

1 **MULTI-SCALE ANALYSIS OF THE IMPACT OF GRAPHENE OXIDE IN**
2 **CEMENT-BASED MATERIALS**

3 Victor Brial^{a*}, Claudiane Ouellet-Plamondon^a, Thomas Duplessis^a

4 ^a Département de Génie de la construction, École de technologie supérieure, 1100 Notre-
5 Dame Ouest, Montréal, Québec, Canada H3C 1K3

6

7 *Corresponding author: victor.brial@etsmtl.ca;

8

9

10

11 **Abstract**

12 This study investigates the effects of 0.03% graphene oxide (GO) on cement-based
13 materials, focusing on dispersion methods (superplasticizers and sonication), water-to-
14 binder ratios (0.35 and 0.4), and binary binders with 30% slag or 8% silica fume. Isothermal
15 calorimetry revealed that well-dispersed GO enhances hydration reactions, notably the C₃A
16 peak, through its nanofiller effect. Compressive strength tests showed that GO reduces
17 fresh mortar flow but improves strength when combined with superplasticizers,
18 emphasizing their role in achieving GO's potential. Chloride penetration tests at 28, 56, and
19 91 days demonstrated that GO reduces chloride ingress by 5.5%–24.9%, particularly in
20 slag concretes, with lower W/B ratios further improving resistance. The addition of 8%
21 silica fume significantly enhanced durability due to its fine particle size. These results
22 suggest that properly dispersed GO, especially with superplasticizers, can improve both
23 durability and mechanical properties of cementitious materials, offering practical benefits
24 for construction applications.

25

26 **Keywords:**

27 Graphene oxide, supplementary cementitious materials, calorimetry, Rapid Chloride
28 Penetration Test, mortar, concrete, durability

29

30

31

32

33

34

35 **1- Introduction**

36 Reducing CO₂ emissions related to cement consumption remains a significant challenge in
37 the construction industry. Optimizing concrete mix design and using efficient grades of
38 concrete where applicable can reduce material consumption and, consequently, CO₂
39 emissions (Scrivener, John et Gartner, 2018). Achieving durable and high-performance
40 concrete often necessitates using high-range water reducing admixtures (HRWA) and
41 supplementary cementitious materials (SCM) in the mix design (Nkinamubanzi,
42 Mantellato et Flatt, 2016).

43

44 Recent advances in nanomodified cementitious composites, particularly using graphene
45 oxide (GO), have shown promise in enhancing concrete performance. Studies reveal that
46 incorporating a small percentage of GO into cement paste, mortar, and concrete
47 significantly improves compressive, flexural, and tensile strength, as well as corrosion
48 resistance (Chuah *et al.*, 2014 ; Bhojaraju *et al.*, 2021 ; Devi et Khan, 2020). This
49 improvement is attributed to GO's nucleation effect on C-S-H crystal growth, akin to the
50 filler effect, where materials provide favorable surfaces for C-S-H nucleation (Lv *et al.*,
51 2013 ; Lv *et al.*, 2014 ; Meng *et al.*, 2021 ; Lothenbach, Scrivener et Hooton, 2011 ; Kumar
52 *et al.*, 2017). GO's hydrophilic nature, derived from its functional groups (hydroxyl, epoxy,
53 carboxyl), facilitates its dispersion in water (Chuah *et al.*, 2014 ; Mohammed, Al-Saadi et
54 Sanjayan, 2018 ; Wang *et al.*, 2020).

55

56 GO also influences the morphology of hydration products. Studies indicate that GO
57 addition promotes the formation of hydrate agglomerations, yielding flower-like structures
58 that contribute to strength enhancement (Lv *et al.*, 2013 ; Lv *et al.*, 2014). However, Cui et
59 al. suggest these structures might be calcium carbonate artifacts from sample preparation
60 (Cui *et al.*, 2017). Beyond morphology, Zhao et al. hypothesize that GO integrates into C-
61 S-H structures, filling gel pores and densifying the cement paste microstructure (Zhao *et
62 al.*, 2018).

63

64 Despite these findings, Yang et al. argue that GO does not alter C-S-H's microstructure but
65 accelerates hydration, enhancing mechanical properties (Yang *et al.*, 2017). The pore

66 structure also benefits, with reduced porosity and finer gel pores observed in GO-modified
67 mixes, especially at lower water-to-binder ratios (Lv *et al.*, 2014 ; Gong *et al.*, 2015).
68 Thermogravimetric analysis (TGA) confirms increased bound water and calcium
69 hydroxide content with GO addition, consistent with enhanced hydration rates (Gong *et*
70 *al.*, 2015). Isothermal calorimetry further demonstrates GO's role in accelerating hydration
71 and intensifying reaction peaks (Lu *et al.*, 2017).

72

73 However, not all studies report positive effects. Krystek *et al.* observed an 11% decrease
74 in compressive strength in GO-modified mortars due to poor workability (Krystek *et al.*,
75 2019). The interaction of GO with blended cements is less explored, though recent findings
76 suggest improved fluidity and mechanical properties in nano-modified slag-based binders
77 (Bhojaraju *et al.*, 2021).

78

79 Proper dispersion of GO is critical to achieving its benefits, as its interaction with Ca^{2+} ions
80 can lead to agglomeration, compromising performance (Liu *et al.*, 2020 ; Zhao *et al.*, 2020)
81 (Zhao *et al.*, 2020). Dispersion methods such as superplasticizers, which form protective
82 barriers around GO, and sonication, are commonly employed, though they vary
83 significantly between studies (Bhojaraju *et al.*, 2021 ; Meng *et al.*, 2021 ; Liu *et al.*, 2020 ;
84 Liu *et al.*, 2021). Given the improved microstructure with GO, its potential impact on
85 durability is noteworthy, particularly in addressing chloride penetration and carbonation,
86 which cause steel corrosion in reinforced concrete (Mirsayapov, Yakupov et Hassoun,
87 2020). However, durability studies on GO-modified concrete remain limited.

88

89 The objectives of this research are to evaluate the impact of adding a small percentage of
90 graphene oxide (GO) on the performance and durability of concrete and cementitious
91 materials. The study focuses on the behavior of GO with Portland GU cement, as well as
92 its effect in combination with a binary binder mix with silica fume and slag. Additionally,
93 the importance of nanoparticle dispersion is investigated through different sample
94 preparation techniques.

95

96 To achieve these objectives, a multi-scale experimental program was designed and
97 executed in three stages. The first stage aimed to understand the microstructure and
98 hydration process of cementitious pastes incorporating GO. This involved analyzing the
99 effects of superplasticizers, GO dispersion, binder type, and water-to-binder ratio.
100 Isothermal calorimetry was conducted on various mixes to evaluate the impact of GO on
101 binder hydration.

102

103 The second stage focused on mechanical properties, specifically compressive strength and
104 workability. These tests adhered to the CSA A3004 C-2 standard, with variables such as
105 binder type, superplasticizer use, and GO dispersion systematically manipulated. Flow
106 measurements were also performed to assess the influence of GO on fresh-state properties.

107

108 The third stage evaluated the practical applicability of GO-modified concrete. Concrete
109 mixes were designed to meet Canadian standards. Comparisons were made between GO-
110 modified and conventional mixes through compressive strength and chloride ion
111 penetration tests conducted at 28, 56, and 91 days. Additionally, fresh-state
112 characterizations, including density, slump, and air content, were performed to assess the
113 consistency and workability of the mixes.

114

115 While numerous studies have demonstrated the potential of graphene oxide (GO) in
116 enhancing cementitious materials, most have focused on paste-level or small-scale mortar
117 investigations under idealized laboratory conditions. This study extends the current
118 knowledge by evaluating GO's influence across multiple scales—pastes, mortars, and
119 structural concretes from realistic Canadian standard constraints (e.g., CSA, Ministère des
120 transports et de la mobilité durable (MTMD) du Québec). It compares two practical
121 dispersion methods (superplasticizer vs. sonication), explores hybrid binders with slag and
122 silica fume, and includes durability testing via RCPT. These aspects are typically
123 overlooked in previous studies, especially the link between GO dispersion quality, SCM
124 synergy, and performance at different W/B ratios at the structural concrete level.

125

126

127 **2. Materials and methods**

128

129 **2.1 Materials**

130 In this research, the binders used in for the different steps of the research program consisted
131 of a general use Portland cement (GU), granulated ground blast furnace slag (GGBS), and
132 silica fume (SF). Table 1 presents the chemical analysis of the binders. Particle size
133 distribution of the binders, presented in Figure 1, was also determined by laser
134 granulometry. Graphene oxide consisted of a commercially available graphene oxide water
135 dispersion at a 0.4 wt% concentration. Figure 2 shows a flake of GO observed with a
136 transmission electron microscope (TEM). Table 2 presents the elemental analysis for the
137 commercially available GO.

138

139

140 For mortars, ASTM C778 natural silica graded sand was used. For concrete mixes, two
141 types of coarse aggregates were used, a 5-20 mm limestone and 5-14 mm granitic
142 aggregates. Both aggregates respected the CSA specifications for particle size distribution
143 (CSA group, 2019). Natural sand was used as the fine aggregates. Particle size distribution
144 and the fineness modulus of sand also respected the Canadian standards. To meet the
145 required slump and air content in concrete mixes, two types of polycarboxylate
146 superplasticizer and air entraining admix were used.

147

148 **2.2 Sample preparation and testing**

149

150 **2.2.1 GO sonication**

151 Sonication of GO-water solutions was performed for some mixes. The 0.04% graphene
152 oxide dispersion was added to the amount of water needed to make each of the paste and
153 mortar mixes. The beaker filled with GO dispersion was then installed in the protective
154 box and the instrument probe lowered into the solution. The cavitation resulting from the
155 sonication allows the separation of the agglomerates from the particles leading to a more
156 uniform dispersion of the nanoparticles. A Qsonica brand and model Q700 device

157 programmed at an amplitude of 30 for 15 minutes was used to disperse the nanoparticles.
158 Mixes with sonicated GO are represented with the “+” symbol.

159

160 **2.2.2 Isothermal calorimetry**

161 For the calorimetry tests, the ASTM C1702 standard " Standard Test Method for
162 Measurement of Heat of Hydration of Hydraulic Cementitious Materials Using Isothermal
163 Conduction Calorimetry " was followed. This standard consists in determining the heat of
164 hydration of a cement paste by comparing the results obtained for the different binders with
165 an inert reference sample. Raw materials were mixed by hand for one minute directly in
166 the ampoule, the duration of the test was 7 days and the test temperature was 23°C. The
167 tested mixes are presented in Table 3. Among the 36 mixes, the variables manipulated were
168 the W/C ratio, the addition of GO, the addition of blast furnace slag, the use of
169 superplasticizer and the sonication of the GO solution. The pastes were mixed by hand
170 directly into the ampoule using a glass rod.

171

172 **2.2.3 Mortar tests**

173 For the mortar compression tests, mixes were made in accordance with the material
174 proportions prescribed in CSA A3004-C2: Test Method for Determining Compressive
175 Strengths. For each of the mixes, twelve mortar cubes of 50 mm × 50 mm × 50 mm were
176 made. For each mix, 3 cubes were tested for compressive strength, at 1, 3- and 28-day
177 intervals. A MATEST hydraulic press programmed with a 2000 kN cell and a loading rate
178 of 1 kN/s was used to determine the compressive strength of the mortar specimens. Table
179 4 shows the different mixes and the proportions of materials used for the tests. The
180 reference samples consist of GU cement mortar with and without superplasticizer. The
181 same mixes were then reproduced, this time adding graphene oxide equivalent to 0.03% of
182 the total mass of the binder. The same series of cubes was replicated with a ternary binder
183 of GU and slag. A total of 18 mixes were made to understand the effect of GO on GU
184 cement and blended cement, as well as the method of GO dispersion on the mechanical
185 strength of the mortars. According to Shang *et al.* (2015), GO significantly influences the
186 rheology of cementitious materials by increasing both yield stress and viscosity. Therefore,

187 to remain consistent with the CSA A3004-C2 standard for compressive strength testing,
188 the dosage of superplasticizer was adjusted to maintain a constant mortar flow of $110 \pm$
189 5%.

190

191 **2.2.4 Concrete tests**

192 For this part, superplasticizer was used as the only dispersion method. It should be
193 considered that the amount of GO solution to be dispersed for concrete manufacturing was
194 much higher than those for pastes and mortars (359 ml for mortars versus 7 liters for
195 concrete). Sonication of such a volume would not have been possible with the sonicator
196 used in this research.

197

198 Concrete must often meet prescriptive standards and performance requirements to be used
199 as safe and durable construction materials. For this research, the concrete mix designs are
200 based on Quebec Ministry of Transportation type V-S and XIII mixes and CSA A23.1 type
201 C-1 and C-XL mixes. Table 5 shows the target characteristics for the concrete mixes. The
202 mixes based on the requirements of type V-S/C-1 concretes were made with the 5–20 mm
203 limestone aggregate. The mass of binder used is 390 kg/m^3 and the water/binder ratio is
204 0.4. The dosage of admixes was adjusted during the batch to achieve the desired slump and
205 air content. For this category of mixes, different binders were used. First, reference mixes
206 were made. These mixes consisted of concrete made with GU cement and GUb-30S
207 blended cement. To evaluate the combination of graphene oxide with these two types of
208 binders, the same mixes were then made by adding 0.03% of GO of the total binder mass.
209 Finally, a reference mix meeting MTMD requirements was fabricated with a GUb-S/SF
210 binder type. This mix will be used as a reference to evaluate the performance of graphene
211 oxide concrete compared to concrete typically used for the construction of civil engineering
212 structures. Such concretes are commonly used in transportation infrastructure, including
213 bridge decks, abutments, and highway barriers, where high durability against freeze–thaw
214 cycles and chloride ingress is essential.

