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Abstract

Network intrusion detection systems (NIDS) face the growing difficulty posed by increasingly sophisticated and unseen attacks,
which represent a dangerous threat due to their ability to exploit vulnerabilities that have not yet been identified. These attacks are
inherently difficult to detect with conventional NIDS because such systems typically are built on known threat patterns or signa-
tures, which are absent in unseen scenarios. Consequently, this greatly limits their efficacy in mitigating advanced threats, making
networks susceptible to potential security breaches. To address these challenges, recent years have witnessed the emergence of var-
ious Reinforcement Learning (RL) approaches aimed at enhancing the automatic detection of network intrusions. These systems
are equipped with autonomous agents that acquire the ability to learn independently and make decisions without requiring direct
input or knowledge of human experts. In this paper, we propose a network intrusion detection mechanism that integrates a Deep
Q Network-based model (DQN) with a supervised machine learning algorithm specifically designed for attack classification. Our
model is characterized by meticulous fine-tuning of hyperparameters to optimize the performance of detection. Extensive exper-
imental evaluations that take advantage of the NSL-KDD and CSE-CICIDS2017 datasets demonstrate that our hybrid approach
significantly improves detection accuracy across various types of attack and outperforms other existing state-of-the-art solutions
designed for similar purposes.
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1. Introduction

Network intrusion detection systems (IDS) are a core technology in cyber defense Kilincer et al. [11], Venter and
Eloff [20], classifying network traffic as benign or malicious. Signature-based IDS (SIDS) efficiently detects known
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attacks with low false positives but fails against novel or polymorphic threats. Anomaly-based IDS (AIDS), often
based on machine learning, address this limitation by modeling normal traffic behavior [10]. However, such models,
including CNNs, remain prone to high false positive rates and misclassifications and require retraining when new
attacks emerge.

Reinforcement learning (RL) offers an alternative by enabling adaptive agents capable of self-learning and identify-
ing unseen intrusions without supervision [17]. Among RL methods, Q-learning is widely used [1], but its scalability
issues in large state spaces have motivated the adoption of Deep Q-Networks (DQN) [15]. Several studies [13, 2] have
explored DQN for intrusion detection, but most emphasize detection accuracy in outdated datasets such as NSL-KDD,
without detailed implementation strategies or hyperparameter tuning.

Unlike prior hybrid approaches, our proposed NEMESIS framework explicitly separates detection tasks into two
sequential steps: a DQN agent rapidly filters benign traffic, while a Random Forest (RF) classifier analyzes only po-
tentially malicious samples. This design reduces computational overhead and enhances multiclass detection accuracy
by focusing supervised learning on nonbenign traffic.

The main contributions are as follows.

• A hybrid IDS that combines a DQN agent with a Random Forest classifier.
• A detailed DQN architecture specification.
• Experimental validation in NSL-KDD and CSE-CICIDS2017 datasets.

The remainder of this paper is organized as follows. Section 2 reviews related works; Section 3 presents background
concepts; Section 4 details NEMESIS; Section 5 discusses results; and Section 6 concludes the article.

2. Related Work

Several studies have combined deep reinforcement learning (DRL), notably Deep Q-Networks (DQNs), with super-
vised models for network intrusion detection. For example, [19, 13] use a DQN agent for initial filtering, followed by a
supervised classifier for refined detection. A context-sensitive DQN-based IDS was proposed in [17], tested on NSL-
KDD, AWID, and UNSW-NB15, showing that ensembles of supervised models can further improve performance.
Similarly, [2] introduced a DQN with self-learning and hyperparameter tuning, achieving competitive multiclass de-
tection in NSL-KDD. The work of [5] evaluated an adversarial DQN model on NSL-KDD and AWID, reaching an
accuracy close to traditional SVM classifiers.

In general, these approaches demonstrate the potential of hybrid DQN–supervised IDSs, but often without a clear
separation of roles between modules, leading to computational overhead and limited adaptability in dynamic environ-
ments.

3. Background

3.1. Network-based intrusion detection system

Intrusions threaten the confidentiality, integrity, and availability of information systems. Network-based IDS
(NIDS) monitor traffic and complement firewalls by detecting threats beyond signature rules [12]. They are mainly
divided into signature-based IDS (SIDS), effective for known attacks but blind to novel threats, and anomaly-based
IDS (AIDS), which rely on machine learning or statistical models to detect deviations from normal traffic [10]. Both
approaches face challenges such as false positives, evolving attack strategies, and frequent model updates.

