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ABSTRACT Network slicing (NS) is a cornerstone technology for sixth-generation (6G) networks,
enabling the support of heterogeneous services with diverse quality-of-service (QoS) requirements.
However, existing radio access network (RAN) slicing schemes often rely on single-level resource
allocation, limiting their adaptability to the dynamic nature of RAN and the efficient use of limited radio
resources. This leads to challenges in satisfying service-level agreements (SLAs). Moreover, effective
hierarchical slicing that operates under fluctuating traffic loads, and hardware impairments for multiple
antenna systems remains a challenge. To address these issues, we propose a hierarchical self-optimization
framework aimed at maximizing both the long-term QoS and the spectral efficiency. Specifically, the
proposed framework consists of two slicing management schemes: a cooperative multiple actor-critic
(CoMA2C) scheme to manage the power and bandwidth among heterogeneous slices on a large scale.
Concurrently, a multi-agent deep Q-network (MADQN) scheme manages the power and beamforming
for active users within each slice on a small time scale, accounting for hardware impairments, user
mobility, traffic fluctuations, and channel variations. The DQN and A2C algorithms are employed in
the design of the proposed schemes owing to their proven effectiveness in real-time decision-making in
dynamic environments. Furthermore, a promising scheme based on rate-splitting multiple access (RSMA)
is investigated for heterogeneous services. Simulation results showcase the effectiveness of our proposed
framework, demonstrating its ability to satisfy SLAs for heterogeneous services while reducing network
overhead and outperforming existing state-of-the-art approaches.

INDEX TERMS 6G, beamforming optimization, deep reinforcement learning, inter-RAN slicing, intra-
RAN slicing, multiple radio resource allocation, power allocation, zero touch networks.

. INTRODUCTION

UTURE networks are anticipated in a completely

autonomous manner, eliminating the need for human
intervention [1]. In this context, zero-touch networks (ZTNs)
represent a state-of-the-art paradigm shift towards completely
automated and intelligent network management. ZTNs utilize
machine learning (ML) and artificial intelligence (AI) to
improve operational effectiveness, facilitate smart decision-
making, and guarantee efficient resource allocation [1].

The networking and communication scientific community
anticipates that AI/ML approaches will play a critical
role in fully automating the management and orchestra-
tion of the sixth generation (6G) of mobile networks.
Specifically, deep reinforcement learning (DRL) algorithms
are known for their ability to automate and optimize com-
plex sequential decision-making tasks, effectively addressing
challenging NP-hard problems by interacting with the
environment without requiring prior knowledge about the
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system [1], [2]. Generally, ZTNs consist of four essential
functional classes: self-configuration, self-optimization, self-
protection, and self-healing. These classes work together
seamlessly to achieve complete automation and provide a
fully zero-touch (ZT) operational environment. The capa-
bilities of ZTNs are underpinned by a set of enabling
technologies powered by Al, among which NS stands out
as a key component [3].

NS is a promising technology that enables the creation of
isolated virtual logical networks on top of a physical operator
network [4]. Al-driven slicing is envisioned as a viable
solution for automating demand-aware resource management
and orchestration (MANO) as well as enhancing the capa-
bilities of heterogeneous beyond 5G (B5G) communication
systems [2]. However, several concerns surrounding NS in
next generation networks remain yet unresolved. Among
these, inter- and intra-slice coordination as well as dynamic
resource allocation pose substantial issues. These include
sharing radio resources per slice, managing the priority of
slices/users, complex traffic management, and overloads [5].
Unlike legacy networks, NS requires resource management
at two levels: inter- and intra-slice. The inter-slice level is
responsible for managing resources across different slices,
whereas the intra-slice level manages resources within each
individual slice [6]. Managing radio resources at these two
levels is a complex task, yet it is essential to ensure efficient
resource utilization and lay the groundwork for complete
ZT operations in radio access network (RAN). Despite
extensive efforts in the RAN slicing domain, most available
solutions focus exclusively on intra-slice [3] or inter-slice [7]
management, with very few studies investigating both levels
simultaneously.

Therefore, to achieve the vision of ZT NS, this study
investigates hierarchical radio resource management (RRM)
framework for RAN slicing domain in next-generation
networks. The proposed framework facilitates efficient
resource distribution among heterogeneous services with
stringent and diverse quality of service (QoS) requirements.
Specifically, it ensures that slices with light traffic loads
avoid excessive resource allocation and waste, whereas
slices with heavy traffic loads receive adequate resources
to maintain a high QoS. The proposed framework also
ensures that radio resources are managed and optimized
within each service. By integrating inter- and intra-slice
resource management and introducing strategies to mitigate
overheads, this study contributes to more reliable, efficient,
and robust RAN slicing, which is an essential requirement
for future mobile networks operating in ZT environments.

A. RELATED WORKS

The literature on RAN RRM typically falls into two main
threads. The first line of research pertains to developing
RRM algorithms to manage intra-slice radio resources. For
instance, the algorithm proposed in [8] jointly optimizes
enhanced mobile broadband (eMBB) and ultra-reliable low-
latency communications (uURLLC) bandwidth and power
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allocation based on the Lyapunov Drift method. Another
example involves the algorithms proposed in [9], [10], [11]
to manage the power and beamforming of eMBB and
uRLLC in multiple-input single-output (MISO) systems
based on iterative algorithms. These studies [9], [10], [11]
have relied on orthogonal multiple-access techniques to
share resources among and within services. Recent studies
have been conducted on intra-RAN slicing based on rate-
splitting multiple access (RSMA) for single or multiple
slices; RSMA is emerged as a crucial multiple access scheme
for 6G that offering significant improvements in data rates by
partially decoding interference while treating the remaining
interference as noise [12]. An example can be found in [12],
where the authors jointly optimized beamforming and rate
using an iterative algorithm, and examined the application
of RSMA for uRLLC in cell-free massive multi-input and
multi-output (CF-mMIMO) systems. RSMA was applied in
another relevant study [13], where the authors proposed a
DRL algorithm to manage RB allocation and power control
for eMBB and uRLLC in single-input single-output (SISO)
systems. Furthermore, [14] proposed an algorithm to manage
power and beamforming in MISO systems for virtual reality
(VR) applications. This algorithm leverages RSMA and an
intelligent reflecting surface to support VR applications.
Further, the authors of [15] investigated the performance of
RSMA for eMBB and uRLLC by optimizing beamforming
through zero-forcing (ZF) precoders for private streams and
a random beamformer for the common stream, along with
the rate of the common message. In this context, the power
assigned to private precoders is equally distributed among
private streams, whereas the power allocated to common
precoders is equally distributed among common streams.
Finally, [16] proposed an RSMA beamforming scheme for
uRLLC in an MISO system, which was designed based on
an iterative algorithm.

The second line of research focuses on developing RRM
algorithms to manage radio resources among heterogeneous
services at both inter- and intra-RAN slicing levels simulta-
neously. Examples of this include the algorithms proposed
in [6], [17], [18], [19], [20], [21], [22], [23], where the
authors designed algorithms based on a single DRL agent to
manage the bandwidth among heterogeneous slices (eMBB,
uRLLC, and voice over new radio (VoNR)) based on the
traffic demand of each service, while traditional algorithms
were applied within each slice to distribute the allocated
bandwidth among its users. Building on this approach,
Sabr et al. [7] proposed a scheme that jointly manages
both power and bandwidth, providing a more integrated
solution for resource allocation. These studies (e.g., [6],
[71, [17], [18], [19], [20], [21], [22], [23]) have relied on
orthogonal frequency-division multiple access (OFDMA) to
share resources among and within services. In addition, these
algorithms target SISO systems, except for [7], [21], [23],
where the authors designed a similar algorithm for both
MISO and MIMO systems. However, the strategy used in
these studies (e.g., [6], [71, [17], [18], [19], [20], [21],
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[22], [23]), applying DRL at the inter level and traditional
algorithms at the intra level, is suboptimal for automat-
ing RAN slicing management. More specifically, it lacks
synchronization in learning between the two heterogeneous
methods, which hinders optimal resource efficiency. To
address this gap, very few studies have investigated DRL
for hierarchical RRM, to manage radio resources at the two
slicing levels for eMBB and uRLLC in SISO systems. An
example of this approach can be found in [24], where the
authors presented a two-time-scale RAN slicing algorithm to
manage the bandwidth of eMBB and URLLC services. On
a large time scale, the software-defined networking (SDN)
controller assigns radio resources to gNodeBs. Each gNodeB
then distributes its resources to the end users of the eMBB
and URLLC slices. The proposed algorithm adopts OFDMA
to avoid both inter-slice and intra-slice interference, with
designs at both levels based on DRL algorithms. Another
example of a multiple-level management for SISO systems
is [4], where the authors used DRL to manage power
and bandwidth at the inter-slice level while applying deep
learning (DL) to control resources at the intra-slice level for
eMBB and URLLC. In this context, OFDMA was used to
mitigate the interference. Similarly, [25] proposed a two-
layer control mechanism for eMBB and uRLLC based on
DRL algorithms. The upper layer was designed as a slice
configuration to set the guaranteed bit rate and maximum
bit rate for the users in each slice using the double deep
Q-network (DQN) algorithm. The lower layer was designed
to manage the power and bandwidth of users in both
slices using the deep deterministic policy gradient (DDPG)
algorithm.