215

216 In order to evaluate the behavior of GO on mixes with a higher binder content and a lower
217 W/B ratio, the concrete was designed with a composition meeting both the specifications

218 of the Quebec Transport Ministry (MTMD, Ministère des Transports) and the Canadian
219 Standard Association (CSA) (Table 5). For this experiment, aggregate of granitic nature
220 and size 5-14 mm was chosen. The binder mass used is 450 kg/m³ and the W/B ratio is set
221 at 0.35. The admixture dosage varies from one concrete to another in order to obtain the
222 desired slump. For these mix designs, the types of binders are the same as those previously
223 mentioned. Thus, 5 formulations inspired by a type V-S/C-1 concrete and 5 formulations
224 inspired by a type XIII/C-XL concrete have been made.

225

226 The concrete mixes were manufactured in accordance with CSA Standard A23.2-2C (CSA
227 group, 2019). GO dispersion was mixed water and SP and added in the mixer during the
228 mixing process. Slump tests, air content tests and density determination were also
229 performed on the fresh concrete. A total of 22 concrete cylinders were made for each of
230 the different mixes. The CSA A23.2-3C test method: making and curing concrete
231 compression and flexural test specimens was followed for the manufacture of the 100 mm
232 diameter and 200 mm long cylinders. The specimens were then unmolded at 23h ± 1h and
233 placed in a 100% humidity chamber.

234

235 Rapid chloride penetration testing was done accordingly to the ASTM 1202-19 Standard
236 Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion
237 Penetration tests (RCPT) (ASTM International, 2019). For each mix, three 50 mm samples,
238 sawed from the concrete cylinders, were tested at 28, 56 and 91 days. A RCPT testing
239 device made by Germann Instrument was used for testing the specimens. The initial
240 measurement of the current and every 30 minutes was recorded for 6 hours. The values are
241 plotted on a current (amperes) versus time (seconds) graph. The integral of the area under
242 the curve corresponds to the load in Coulomb (ampere-seconds). RCPT results can give a
243 qualitative indication of the chloride ion penetrability of concrete. The smaller the coulomb
244 value, the better the material's resistance to chloride ion penetration. Although the Rapid
245 Chloride Migration Test (RCMT) may offer greater accuracy for evaluating chloride
246 diffusivity, particularly in SCM-rich systems, the Rapid Chloride Permeability Test
247 (RCPT) was chosen in this study to comply with Canadian (CSA A23.2-23C) and Quebec

248 (MTMD 3102) testing standards. This approach also ensures direct comparability with
249 commonly accepted performance thresholds used in industry.

250

251 **3. Results and analysis**

252 The results of the multi-scale analysis on cement pastes, mortars and concretes are
253 presented in the following sections.

254

255 **3.1 Isothermal calorimetry**

256 To facilitate the presentation of the results and to better understand the impact of GO on
257 binder hydration, the 36 curves were separated by binder type and W/B ratio. Thus, four
258 graphs for heat flow in mW/g and four graphs for cumulative heat of hydration in J/g are
259 drawn. For the heat flow graphs, the x-axis was also reduced to 60 hr to better obtain a
260 better resolution of the different peaks. Figure 3a and Figure 3b show the GU type mixes
261 with a W/B ratio of 0.4. First, as expected, the use of superplasticizer in the mix delays the
262 setting of the cement by about 3.5 hours. These results agree with the literature regarding
263 the effect of polycarboxylate superplasticizers on cement setting. This delay in the reaction
264 would be the result of chelation formed in the paste between the Ca^{2+} ions and the
265 admixture. This interaction would help reduce the Ca^{2+} concentration, preventing
266 nucleation of solid phases and hydration of reaction products, leading to a delay in the
267 reaction (Zhang *et al.*, 2010).

268

269 For the samples without superplasticizer, the addition of graphene oxide and graphene
270 oxide dispersed by sonication does not appear to convincingly affect the peak heat of
271 hydration, as the intensity and position of the silicate and aluminate peaks remain
272 comparable to those of the control mixture. When combined with superplasticizer, the GU
273 0.4 SP GO+ blend appears to show a larger peak than the GU 0.4 SP blend, with a value
274 of 3.21 mW/g versus 3.07 mW/g, respectively. The second hydration peak, which
275 corresponds to the hydration of C_3As , is amplified and more distinguishable by the addition
276 of GO and superplasticizer. For the cumulative heat graph in Figure 3b, it is observed that
277 the addition of superplasticizer to the GU 0.4 SP, GU 0.4 SP-GO, and GU 0.4 SP-GO+

278 mixes delays the heat gain of hydration. From 28 hours to 38 hours of hydration, all mixes
279 appear to have released the same amount of heat. Beyond 38 hours, the heat released by
280 the mixes with graphene oxide and superplasticizer exceeds that of all other mixes. The
281 mix with GO sonication (GU 0.4 SP-GO+) shows the highest cumulative heat after 160
282 hours.

283

284 For GU cement samples with a W/B ratio of 0.35, the same trends as for the previous mixes
285 are observed. As shown in Figure 4a, the addition of superplasticizer shifts the curves to
286 the right, with GU 0.35 SP being the most delayed and the SP-GO and SP-GO+ peaks
287 appearing to be slightly superior to SP alone. In addition, the C₃A hydration peaks for the
288 GU 0.35 SP-GO and GU 0.35 SP-GO+ blends are amplified. The second hydration peak,
289 for these mixes, however, is more intense than for the curves of the pastes with higher W/B
290 ratio. Again, as with the 0.4 mixes, the cumulative heat curves in Figure 4b, show that the
291 addition of superplasticizer to the GU 0.35 SP, GU 0.35 SP-GO, and GU 0.35 SP-GO+
292 mixes delays the heat gain of hydration. At about 32 hours, these same mixes begin to
293 exceed the mixes without admixes in terms of total heat.

294

295 Mixes with a binary binder composed of 30% slag are presented in Figure 5 and 6.
296 Essentially the same observations are made as for the GU mixes. The addition of
297 superplasticizer shifts the maximum to the right, the C₃A peak is amplified for mixes with
298 SP and GO and the lower the W/B ratio the larger the second maximum. Also, for samples
299 with SP, those with GO+ show a moderately higher peak than the mix with only SP. There
300 does not appear to be any visible synergy or interaction between GO and slag that
301 significantly affects the shape of the curves.

302

303 Figure 7a illustrates the heat flow of GUb-SF mixes with a water-to-binder (W/B) ratio of
304 0.4. The addition of superplasticizer (SP) delays the setting time of the cement, shifting the
305 heat flow peak to the right, though this delay is less pronounced compared to other samples
306 tested. Interestingly, the sample without SP shows a slightly higher heat peak of silicate
307 (C₃S) compared to the samples with SP. The inclusion of graphene oxide (GO) and
308 graphene oxide dispersed by sonication (GO+) in mixes containing SP results in higher

309 peak heat flow compared to the mix with SP alone. The amplified C₃S and C₃A hydration
310 peaks in the SP-GO and SP-GO+ mixes suggest enhanced hydration activity due to the
311 presence of GO, which may improve dispersion and interaction with cement particles. For
312 the cumulative heat release for these mixes is depicted. The presence of SP initially delays
313 the cumulative heat gain, consistent with its known retardation effect. The total heat
314 released varies differently depending on the mixes. For mixes without GO and with GO
315 dispersed by sonication, the total heat slightly decreases with the addition of SP. However,
316 for mixes with GO alone, the total heat increases with the addition of SP. After the initial
317 delay, the mixes containing SP, SP-GO, and SP-GO+ surpass the cumulative heat release
318 of the mix without SP. Among these, the mix with GO+ exhibits the highest cumulative
319 heat after an extended period, indicating that the enhanced dispersion of GO through
320 sonication contributes to prolonged and efficient hydration, resulting in greater total heat
321 release over time.

322

323 Figure 8a presents the heat flow of GUb-SF mixes with a W/B ratio of 0.35. As observed
324 in Figure 7a, the addition of SP delays the peak heat flow, though the delay is less
325 significant compared to other samples tested. However, the peak heights are very similar
326 across all mixes, with no distinct effects of C₃S or C₃A hydration visible. The lower W/B
327 ratio results in more intense and faster hydration peaks compared to the higher W/B ratio
328 mixes, indicating accelerated hydration kinetics. Figure 8b shows the cumulative heat
329 release for these mixes. The addition of SP causes an initial delay in cumulative heat gain,
330 consistent with its retardation effect like observed for the other samples. Despite the
331 presence of SP, GO, or sonication, the total cumulative heat release for all samples tested
332 is very similar, indicating that these additives do not significantly affect the total heat
333 released. This suggests that the presence of SP, GO, or GO+ does not result in major
334 differences in overall hydration efficiency for this W/B ratio.

335

336 ***Discussion on isothermal calorimetry results***

337 For calorimetry tests, the effect of GO and GO dispersion method was studied on GU
338 cement and GU blended cement paste made with 30% GGBFS. W/B ratios of 0.4 and 0.35
339 were also used. As observed previously, it turns out that the type of binder, the W/B ratio

340 and the use of superplasticizer are the parameters that have a greater impact on the shape
341 of the heat release rate (mW/g) and cumulative heat of hydration (J/g) curves. The
342 theoretical influence resulting from the manipulation of these variables was observed in
343 the graphs. The effect of GO was more subtle, hence the need to separate the curves by
344 binder type and by W/B ratio. The effect of GO, that the rate of cement dissolution is
345 increased, setting is accelerated, heat of hydration is increased and C₃A hydration is
346 affected, can to some extent be seen in the results. It was first observed that the height of
347 the heat rate peak could be slightly increased by the addition of GO+, especially for the
348 mixes with SP, where the same observations were seen in all four graphs. However, this
349 conclusion cannot be validated for mixes without SP.

350
351 The most notable feature of the addition of GO is the shape of the calcium aluminate
352 hydration peak, which is amplified by the addition of graphene oxide. This phenomenon is
353 observed on binary binder pastes and GU cement pastes and is more prominent when GO
354 is dispersed with superplasticizer. It is also more pronounced in mixes with lower W/B
355 ratio, where the amount of GO per volume of paste is higher. This occurrence can be
356 attributed to the level of undersaturation of C₃A and gypsum resulting from the introduction
357 of GO into the mix. The functional groups of the GO reacting with Ca²⁺ allow the Ca²⁺
358 concentration in the porous solution to be reduced, thereby facilitating the dissolution of
359 the C₃As (Kang *et al.*, 2020). Drawing a parallel with the filler effect, another possible
360 explanation could explain these results. Indeed, similarities can be drawn between the
361 results obtained and some studies conducted on the use of quartz and limestone powder as
362 filler and on the filler effect of supplementary cementitious materials. The acceleration of
363 the aluminate peak associated with the use of these fillers is associated with the nucleation
364 effect and the specific surface area of these materials, which contribute to accelerating and
365 amplifying the hydration of the cement components (Zunino *et al.*, 2019).
366 Therefore, it is possible that C₃A peaks are affected by the nanofiller effect of GO. The
367 heat released after 160 h was also used to perform a factorial ANOVA according to the
368 factors and levels shown in Table 6. The results of the ANOVA and the main effects plot
369 are available in figure 9 and Table 7.

370

371 The heat released by cement paste, measured by isothermal calorimetry, reveals significant
372 findings across several factors. The binder demonstrates a strong effect on the heat
373 released, indicated by a high F value and an extremely low p-value. The binder type
374 significantly influences the heat released, as visually confirmed in the main effect plot
375 where the mean heat values differ noticeably among the binder types (GU, GUb-S, and
376 GUb-SF), with GU showing the highest mean heat and GUb-SF the lowest.

377

378 The water-to-binder ratio (W/B) also exhibits a substantial impact on the heat released,
379 evidenced by a very high F value and an extremely low p-value. The main effect plot
380 supports this finding, showing a clear increasing trend in mean heat values as the W/B ratio
381 increases from 0.35 to 0.40. This indicates that higher water-to-binder ratios are associated
382 with increased heat release in the cement paste. The presence of a superplasticizer
383 significantly affects the heat released, as reflected by a moderate F value and a low p-value.
384 The main effect plot shows a slight increase in mean heat values when a superplasticizer is
385 used compared to when it is not, indicating that superplasticizers enhance the heat release
386 of the cement paste.

387

388 In contrast, the GO does not significantly influence the heat released, as indicated by a low
389 F value and a high p-value. The main effect plot shows little variation in mean heat values
390 across the different levels of graphene oxide treatment (No, Yes GO, Sonication GO+),
391 suggesting that the addition of graphene oxide, regardless of the method of incorporation,
392 does not significantly affect the heat release in the cement paste. Overall, binder type and
393 W/B ratio are the most critical factors influencing the heat release in cement paste, while
394 the superplasticizer has a moderate effect and graphene oxide has a negligible impact.