3.2. Supervised learning in IDS

Supervised IDS train classifiers on labeled data after preprocessing and feature selection [10]. Algorithms such as
decision trees, SVM, KNN, neural networks, or random forests predict whether new traffic is benign or malicious.
The main challenge is to achieve strong generalization to unseen attacks while minimizing false alarms.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.10.197&domain=pdf
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attacks emerge.

Reinforcement learning (RL) offers an alternative by enabling adaptive agents capable of self-learning and identify-
ing unseen intrusions without supervision [17]. Among RL methods, Q-learning is widely used [1], but its scalability
issues in large state spaces have motivated the adoption of Deep Q-Networks (DQN) [15]. Several studies [13, 2] have
explored DQN for intrusion detection, but most emphasize detection accuracy in outdated datasets such as NSL-KDD,
without detailed implementation strategies or hyperparameter tuning.

Unlike prior hybrid approaches, our proposed NEMESIS framework explicitly separates detection tasks into two
sequential steps: a DQN agent rapidly filters benign traffic, while a Random Forest (RF) classifier analyzes only po-
tentially malicious samples. This design reduces computational overhead and enhances multiclass detection accuracy
by focusing supervised learning on nonbenign traffic.

The main contributions are as follows.

• A hybrid IDS that combines a DQN agent with a Random Forest classifier.
• A detailed DQN architecture specification.
• Experimental validation in NSL-KDD and CSE-CICIDS2017 datasets.

The remainder of this paper is organized as follows. Section 2 reviews related works; Section 3 presents background
concepts; Section 4 details NEMESIS; Section 5 discusses results; and Section 6 concludes the article.
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Several studies have combined deep reinforcement learning (DRL), notably Deep Q-Networks (DQNs), with super-
vised models for network intrusion detection. For example, [19, 13] use a DQN agent for initial filtering, followed by a
supervised classifier for refined detection. A context-sensitive DQN-based IDS was proposed in [17], tested on NSL-
KDD, AWID, and UNSW-NB15, showing that ensembles of supervised models can further improve performance.
Similarly, [2] introduced a DQN with self-learning and hyperparameter tuning, achieving competitive multiclass de-
tection in NSL-KDD. The work of [5] evaluated an adversarial DQN model on NSL-KDD and AWID, reaching an
accuracy close to traditional SVM classifiers.

In general, these approaches demonstrate the potential of hybrid DQN–supervised IDSs, but often without a clear
separation of roles between modules, leading to computational overhead and limited adaptability in dynamic environ-
ments.

3. Background

3.1. Network-based intrusion detection system

Intrusions threaten the confidentiality, integrity, and availability of information systems. Network-based IDS
(NIDS) monitor traffic and complement firewalls by detecting threats beyond signature rules [12]. They are mainly
divided into signature-based IDS (SIDS), effective for known attacks but blind to novel threats, and anomaly-based
IDS (AIDS), which rely on machine learning or statistical models to detect deviations from normal traffic [10]. Both
approaches face challenges such as false positives, evolving attack strategies, and frequent model updates.
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3.3. Reinforcement learning

Reinforcement learning (RL) is a reward-based paradigm where an agent interacts with an environment and learns
policies that map states to actions to maximize cumulative rewards. RL problems are typically modeled as Markov
Decision Processes (MDPs) defined by states, actions, rewards, agent, and environment.

Q-Learning
Q-learning is a widely used RL algorithm [15], where the agent learns the expected reward for each state–action

pair (Eq. 1). However, it struggles with scalability in high-dimensional spaces, motivating the use of deep neural
approximations.

Q(s, a) = E


∞

t=0

γtrt | s0=s, a0=a

 ,

Q(s, a)← Q(s, a) + α

r + γmax

a′
Q(s′, a′) − Q(s, a)


.

(1)

Deep Q-Network
Deep Q-Networks (DQNs) extend Q-learning by approximating the Q-function with neural networks, enabling

learning in large continuous state spaces [14]. In intrusion detection, DQNs process network traffic features as input
and output action values that guide the agent’s decisions. Figure 1 illustrates the agent–environment interaction.