B. MOTIVATION

Although previous studies have explored RAN slicing RRM,
a significant gap remains in the existing literature regarding
the excessive overhead introduced by state-of-the-art algo-
rithms that manage both the inter- and intra-slice levels
(e.g., [4], [6], [7], [17], [18], [19], [20], [21], [22], [23], [24]).
These algorithms typically operate on large timescales, often
every second, without assessing whether such adjustments
are truly necessary. This fixed-time resource adjustment not
only creates unnecessary overhead but also depletes valuable
resources and reduces the overall network efficiency. This
research gap is further compounded by the fact that existing
algorithms (e.g., [4], [6], [17], [18], [19], [20], [21], [22],
[23], [24], [25]) were designed based on idealized assump-
tions, such as perfect hardware (HW) and interference-free
conditions. While these assumptions simplify the analysis,
they overlook the significant impact of hardware impairments
(HWIs), particularly when using low-cost massive antennas
such as uniform linear arrays (ULAs) [26]. In real-world
wireless communication systems, HWIs and interference
are key confounding factors that can dramatically affect
performance. Therefore, it is crucial to evaluate state-of-the-
art schemes under realistic conditions, as many prior studies
have overlooked these important limitations. Furthermore,
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the majority of the previous studies on multiple-level RRM
have focused on SISO systems (e.g.,[4], [6], [17], [18], [19],
[20], [22], [24]) without exploring how these algorithms can
be adapted for multi-antenna systems, which are expected
to dominate next-generation networks [27]. This limits
the applicability of previous algorithms to next-generation
wireless technologies, which heavily rely on multi-antenna
systems to enhance performance. Notably, prior DRL-based
studies on inter-RAN slicing have adopted centralized single-
DRL agent, leading to large observation spaces, slower
convergence, and higher memory requirements [28], along
with other limitations highlighted in [29] that make this
approach unsuitable for handling NS. This approach will face
scalability and training complexity challenges, particularly
as the number of resources and radio slices increase.
Although a few studies have considered the management
of RAN at both levels, most concentrate on a single
radio resource (bandwidth) (e.g., [6], [17], [18], [19], [20],
[24]). Furthermore, majority of existing studies have focused
on optimizing resource allocation at the intra-slicing level
(e.g., [3], [8], [9], [10], [11], [12], [13], [14], [15], [16]),
whereas the inter-slicing resource budget remains fixed. This
can lead to significant resource wastage, particularly in
slices with low traffic demand, as resources are allocated
regardless of the actual needs. Slices with high traffic may
not receive the necessary resources, resulting in inefficiency.
This fixed-budget approach highlights the need to optimize
resources at both slicing levels simultaneously. Therefore, a
more comprehensive approach is needed that considers both
levels to enable ZT operations in future RAN architectures.
Although there has been some research on RAN management
using RSMA, which has shown significant potential to
improve the performance of heterogeneous networks [30],
its application across both slicing levels remains unexplored.
Therefore, to address the aforementioned issues, this study
proposes a novel twin-timescale framework designed to
tackle the complexities of multi-level RAN RRM, based on
distributed, cooperative, multi-DRL agent. More specifically,
the proposed framework adopts multiple actor-critic (A2C)
algorithms to manage the inter-slice level, while multiple
DQN algorithms are used to manage the intra-slice level.
This framework contributes to the self-optimizing class of
ZTNs, thereby laying the groundwork for ZT management
in future networks.

C. CONTRIBUTIONS
The key contributions of this study are summarized as
follows:

o We propose a hierarchical self-optimizing framework
for managing heterogeneous network slices in the RAN
domain, based on cooperative multiple agent DRL,
referred to as HiSO-CoMA, which aims to maximize
the long-term spectral efficiency and meet service level
agreements satisfaction ratio (SSR) of diverse services.
The proposed framework adopts the RSMA scheme
to support the coexistence of heterogeneous services.
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FIGURE 1. System model of downlink RSMA with heterogeneous inter- and intra-RAN slicing.

To the best of our knowledge, RSMA has not been
previously applied in this context.

o To accommodate time-varying network conditions and
diverse QoS requirements in terms of data rate and
latency, while ensuring efficient use of limited radio
resources and smooth synchronization between the
management levels, the problem is formulated as a twin-
timescale resource-management problem. Specifically,
it consists of two management levels: inter-slice (on a
large timescale) and intra-slice (on a small timescale).

« Based on the fluctuating traffic load of heterogeneous
services, the inter-slice level of the proposed framework
allocates multiple radio resources (e.g., power and
bandwidth) among these services to minimize waste
in the system’s radio resources. Meanwhile, intra-slice
level management performs fine-grained control by
allocating power, adjusting bandwidth, and optimizing
beam directivity for active users within each service.

o To solve the large timescale problem in line with real
world deployments, we reformulate it as a partially
observable Markov decision process (POMDP) and
solve it using a distributed cooperative multiple A2C
(CoMA2C) scheme. Meanwhile, the small timescale
problem is reformulated as a Markov decision process
(MDP) and addressed using a distributed multi-agent
DQN (MADQN) scheme.

o To address the overhead issues in state-of-the-art algo-
rithms discussed in Section I-B, we propose a novel
mitigation strategy that enables the proposed framework
to adjust resources at the inter-RAN slicing level, only
when significant changes occur in the slice traffic
load. This approach alleviates communication overhead,
reduces the complexity of coordination between the
inter-slice (CoMA2C) and intra-slice (MADQN) control
policies, and ensuring efficient and real-time resource
management.

o« To examine the impact of unwanted noise from
non-ideal HW on the heterogeneous QoS of future
applications, we consider the effects of HWIs at the
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transmitter and self-distortion at the receiver in the
proposed system model. Specifically, we investigate
how HWTIs influence the learning process of the
proposed framework and affect its training time, both
of which are critical for achieving reliable system
performance.

« To extensively evaluate the proposed scheme in a het-
erogeneous inter- and intra-RAN slicing environment,
we conducted a comprehensive set of simulations while
taking into consideration user mobility, time-varying
channels, fluctuating traffic loads, and HWIs. This
evaluation included comparisons with both state-of-the-
art [7] and traditional algorithms to test the adaptability
and reliability of the proposed framework.

D. ORGANIZATION

The remainder of this paper is organized as follows.
Section II details the system model and problem formu-
lation. Section III elaborates on the proposed hierarchical
slef-optimization framework. Numerical evaluations and
discussion are provided in Section IV. Finally, Section V
concludes this paper and outlines the future research
directions.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

This section elaborates on the system model, including the
NS model, communication channel, and multiple access tech-
niques. Finally, the objectives of the proposed optimization
problem are defined.

A. RADIO SLICING SCENARIO

We consider a heterogeneous inter- and intra-NS scenario
in open RAN (O-RAN) architecture, where a single base
station (BS) equipped with N7 > 1 transmit antennas serves
users across a set of services denoted by S = {1,2, ..., S}.
The BS is remotely managed by RAN intelligent controller
(RIC) via the E2 interface (see Fig. 1). The E2 interface
enables seamless communication between the RIC and RAN
components, thus enabling the exchange of data/information
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TABLE 1. SLAs for admitted slices.

No. | Slice RMin LMax SSR™" [19]
1 VoNR | Slkbps [20] | 10ms [20] > 95%
2 | eMBB 15 Mbps 10ms [20] > 95%
3 | uRLLC | 10Mbps [20] 3ms > 95%

and coordinated management [31]. The RIC is a crucial
component of O-RAN architecture and a key enabler of
intelligent RRM and optimization. The RIC consists of the
following two distinct components: (i) non-real-time (RT)
RIC, which performs non-real-time tasks (usually beyond
1 ), and (ii) near-RT RIC, which runs software applications,
known as xApps, and addresses real-time control and
optimization, which is essential for making quick decisions
within the RAN (usually from 10 ms to 1 s) [32]. For the sake
of simplicity, we focus on three slices as a case study: VONR,
eMBB and uRLLC, denoted by S”, §” and S’, respectively.
The sets of users in slices S”, $” and S” are denoted by
N ={1,2,n...,N, M ={1,2,m,...,M}, and R =
{1,2,r,..., R}, respectively, where N, M and R represent
the total numbers of VONR, eMBB, and uRLLC users. All
users are assumed to be equipped with a single antenna to
ensure low hardware complexity. Therefore, the set of users
in the system can be represented as U; = {1, 2, ..., Us}. The
total number of users is Uy = N + M + R, where the user
belonging to slice s is denoted by u; € {n, m, r}. We assume
that each user belongs to only one NS, based on the required
services. In line with the heterogeneous requirements of
future networks, each slice has its own QoS requirement
based on the service level agreement (SLA) between the
group of users and the service provider, as explained in
Table 1.