395

396 **3.2 Mortar compressive strength**

397 The results of flow and compressive strength tests at 1, 7 and 28, for mixes with GU are
398 presented in Figure 10. The black curve corresponds to the flow percentage. First, the
399 addition of 0.03% GO to the mortar significantly reduces the flowability of the mix from
400 69% to 49%. This decrease in workability resulting from the use of GO is well documented
401 in the literature. For mortar mixes, the flow required by the standard is $105 \pm 5\%$ (CSA,

402 2018). To approach the specified flow, the addition of superplasticizer to the GU mix is
403 required. The superplasticizer used as a dispersant in the GO solution also contributed to a
404 better flow for the mortar, but still being insufficient to meet the $105 \pm 5\%$. At 1 day, the
405 GU+GO mix gives a strength of 7.1 MPa against 8.4 MPa for the reference mix. This is a
406 decrease of 16%.

407

408 When dispersed with superplasticizer, the strength of the mortar with GO, in young age,
409 is, however, higher than the control, 10.5 MPa against 8.4 MPa, for an increase of 24%.
410 However, this increase in strength must be attributed to the use of the superplasticizer and
411 not to the GO, since the strength of the GU-SP mix is 10.30 MPa. When dispersed with the
412 sonicator, the GO does not appear to contribute further to the strength development of
413 mortars. At 1 day, the mix with the highest strength remains the GU-SP. At 7 days, the
414 trends remain the same as those observed at 1 day, except for the GU-SP-GO+ mix which
415 shows the highest strength, 38.4 MPa versus 36.6 MPa for GU-SP. However, performing
416 a statistical test does not confirm that the GU-SP-GO+ mix is better than GU-SP. Indeed,
417 the null hypothesis that the mean of the two samples is equal is confirmed. At 7 days, it
418 can also be seen that the difference between the mixes with superplasticizer and without
419 superplasticizer is larger. For example, the difference at 1 day between GU and GU SP is
420 22%, while at 7 days this difference is 36%. Finally, at 28 days, there is no significant
421 change with respect to the observations presented for the 1 day and 7 days time frames.
422 The mortars that provide the best compressive strength are those with superplasticizer,
423 particularly GU-SP and GU-SP-GO+, with 46.2 and 46.8 MPa. The addition of GO alone
424 significantly reduces the strength.

425

426 For mixes shown in Figure 11, with 30% of slag, the flow percentage results are slightly
427 higher than for the GU mortar. The fluidizing aspect of slag due to the glassy particles of
428 this SCM is well apparent with the results obtained with the flow table test (De Belie,
429 Soutsos et Gruyaert, 2018). As expected, workability is reduced by the addition of 0.03%
430 GO, but can be compensated by the addition of superplasticizer. As observed with GU
431 mortars, the addition of GO does not contribute to improving the compressive strength
432 properties of the mortar. Rather, the increase in strength is attributed to the use of

433 superplasticizer. At 1 day, the GUb-S SP mix is the strongest with 7.7 MPa, followed by
434 the GUb-S-SP-GO with 7.4 MPa. At 7 days, GUb-S-SP-GO with 34.2 MPa shows the
435 highest strength. Again, the 28-day results follow the same trends as the other time frames.
436 Mixes with superplasticizers continue to perform best. The addition of GO alone is
437 detrimental to the strength gain of the mortar and GO+ and GO dispersed with SP do not
438 show any advantage over the GUb-SP mix.

439

440 For the mixes shown in Figure 12, which incorporate silica fume (SF), the compressive
441 strength results are significantly influenced by the presence of superplasticizer (SP) and
442 graphene oxide (GO). At 1 day, the GUb-SF-SP mix shows the highest compressive
443 strength, highlighting the positive impact of superplasticizer in the early curing phase. This
444 mix achieves a compressive strength close to 20 MPa, indicating rapid strength
445 development facilitated by the superplasticizer. The GUb-SF-GO mix, on the other hand,
446 demonstrates a lower compressive strength, around 10 MPa, suggesting that the addition
447 of GO alone does not contribute positively to early strength gain. The mix GUb-SF-SP-
448 GO, which combines both superplasticizer and GO, shows improved performance
449 compared to the GO-only mix, but it does not surpass the strength of the GUb-SF-SP mix.

450

451 At 7 days, the trend observed at 1 day continues. The GUb-SF-SP mix still exhibits the
452 highest compressive strength, reaching approximately 40 MPa. This result reinforces the
453 effectiveness of the superplasticizer in enhancing the strength of the mortar. The GUb-SF-
454 GO mix shows a modest increase in strength compared to its 1-day performance but
455 remains lower than the superplasticized mixes. The GUb-SF-SP-GO mix shows an
456 improvement, indicating that the combination of superplasticizer and GO can enhance
457 strength development, albeit not as effectively as superplasticizer alone.

458

459 By 28 days, all mixes show significant increases in compressive strength. The GUb-SF-SP
460 mix achieves the highest strength, nearing 55 MPa, followed closely by the GUb-SF-SP-
461 GO mix. This suggests that while GO can contribute to long-term strength gain when used
462 with superplasticizer, it is not as effective as superplasticizer alone. The GUb-SF-GO mix,
463 despite showing improvement over time, remains the lowest in compressive strength

464 among the tested mixes, indicating that GO alone is not sufficient for optimal strength
465 development. These results demonstrate that the addition of superplasticizer significantly
466 enhances the compressive strength of silica fume mortars across all curing periods. The
467 inclusion of graphene oxide does not independently improve compressive strength and may
468 require the presence of superplasticizer to be effective. These findings suggest that for the
469 best performance in terms of compressive strength, the use of superplasticizer is essential,
470 while the addition of graphene oxide should be carefully considered.

471

472 ***Discussion on compressive strength results***

473 As expected, the addition of GO to mortar mixes greatly reduces the workability of mixes
474 with and without superplasticizer. The large specific surface area of the graphene oxide
475 particles affects the water demand and therefore reduces the workability. In terms of
476 compressive strength, the addition of GO and GO+ to the mixes without superplasticizer
477 significantly reduced the compressive strength of the cubes. These results are consistent
478 with some data available in the literature, where the compressive strength of a GU cement
479 mortar is reduced by the addition of GO (Krystek *et al.*, 2019). This decrease in strength
480 may be associated with the poor workability of the fresh mix that did not allow for good
481 compaction of the mortar and good dispersion and reactivity of the cement particles. A
482 visual inspection of the hardened mortars of GU-GO+ allowed to observe a significant
483 number of voids, which could explain the reduction in strength.

484

485 As for the mixes, where GO and GO+ were dispersed with superplasticizer, a beneficial
486 effect on the compressive strength was expected. However, the strength gain is instead
487 attributed to the use of superplasticizer and not to the addition of graphene oxide. The
488 addition of SP to the mix with GO results in values similar to the control mix. The
489 compressive strength data at 1 day and 28 days were also used to perform a factorial
490 ANOVA according to the factors and levels shown in Table 8. The results of the ANOVA
491 and the main effect plots are available in Figures 13 and 14, as well as Tables 9 and 10,
492 respectively.

493

494 Compressive strength of mortar at one day indicates significant effects for the binder and
495 the superplasticizer, while the graphene oxide does not appear to have a statistically
496 significant impact. The binder has the most substantial effect on the compressive strength,
497 as indicated by its high F value and extremely low p-value. This suggests that changes in
498 the type of binder used have a marked impact on the strength of the mortar at the one-day
499 mark. The main effect plot for the binder shows that the GU binder results in a moderate
500 means compressive strength, whereas the GUb-S binder yields a lower strength. The GUb-
501 SF binder shows a significant increase, achieving the highest compressive strength among
502 the binders tested.

503

504 For the superplasticizer, the results also show a significant effect, with an F value indicating
505 a meaningful impact and a p-value that is below the threshold for significance. This implies
506 that the inclusion of a superplasticizer positively influences the mortar's compressive
507 strength at one day. The main effect plot supports this finding, as the presence of a
508 superplasticizer results in higher mean compressive strength compared to when it is absent.

509

510 In contrast, the graphene oxide factor does not exhibit a statistically significant effect on
511 the compressive strength. The results show a relatively low F value and a p-value that is
512 well above the typical significance level, indicating that variations in the levels of graphene
513 oxide (including no graphene oxide, graphene oxide with sonication, and graphene oxide
514 without sonication) do not significantly alter the compressive strength. The main effect plot
515 for graphene oxide levels illustrates this lack of significant variation, with mean
516 compressive strength values remaining relatively consistent across the different levels. In
517 summary, the type of binder and the use of a superplasticizer are crucial factors that
518 significantly affect the one-day compressive strength of mortar. In contrast, the inclusion
519 and variation of graphene oxide do not have a meaningful impact within the parameters of
520 this study. The graphical representations corroborate these findings, showing distinct
521 differences in mean compressive strengths associated with binder types and the presence
522 of a superplasticizer, while the graphene oxide levels exhibit minimal variation.

523

524 Compressive strength of mortar at 28 days reveals significant effects of all three factors:
525 binder type, superplasticizer use, and graphene oxide inclusion. The F values and p-values
526 indicate that each factor contributes notably to variations in compressive strength. Starting
527 with the binder type, the analysis shows that this factor has a significant impact on
528 compressive strength. The graphical representation indicates an increasing trend in the
529 mean strength as we move from GU to GUb-S and finally to GUb-SF. This suggests that
530 the combination of GUb-S and GUb-SF provides a notable enhancement in the mortar's
531 compressive strength compared to the GU binder. The use of superplasticizer shows an
532 even more pronounced effect. The presence of superplasticizer significantly increases
533 compressive strength. The mean strength is substantially higher when superplasticizer is
534 used, as depicted in the main effects plot. This indicates that superplasticizers play a crucial
535 role in enhancing the performance of the mortar by improving its workability and
536 subsequent strength.

537

538 Graphene oxide's influence is also significant, with a measurable impact on compressive
539 strength. The main effect plot for graphene oxide shows a nonlinear trend: the mean
540 strength initially decreases when GO is added without sonication but increases again when
541 GO is dispersed using sonication. This pattern highlights the importance of dispersion
542 quality, as sonication appears to improve the distribution of GO within the cement matrix,
543 leading to better particle interaction and enhanced strength. Although no benefit was
544 observed at 1 day, the increased compressive strength at 28 days suggests that the positive
545 effects of sonicated GO become more prominent over time due to improved nucleation
546 sites and microstructural refinement. The main effect plots further show that among the
547 three studied factors—binder type, superplasticizer, and graphene oxide—the binder type
548 and superplasticizer have the strongest influence, with steep changes in average strength
549 across levels, while GO presents a more modest but statistically significant contribution.
550 These plots are particularly valuable because they isolate the effect of each variable on
551 compressive strength while averaging out the influence of the others. This statistical
552 approach helps identify which factors drive performance and supports decision-making in
553 mix design. These findings are especially relevant in the context of structural concrete,
554 where achieving optimal mechanical performance is essential. The results underline the

555 potential of carefully adjusted multi-component mixes, where superplasticizer use and GO
556 dispersion method can be leveraged to fine-tune strength development.

557 **3.3 Concrete compressive strength and chloride penetration resistance**

558 Table 11 shows the fresh concrete properties and 28-day compressive strength for each of
559 the mixes. These tests are used to verify the compliance of the mixes with the Quebec
560 MTMD Standard 3102. As mentioned previously, these tests are intended to evaluate the
561 compliance of the mixes with the requirements specified in the standards for concrete used
562 in civil engineer constructions. RCPT results are only considered in this paper for
563 discussion and analysis. Except for the GU 0.4 and Type V-S GUb-S/SF, where the air
564 content is above the standard limit, the slump, air content and compressive strength
565 requirements are met for the samples. It was not considered necessary to rework the batches
566 of non-compliant concretes, given the low impact of entrained air on the resistance to
567 chloride ion penetration.

568

569 The results of the 28-, 56-, and 91-day chloride ion penetration tests for mixes based on V-
570 S concrete (W/B ratio of 0.4) are shown in Figure 15. The red line on the graph corresponds
571 to the 1000-coulomb limit required, at 56 days, by the MTMD standard, while the blue line
572 is the 1500 limit required by the CSA standard, at 91 days. The error bars consist of the
573 confidence interval calculated from a 95% confidence index.