Fig. 1. DQN model based on agent–environment interaction [2]

4. Our proposed Approach: NEMESIS

In the following subsection, we describe the NEMESIS approach, including the DQN model and the datasets used.
Although DQN models alone have shown promising results in network intrusion detection tasks, they typically

focus on binary classification (benign vs. attack) and are often limited in their ability to differentiate between multiple
types of attacks, as demonstrated in [2] by testing a DQN agent on the NSL-KDD dataset. Our hybrid approach,
NEMESIS, addresses this limitation by introducing a two-stage decision process.

1. Stage 1 – DQN Agent (Binary Classification): The DQN agent acts as a lightweight and fast filter, determining
whether the incoming network traffic is benign or potentially malicious. This reduces the computational load and
limits the scope of more complex analysis to relevant samples only.

2. Stage 2 – Random Forest Classifier (Multiclass Classification): When the DQN agent flags a sample as
non benign, the Random Forest classifier is then activated to perform a fine-grained multiclass classification,
identifying the exact attack type (up to 15 classes in CICIDS2017).

4 B. Ahmed et al. / Procedia Computer Science 00 (2025) 000–000

This architectural separation brings several benefits.

• Improved precision in multiclass detection: The RF classifier excels at handling unbalanced multiclass data.
Benefits from focusing on only suspected attacks, avoiding dilution from benign samples.
• Efficient learning feedback loop: The RF classifier provides precise labels to the DQN agent, which are used to

calculate more accurate rewards during training. This tight reward feedback loop improves the agent’s learning
stability and convergence.
• Better generalization across datasets: The hybrid model shows stronger generalization capacity when tested on

both the NSL-KDD and CICIDS2017 datasets, outperforming standalone DQN models in accuracy and recall,
particularly for rare attack types.

In contrast, standalone DQN models often struggle with:

• High false positive rates in multiclass settings.
• Slow convergence due to sparse and less informative rewards.
• Inflexibility in handling non-stationary attack distributions or class imbalance.

The choice to combine a DQN agent with a Random Forest classifier is not a simple intuition, but rather a structured
experimental approach. First, we evaluated different supervised models (SVM, KNN, Decision Tree and RF) on our
datasets, taking into account the criteria of accuracy, robustness to class imbalance, and computation time. Random
Forest stood out for several reasons: It is known for its ability to efficiently handle unbalanced multiclass data [4],
tolerates noise well and exhibits good generalization, while remaining fast to train and infer. Our own comparative
tests showed that RF offered the best performance/speed compromise in our data.

NEMESIS comprises a DQN agent with a variety of components and a supervised classifier. The primary function
of this classifier is to assign the state vector to its corresponding class. This classification process plays a crucial role
by providing accurate feedback to the environment through correctly labeled classes, thereby facilitating a mechanism
for rewarding or penalizing the agent. The ultimate goal is for the agent to refine its learning process to minimize
instances of misclassification. The details concerning the various DQN components are described in the following
sections.

1. Environment The environment provides the agent with states and rewards. Here, it is built from the NSL-KDD
and CSE-CICIDS2017 datasets after preprocessing, normalization, and resampling. The features (40 for NSL-
KDD, 68 for CICIDS2017) form the state space, while labels are used to compute the rewards.

2. Agent The agent is a deep Q-Network (DQN) that learns a value-based policy by interacting with the environ-
ment. Observes states, selects actions, and receives rewards. Training starts with exploration (e.g. ϵ-greedy), then
gradually shifts toward greedy action selection as the policy improves.

3. States States are feature vectors provided by the environment (40 or 68 features depending on the dataset). These
vectors represent network traffic and are the input to the DQN during training and evaluation.

4. Actions Actions are agent decisions, derived from Q-values on the state vector. The agent evaluates these outputs
against thresholds to classify the traffic as benign or malicious.

5. Rewards Rewards are feedback signals: positive for correct classifications and negative otherwise. Their values
depend on the true labels and prediction probabilities, guiding the agent to improve detection accuracy.