In the proposed scenario, we assume that each user u;
sends a request to the service of one of the admitted slices.
Hence, each slice s in the system receives a set of requests,
denoted by Qs = {1, 2, ..., O}, where Qy is the number of
requests made by users belonging to slice s. Furthermore,
we assume that the requests are sent by authorized users
and approved by their corresponding slices. In response to
user requests (q;) for a certain service, the BS provides
users with data traffic for the requested service. The data
traffic of each slice is represented by €2, and the system’s
total traffic demand, Ry, can be defined as R[] =
Zle Q[7]. We adopt a descriptive traffic model to mimic
Q, for each NS, where the traffic model for users in each
slice is defined by specific inter-arrival time distributions,
packet sizes, and buffer settings [19], [25]. The designed
traffic model represents the traffic for each user as a data
packet. Let @, represent the set of data packets sent from
the BS to user u. In this set, v, denotes a single data
packet where ¥, € ®, . Therefore, the data traffic for each
NS at time slot ¢ is given by the following:

Qlf] = ) y:VseS. (1)

usels
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Typically, the data traffic originating from the core layer is
sent to the BS, where it is first directed to a buffer assigned
to each user type based on the requested service. Once the
data reaches the BS, it is transmitted to users within their
respective NSs. The first-come-first-serve (FCFS) strategy is
then followed to deliver the data [25]. Hence, we assume that
each user at the BS has a queue buffer with a configurable
packet limit, denoted as E,,. In the proposed system, user
us is considered idle if its queue buffer is empty; otherwise,
ug is classified as active.

The QoS of each NS is typically evaluated using metrics
that are essential for assessing adherence to SLAs, such as
data rate, packet latency, and transmission reliability [33].
In this study, the main indicators used to assess each slice’s
SLA compliance are data rate and packet delay. Therefore,
we establish thresholds for the maximum permitted latency
(LE/I”) and the minimum data rate (mg“in) for the users of
each slice, as listed in Table 1. Thus, we define a binary
variable dy, € {0, 1}, where dy, =1 implies that user u
in slice s successfully received a packet ¥, € ®,, yielding

g | L O, > RMIn & 1, < LM
Yus = 1 0, otherwise

. 2

where N, denotes the instantaneous data rate for user ug
and ly, is the transmission delay of packet v, in slice s.

In general, in wireless communications, packets experi-
ence various sources of delay, such as propagation delays,
receiver processing delay, queuing delay at the BS, and
the time required for additional retransmissions [34]. In
this study, we examine two of these sources: queuing time
(DQueuing) and propagation time (Dtrans). The former is
affected by the scheduling policy and is related to the waiting
time for packets in the queue. In contrast, the latter depends
on the instantaneous data rate and reflects how quickly the
data is transmitted over the network. Therefore, [y, is the
sum of these two elements, yielding

Iy, = DTrans + DQueuing. 3)

In the proposed system, when [y, exceeds the defined
LM the NS drops the packet according to standard network
protocols [33]. From an empirical perspective, an effective
resource-management strategy must guarantee the QoS of
each NS. This means maximizing the traffic’s success-
ful transmission ratio to improve network efficiency [6].
Therefore, we include the SSR of each slice s (SSRy) as a
QoS measuring criteria. SSR; is defined as the percentage
of successfully transmitted and received packets, which can
be written as

Zu;eus ZI/IZ,SECDL,_( d‘//

ZMSGZ/{S o
where |®,, | represents the total number of packets sent from
the BS to user uy in slice s.

To ensure fairness among the users, we evaluate how well
the system satisfies the QoS requirements for each user in

SSR,[#] = “:VseS 4)

Us
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a particular slice by measuring the SSR at the user level as
follows:

ZI[/MX Ed)uj d’wbus

SSRy[1] = ===
Ug

; Yug € Uy (5)

B. CHANNEL MODEL

To mimic the dynamics of the downlink multi-slice het-
erogeneous MISO channel and simulate the system under
more realistic conditions, we adopt a flat-and-block fading
channel [35]. Accordingly, the downlink channel vector (hy,)
between the BS and user u; at time slot 7 is expressed as
follows:

hus[t] == V ﬂZYA(NT’ Qus’ A)gu.y; MS € {n5 m7 r}’ (6)

where B, denotes the large-scale fading, which includes
shadowing and path loss between the BS and user us in
slice s. Here, the shadowing is modeled as a log-normal
distribution with variance of oy, and the path loss depends
on the distance between the BS and user u, in kilometers
(¢u;) as 120.9 + 37.6log;( ¢, dB. Moreover, the signal for
user u; propagates through L distinct paths. The matrix
A(Nr, 6y, A) € CNT¥L captures the antenna array response
over the L paths as shown below:

A(N7, 04, A) = [a1 (N7, 01) ... ar(N7, 601)]

where 6, denotes the direction of departure (DoD) from
the BS toward user u;, while A represents angular spread.
In Eq. (7), ay(N7,0)) € CNt>1 denotes the array response
vector of the /" path, given by the following:

c (CNTXL’ (7)

n n T
(N7, 6)) = [1, G2 costr ah%wr—l)cos@z] . (8

where XA denotes the wavelength of the downlink carrier
wave, d" denotes the distance between adjacent antennas,
and 6; is the DoD of the I path. Here, we assume that the
DoDs of all the paths are uniformly distributed [35]. Finally,
8y, € CLX1 denotes the small-scale fading vector from the
BS to user ug, which is modeled according to a first-order
complex Gauss-Markov process, as discussed in [36]. Due to
the block-fading, the channel remains constant within each
time slot, but changes independently from one slot to the
another.

C. MULTIPLE ACCESS TECHNIQUES

To facilitate the coexistence of heterogeneous services, we
adopt frequency division duplex (FDD) to provide inter-
slice resource isolation and adaptively guarantee the QoS
requirements of each NS, similar to [37]. This approach
can ensure slice isolation, which becomes increasingly
critical as the number of services grows in future networks.
Moreover, to enable resources sharing within each NS,
we adopt RSMA, which is one of the most promising
multiple access technique for 6G networks [30]. The main
advantage of RSMA lies in its flexibility in managing
interference, allowing it to be partially decoded and partially
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treated as noise [15]. According to the RSMA strategy, the
downlink messages intended for users are denoted as G =
{G1, ..., Gy, ..., Gy,}, where G, is divided into: common
(Gy,) and private (Gﬁs) components. The common parts of
all user messages within the same slice are combined and
encoded into a common signal stream (s.). On the other hand,
the private parts Gl are individually encoded into streams
(Su,1, - - -, Su,). BS then sends the superimposed signal of its
common stream s, and private stream s,, simultaneously to
the end users. Thus, the transmitted signal from BS to the
users of slice s at time slot ¢ using 1-layer downlink RSMA
is given by [30].
Us
x[1] = wese + Z Wy Sug; Us € {n,m, r}, )

us=1

where w, € CN*! and w,, € CN7*! are the beamforming
vectors of the common and private messages, respectively.

D. SIGNAL MODEL
The received signal of the user u; at time slot ¢, where
us € {n, m, r}, is given by using the following equation.

Yuy = hil [[we[t]sc(t) + bl (1w, [£]s,, (1]

common message

+ Z o [Awildsile]
i=1,i%u s_’—‘
intra interference

; Yus € U,

private message

+  Izs 4+ Zyld + T
HWIatULA AWGNatu,  Self-distortion

(10)

where h,, € CN7*! denotes the complex channel vector
between the BS and user u; in a given slice s. Moreover, the
superscript (-) denotes the Hermitian operator. The second
term in Eq. (10) represents the intra-interference experienced
by the u,™ user. It is also assumed that all the users are
subjected to additive white Gaussian noise (AWGN) with
noise variance o2, where Zy, € CN (0, 02) denotes the noise
at the user u at time slot ¢. Furthermore, I, ~ CN (0, d’)
and I, ~ CN(0,d") denote the distortions at the ULA of
the BS and the receiver, respectively.

The distortion noise variance at the ULA is represented
mathematically as follows [26].

d = diag(jor P ool oy P), (D)

where k' > 0 the transmitter’s distortion level, diag(-, ..., -)
is a diagonal matrix, and o is the element of w, where
w € {w., w, }. In this context, we consider that HWIs affect
both the common and private messages for each user. The
variance of the distortion noise at user ug is given by [26]

d" = k" | w)?, (12)

where " > 0 denotes the self distortion level at user
ug. We simplify the analysis by assuming that all antenna
elements in the ULA undergo the same level of distortion
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«!. Furthermore, it is assumed that all users experience the
same level of distortion «”.

Initially, each user decodes the common stream, and the
interference from all private streams is regarded as noise.
Then, each user uses successive interference cancellation
(SIC) to remove the shared stream (s.) from their signals.
Users then decode the intended private stream, while
considering the interference from the other private streams
as noise. Consequently, the instantaneous signal to distortion
and noise ratio (SDNR) of the common stream (IS ) and
private (F’,;X) stream at time 7 are given as follows.