574

575 It is first observed that for all mixes, the coulomb value is reduced, the older the concrete,
576 which means a better resistance to chloride penetration from the early age to 91 days.
577 Secondly, it is apparent that the addition of supplementary cementitious materials (SCMs)
578 to the concrete mixes significantly reduces the coulomb value of the samples. For this series
579 of mixes, the addition of GO to GU cement concrete does not appear to improve the
580 chloride ion resistance properties. It is also possible to state that concrete with GU as the
581 sole binder is far from being able to meet the 1000-coulomb requirement specified by the
582 standard. Mixing with 30% slag considerably reduces the penetration of chloride ions.
583 This decrease is on average 38.8% compared to the GU mix. Although the GU-GO mix
584 does not improve the performance of the concrete, the addition of GO to the blended binder
585 seems to slightly reduce the chloride ion penetration. This reduction averages 7.4%

586 compared to the GUb-S mix and 47.7% compared to the GU 0.4 mix. Finally, the typical
587 V-S mix with silica fume is greatly superior to the other 4, with an average decrease of
588 86% compared to the GU mix. It is also the only mix that meets MTMD requirements, with
589 a value of 307 coulombs at 56 days. However, for the 1500 coulombs limit of the CSA
590 standard, GUb-30S and GUb-30S-GO concretes meet the requirements. The results for the
591 mixes with a higher amount of cement and a W/B ratio of 0.35 are shown in Figure 16. The
592 red line consists of the 1000-coulomb limit prescribed by the CSA and MTMD standard.

593

594 As expected, as the concrete ages, the chloride ion penetration value decreases. In addition,
595 as previously observed, the addition of supplementary cementitious materials also
596 improves the performance of the concrete. However, in contrast to the previous mixes, the
597 addition of GO to concrete with a higher Portland cement content and a lower W/B ratio
598 seems to improve the properties. A decrease in coulombs of 21.6%; 5.5% and 8.2% is
599 observed at 28, 56 and 91 days, respectively. At 28 days, this decrease is more noticeable
600 and statistically significant. For the 56- and 91-day maturities, it is not possible to state that
601 the addition of GO improves the chloride ion penetration resistance of General Use cement
602 concrete.

603

604 Compared to the GUb-30s mix, the GUb30s-GO mix shows a decrease in chloride ion
605 penetration of 24.9%; 17.8% and 14.3% at 28, 56 and 91 days, respectively. This decrease
606 is 55.3%, 46.5% and 43.5% compared to the reference mix. Again, the decrease is most
607 striking at 28 days. The effect of GO on resistance to chloride ion penetration appears to
608 be more pronounced on mixes with a higher cement content and lower W/B ratio. Like the
609 0.4 W/B mixes, the concrete with silica fume shows the best performance in the RCPT test.
610 It is also the only mix that meets the 1000-coulomb requirement established by the
611 department of transportation.

612

613 ***Discussion on RCPT results***

614 First, the wide confidence intervals can be explained by the small number of samples and
615 the poor reproducibility of the test. The standard specifies that the coefficient of variation
616 can reach 12.3% for the same mix tested by the same operator (34% variation for the same

617 samples). Secondly, the results showed that the factors that most influenced the
618 performance of the material against chloride ion penetration were the curing period of the
619 concrete and the choice of a binder type. More advanced hydration and a more refined pore
620 structure explain these results. In addition, supplementary cementitious materials, which
621 are smaller in size than cement particles, subdivide the pore structure of the concrete,
622 thereby reducing permeability (Stanish, Hooton et Thomas, 1997). Laser diffraction
623 analysis of binders clearly shows the difference in particle sizes of cement, slag and silica
624 fume.

625

626 For the GO modified samples, 3 concretes showed a slight decrease in coulombs compared
627 to their reference, GUb-S GO 0.4 at 91 days, GU 0.35-GO at 28 days and GUb-S 0.35 GO
628 for all time frame. Based on the information gathered in the literature review, this
629 improvement could be attributed to the refined pore structure resulting from the addition
630 of GO. Indeed, the pore structure has a significant impact on the chloride ion penetration
631 value (Stanish, Hooton et Thomas, 1997) and GO can contribute to modifying the porosity
632 as well as the pore size of a cement paste (Lv *et al.*, 2013). The effect of GO in mixes
633 inspired by Type XIII concretes is more convincing than in Type V-S mixes, since both
634 concretes (GU-GO and GUb-S) showed a significant difference with their controls.
635 Considering that the dosage of GO is done in relation to the mass of cement, there will
636 necessarily be more GO nanoparticles in the total mix (0.03% of 450kg/m³ versus 0.03%
637 of 390 kg/m³). Moreover, for the same volume, the number of GO nanoparticles will be
638 greater in a 0.35 W/B paste than in a 0.4 W/B paste. The effect of GO is more pronounced
639 in mixes with a high quantity of cement and a low W/B ratio. A parallel can be made with
640 the calorimetry results, where the C3A hydration peak for SP-GO mixes is more intense
641 with a W/B ratio of 0.35 than for a W/B ratio of 0.4. The results of the type XIII mixes also
642 showed that the difference between the GO-modified mixes and the standard was more
643 pronounced at 28 days. Following the theory that graphene oxide acts as a nucleation site
644 for cement hydration, allowing for greater C-S-H crystallization during the first few days
645 of curing, it is possible that this observation is related to this explanation. Since the cement
646 continues to hydrate slowly over time, the reference mixes appear to catch up to the
647 concretes with GO at 56 and 91 days. While it appears advantageous to use GO and a

648 combination of slag and GO to reduce chloride ion penetration, in a practical context, the
649 use of GO is far from sufficient to meet the chloride ion penetration requirements specified
650 by the standards. Typical mixes, XIII and V-S with slag and silica fume are far superior to
651 GO modified mixes.

652 **4. Discussion**

653 The results of the multiscale analysis on the effectiveness of GO in GU and compound
654 binder cementitious matrices were found to be mixed. On the one hand, the calorimetry
655 tests showed results consistent with the literature. Regardless of binder type and W/B ratio,
656 the impact of superplasticizer-dispersed GO was seen in the height and position of the heat
657 flow peaks and in the intensity of the C₃A peaks. Comparing the filler mechanism with the
658 results obtained, it is plausible to think that the nucleation effect is responsible for these
659 observations.

660

661 On a larger scale, the results of the compressive strength tests on mortar did not give the
662 expected results. Without superplasticizer, a significant decrease in strength was even
663 noted. The effect of GO on the workability of the mortar can easily explain these results.
664 However, when combined with superplasticizer and dispersed properly, it would have been
665 expected to obtain higher strength values than the controls. Sonication of the GO solution
666 did not appear to show a significant impact on the results.

667

668 Finally, little research had been done on the resistance to chloride ion penetration of GO
669 modified concrete. The results obtained showed that GO could contribute to reducing the
670 penetration of chloride ions, and that this reduction was more significant for mixes with a
671 lower W/B ratio and a higher quantity of cement. The improvement of concrete properties
672 by the addition of GO can possibly be explained by the refinement of the pore network
673 resulting from the nucleation of C-S-H on the GO particles. Mercury intrusion porosimetry
674 (MIP) or absorption test tests could be performed to confirm this hypothesis.

675

676 The addition of 0.03% GO to concrete, an economical dosage for structure, is not sufficient
677 to significantly improve resistance to chloride ion penetration. From a practical application
678 perspective, the 1000-coulomb limit specified by the Quebec Ministry of Transport

679 standard is not achieved in mixes with GO. One potential reason is that GO remains a
680 relatively new material in cement science. Unlike supplementary cementitious materials
681 (SCMs), which benefit from decades of standardization, there are currently no established
682 benchmarks to verify GO quality or ensure reproducibility between laboratories. As
683 highlighted in the literature review, the effects of GO vary widely, in contrast to the more
684 consistent performance reported for materials like silica fume or slag. The variability in
685 manufacturing routes and source materials may influence the physical and chemical
686 properties of GO, thus impacting its performance in cementitious systems. In contrast, the
687 8% silica fume used in this study consists of ultra-fine particles in the nanometer range,
688 which are well-known for their strong pozzolanic reactivity and ability to refine pore
689 structure, leading to significantly improved durability performance.

690

691 The GO dosage selected, 0.03% by weight of cement, was based on economic
692 considerations and previously reported optimal dosages (Krystek, 2019 ; Gong *et al.*,
693 2015). While some studies have tested dosages up to 1.6%, these are often impractical for
694 large-scale implementation. For example, increasing the dosage to 0.06% or 0.09% might
695 yield more pronounced effects, but it would also exacerbate the workability loss and
696 critically raise material costs (e.g., \$750 USD for 40 g at laboratory scale). Moreover,
697 practical deployment at higher dosages remains constrained by dispersion challenges,
698 including incompatibilities with some superplasticizers and destabilization in the presence
699 of cementitious ions. These technical and economic barriers suggest that future research
700 should explore both hybrid nano-additive systems and optimized dispersion protocols to
701 enhance performance while remaining scalable.

702

703 5. Conclusion

704 In conclusion, the work carried out in this study was aimed at pursuing the research on the
705 use of graphene oxide in cement-based materials. This research was conducted from a
706 fundamental point of view but also from a practical approach, to evaluate if this type of
707 material can compete with the concretes currently used in the industry. Therefore, the
708 objective of the research was to evaluate the impact of adding a small percentage of
709 graphene oxide nanoparticles (0.03%) on the physical, chemical, and mechanical properties

710 of cementitious materials, with a particular focus on concrete performance against chloride
711 penetration. In addition to studying the behavior of GO with general usage Portland cement
712 alone, the effect of GO combined with a binary binder mix (GU and blast furnace slag),
713 the method of GO dispersion and the influence of W/B ratio on GO performance was
714 studied.

715

716 - The calorimetry results on pastes showed agreement with the literature, especially
717 in the height and position of the heat release rate peaks and in the intensity of the
718 C₃A peaks. The effect of GO was more pronounced on lower W/B mixes. By
719 comparing the mechanism of the fillers to the results obtained, it is plausible to
720 think that the nucleation effect responsible for these observations.

721

722 - On a larger scale, the results of the compressive strength tests on mortar did not
723 give the expected results. Without superplasticizer, a significant decrease in
724 strength was even noted. When combined with superplasticizer and dispersed
725 properly, it would have been expected to obtain higher strength values than the
726 controls.

727

728 - For the concrete tests, the results obtained showed that GO could contribute to
729 reducing the penetration of chloride ions, and that this reduction was more
730 significant for mixes with a lower W/B ratio and a higher amount of cement.

731

732 - Finally, issues with the stability of the graphene oxide dispersion were observed
733 when certain types of superplasticizers were used. An additional consideration must
734 be given when choosing the dispersion method and superplasticizer. Overall, the
735 results confirm that structural concrete incorporating silica fume, without GO,
736 successfully meets the performance requirements specified by current durability
737 standards.

738

739 All in all, it is well documented that carbon-based nanomaterials are beneficial for several
740 industries. To date, it is estimated that over 40 applications can benefit from this type of
741 technology. One of the most important uses is in the field of plastics and composites, where
742 physical, electrical and thermal properties can be greatly improved by the addition of a
743 small percentage of graphene-based materials. Other areas such as the automotive industry,

741 batteries and 3D printing are also areas where graphene can be beneficial (Barkan, 2019).
742 As for concrete and cementitious materials, the large number of articles on the subject
743 shows that this field has not escaped the graphene hype. However, when silica fume is used
744 as a supplementary cementitious material in concrete, the effect of GO is not significant on
745 the chloride permeability.

746

747 The research related to the use of GO still deserves to be pursued. In fact, it would be
748 relevant to conduct studies to develop a procedure for the preparation of GO-modified
749 cementitious materials, to ensure that the effect of GO is observable and consistent from
750 study to study. There are currently significant gaps in inter-laboratory reproducibility, as it
751 was noted in the literature review that the percentage increase in compressive strength of
752 GO-modified materials can vary from -11 to 77%. There should also be more research into
753 the use of GO on a larger scale. Many studies have been done on cementitious pastes and
754 mortars only. However, for a normal density concrete, the aggregates can occupy more
755 than 70% of the volume of the materials. Graphene oxide must become more economical
756 to use at the structural level.

757

758 **Acknowledgments**

759 The support from NSERC (RGPIN 2016-05011), Quebec Centre for Advanced Materials
760 (CQMF-QCAM), and the Canada Research Chair on Sustainable multifunctional
761 construction materials (CRC-2019-00074) is greatly acknowledged. The support of Alexys
762 is also recognized.

763

764 **7. Author contribution statement:**

765 Conceptualization: C.O.P.
766 Data curation: V.B., C. O.P
767 Formal analysis: V.B.
768 Funding acquisition: C.O.P.
769 Investigation: V.B., T.D., C.O.P.
770 Methodology: V.B., C.O.P,
771 Project administration: C.O.P

772 Resources: C.O.P.
773 Software: V.B., C.O.P.
774 Supervision: C.O.P supervised V.B. and T.D.
775 Validation: V.B. Visualization: V.B.
776 Writing - original draft: V.B.
777 Writing - review & editing: V.B. and C.O.P.
778

779 **8. Competing interests statement**

780 The authors declare there are no competing interests.

781

782 **9. Data availability statement**

783 Data generated or analyzed during this study are available from the corresponding author
784 upon reasonable request.

785

786 **10. References**

787 ASTM International. 2019. « C1202 - 19 Standard Test Method for Electrical Indication
788 of Concrete's Ability to Resist Chloride Ion Penetration ». *ASTM Standard Book*.
789 <<https://doi.org/10.1520/C1202-19>>.

790 Barkan, Terrance. 2019. « Graphene: the hype versus commercial reality ». *Nature
791 Nanotechnology*, vol. 14, n° 10, p. 904-906. <[https://doi.org/10.1038/s41565-019-0556-1](https://doi.org/10.1038/s41565-019-
792 0556-1)>.