4.1. Datasets

We used two benchmark datasets for intrusion detection: NSL-KDD and CSE-CICIDS2017. NSL-KDD is an im-
proved version of KDD’99, with redundant records removed to avoid biased learning. It contains 41 features per con-
nection and labels: Normal, DoS, Probe, R2L, and U2R. CICIDS2017 provides richer traffic with 79 features labeled
as Benign or various Attack types [8, 16]. The preprocessing included removal of duplicates, NaN and infinite values,
label encoding of categorical attributes [2], Min–Max scaling, and binary relabeling (Benign vs. Attack) for the DQN
experiments. The splits were 70/15/15 for DQN and 80/20 for Random Forest. Both data sets are highly imbalanced.
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as Benign or various Attack types [8, 16]. The preprocessing included removal of duplicates, NaN and infinite values,
label encoding of categorical attributes [2], Min–Max scaling, and binary relabeling (Benign vs. Attack) for the DQN
experiments. The splits were 70/15/15 for DQN and 80/20 for Random Forest. Both data sets are highly imbalanced.
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Table 1. Agent and neural network parameters
Parameters Description Values
num timesteps Number of timesteps to train DQN 300k/400k
num iter Number of iteration to improve Q-values in DQN 4
hidden layers Number of hidden layers: Setting weights, producing outputs, based on activation function 3
num units Number of hidden unit to improve the accuracy of prediction and training 128, 64, 32
activation function Non-linear activation function ReLU
gamma γ Discount factor for target prediction 0.3
Learning rate The learning rate controls the size of weight updates Dynamic
epsilon ϵ Degree of randomness for performing actions Dynamic
batch-size (bs) A batch of dataset’s records fetched for processing 16

Fig. 2. NEMESIS architecture

To improve rare attack detection, we applied oversampling only in training / validation: SMOTE for CICIDS2017
[6] and RandomOverSampler for NSL-KDD. This choice balances classes without biasing the test set [7, 18]. Af-
ter balancing, Random Forest training used equalized class distributions (1,816,702 samples/class for CICIDS2017;
67,343/class for NSL-KDD), while DQN was trained on binary data.

The DQN agent architecture was empirically tuned for accuracy and efficiency. We used a three-layer MLP
(128–64–32) with ReLU activations, batch size 16, and a dynamic learning rate ensuring stable convergence. The
discount factor was set to γ = 0.3, and the training was carried out in 300k (CICIDS2017) and 400k (NSL-KDD)
time steps. The binary action space (benign / suspicious) and the reward function emphasize accurate detection while
minimizing false alarms, enabling adaptation to evolving threats. The final hyperparameters are summarized in Table
1.

Training follows a ϵ-greedy policy [3, 15], where actions are selected, rewards calculated, and Q-values are up-
dated iteratively. During inference, the agent first performs binary classification: benign traffic is discarded, while
suspicious samples are forwarded to the Random Forest for multiclass identification. This two-stage process reduces
computational cost and improves detection accuracy. The workflow is shown in Figure 4.1, and the procedures are
described in Algorithms 1 and 2.

5. Experimental results

Experiments were carried out on a system with 105GB RAM, a 10-core Intel Xeon Platinum 8358 CPU (2.60 GHz)
and an NVIDIA A100 GPU, running Ubuntu. The implementation used Python 3.11.7 and Stable-Baselines3 v2.3.2.
The results were evaluated using standard machine learning metrics, and the evaluation metrics include accuracy,
precision, recall, and F1-score.
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Algorithm 1: Training of Deep Q-Learning
Agent in Custom Environment

Input : Preprocessed dataset D, DQN
parameters (episodes, γ, ϵ, batch size,
etc.)

Output: Trained agent policy for binary
intrusion detection

Normalize(D)
Initialize agent parameters
batch size← 16
S tates← sample mini-batches from D
Initialize model
for timestep← 1 to T do

Reset environment state
for iter ← 1 to num iterations do

// Step 1: Select action

for i← 1 to batch size do
if with probability ϵ then

Ai ← random action from action
space

else
Qi ← model.predict(statei)
Ai ← arg max(Qi)

end
end
ϵ ← ϵ × decay rate
// Step 2: Compute rewards

for i← 1 to batch size do
Ri ← compute reward(Ai, true label)

end
// Step 3: Q-value update

Q′ ← model.predict(next state)
for i← 1 to batch size do

Qtarget[i]← Ri + γ ·max(Q′[i])
end
// Step 4: Train model

model.train(state, Qtarget)
Update state← next state

end
end

Algorithm 2: Hybrid Inference: DQN (binary)
+ RF (attack class)