. |h,’1 LG
re =
s : N
2 2 2
Z\hu‘ Jwildl2 4« Z\hrwa + [l wtnl| + of
=1 —
Self-distortion AWGN
Interference HWI at ULA
vugetdy,  (13)
H 2
Ihu. [e]wy, ]|
AGES -
U, H 2
Ziél,i;&m |hu\W,\2+K Z|hrW1| +K huv[r]w" [Z]‘ + (Tllx
=1
—_ Self-distortion AWGN
HWTI at ULA

s Yuy € Uy (14)

The original message for each user is then reconstructed
by combining the decoded private message of that user with
the decoded common message. To ensure that the common
message can be successfully decoded by all users in the
system, the achievable rate of the common part is calculated
as r.[t] = minuxeus{logz(l + F,js)}. The instantaneous rate
for decoding private stream at user u is below.

r‘u’s[t] = 10g2(1 + Flu’s); Yu, € Us. (15)

We assume that 7. is shared by the users within each slice

such that }_ A, where & is the portion of the common
useUs ; )
stream’s rate that is meant for user u;. Thus, the total

achievable rate for each user uy in slice s can be expressed
as:

Ny, 1] = X + 1ty . (16)
E. OBJECTIVE FUNCTION

The objective of this study is to maximize the long-term
utility function f(-), which is defined as a combination of
the weighted sum of the spectral efficiency () and the
SSRs of the different services. The mathematical formulation
of the objective function (OF) is provided in Eq. (17). A
higher utility value indicates better QoS performance for the
network slices. In Eq. (17), the parameters «”7 and B, =
{*Bs1, ..., Bs} denote the weights associated to n and the
SSR; of slices, respectively. These parameters reflect the
relative importance of n and the SSR; and can be tuned

to meet specific system re% 1rements [6]. In this context, n

veS useb{;

is defined as n[f] = , where B” denotes the
total available bandwidth.
To achieve optimal inter- and intra-RAN slicing con-

trol strategies that maximize the long-term objective, the
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system dynamlcally adjusts the power allocation P§ .. =
{pr. ., P" }, where P* ., P" . P’

max> Pmaxs Pruax maxs Pmax> Pmax  represent the

power budgets for VONR, eMBB, and uRLLC, respectively.

Similarly, the bandwidth allocation is defined as B, =
(B x> Boaxs Biax ), where By . Bl By .. denote the band-

width budgets for VONR, eMBB, and uRLLC, respectively,
at the inter-slice level. At the intra-slice level, the system
further optimizes the beamformer vectors, which include the
powers ||w.|> and ||w,,s||2, along with their corresponding
directions W, W, . These optimizations are performed in
compliance with radio resource constraints at both the inter-
and intra-slice levels.

OF : maximize  o’.n+ ZSBS -SSR, (17)
Pinax’ B?nax seS
We, Wy,
Iwell?, w1
st. Cl:Pr, >4, VseS,
C2: Y P, =P Wi,
seS
C3: Bl > A‘,Z; Vse S,
Cd: > Bha = Vi,
seS
C5: s =(%1,...,2); VseS,
C6:  SSRy > SSR™; vse S,
C7: wi, I” = 0; Vus € U,
N
C8: [Well* + ) IWall* < Py
M
CO: [Well* + Y Wl < Ppps
m=1
R
C10: [[Well> + D 1wl < Phgs.
r=1
Cll:  SSR,, > SSR™;  Vu e U,
C12: W, €0, 27),
CI3: Y X <rs Vus€lU,VseS
useUs
Cl4: X,Z r’,js >0; VYusel,,VseS.

In Eq. (17), C1 guarantees that a minimum power (A;,)
is allocated per slice. C2 defines the total power allocated
to all the slices, which is equal to the total system power
(IP’T). C3 ensures that each slice is allocated a minimum
bandwidth (A}). C4 defines the total bandwidth allocated to
all the slices, which is equal to the BT. C5 defines Q; as the
traffic model for slice s. C6 ensures that the SSR of each
slice meets or exceeds the predefined threshold (SSREh).
C7 ensures that the power allocated to each user is non-
negative. Constraints 8-10 guarantee that the power allocated
to the users of each slice does not exceed the slice budget.
C11 ensures that the SSR of each user in each slice is
greater than a predefined threshold (SSREh). C12 defines
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the antenna phase shift constraint. C13 defines the common
rate constraint. C14 indicates that the common and private
rates must not be negative.

The optimization problem OF is a non-convex problem
classified as NP-hard and challenging to solve. The diffi-
culty of solving OF stems from the following two main
factors. First, the joint optimization of both inter- and intra-
slice levels significantly increases computational complexity.
Second, because of user mobility and the stochastic nature
of the traffic model, traffic demand fluctuates over time and
cannot be accurately predicted in advance. These challenges
are further intensified in the context of ZTNs for 6G,
which demand autonomous and intelligent decision-making
in highly dynamic, dense, and heterogeneous RAN slic-
ing environments. Addressing these complex requirements
exposes the limitations of traditional optimization techniques.
Methods such as genetic algorithms and heuristics fre-
quently struggle with NP-hard problems, particularly in the
dynamic and heterogeneous nature of RAN slicing. These
approaches depend on approximate mathematical models
that can not fully or accurately capture the complexity
and dynamic nature of real-world environments. As NS
complexity increases with more devices, services, and diverse
QoS requirements, such methods become less scalable and
efficient. Their high computational cost tends to yield
suboptimal solutions in large-scale real-time scenarios [38].
While exhaustive search method could theoretically yield
optimal solutions, it is computationally infeasible due to
its exponential complexity with respect to the number of
variables [39]. Furthermore, traditional approaches lack self-
learning capabilities, which are essential for the autonomous
self-optimization expected in ZTNs scenarios [3].

Overcoming these challenges requires a more adaptive and
scalable approach— the one aligned with the requirements
of ZT applications. Accordingly, we propose a cooperative
MADRL approach to solve our OF. DRL algorithms
are well-suited for this task due to their ability to learn
optimal policies through interaction with the environment
and adaption to changing NSs conditions in real time,
while maintaining computational efficiency [24], [40]. In
Section III, we decompose the problem OF into two
subproblems, each corresponding to a specific level of
management within the RAN domain. The first subproblem
addresses inter-slice, represented by constraints C1-C6,
whereas the second focuses on intra-slice, represented by
constraints C7—14. Both subproblems are solved using the
MADRL approach.

lll. HIERARCHICAL RRM FRAMEWORK BASED ON
COOPERATIVE HETEROGENEOUS MADRL

This section presents an overview of the proposed solution,
with details of the design and implementation of the proposed
HiSO-CoMA framework.
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A. OVERVIEW

To address the problem in Eq. (17) using the MADRL
approach, we reformulate it as a twin-timescale MDP.
More specifically, we reformulate the inter-slice level
problem as a POMDP to align with real-world sce-
narios where the RIC has an incomplete view of the
NS environments [4], while the intra-slice level is refor-
mulated as an MDP, as discussed in Sections III-B
and III-C.

To solve the POMDP, we employ cooperative multiple
A2C agents to form the CoMA2C scheme. Each agent,
denoted by g, € Gs, is responsible for managing a specific
type of radio resource o € ®, such as power or bandwidth,
across heterogeneous services, including VoNR, eMBB, and
uRLLC. For the intra-slice level, we use a set of DQN
agents J; to form a MADQN scheme. Here, a dedicated
agent, denoted j; € J;, is assigned to manage the resources
within each NS among its active users. Our design choices
for the DRL algorithms are guided by the literature that
consistently adopts A2C for inter-slice and DQN for intra-
slice optimization.

The main benefit of adopting the MADRL approach is
that it allows for the decomposition of high-dimensional
state and action spaces compared to a single-agent
DRL [41]. This decomposition simplifies the complex-
ity of the problem and provides a more efficient and
scalable architecture that can be generalized to more
resources and slices in the future. Furthermore, the
proposed framework incorporates distributed learning at
both management levels, significantly reducing the signaling
overhead compared to centralized learning, as highlighted
in [42].

The CoMA2C scheme of the proposed framework operates
on a large timescale, denoted qlong — (1,2, ..., Tlong),
which represents a set of indices corresponding to long time
slots. Each long time slot has a fixed duration of AT (e.g.,
1 second) [4]. Conversely, the MADQN scheme operates on
a small timescale at the intra-RAN slicing level, where each
long time slot ¢ € 71" is divided into smaller time slots,
Tshort — (1,2, ..., T} " each with equal duration ATSPor
(e.g., 0.5 ms).

To ensure real-time performance and ZT management in
RAN slicing, RRM at the inter-slice level must frequently
synchronize with RRM at the intra-slice level. However,
high traffic fluctuations and significant user mobility at
the intra-slice level make this synchronization a complex
task. Coordinating multiple resource management across
RAN slicing levels requires continuous communication
and updates, which can lead to excessive network over-
head. To address this challenge, we propose a mitigation
strategy to minimize network overhead while ensuring
synchronization between the two-timescale operational mod-
els of the proposed framework, as detailed in the next
section.
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B. POMDP FORMULATION FOR CoMA2C AT THE LARGE
TIMESCALE

In this subsection, the specific definitions of state, action,
and reward are introduced for agents that manage resources
on a large time scale.

1) STATE

We assume that information is exchanged between the RIC
and the BS via the E2 interface. This includes the number
of network slices hosted by the BS and their corresponding
traffic loads. As a result, the state (Sga) of each g, € G, at
t € TI°" is given by

Sg, [1] = @ = [Qsl s Qsz’ cees QS]; Ve € G5, (18)

2) ACTION

After the RIC observes the instantaneous traffic load for
each NS, the cooperative agents—one responsible for power
allocation (g, = gp) and another for bandwidth allocation
(g0 = gp) take action at r € 71°"2 to allocate the respective
budgets to the heterogeneous NS. These actions are deter-
mined according to Eq. (19) and Eq. (20), respectively.
aflr) = { (Phtaxs Phiuc: -

max —

S
"Pmax>Eanax|Ps >A’;”
af e AL | (19)

B

B _ s S s s s
ag [f] = [(Bn%ax’ Bn%ax* o max) € Bmax | Bmax z Ab’

af e A% | 0)

where Ag and .Ag represent all the feasible action combina-
tions, including possible power allocation actions between A,
and Pj .., as well as possible bandwidth allocation actions
between A} and By, respectively.