793 Bhojaraju, Chandrasekhar, Seyed Sina Mousavi, Victor Brial, Michael DiMare et
794 Claudiane M. Ouellet-Plamondon. 2021. « Fresh and hardened properties of
795 GGBS-contained cementitious composites using graphene and graphene oxide ».
796 *Construction and Building Materials*, vol. 300, p. 123902.
797 <<https://doi.org/10.1016/j.conbuildmat.2021.123902>>.

798 Chuah, Samuel, Zhu Pan, Jay G. Sanjayan, Chien Ming Wang et Wen Hui Duan. 2014.
799 « Nano reinforced cement and concrete composites and new perspective from
800 graphene oxide ». *Construction and Building Materials*, vol. 73, p. 113-124.
801 <<https://doi.org/10.1016/j.conbuildmat.2014.09.040>>.

802 CSA. 2018. *A3000-18 Compendium des matériaux liants*.

803 CSA group. 2019. *A23.1:19/A23.2:19 - Concrete materials and methods of concrete
804 construction/Test methods and standard practices for concrete*.

805 Cui, Hongzhi, Xiantong Yan, Luping Tang et Feng Xing. 2017. « Possible pitfall in sample
 806 preparation for SEM analysis - A discussion of the paper “Fabrication of
 807 polycarboxylate/graphene oxide nanosheet composites by copolymerization for
 808 reinforcing and toughening cement composites” by Lv et al. » *Cement and
 809 Concrete Composites*, vol. 77, p. 81-85.
 810 <<https://doi.org/10.1016/j.cemconcomp.2016.12.007>>.

811 De Belie, Nele, Marios Soutsos et Elke Gruyaert, éd. 2018. *Properties of Fresh and
 812 Hardened Concrete Containing Supplementary Cementitious Materials: State-of-
 813 the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4.*
 814 Coll. « RILEM State-of-the-Art Reports ». Cham : Springer International
 815 Publishing. <<https://doi.org/10.1007/978-3-319-70606-1>>. Consulté le 20 avril
 816 2021.

817 Devi, S.C. et R.A. Khan. 2020. « Effect of graphene oxide on mechanical and durability
 818 performance of concrete ». *Journal of Building Engineering*, vol. 27, p. 101007.
 819 <<https://doi.org/10.1016/j.jobe.2019.101007>>.

820 Gong, Kai, Zhu Pan, Asghar H. Korayem, Ling Qiu, Dan Li, Frank Collins, Chien Ming
 821 Wang et Wen Hui Duan. 2015. « Reinforcing Effects of Graphene Oxide on
 822 Portland Cement Paste ». *Journal of Materials in Civil Engineering*, vol. 27, n° 2.
 823 <[https://doi.org/10.1061/\(ASCE\)MT.1943-5533.0001125](https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125)>. Consulté le 3 mai
 824 2021.

825 Kang, Xiaojuan, Xiaohong Zhu, Jiaoping Liu, Xin Shu, Yongbo Huang et Jueshi Qian. 2020.
 826 « Dissolution and precipitation behaviours of graphene oxide / tricalcium silicate
 827 composites ». *Composites Part B: Engineering*, vol. 186, p. 107800.
 828 <<https://doi.org/10.1016/j.compositesb.2020.107800>>.

829 Krystek, Małgorzata. 2019. « Mechanical properties of cement mortar with graphene
 830 oxide ». *Architecture, Civil Engineering, Environment*, vol. 12, n° 1, p. 91-96.
 831 <<https://doi.org/10.21307/acee-2019-008>>.

832 Krystek, Małgorzata, Dawid Pakulski, Violetta Patroniak, Marcin Górska, Leszek Szojda,
 833 Artur Ciesielski et Paolo Samorì. 2019. « High-Performance Graphene-Based
 834 Cementitious Composites ». *Adv. Sci.*, p. 12.

835 Kumar, Aditya, Tandre Oey, Gabriel Falzone, Jian Huang, Mathieu Bauchy, Magdalena
 836 Balonis, Narayanan Neithalath, Jeffrey Bullard et Gaurav Sant. 2017. « The filler
 837 effect: The influence of filler content and type on the hydration rate of tricalcium
 838 silicate ». *Journal of the American Ceramic Society*, vol. 100, n° 7, p. 3316-3328.
 839 <<https://doi.org/10.1111/jace.14859>>.

840 Liu, Changjiang, Xiaochuan Huang, Yu-You Wu, Xiaowei Deng, Zhoulian Zheng, Zhong
 841 Xu et David Hui. 2021. « Advance on the dispersion treatment of graphene oxide
 842 and the graphene oxide modified cement-based materials ». *Nanotechnology
 843 Reviews*, vol. 10, n° 1, p. 34-49. <<https://doi.org/10.1515/ntrev-2021-0003>>.

844 Liu, Lang, Jie Xin, Chongchong Qi, Hailiang Jia et KI-IL Song. 2020. « Experimental
 845 investigation of mechanical, hydration, microstructure and electrical properties of
 846 cemented paste backfill ». *Construction and Building Materials*, vol. 263, p.
 847 120137. <<https://doi.org/10.1016/j.conbuildmat.2020.120137>>.

848 Lothenbach, Barbara, Karen Scrivener et R. D. Hooton. 2011. « Supplementary
 849 cementitious materials ». *Cement and Concrete Research*, vol. 41, n° 12, p.
 850 1244-1256. <<https://doi.org/10.1016/j.cemconres.2010.12.001>>.

851 Lu, Zeyu, Xiangyu Li, Asad Hanif, Binmeng Chen, Pavithra Parthasarathy, Jinguang Yu
 852 et Zongjin Li. 2017. « Early-age interaction mechanism between the graphene
 853 oxide and cement hydrates ». *Construction and Building Materials*, vol. 152, p.
 854 232-239. <<https://doi.org/10.1016/j.conbuildmat.2017.06.176>>.

855 Lv, Shenghua, Jingjing Liu, Ting Sun, Yujuan Ma et Qingfang Zhou. 2014. « Effect of GO
 856 nanosheets on shapes of cement hydration crystals and their formation process ».
 857 *Construction and Building Materials*, vol. 64, p. 231-239.
 858 <<https://doi.org/10.1016/j.conbuildmat.2014.04.061>>.

859 Lv, Shenghua, Yujuan Ma, Chaochao Qiu, Ting Sun, Jingjing Liu et Qingfang Zhou. 2013.
 860 « Effect of graphene oxide nanosheets of microstructure and mechanical properties
 861 of cement composites ». *Construction and Building Materials*, vol. 49, p. 121-127.
 862 <<https://doi.org/10.1016/j.conbuildmat.2013.08.022>>.

863 Meng, Shaoqiang, Xiaowei Ouyang, Jiyang Fu, Yanfei Niu et Yuwei Ma. 2021. « The role
 864 of graphene/graphene oxide in cement hydration ». *Nanotechnology Reviews*, vol.
 865 10, n° 1, p. 768-778. <<https://doi.org/10.1515/ntrev-2021-0055>>.

866 Mirsayapov, Ilshat, Samat Yakupov et Majd Hassoun. 2020. « About concrete and
 867 reinforced concrete corrosion ». *IOP Conference Series: Materials Science and
 868 Engineering*, vol. 890, p. 012061. <<https://doi.org/10.1088/1757-899X/890/1/012061>>.

870 Mohammed, A., N. T. K. Al-Saadi et J. Sanjayan. 2018. « Inclusion of graphene oxide in
 871 cementitious composites: state-of-the-art review ». *Australian Journal of Civil
 872 Engineering*, vol. 16, n° 2, p. 81-95.
 873 <<https://doi.org/10.1080/14488353.2018.1450699>>.

874 Nkinamubanzi, P.-C., S. Mantellato et R.J. Flatt. 2016. « Superplasticizers in practice ».
 875 In *Science and Technology of Concrete Admixtures*, p. 353-377. Elsevier.
 876 <<https://doi.org/10.1016/B978-0-08-100693-1.00016-3>>. Consulté le 7 janvier
 877 2022.

878 Scrivener, Karen L., Vanderley M. John et Ellis M. Gartner. 2018. « Eco-efficient cements:
 879 Potential economically viable solutions for a low-CO₂ cement-based materials
 880 industry ». *Cement and Concrete Research*, vol. 114, p. 2-26.
 881 <<https://doi.org/10.1016/j.cemconres.2018.03.015>>.

882 Shang, Yu, Dong Zhang, Chao Yang, Yanyun Liu et Yong Liu. 2015. « Effect of graphene
883 oxide on the rheological properties of cement pastes ». *Construction and Building
884 Materials*, vol. 96, p. 20-28. <<https://doi.org/10.1016/j.conbuildmat.2015.07.181>>.

885 Stanish, K D, R D Hooton et M D A Thomas. 1997. « Testing the Chloride Penetration
886 Resistance of Concrete: A Literature Review ». p. 33.

887 Wang, Juan, Yaoqun Xu, Xiaopeng Wu, Peng Zhang et Shaowei Hu. 2020. « Advances of
888 graphene- and graphene oxide-modified cementitious materials ». *Nanotechnology
889 Reviews*, vol. 9, n° 1, p. 465-477. <<https://doi.org/10.1515/ntrev-2020-0041>>.

890 Yang, Haibin, Manuel Monasterio, Hongzhi Cui et Ningxu Han. 2017. « Experimental
891 study of the effects of graphene oxide on microstructure and properties of cement
892 paste composite ». *Composites Part A: Applied Science and Manufacturing*, vol.
893 102, p. 263-272. <<https://doi.org/10.1016/j.compositesa.2017.07.022>>.

894 Zhang, Min-Hong, Kritsada Sisomphon, Tze Siong Ng et Dao Jun Sun. 2010. « Effect of
895 superplasticizers on workability retention and initial setting time of cement
896 pastes ». *Construction and Building Materials*, vol. 24, n° 9, p. 1700-1707.
897 <<https://doi.org/10.1016/j.conbuildmat.2010.02.021>>.

898 Zhao, Li, Xinli Guo, Yuanyuan Liu, Yuhong Zhao, Zhongtao Chen, Yunsheng Zhang,
899 Liping Guo, Xin Shu et Jiaping Liu. 2018. « Hydration kinetics, pore structure, 3D
900 network calcium silicate hydrate, and mechanical behavior of graphene oxide
901 reinforced cement composites ». *Construction and Building Materials*, vol. 190, p.
902 150-163. <<https://doi.org/10.1016/j.conbuildmat.2018.09.105>>.

903 Zhao, Li, Shengqing Zhu, Hao Wu, Xingchi Zhang, Qingqing Tao, Luguang Song, Yang
904 Song et Xinli Guo. 2020. « Deep research about the mechanisms of graphene oxide
905 (GO) aggregation in alkaline cement pore solution ». *Construction and Building
906 Materials*, vol. 247, p. 118446.
907 <<https://doi.org/10.1016/j.conbuildmat.2020.118446>>.

908 Zunino, Franco et Karen Scrivener. 2019. « The influence of the filler effect on the sulfate
909 requirement of blended cements ». *Cement and Concrete Research*, vol. 126, p.
910 105918. <<https://doi.org/10.1016/j.cemconres.2019.105918>>.

911

912

Table 1: Chemical analysis of binders

Oxide (%)	Slag	SF	GU
SiO₂	36.3	96.5	20.4
Al₂O₃	10.3	0.5	4.4
Fe₂O₃	0.9	0.45	2.5
CaO	43.4	0.4	63.0
MgO	6.6	0.4	1.7
Na₂O_{eq}	0.5	0.11	0.53
SO₃	0.2	0.08	3.7

Table 2: Chemical analysis of the commercially available graphene oxide

Element	Percentage (%)
Carbon	49-56
Hydrogen	1-2
Nitrogen	0-1
Sulfur	2-4
Oxygen	41-51