Input : Test set {(xi, yi)}ni=1, trained DQN, trained
RF

Output: Final predictions
{benign or attack class} and DQN
reward updates

for i← 1 to n do
x← preprocess sample(xi)
state← extract state vector(x)
binary pred ← DQN.predict(state) // 0

= benign, 1 = attack

if binary pred = 0 then
f inal pred ← ”benign”

else
attack class← RF.predict(state)
f inal pred ← attack class

end
true label← yi

if binary pred = 0 and
true label = ”benign” then

reward ← +2 // True negative

else if binary pred = 1 and
true label � ”benign” then

if f inal pred = true label then
reward ← +5 // Correct

classification

else
reward ← −2 // Attack

detected, wrong type

else
reward ← −5 // False positive or

false negative

end
DQN.update(state, reward)

end

5.1. Performances: individual classifiers

The classifiers (DQN and RF) are evaluated separately and both are compared to similar models in the state of the
art.
The prediction of the DQN model and the results of the random forest classification are presented in table 2.

The experimental evaluation highlights the effectiveness of NEMESIS for both binary and multiclass intrusion
detection. The standalone DQN agent shows strong recall (97.3% on NSL-KDD), capturing nearly all attacks but
with moderate precision due to false positives. When combined with the RF classifier, the multiclass identification
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Table 2. DQN Agent and RF Classifier Results
Dataset Model Accuracy Precision Recall F1-score

CICIDS17
Agent 95.04% 96.64% 93.32% 94.95%

RF 98.82% 99.44% 98.82% 99.09%

NSLKDD
Agent 91.18% 90.24% 97.34% 93.66%

RF 76.60% 81.33% 76.66% 74.51%

Fig. 3. DQN confusion matrix for CSE-CICIDS2017
Fig. 4. DQN confusion matrix for NSL-KDD

Table 3. Comparison of IDS approaches
Work ML Techniques Adaptive-Learning Dataset Accuracy
[2] DQN ✓ NSL-KDD 78%
[17] DQN + RF ✓ NSL-KDD 77%
[5] DQN ✓ NSL-KDD 74%
[13] DQN ✓ CICIDS2017 97%
[19] DQN ✓ CICIDS2017 99%

Our approach DQN + RF ✓
NSL-KDD 91%

CICIDS2017 95%

improves significantly, achieving 98.8% accuracy on CICIDS2017, while the lower performance of NSL-KDD reflects
its limited and outdated features.

The ablation study confirms this complementarity: DQN alone is effective for real-time detection (94.2% on CI-
CIDS2017) but cannot differentiate attack types, while RF alone can classify multiple classes (98.8% on CICIDS2017)
but suffers from imbalance and reduced precision, especially on NSL-KDD. The hybrid NEMESIS design takes ad-
vantage of both strengths: DQN filters benign traffic, and RF focuses on harder multiclass cases, achieving the best
overall F1 score and accuracy across benchmarks.

Confusion matrices (Figures 3–4) show that most benign and attack samples are correctly detected, with errors
mainly from rare attack types. Comparative results (Table 3) further demonstrate that NEMESIS outperforms classical
models (SVM, Naive Bayes, CNN-BiLSTM) and prior DQN approaches on NSL-KDD (91% accuracy) [2, 9], and
achieves competitive performance on CICIDS2017 (94.2%), offering better multiclass differentiation and adaptability
than RL-only or supervised methods [19, 13].

6. Conclusion

In this paper, we proposed NEMESIS, a hybrid intrusion detection approach that combines deep Q-network rein-
forcement learning with a supervised random forest classifier. Our method efficiently detects and classifies network

8 B. Ahmed et al. / Procedia Computer Science 00 (2025) 000–000

intrusions, including unseen attack types, leveraging DQN for initial binary filtering and RF for multiclass attack
identification. We detailed the core architectural components, training strategies, and hyperparameter selection. The
experimental results show that NEMESIS outperforms most existing methods in benchmark data sets. Future work
will focus on extending NEMESIS to counter adversarial and distributed attack scenarios.
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