The inter-slice management scheme of the proposed
framework dynamically updates the resources of each NS
based on its specific QoS requirement and traffic demand.
Typically, the near-RT RIC functions within a time range
of 10 ms to 1 s [32]. To align with near-RT constraints
while minimizing overhead, the proposed CoMA2C scheme
adjusts resource allocations only when significant traffic
variations are detected across slices. To achieve this, the
RIC continuously monitors traffic loads and evaluates at
one second intervals. If a substantial variation is detected,
resource reallocation is triggered; otherwise, the current
configuration is maintained. The relative change in the traffic
load €2, of each service at t € 71°" is calculated as:

|€2(1) — Q251 = D

Q(t—1)
We define the maximum change across all services at ¢ €
Tlong a5

Amax[] = max{AQn (1], A% [, ... A% [t]}, (22)

ASS[] = x 100, (1)

Here, Amax[f] represents the maximum observed traffic
change at time ¢. The decision to trigger inter-slice resource
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reallocation via CoMA2C (rCOMAZC) is then made based on
a predefined threshold (VTh) as follows

[ True; if Amaxlf] > VI

7',CoMA2C —
False; if Ama[t] < VD

(23)

If Apax > VTh, a significant change in traffic is inferred, this
prompts the RIC to activate COMA2C at the inter-slice level
to reallocate resources accordingly. Otherwise, the system
retains the current allocation, while continuing real-time
monitoring at the inter-slice level and resource management
at the intra-slice level. This strategy plays a key role in
reducing overhead by limiting interactions between agents
in the CoMA2C and MADQN schemes. These interactions
are triggered only when substantial traffic variations occur,
thereby avoiding unnecessary communication. Meanwhile,
the system remains in real-time monitoring mode to effec-
tively handle any sudden traffic fluctuations.

3) GLOBAL REWARD

After agents of CoMA2C scheme perform their chosen
actions, the NS environment sends them a team reward
(rgv) according to Algorithm 1, which represents feedback
that measures how well the executed actions align with
observed conditions. The reward function design considers
four scenarios. In the first scenario (Lines 2—4), if the SSR; of
all services are greater than or equal to the predefined SSRSTh
and the spectral efficiency is below 100 bps/Hz, the agent
receives a scalar reward of 10. In the second scenario (Line
6), if all services are satisfied the SSRI” and the spectral
efficiency is greater than 100 bps/Hz, the agent receives
a bonus reward proportional to the spectral efficiency. In
the third scenario (Lines 8-9), if uRLLC does not achieve
its predefined SSRSTh, the agent receives a proportional
reward based on uRLLC performance. Finally, in the fourth
scenario (Line 11), a negative reward (penalty) is applied if
either VONR or eMBB—or both—falls below their respective
SSRSTh. The penalty term in Line 11 uses a min operator
to identify the worst-performing service, ensuring that the
penalty is proportional to the most degraded service quality.

C. MDP FORMULATION FOR MADQN AT THE SMALL
TIMESCALE

In this subsection, we introduce the state, action, and reward
for the agents responsible for managing resources on a small
timescale.

1) STATE

Due to the heterogeneous QoS requirements of each NS, each
agent j; € J; independently observes the state of its own NS.
This state is constructed solely based on locally available
information, enabling decentralized decision-making. This
approach reduces signaling overhead and minimizes process-
ing latency [43]. Specifically, the state (ij) of each agent at
time t € 7P is defined as

) = {IwellPte = 10, T 1 = 1, X5 [ = 1, w121 = 1]
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Algorithm 1: Calculate team reward for G,.
1: Input: SSR; = {SSRvoNR, SSReMBB, SSRurLLC),
2: If SSRyoNR, SSRemep and SSRyriic > SSR;Fh Then
3: If n < 100 Then

4 rg, [t] < 10

5 Else

6: rg, [t] <= 104+ 0.1 - ( — 100)
7: EndIf

8: Else If SSRyri1.c < SSRI™ Then

9: 1, [t] < 10 (SSRyrLLC — 0.7) [19]

10: Else

11:  rg [t] < —2- (1 — min(SSRvoNR, SSReMBB))
12: End If

13: Output: r, Vg, € G

p W, Hpraa 2
OO L= 10, 1% [ = 10,7 e = 11, [0 13, | ):
Yu, € U, Vs € S.
(24)

where ||we|?[t — 1], I [t =11, and X} [t — 1] represent
the previous power, SDNR, and rate for the common stream,
respectively. Similarly, ||w,, ||2[t— 1], Fﬁs [t—17, [Wus [t—1],
rie[t — 11, and |hfl[1]W,, [f]|> denote the previous power,
SDNR, beam direction index, rate, and the equivalent channel
gain for the private stream respectively.

2) ACTION

The aim of each j; € J; within the MADQN scheme is
to optimize the downlink power for both the private and
common streams, as well as the beam directions for the
private streams. To design the action space in discrete form
and align it with the DQN algorithm, we discretize each
NS’s power budget PS5, € {PL. ., Py, Pros s PS)
into Nj transmit power levels, uniformly distributed over
the range from zero to the maximum transmit power
Dinax- Additionally, we adopt the codebook technique to
discretize the beam directions for the private stream, while
random beamforming (RBF) [30], [44] is considered for the
common stream. To implement this, we design a matrix
based on the codebook technique, denoted as Cpoox =
{co, €1, ..., g1} € CNT>Beote where Bgoge denotes the
size of the codebook and B.oqe > N7 [3]. Each vector ¢
e CN7™1 in Cpook corresponds to a specific beam pattern
(direction) within the range [0, 27) for W, . The details of
the codebook design procedure used in this work are similar
to those presented in our previous work, as reported in [3],
and it is also applied in [35]. The total number of available
actions is defined as N] x Bgode, Which is equal to the
output dimension of the DQN. Thus, the available actions
for each j; € Js are represented as a set of all possible action
combinations, denoted by A* € {AVONR  AeMBB & uRLLCy
At each time step t € 7M™, each agent j; € J, takes an
action g;,[t] = (p°, p”, ¢) € A%, as defined in Eq. (25), where
P = ||we||? and pP = [[W, 2. Simultaneously, the common
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beamforming vector W, is randomly generated according to
the RBF strategy.

A ={(p°.p’.¢), p-.p" €P, c€ Chook},  (25)

where

1

P = {0, Do Dy P
N]_i _1 max Ni _1 max max

}, and

Coook = {€0. €1, ..., € 4—1}-

3) REWARD

Since each NS in the proposed system serves users with
distinct QoS requirements, designing a reward function that
accurately reflects the SLA of each NS represents another
research challenge, as discussed in [29]. Here, reward (r;,)
plays a crucial role in guiding the j; € J; towards an
optimal policy, where a well-designed reward facilitates
effective learning and policy convergence, and a poorly
designed reward can hinder convergence and mislead the
agent. Therefore, in the proposed system, each j; € Js
receives rj, at + € TP when its actions enhance the
spectral efficiency, meet the minimum rate requirements, and
satisfy the SSR, as defined in Eq. (26). To ensure stability
during training, r;, is clipped to prevent extreme values from
destabilizing the learning process.

rj (1] = clip(nu, - D, - Sugr —is 1), (26)

In Eq. (26), n,, represents the spectral efficiency of u, in
s € S and given by

Ry l1]

. 27)

Nug
where b, represents the bandwidth allocated to u;. The
terms t,, and §,, function as constraint violation penalties
for QoS and minimum rate requirements, respectively. The
parameters —u, u denote the lower and upper clipping
bounds, respectively. Both %, and §,, in Eq. (26) are defined
as follows:

1; if SSR,, > SSR’"

Vus = { max (0.1, 5% ); if SSR,, < SSRT"” (28)
1; it Ry, > RMin

Bus = {max(O.l, ;;T) if 9, < HMin - (29)

The design of 7;, is based on a multiplicative relationship
that combines three components, ensures that each j; € Js is
incentivized to optimize all three key performance indicators
simultaneously, while maintaining stable learning through
appropriately scaled rewards.

D. CHALLENGES

Overall, solving a twin-timescale MDP presents significant
challenges [25]. It is important to note that the problem in
Eq. (17) is especially difficult to solve using MADRL due
to the following challenges.
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FIGURE 3. An illustration of the MADQN scheme for joint resource management in heterogeneous intra-RAN slicing.

Challenge 1 Coordinated multi-agent learning complex-
ity: Implementing the CoMA2C scheme requires managing
heterogeneous A2C agents that operate cooperatively across
diverse network slices. These agents are required to learn
concurrently within a shared environment, coordinating
rewards and hyperparameters to achieve joint optimality. In
this context, synchronizing agent convergence with training
time is a core challenge in ensuring system stability and
high performance.

Challenge 2 Synchronization between slicing levels:
Another significant challenge lies in designing a hierarchi-
cal ZT framework that enables the simultaneous training
and coordination of both inter- and intra-RAN slicing
policies. While the inter-RAN policy allocates resources
across slices, the intra-RAN policy manages the resources
within each slice. Frequent user mobility, traffic fluctu-
ations, and improper hyperparameter tuning can disrupt
synchronization between these two levels, making it difficult
to ensure aligned learning and convergence—ultimately
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threatening the stability and performance of the overall
system.