Table 3: Samples for isothermal calorimetry

# Mix	GU (g)	GGBFS (g)	Water (ml)	W/B	GO (%)	SP	Sonication
GU 0.4	3.5714	-	1.4286	0.40	-	-	No
GU 0.4 GO	3.5714	-	1.1607	0.40	0.03	-	No
GU 0.4 SP	3.5714	-	1.4286	0.40	-	1	No
GU 0.4 GO+	3.5714	-	1.1607	0.40	0.03	-	Yes
GU 0.4 SP-GO	3.5714	-	1.1607	0.40	0.03	1	No
GU 0.4 SP-GO+	3.5714	-	1.1607	0.40	0.03	1	Yes
GUb-S 0.4	2.7332	0.8382	1.4286	0.40	-	-	No
GUb-S 0.4 GO	2.7332	0.8382	1.1607	0.40	0.03	-	No
GUb-S 0.4 SP	2.7332	0.8382	1.4286	0.40	-	1	No
GUb-S 0.4 GO+	2.7332	0.8382	1.4286	0.40	-	-	Yes
GUb-S 0.4 SP-GO	2.7332	0.8382	1.1607	0.40	0.03	1	No
GUb-S 0.4 SP-GO+	2.7332	0.8382	1.1607	0.40	0.03	1	Yes
GUb-SF 0.4	3.2857	0.2857	1.4286	0.40	-	-	No
GUb-SF 0.4 GO	3.2857	0.2857	1.1607	0.40	0.03	-	No
GUb-SF 0.4 SP	3.2857	0.2857	1.4286	0.40	-	1	No
GUb-SF 0.4 GO+	3.2857	0.2857	1.4286	0.40	0.03	-	Yes
GUb-SF 0.4 SP-GO	3.2857	0.2857	1.1607	0.40	0.03	1	No
GUb-SF 0.4 SP-GO+	3.2857	0.2857	1.1607	0.40	0.03	1	Yes
GU 0.35	3.5714	-	1.2500	0.35	-	-	No
GU 0.35 GO	3.5714	-	0.9821	0.35	0.03	-	No
GU 0.35 SP	3.5714	-	1.2500	0.35	-	1	No
GU 0.35 GO+	3.5714	-	0.9821	0.35	0.03	-	Yes
GU 0.35 SP-GO	3.5714	-	0.9821	0.35	0.03	1	No
GU 0.35 SP-GO+	3.5714	-	0.9821	0.35	0.03	1	Yes
GUb-S 0.35	2.7332	0.8382	1.2500	0.35	-	-	No
GUb-S 0.35 GO	2.7332	0.8382	0.9821	0.35	0.03	-	No
GUb-S 0.35 SP	2.7332	0.8382	1.2500	0.35	-	1	No
GUb-S 0.35 GO+	2.7332	0.8382	1.2500	0.35	-	-	Yes
GUb-S 0.35 SP-GO	2.7332	0.8382	0.9821	0.35	0.03	1	No
GUb-S 0.35 SP-GO+	2.7332	0.8382	0.9821	0.35	0.03	1	Yes
GUb-SF 0.35	3.2856	0.2857	1.2500	0.35	-	-	No
GUb-SF 0.35 GO	3.2856	0.2857	0.9821	0.35	0.03	-	No
GUb-SF 0.35 SP	3.2857	0.2857	1.2500	0.35	-	1	No
GUb-SF 0.35 GO+	3.2857	0.2857	0.9821	0.35	0.03	-	Yes
GUb-SF 0.35 SP-GO	3.2857	0.2857	0.9821	0.35	0.03	1	No
GUb-SF 0.35 SP-GO+	3.2857	0.2857	0.9821	0.35	0.03	1	Yes

Table 4: Materials proportions for mortar mixes

Mix	ID	Sand (g)	GU (g)	GGBFS (g)	W/B	GO (ml)	Water (ml)	SP (ml)	Sonication
1	GU	2035	740	-	0.485	0	359	-	-
2	GU-SP	2035	740	-	0.485	0	359	2	-
3	GU-GO	2035	740	-	0.485	55.5	303.5	-	-
4	GU-SP-GO	2035	740	-	0.485	55.5	303.5	2	-
5	GU-GO +	2035	740		0.485	55.5	303.5	-	Yes
6	GU-SP-GO +	2035	740	-	0.485	55.5	303.5	2	Yes
7	GUb-S	2035	518	222	0.485	0	359	-	-
8	GUb-S-SP	2035	518	222	0.485	0	359	2	-
9	GUb-S-GO	2035	518	222	0.485	55.5	303.5	-	-
10	GUb-S-SP-GO	2035	518	222	0.485	55.5	303.5	2	-
11	GUb-S-GO+	2035	518	222	0.485	55.5	303.5	-	Yes
12	GUb-S-SP-GO+	2035	518	222	0.485	55.5	303.5	2	Yes
13	GUb-SF	2035	680.8	59.2	0.485	0	359	4	Yes
14	GUb-SF-SP	2036	680.8	59.2	0.485	0	359	4	-
15	GUb-SF-GO	2037	680.8	59.2	0.485	55.5	303.5	-	-
16	GUb-SF-SP-GO	2038	680.8	59.2	0.485	55.5	303.5	4	-
17	GUb-SF-GO+	2039	680.8	59.2	0.485	55.5	303.5	-	Yes
18	GUb-SF-SP-GO+	2040	680.8	59.2	0.485	55.5	303.5	4	Yes

Table 5: Type V-S, XIII, C-1, and C-XL concrete requirements

Concrete characteristics based on 3101 and CSA standards	Requirements			
	MTMD		CSA	
	V-S	XIII	C-1	C-XL
Compressive strength (MPa)	35 at 28 d	50 at 28 d	35 at 28 d	50 at 56 d
Minimal binder content kg/m ³	365/340	410	-	-
Binder type	GUb-S/SF. GUb-SF	GUb-S/SF. GUb-SF	-	-
W/B	0.40	0.34-0.38	< 0.4	< 0.4
Coarse aggregate (mm)	5 - 20	5 - 14	-	-
Air content (%)	6 - 9	5 - 8	5 - 8	5 - 8
Slump (mm)	90 - 150	140 - 200	-	-
Chloride ion penetration (coulombs)	1500	1000	1500	1000

Table 6: Mix design factors and their levels.

Level	Factor			
	Binder	W/B	Superplasticizer	Graphene oxide
1	GU	0.35	Yes	No
2	GUb-S	0.45	No	Yes
3	GUb-SF	-	-	Yes + sonication

Table 7: ANOVA results for the heat released after 160h.

Factor	DF	Sum of Squares	Mean Square	F Value	p-value
Binder	2	1223.4	611.7	83.0	9.98E-13
W/B	1	2846.8	2846.8	386.3	2.63E-18
Superplasticizer	1	63.3	63.3	8.6	0.0065
Graphene oxide	2	13.3	6.6	0.9	0.4174
Error	29	213.7	7.4		
Total	35	4360.6			

Table 8: ANOVA results for the mortar compressive strength.

Factor			
Level	Binder	Superplasticizer	Graphene oxide
1	GU	Yes	No
2	GUb-S	No	Yes
3	GUb-SF	-	Yes + sonication

Table 9: ANOVA results for the mortar compressive strength at 1 day.

Factor	DF	Sum of Squares	Mean Square	F Value	p-value
Binder	2	173.4	86.7	31.7	1.63E-05
Superplasticizer	1	19.3	19.3	7.1	0.0211
Graphene_oxide	2	4.32	2.2	0.79	0.4762
Error	12	32.9	2.7		
Total	17	229.9			

Table 10: ANOVA results for the mortar compressive strength at 28 days.

Factor	DF	Sum of Squares	Mean Square	F Value	p-value
Binder	2	81.9	40.9	8.6	0.0045
Superplasticizer	1	406.5	406.5	86.9	7.60E-07
Graphene_oxide	2	71.4	35.7	7.6	0.0073
Error	12	56.1	4.7		
Total	17	615.9			

Table 11: Fresh and hardened characteristics of concrete

	Properties	Air content	Slump	Density	Compressive strength (28d)
					MPa
TYPE V-S	GU 0.4	10.0	115	2263	37.2 ± 2.8
	GU-GO 0.4	7.9	100	2314	40.8 ± 0.9
	GUb-30S 0.4	9.0	115	2280	38.5 ± 4.4
	GUb-30S+GO 0.4	7.5	100	2343	45.0 ± 2.4
	GUb-S/SF 0.4	10.0	120	2255	38.3 ± 5.4
TYPE XIII	GU 0.35	8.0	190	2321	56.8 ± 1.3
	GU+GO 0.35	6.7	155	2339	57.9 ± 1.0
	GUb-30S 0.35	5.0	190	2390	65.0 ± 2.1
	GUb-30s+GO 0.35	8.0	200	2327	61.0 ± 1.0
	GUb-S/SF 0.35	6.8	170	2362	60.0 ± 0.4

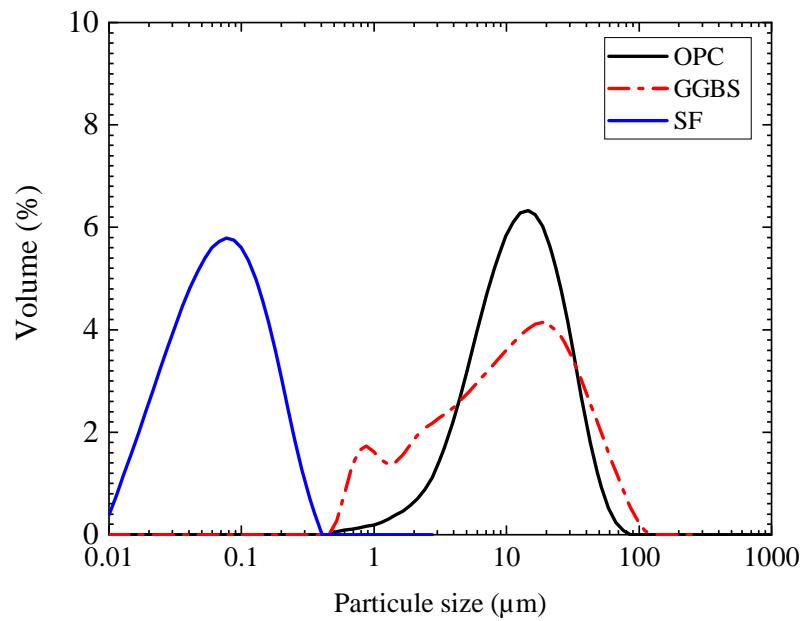


Figure 1: Particle size distribution of binders

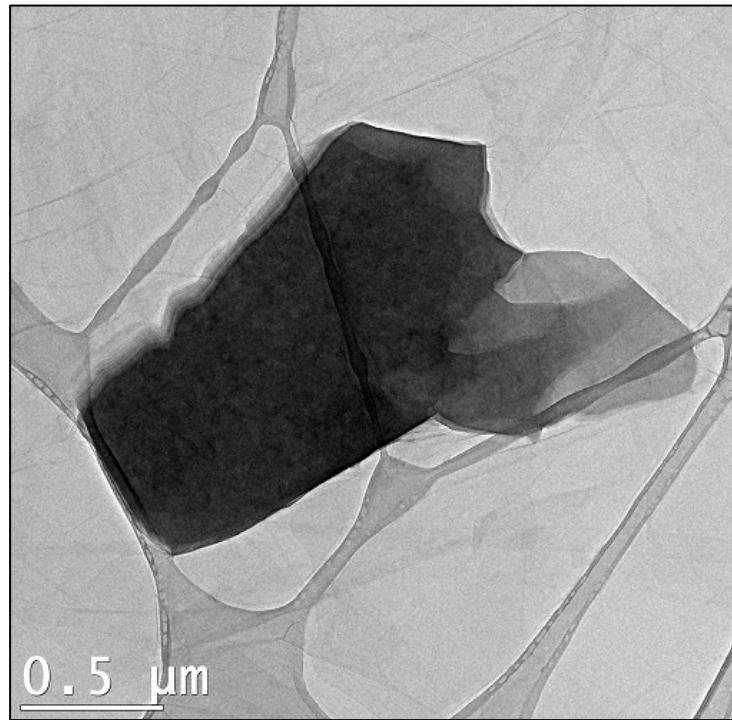


Figure 2: GO particle under TEM.

Credit: Thomas Duplessis

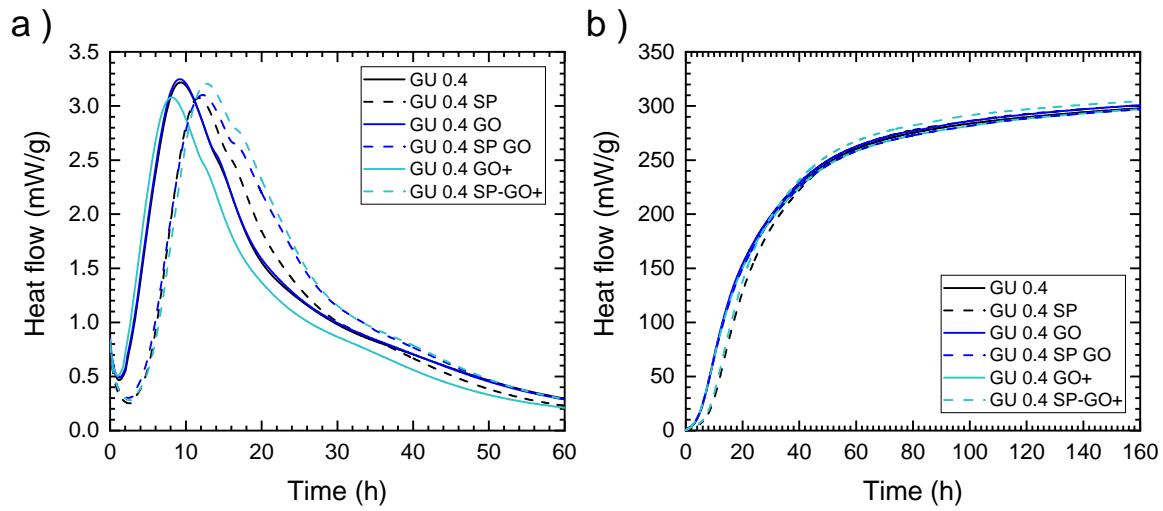


Figure 3: a) Heat flow (mW/g) vs. time and b) cumulative heat (J/g) vs. time for GU mixes with 0.4 W/B ratio.

