024). Pro
moting interdisciplinary research will be key to developing innovative, 
robust solutions that are scientifically sound and practically applicable. 
By bridging disciplinary boundaries, researchers can develop integrated 
frameworks that leverage state-of-the-art data and ML techniques while 
also accounting for human and societal factors. Engaging communities 
and leveraging citizen science initiatives in data collection and the 
implementation of local mitigation measures will also be crucial 
(Zuccarini, 2024).

Furthermore, there is a need to develop user-friendly ML-powered 
tools and platforms that can be used by urban planners, policymakers, 
and the public to visualize UHI data, explore different mitigation sce
narios, and make informed decisions. Finally, as the use of ML in this 
domain expands, it will be essential to address ethical considerations 
related to data privacy, algorithmic bias, and ensuring equitable access 
to information and resources. By embracing these socio-behavioral and 
collaborative approaches alongside technical advances, future UHI 
research can achieve a more holistic understanding of urban heat dy
namics and support the development of comprehensive adaptation 
strategies.

Fig. 7. Schematic of the physics-informed ML model for LST prediction.
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8. Conclusion

This review has systematically examined the burgeoning application 
of ML methodologies within the domain of UHI research. By synthe
sizing insights across diverse data acquisition modalities, sophisticated 
processing pipelines, and cutting-edge ML models, this work elucidates 
the significant potential of these approaches to enhance the under
standing of complex urban thermal dynamics and inform the develop
ment of more efficacious mitigation strategies. The integration of 
satellite-derived observations, mobile in-situ measurements, and dense 
sensor networks, coupled with advanced data fusion and analytics, has 
underscored the transformative capacity of ML methodologies in accu
rately forecasting UHI patterns and optimizing targeted interventions.

Despite these considerable advancements, several critical challenges 
warrant careful consideration. The robustness and reliability of ML- 
driven insights are intrinsically linked to the quality and consistency 
of the underlying data. Issues pertaining to sensor calibration, data 
heterogeneity across sources, and substantial computational resource 
demands continue to present significant obstacles. Furthermore, the 
inherent ‘black-box’ nature of certain ML architectures raises valid 
concerns regarding the interpretability of their outputs, while ethical 
and privacy implications associated with the collection and analysis of 
large-scale urban datasets necessitate rigorous attention and the devel
opment of responsible data governance frameworks. These limitations 
underscore the imperative for ongoing refinement of analytical frame
works and the development of more robust and transparent models 
capable of effectively capturing the intricate complexities of urban 
environments.

Looking towards the future, research efforts should prioritize 
enhancing data quality through improved sensor technologies and 
rigorous calibration protocols, alongside expanding the spatial and 
temporal coverage of urban monitoring networks to bolster the gener
alizability of predictive models. Notably, the integration of physics- 
informed machine learning (PIML) represents a promising frontier for 
overcoming current limitations. By embedding fundamental physical 
principles and constraints directly into ML models, PIML offers the po
tential to enhance model interpretability, reduce the reliance on 
extensive datasets, and improve the robustness of predictions, particu
larly in data-scarce urban settings. This approach ensures that model 
outputs are not only data-driven but also physically plausible, thereby 
increasing their reliability for real-world applications. Moreover, the 
synergistic integration of digital twin technologies, real-time adaptive 
control systems for urban infrastructure, and interdisciplinary collabo
rations holds significant promise for translating data-driven insights into 
tangible urban planning and management strategies. By diligently 
addressing these challenges and strategically leveraging emerging op
portunities, ML methodologies can play a pivotal role in fostering the 
development of sustainable, resilient, and thermally comfortable urban 
environments in the face of accelerating urbanization and the pervasive 
impacts of climate change.
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