E. HIERARCHICAL MADRL FRAMEWORK FOR SOLVING
OF

The proposed framework is developed in two stages: Stage
I introduces the CoMA2C scheme, with its functionality
briefly depicted in Fig. 2, while Stage II presents the
MADQN scheme, where the architecture of each agent in
the MADQN scheme is depicted in Fig. 3. Together, these
schemes form the proposed HiSO-CoMA framework, as
shown in Fig. 4.

1) STAGE I—DESIGN AND LEARN INTER-SLICE POLICY

The architecture of each g, € G, in the CoMA2C scheme is
deployed with two separate deep neural networks (DNNs):
the actor and the critic networks. The actor network repre-
sents a policy (;r) responsible for exploring the action space
in order to maximize the expected cumulative rewards (R;)
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FIGURE 4. Schematic view of the proposed HiSO-CoMA framework for hierarchical heterogeneous multi-slice MISO systems.

from each state s, after taking action ag € {ag , ag } based
on its current policy n(af% |Stga)' Following interaction with
the environment, the agent moves to the next state sgl and
receives a reward r;,a. At time slot t, the total accumulated

reward is defined as R; = Z,T;I ri-! Tg, » typically estimated
through the state-value function, where 7" € [0, 1] represents
the discount factor and 7' is the total number of time
steps per iteration [45]. The critic network is responsible
for estimating the state-value function (V(s) = E[Rtlsf% =
s]), basically calculates the average anticipated return from
state s and assesses the actor-optimized policy [19]. The
DNN structures of the actor and critic networks leverage a
common LSTM layer. The internal memory mechanism of
an LSTM layer enables actor and critic DNNs to implicitly
create the historical sequence of actions and observations
needed to address the POMDP’s challenges [4]. Algorithm 2
describes the CoMA2C scheme of our proposed framework.
The initialization stage of Algorithm 2 is defined in Lines
1-5, where Line 2 initializes A2C based LSTM for each
o € O in the system. Line 3 defines the SLA criteria for each
NS. Line 4, initializes \L’ga to parameterize the actor neural
network and \I—'éfg to parameterize the critic neural network,
and initialize the learning rates for the actor (ng) and critic
(Qg,a) networks, respectively. Finally, in Line 5, the tracker
is initialized to monitor and track changes in the traffic loads
;. The loop within Lines 6-21 involves the RIC’s learning
process, where at the beginning of each ¢ € 71°% the actor
of each agent observes $2;, represented by a state vector
(see Eq. (18)). Next, the actor network of each g, € G,
takes actions based on the observed environmental state and
assigns P} .. and B{ .. in line with Eq. (19) and (20). Then,
at the intra-slice management level, each j; € J; receives
its corresponding Pj .. as input and distributes it among
the slice’s active users by performing joint power allocation
and beamforming optimization according to Algorithm 3.

Meanwhile, B}, of each NS is distributed among the active
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users based on the round robin (RR) algorithm. Then, based
on the achieved QoS for each NS, the NS environment
shapes the team reward following Algorithm 1 for each g, €
Gos. Then, the temporal difference (TD) error, denoted by
&, which is essential for the computation of the loss, is
evaluated by the critic network of each g, € G,, as given
by Eq. (30) [19].

E=rp + V(s hvg ) = V(s vE,)
O(ss.ar)

The actor loss function (ﬁ?:‘or) [19], [45] for each g, € Gy
is given by

cpeor = ~[log (al, Ish,: v ) +oB(w (df, Ist, 1 v, ) €]

log probability of
action given a state

(30)

current value function

€29

where E(n(aéa |s£,a; ¥“%) denotes the entropy regularization
term added to the cost function to encourage exploration
during the learning process. Here, ¢ controls the exploration
rate. The loss function of the critic network (Eg;i’ic) [19]
for each g, € G, is expressed as
LT = (&)°. (32)
The parameters of the actor and critic networks are updated
using gradients. This learning process continues for 200
learning steps, and then the system enters the monitoring
mode, as detailed in Lines 19-22, where the system maintains
the NS status in monitoring mode based on Eq. (22) without
adjustment until the RIC observes that there is a change
in 2, according to Eq. (23) then the CoMA2C policy is
triggered to adjust the resource among the heterogeneous
services. Next, monitoring and adjusting process is repeated
until convergence. During the training process of each g, €
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Algorithm 2: Pseudocode of CoOMA2C Scheme

Algorithm 3: Pseudocode of MADQN Scheme.

1: Initialization:
2: Initialize A2C-based LSTM; Vo € O.
3: Initialize SLA parameters; Vs € S.
4: Vg5 € Gy, initialize:
e Actor network: lIJg“U.
o Critic network: lllgﬁ.
o Learning rates for actor: Qgﬁ > 0 and critic: an > 0.

5: Initialize NS state monitor to track traffic changes over
time.

6: for iteration i = 1 to F; do

Learning Phase (First 200 Iterations):

7: if i <200 then

8: for 1 € T2 do

9: for g, € G, do

10: Obtain state sg, according to Eq. (18)
from heterogeneous network slices.

11: Perform the action ai,a € {ag ,a8) 1o
allocate power P}, and bandwidth By,
based on Eqgs. (19) and (20).

12: Manage Py« and Bj,,, among active
users in each s € S at intra-RAN slicing by
using MADQN scheme.

13: Check SLA, SSR requirements for each
s € § and system performance 7.

14: Calculate the reward based on
Algorithm 1 and move to the next state s
15: Critic calculates the corresponding T%
error using Eq. (30).

16: Calculate actor loss and critic loss using
Egs. (31) and (32), respectively.

17: Update actor and critic networks:
Wi 1] = W o, VLRI (Wg,),
\I]zga [t + 1] b \I/;;” + an V(S[)z'

18: t=1+1

t+1
.

end

19: Monitoring and Learning Phase (i > 200):
20: Monitor £ changes based on Eq. (22).

21: Trigger actor networks according to Eq. (23), to
select or adjust the radio resources (®) based on
current traffic loads.

22: Repeat steps 6-18.

end
end

Output: Best policy 7 (agd sy, . Veo € g(,).

Go in the proposed scheme, the dropout technique [46] is
applied to mitigate the risk of overfitting and enhance the
generalization ability of the proposed model.

2) STAGE II—DESIGN AND LEARN INTRA-SLICE POLICY

The architecture of each j; € J; in the MADQN scheme
of the proposed framework is designed based on the DQN
algorithm adopted and detailed in [3], [43] and the learning
process illustrated in Algorithm 3. In Line 1 of Algorithm 3,
we initialize the necessary setup for each NS, whereas in
Line 2, we initialize j; € J; to manage radio resources within
each NS. Then, for each j; € Js, we define a replay buffer
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1: NS Initialization:

1.1: Queue buffer, Latency buffer, Traffic model;
Vs € S.

1.2: User location, User velocity Vs € S.
2: Initialize ji; Vs € S.
3: Establish Y;; with a size limit of R; Vj; € J.
4: Initialize the set up of two DNNs: trained Q-network
with ¥ and target Q-network with wj: vjs € Js.
5: Set the initial € and oj; Vjs € J;.
6: for j; € J; do
7: for each training episode do
8: Initialize the NS state Vj, € J;.
9: for ¢t € 7" do
10: After receiving the corresponding P,
and Bj,, from the CoOMA2C scheme.
11: Get s;, using Eq. (24).
12: Select a;, based on € greedy policy in
Eq. (33).
13: Execute joint aj; using Eq. (25) and
receive rj; as defined by Eq. (26) and

moves to s]t.:rl.

. ' : =S B
14: Save the experience (sj,, a;,, j,, s ) in
Yjs'

15: Randomly sample Mg, from Y for
training.

16: Calculate target Q-value.

17: Determine the £; between the trained
network and the target network according to
Eq. (34).

18: Update the v, of trained DQN by
performing a gradient decent step.

19: Update the target network parameters
(l/fj;) as 1//]-; = yj, every Tyep = 200 steps.
20: Repeat until convergence.

end

end
end
Output: Best policy nj’; (aj; | 85, Vjs € Ty).

(Y;,) and two DNNs with identical architectures but different
weights. The first DNN, referred to as the trained Q-network,
is parameterized with weight v; , while the second, the target
Q-network, has weights wl.:. An exploration rate (¢) and
learning rate (e;,), are also defined, as explained in Lines
3-5 respectively. Lines 6-20 detail the learning process of
each j; € J;, where during each t € 75" j e 7, observes
its current state s; and selects a joint action a;, from its
A®. In line with this, each j; € J; constructs its joint action
according to e-greedy strategy, given in Eq. (33) [43].

random action (a;,); with probability €
arg max,, ¢ s {QCGsj,, aj,) }: with
probabilityl — e,

(33)
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where the level of exploration is determined by the €, which
is decreased over time in order to lower the exploration rate
as the learning advances.