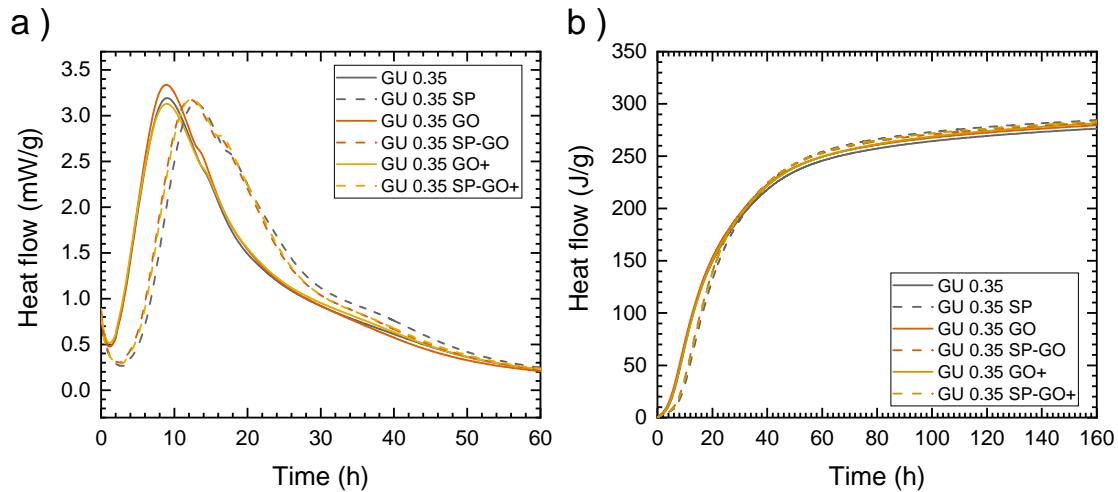


Figure 4: a) Heat flow (mW/g) vs. time and b) cumulative heat (J/g) vs. time for GU mixes with 0.35 W/B ratio

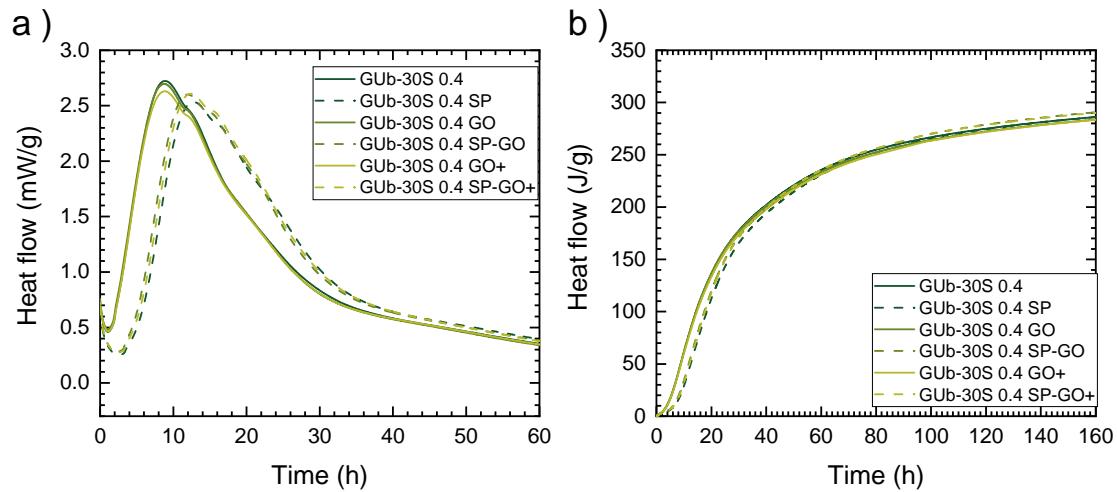


Figure 5: a) Heat flow (mW/g) vs. time and b) cumulative heat (J/g) vs. time for GUb-S mixes with 0.4 W/B ratio.

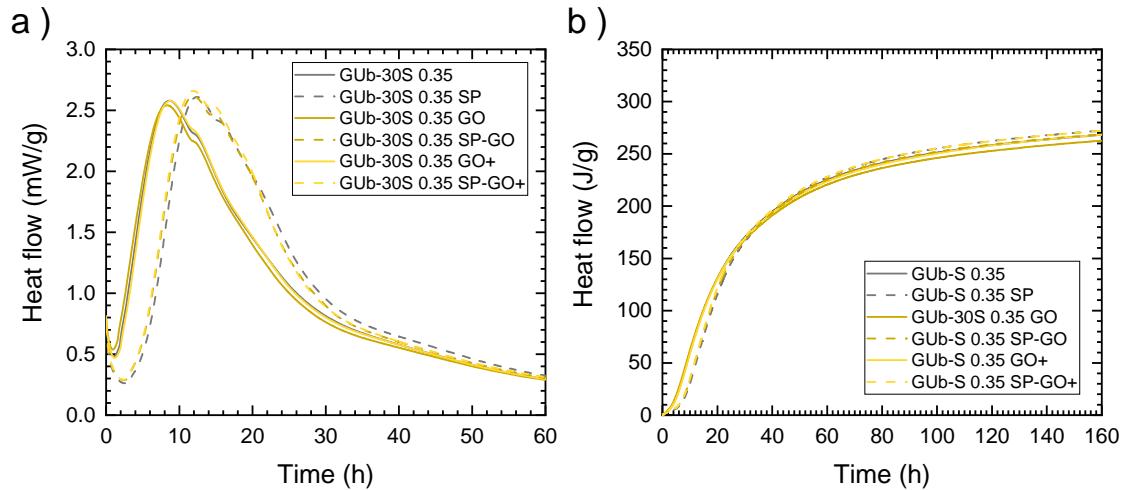


Figure 6: a) Heat flow (mW/g) vs. time and b) cumulative heat (J/g) vs. time for GUb-S mixes with 0.35 W/B ratio.

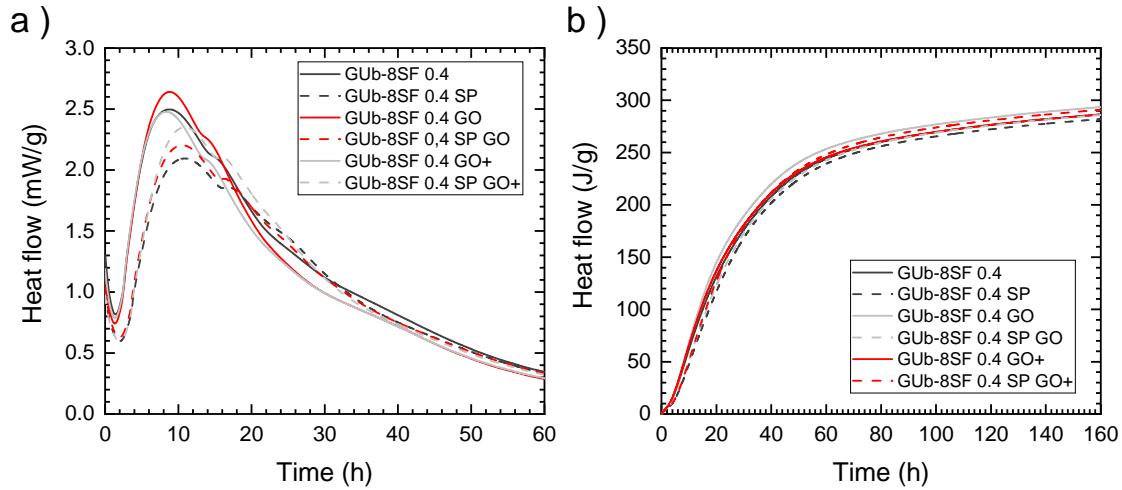


Figure 7: a) Heat flow (mW/g) vs. time and b) cumulative heat (J/g) vs. time for GUb-SF mixes with 0.4 W/B ratio.

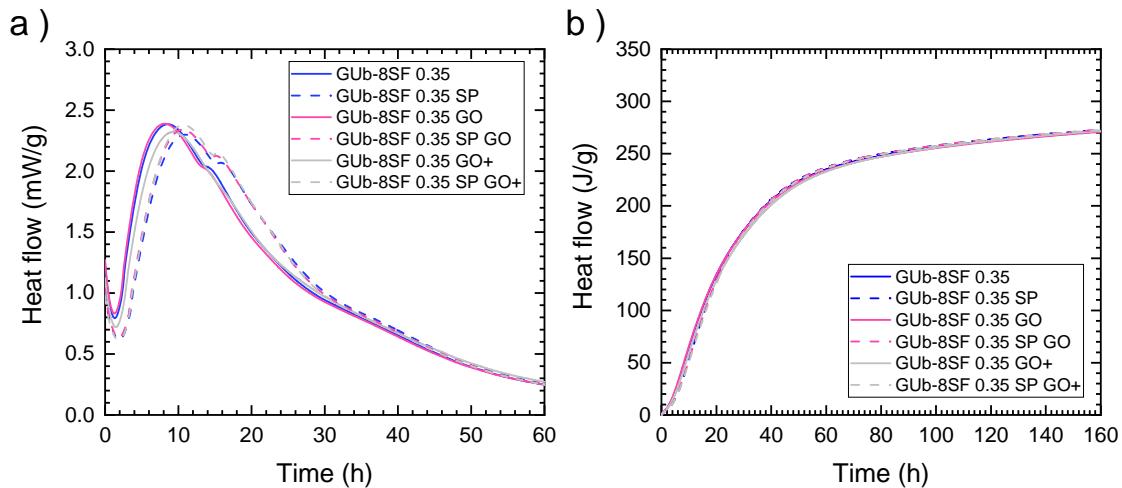


Figure 8: a) Heat flow (mW/g) vs. time and b) cumulative heat (J/g) vs. time for GUb-SF mixes with 0.35 W/B ratio.

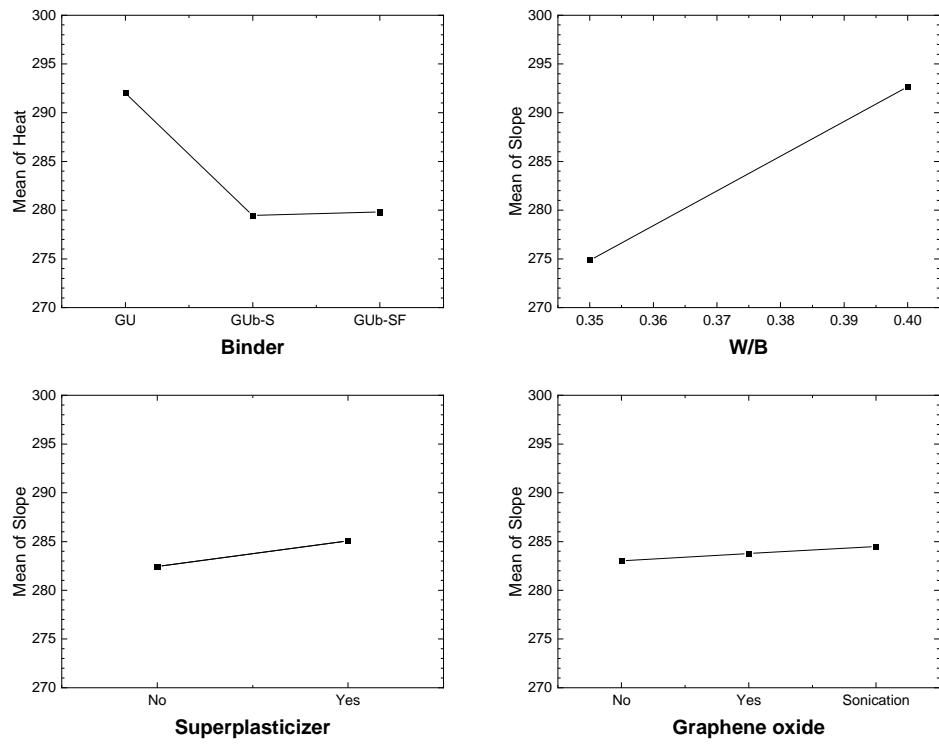


Figure 9: Mean effects plot for the heat released after 160h.

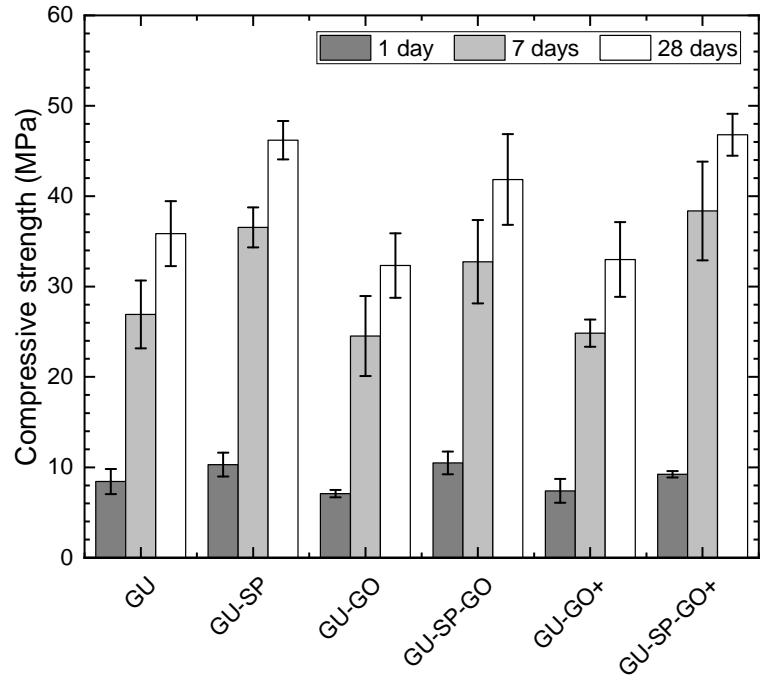


Figure 10: Compressive strength for GU mortars at 1, 7 et 28 days

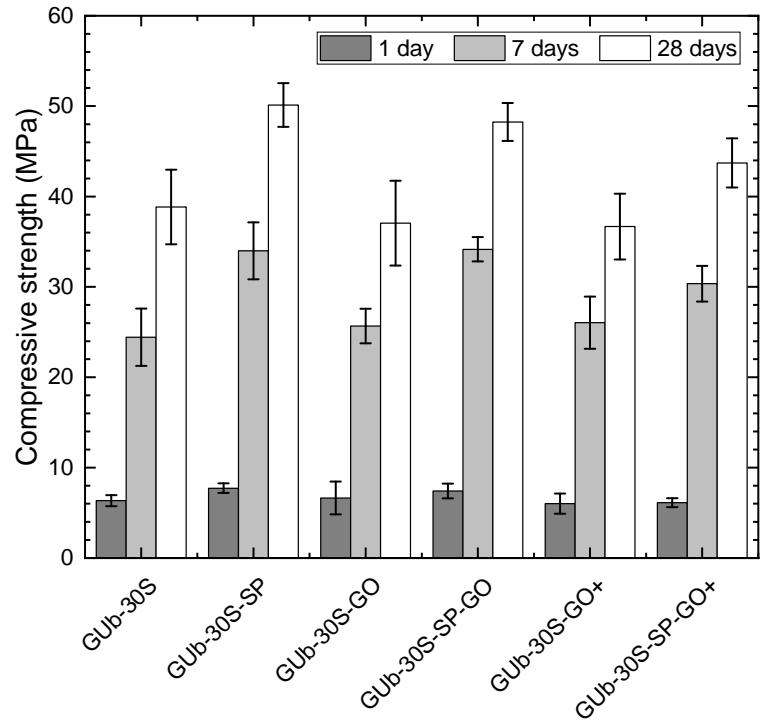


Figure 11 Compressive strength for GUb-S mortars at 1, 7, and 28 days

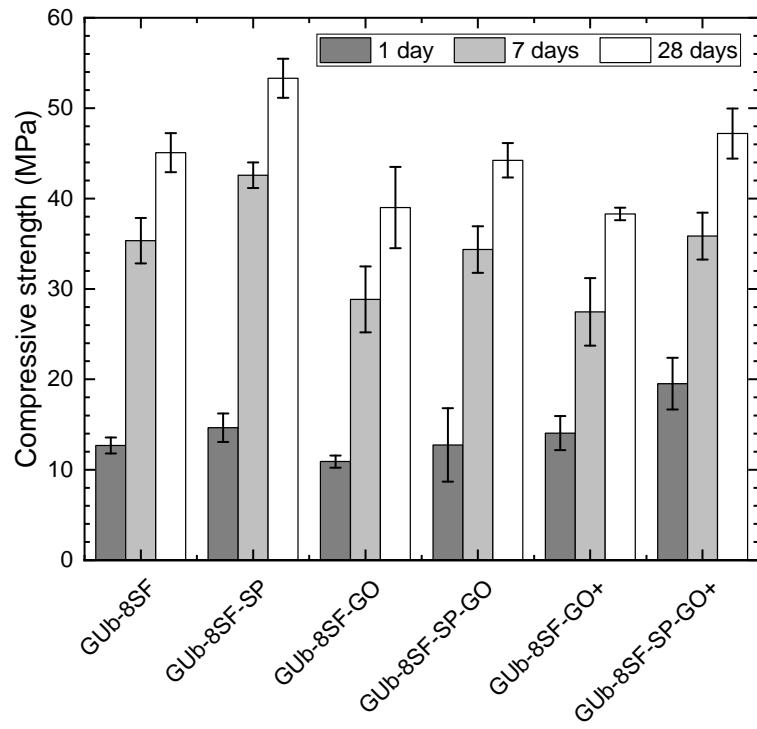


Figure 12 Compressive strength for GUb-SF mortars at 1, 7 et 28 days

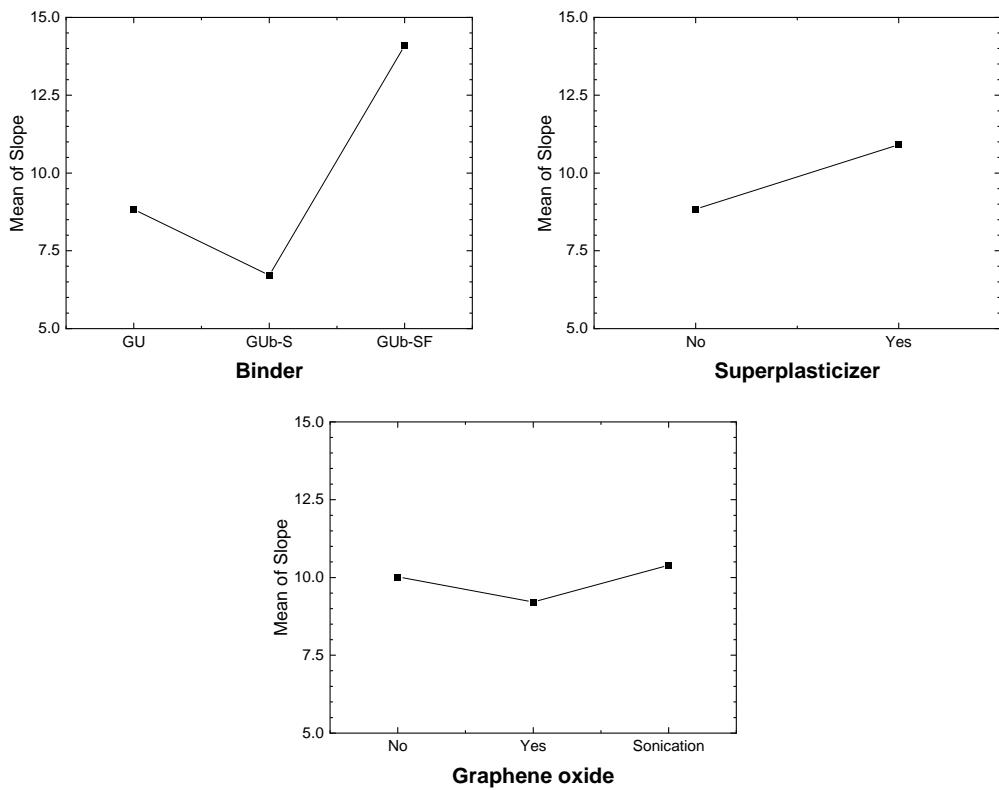


Figure 13: Mean effects plot for the mortar compressive strength at 1 day.

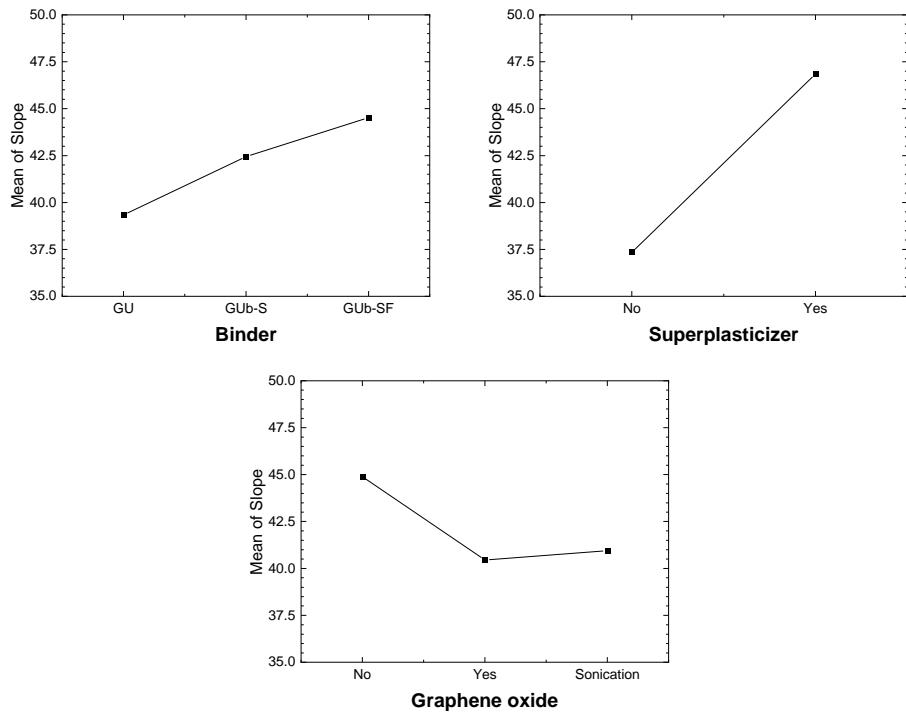


Figure 14: Mean effects plot for the mortar compressive strength at 28 days.

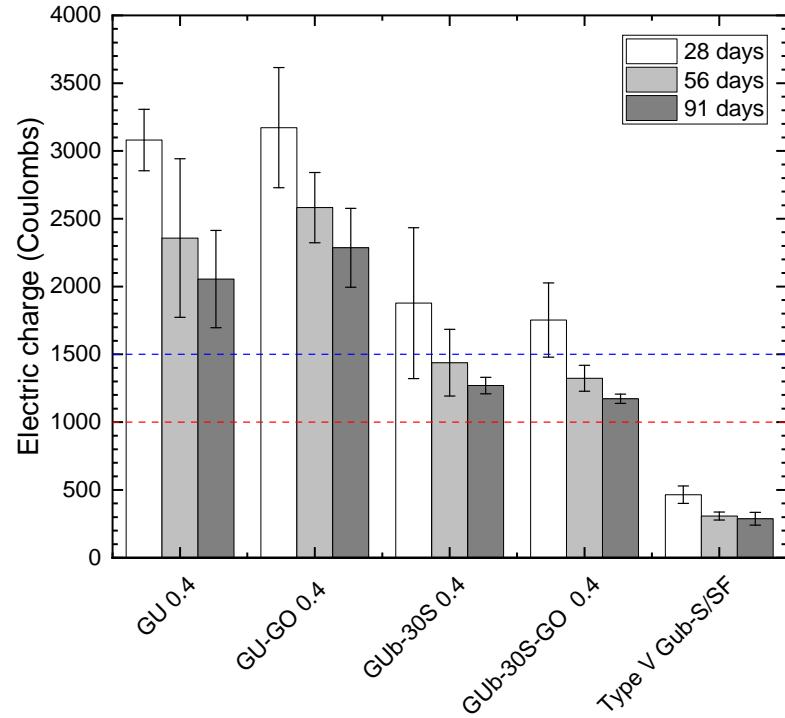


Figure 15: RCPT results for type V-S/C-1 mixes (the red line shows the standard required and the mixes below the line are acceptable)

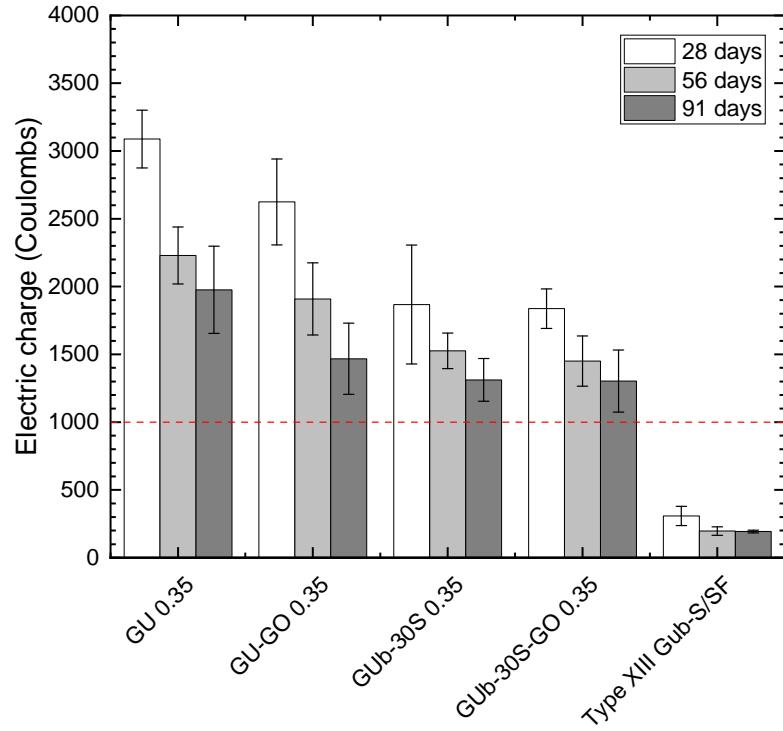


Figure 16: RCPT results for type XIII/C-XL mixes (the red line shows the standard required and the mixes below the line are acceptable)