Following this, each j; € J; gets its reward 7;; as defined
in Eq. (26), and then transitions to a new state denoted
by sJ'.H. Subsequently, each j; € J; sends its experience

(sj,» ajg., 1j,, s]t-:rl) to be stored in its replay buffer ¥;. Once
a sufficient number of experiences have been stored, each
Js € Js selects a random mini-batches Mpyc, of 32 samples
from its own Y; to train its trained Q- network. The aim
of training process is to minimize the loss function (L),
which is calculated as follows [35]:

1 T
Lj () = Mo Z S/fi« -

o i r sithey:
{8js - - js Sis V€¥js Target Q value

O(sj,» s ¥i,))%,  (34)
N —

Q value
where V]{(t) = r}s + vy maxy e As Q(s]’.‘j'l, aj’.x; 1//].:) denotes
the target value, determined through the target network
[43]. Upon calculating £;,, each agent uses an optimizer to
adjust the parameters of the trained Q-network. Then, the
parameters of the target Q-network are updated at prede-
termined intervals (Ty.p,) to mirror the training Q-network.
This procedure is repeated until convergence.

IV. EXPERIMENTS AND PERFORMANCE EVALUATIONS
This section evaluates the performance of our HiSO-CoMA
framework.

A. SIMULATION SETTINGS

We consider the scenario shown in Fig. 1, where a single
BS, controlled by RIC, hosts three heterogeneous slices.
The users are distributed among the three services based on
predefined slice probabilities, as shown in Table 2. The BS,
with a coverage radius r, is located within a simulation area
of 240 m x 240 m [19]. Users within the same slice are
assumed to have similar mobility patterns, including both
velocity and direction. When u; € Us; Vs € S, reach the
boundary of the simulation area, its direction is reflected,
according to the mobility model in [19]. For simplicity,
the transmission bandwidth for each slice is managed using
the RR scheduling method (as bandwidth management at the
intra-slice level is beyond the scope of this study).

All numerical experiments were conducted using Python
3.11 with TensorFlow on the 11th Gen Intel Core i9-11900
PC with 64 GB of RAM, without GPU acceleration. The
software frameworks used in this study include Spyder and
MATLAB. Extensive simulations were performed to identify
the best hyperparameter values for training the CoOMA2C and
MADQN schemes. The hyperparameters used in the setup
of the CoMA2C and MADQN schemes are illustrated in
Table 3.
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TABLE 2. Main parameters and their descriptions.

Parameter Value

Us 100

40 [19]

VoNR =1, eMBB= 2, and uRLLC = 3
2 m/s, 6 m/s, 10 m/s and 14 m/s

7 (m)
Probability of users in each NS

User velocity

Size of ULA 128

Beode 128

N? 5

PT and BT 60 dBm and 10 MHz [19], respectively
Ap and Ap 15 dBm and 2 MHz, respectively

Kt and K" le=%, 0.0001, 0.001, 0.01, and 0.05
= 5 packets [23]

o2, -174 dBm

dn /2 35

40 Byte (VoNR), 300-1500 Byte (eMBB),
and 32 Byte or
(6.4, 12.8, 19.2, 25.6, 32) KByte (uRLLC)

Packet size [19]

v 10%

our 8 dB [35]

L 4135]

A 30 [35]

B [1,2, 3] for VONR, eMBB, and uRLLC, respectively
al 0.6

Uniform distribution
between 0 and 160 ms [20]
Pareto distribution with the mean of 6 ms

VoNR user inter-arrival distribution

eMBB user inter-arrival distribution )
and the maximum of 12.5 ms [20]

. . R Exponential distribution
uRLLC user inter-arrival distribution

with an average time of 180 ms [20]

TABLE 3. Training parameters for COMA2C and MADQN.

CoMA2C Parameters

Number of state elements | 3

05, and of Se-4 and 2e-3, respectively

Optimizer RMSProp

r 0.999

Size of LSTM cells One LSTM layer with 64 neurons
Entropy rate 0.01

Dropout rate 0.1

Actor network Two fully connected layers, each with 32 units and ReLU activation

Critic network Two fully connected layers, each with 32 units and ReLU activation
1,000 time slots

MADQN Parameters

Simulation time

Replay memory size (X) 1000
Adam
Discount factor (vy) 0.95

Optimizer

Every 200 time steps

Update u; = 1/’],

* Other parameters of MADQN are similar to those in [3].

B. BENCHMARK ALGORITHMS

We validate the efficacy of our proposed HiSO-CoMA
framework through comprehensive experimental analysis
under various parameter settings. To this end, we compare
our results to the following state-of-the-art (SOTA) and
traditional schedulers.

o SOTA scheduler: This scheduler is designed to be iden-
tical to the proposed framework in structure and uses the
same DRL algorithms to ensure a fair comparison. The
only difference lies in the inter-slice resource allocation
strategy, which follows the SOTA approach, where
resources are allocated at every time step f, regardless
of the actual need for the allocation.

o RRA scheduler: This scheduling approach uses a ran-
dom allocation algorithm to manage both inter- and
intra-RAN slicing.
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FIGURE 5. Convergence of the proposed framework under HWIs: a) Average
training loss of the control policy for inter-RAN slicing; b) Average training loss of the
control policy for intra-RAN slicing.

o GGA scheduler: This scheduling approach employs a
greedy allocation algorithm to manage both inter- and
intra-RAN slicing.

o EEA scheduler: This scheduling approach utilizes an
equal or hard allocation algorithm for both inter- and
intra-RAN slicing.

o SA2C-T scheduler [7]: This scheduler is one of the
most recent relevant state-of-the-art methods. It employs
a single A2C-based LSTM to manage the power and
bandwidth at the inter-slice level across heterogeneous
slices, whereas traditional algorithms are used for
resource management at the intra-slice level. SA2C-T
was designed based on OFDMA and does not consider
beamforming. To ensure a fair comparison and align
with the state-of-the-art, we adapted the ZF technique,
commonly used in the literature, to optimize the beam
direction in SA2C-T.

C. CONVERGENCY ANALYSIS OF THE PROPOSED
HiSO-ColMA

In the first experiment, the convergence of the proposed
HiSO-CoMA framework is evaluated. Convergence is mea-
sured by the rate at which the loss function decreases over
time during the training of the CoOMA2C agents at the inter-
RAN slicing level (e.g., Eq. (31) and Eq. (32)) and MADQN
agents at the intra-RAN slicing level (Eq. (34)). Figure 5
shows the variations in training loss for both the inter-
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FIGURE 6. Utility function of the proposed framework vs. the SOTA approach under
(a) ideal HW and (b) HWIs.

and intra-level control policies, where we can observe that
the losses of both policies decrease as training progresses.
This demonstrates the stability and learning effectiveness
of the proposed framework, despite the presence of various
confounding factors, such as user mobility, HWIs, and
fluctuating traffic loads. In addition, this confirms that
the proposed HiSO-CoMA framework effectively addresses
the challenges of mis-convergence, synchronization and
instability in learning the control strategy, as discussed in
Section III-D.

D. EVALUATION OF THE PROPOSED HiSO-CoMA VS.
THE SOTA

Figures 6 and 7 evaluate the performance of the proposed
framework in terms of utility and spectral efficiency, respec-
tively, under ideal and non-ideal HW conditions. We evaluate
the proposed approach and compare it to the SOTA approach,
in which the former, triggers the inter-RAN slicing policy
only when a significant change in traffic demand is detected
for admitted services, whereas in the latter, inter-slice
resource allocation is performed at every learning step (i.e.,
every 1 second). From Figs. 6 and 7, it can be observed that
the proposed framework outperforms the SOTA approach for
both performance metrics and under both ideal and non-ideal
HW conditions. The SOTA approach’s inferior performance
can be attributed to its lack of traffic change detection; the
agent continuously updates its policy, regardless of necessity.
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FIGURE 8. Training time of the proposed framework vs. the SOTA approach in the
presence of HWIs.

This leads to policy churn, a phenomenon in which beneficial
policies are unnecessarily updated, destabilizing previously
learned advantageous behaviors and degrading the overall
policy’s performance. In contrast, the proposed approach
updates the resource allocation and learning policy only
when needed, effectively stabilizing learning and improving
resource allocations. These results highlight the effectiveness
of the proposed framework in enhancing the overall learning
process and ensuring more efficient resource management
compared to the SOTA approach. Furthermore, we observe
that HWIs affect the learning stability during initial time
steps (0-300), as shown in Figs. 6(b) and 7(b). However, this
does not impact the overall convergence time, demonstrating
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the adaptability and robustness of the proposed framework
under varying conditions.

Figure 8 illustrates the training time of the proposed
HiSO-CoMA framework compared to the SOTA scheduler.
As shown in the figure, the proposed framework significantly
reduces training time relative to the SOTA scheduler. This
improvement is due to the limited information exchange
between slicing levels, such as states, rewards, and actions—
since the CoMA2C scheme is triggered only when necessary,
unlike the SOTA scheduler, which updates the system at
every time step. This selective triggering reduces communi-
cation overhead, particularly in the communication between
CoMA2C and MADQN agents. Consequently, the proposed
framework shows potential for enabling ZT operations in
RAN slicing by offering promising management strategies.

Figure 9 shows that the proposed HiSO-CoMA frame-
work achieves comparable QoS compared to the SOTA
scheduler for eMBB and uRLLC slices. However, the SSR
of VoNR decreases by 4% under the proposed frame-
work, which highlights the need for instantaneous budget
updates for the VoNR slice. This drop could be attributed
to the nature of VoNR’s traffic model, which follows
a uniform inter-arrival time distribution (0—160ms). This
distribution could generate irregular traffic variations that
often remain below the 10% threshold required to trigger
inter-slice budget reallocation. As a result, the RIC cannot
initiate budget adjustments for VoNR if its traffic load
fails to meet the predefined threshold. This could lead
to gradual resource misalignment and a slight decrease
in performance of VoNR service. Nevertheless, the VoNR
slice still maintains an SSR above 90%, demonstrating the
robustness of the proposed framework despite this potential
limitation.

E. PERFORMANCE OF THE PROPOSED HiSO-CoMA.VS

BASELINES

Figure 10 shows the performance of the proposed HiSO-
CoMA framework in optimizing the objective function under
both ideal and non-ideal HW conditions, and compares it
with various resource allocation schedulers. It is observed
that the proposed framework outperforms the baseline sched-
ulers under both conditions. Unexpectedly, SA2C-T, which
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FIGURE 10. Utility function of the proposed framework vs. baselines under (a) ideal
HW and (b) HWIs.

is based on heterogeneous optimization methods, exhibits
the poorest performance among all evaluated approaches.
This performance may be attributed to the heterogeneity
of the applied methods, which likely results in a weak
synchronization between the two allocation levels. Among
traditional schedulers, RRA and EEA demonstrate strong
performances; however, they are not suitable for real-world
deployment, as their allocation strategies lack the smart
policies needed for future applications, particularly in terms
of adaptability and self-learning capabilities. In addition,
their efficiency in meeting the requirements of NS in 6G is
not as high as that of the proposed HiSO-CoMA framework,
which maintains system utility above 30 and 25 under ideal
and non-ideal HW conditions, respectively. Moreover, the
proposed HiSO-CoMA framework employs smart strategies
for managing limited resources, ensuring that allocation is
based on the instantaneous needs of each slice and according
to the actual traffic load, rather than relying on a random or
equal resource distribution.

From Fig. 11, we observe that the proposed framework
achieves the highest spectral efficiency of more than 40
bps/Hz under ideal conditions and 35 bps/Hz under HWIL.
This highlights the efficiency of the proposed framework in
managing resources both among and within heterogeneous
services.

Figure 12 shows the performance of the proposed frame-
work in satisfying the QoS of heterogeneous slices under
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HWI conditions, and compared with various resource alloca-
tion schedulers. We can observe that the proposed framework
outperforms the benchmarks in terms of maximizing QoS.
Among the baseline schedulers, SA2C-T, which incorporates
DRL in its design, achieves better performance than the
GGA, RRA, and EEA schedulers. This demonstrates the
ability of the DRL algorithm to learn from the assigned
reward, which acts as a guiding signal for the agent
to achieve the desired performance across heterogeneous
services.

F. IMPACT OF MOBILITY ON AVERAGE QoS UNDER
HWIs

The effect of mobility on the average QoS for heterogeneous
services using different allocation schedulers under HWIs is
shown in Fig. 13. In this context, higher user speeds result in
a highly dynamic environment, where fluctuations in channel
conditions lead to a reduction in the SDNR, ultimately
decreasing data rates. This, in turn, affects the transmis-
sion rates and increases packet latency. From Fig. 13, we
observe that the proposed framework demonstrates excellent
performance in maintaining strict SLAs across heterogeneous
slices even under varying user velocities. SA2C-T achieves
the second-best performance, providing comparable QoS for
both VoNR and eMBB services, and outperforming GGA,
RRA, and EEA schedulers across all service types. The
outstanding performance of the proposed framework can be
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attributed to several factors, including the reliable resource
allocation across slices and robust synchronization in the
learning process. Furthermore, the framework effectively
addresses demand fluctuations and high user mobility at the
intra-slice level by dynamically adjusting resources based on
traffic load at both the inter- and intra-slice levels. Overall,
the results highlight that to ensure efficient use of limited
resources and enable a full automation in O-RAN, it is
essential to manage the resource allocation across multiple
slicing levels using DRL. We also note that schedulers
leveraging DRL, either fully or partially, achieve better QoS
performance compared to traditional schedulers.

G. IMPACT OF PACKET SIZE ON HiSO-COMA VS.
BASELINES

To investigate the influence of packet size variations on
utility and QoS, the eMBB slice is selected for testing due
to its characteristic use of larger packet sizes compared to
other slice types. To this end, we fix the minimum rate of
the eMBB packet at 15 Mbps and vary the packet size,
as shown in Figs. 14 and 15. It is observed that larger
packet sizes result in degraded utility and QoS. This is due
to the fact that large packets require extremely high data
rates to be transmitted within one time slot. If the data rate
is insufficient, the packet is divided into subframes, which
also requires a high data-transmission rate. Otherwise, this
increases packet latency, which in turn affects the SLA of
the slice, leading to poor QoS. Despite this, we observe that
the proposed framework outperforms all baseline schedulers
in terms of maximizing the utility function across all the
packet size range. This demonstrates the reliability and
efficiency of the proposed framework compared to other
approaches. However, we can observe that SA2C-T yields
comparable results in terms of meeting the QoS requirements
of eMBB for the considered packet sizes. This highlights
the efficiency of the DRL-based scheduler compared to
traditional schedulers, particularly in terms of adaptability
to changing packet sizes and meeting the SLA of eMBB
services.

H. HiSO-COMA FRAMEWORK UNDER VARIOUS HWis
To evaluate the reliability of the proposed HiSO-CoMA
framework against distortions, we test its performance
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under HWIs and varying packet sizes for the eMBB slice.

under varying HWIs levels. As shown in Fig. 16, both
the utility function and the spectral efficiency degrade as
severity of HWIs increases. This highlights the effect of
hardware distortions on the performance of future appli-
cations. Nonetheless, the proposed framework consistently
outperforms all baseline schedulers in maximizing utility
and achieving higher spectral efficiency across varying
HWI levels. More specifically, the results indicate that
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the framework maintains strong performance with hardware
resolution levels of up to 0.05 at both the transmitter and
receiver. However, for more severe impairments, integrating
mitigation algorithms is essential to reducing the impact of
HWI in real-world deployment scenarios. We also observe
that, unexpectedly, SA2C-T scheduler exhibited the poorest
performance among all baseline methods. This may be
attributed to the use of the ZF technique in its design, which
appears to be more sensitive to HWIs compared to codebook-
based techniques employed in the proposed framework and
other benchmark schedulers.

Fig. 17 shows that the training time of the proposed
framework increases gradually rather than abruptly when
exposed to severe HWIs (k' = «” = 0.05). In this context,
the training time relatively stable over the considered range
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FIGURE 17. Training time of proposed HiSO-CoMA framework under various levels
of HWis.

of HWIs. This indicates that HWIs can affect the training
time of DRL-based algorithms, highlighting the need for
further investigation into mitigation techniques that could
reduce their impact.

Finally, our findings confirm the effectiveness and
resilience of the HiSO-CoMA framework, which consists
of two management levels. The results demonstrate that
the adaptation of RSMA significantly reduces interference
for latency-sensitive services. Furthermore, intelligent power
allocation and beamforming optimization, performed by
MADQN agents, are dynamically adjusted based on channel
conditions and service requirements. At the same time,
overall resource budgets are optimally adjusted by CoMA2C
based on slice traffic load. This learning occurs seamlessly,
with strong coordination between the upper and lower
management levels. This integration ensures that the system
effectively maintains slice isolation as demand increases,
while also guaranteeing that critical services, such as eMBB
and URLLC, are allocated sufficient resources to meet their
QoS requirements. Additionally, we found that the overall
convergence of the proposed framework depends on the
proper hyperparameters tuning for both learning schemes.
Choosing the right hyperparameters is crucial for enabling
effective synchronization of the learning processes across the
management layers. This, in turn, ensures optimal resource
allocation strategies that account for the relative importance
of each service type. To identify suitable hyperparameters,
we conducted an extensive empirical tuning process by
thoroughly exploring various combinations of learning rates,
discount factors, and neural network architectures. The tun-
ing process was guided by continuous observation of reward
trends and loss function stability over training episodes. This
iterative process enables the selection of proper parameters
that ensures stable convergence and optimal performance of
the multi-level framework for heterogeneous network slicing.

V. CONCLUSION AND FUTURE WORKS

In this study, we proposed an intelligent RAN slicing frame-
work composed of two key schemes: CoMA2C for inter-slice
management and MADQN for intra-slice management.
Together, these schemes form a hierarchical self-optimizing
framework. The proposed framework adopts RSMA as a
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promising technology to support the coexistence of het-
erogeneous services. Simulations conducted under various
conditions, including user mobility, time-varying channels,
and HWIs, demonstrate that the proposed framework not
only achieves stable convergence and superior performance
but also offers an effective strategy for significantly reducing
NS overhead, thereby enhancing overall QoS compared to
baseline schemes.

In the future, we will focus on further developing
a self-learning framework that can effectively integrate
additional slices and radio resources at both inter-slice and
intra-slice levels, while remaining robust against imperfect
channel state information and hardware distortions. In
addition, further research is needed to explore strategies
that achieve a balance between performance improvements
and the computational complexity inherent in DRL-based
approaches.
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