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A B S T R A C T

This paper presents an approach for integrating crop modelling into building performance simulation (BPS) of 
controlled environment agriculture (CEA) spaces. A comprehensive review of recent literature on CEA energy 
modelling using building performance simulation (BPS) software highlighted the need for such integrated ca
pabilities. Leveraging EnergyPlus and the Python application programming interface (API), the proposed 
approach estimates the hygrothermal (sensible and latent) loads within CEA spaces by applying a fixed-point 
iteration root-finding algorithm based on the crop-level energy balance. The implementation was verified 
using data from the literature, enhancing the applicability of BPS tools for simulating the unique environmental 
conditions of CEA spaces.

1. Introduction

Controlled environment agriculture (CEA) is sparking new interest in 
commercial endeavours and the scientific community to maintain food 
sovereignty and mitigate the risks of globalised food supply chains. CEA 
is a crop production system isolated from the weather by some enclosure 
where the growing environment conditions (light, temperature, hu
midity, airflow speed, and CO2) are controlled to enhance crop yield. 
This is accomplished through active energy systems, which add or 
remove heat from the production space using a predefined control 
strategy.

CEA production space types span multiple configurations, such as 
greenhouses (GH), building-integrated controlled environment agricul
ture (BI-CEA), and high-density controlled environment agriculture 
(CEA-HD) spaces, sometimes referred to as vertical or interior farms, 
container farms, plant factories, or indoor plant environments, as illus
trated in Fig. 1.

Greenhouses have been studied extensively in the literature [28,41,
65], while the research on BI-CEA spaces is gaining momentum [10]. 
BI-CEA spaces are generally more expensive and complex, but they offer 
energy efficiency potential due to the synergies possible between 
different types of spaces within the building [86]. CEA-HD can be 

defined as spaces where crops are stacked vertically, making it suitable 
for local production in any climate and dense urban areas. Industrial 
applications have been reported to require 6–8 MW of peak demand 
with annual consumption of up to 70,000 MWh, with even larger in
stallations in the planning stages [44]. The electricity costs can represent 
20 % [66] to 40 % [16] of the operating expenses of CEA-HD production 
spaces. In these installations, electric lighting can represent 55 % [2] to 
80 % [16] of the total electricity consumption. Thus, CEA-HD spaces are 
typically exothermal spaces with significant cooling and dehumidifying 
loads.

One way to assess energy-related expenditures and energy efficiency 
potential is through modelling. The level of complexity when modelling 
CEA spaces can vary significantly, from simple energy balances [52] and 
1D dynamic models, based on the perfectly stirred assumption with 
uniform air properties, to 3D computational fluid dynamics models [28]. 
Energy use in CEA spaces is driven by electric lighting and the operation 
of heating, ventilation, and air conditioning (HVAC) systems required to 
maintain controlled indoor conditions. Although external loads have 
some influence, internal loads, primarily from artificial lighting and 
crop heat exchanges, especially latent loads from transpiration, are 
dominant. As a result, HVAC energy demand is associated mainly with 
cooling and dehumidification processes, which are essential for 
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dissipating heat from lighting and controlling humidity generated by 
crop transpiration. As such, accurate crop modelling is necessary to 
ensure reliable assessment of the energy performance of CEA spaces. A 
few interfaces have been proposed to assist in greenhouse analysis, such 
as virtual growers [47] and SimulSerre [50]. The proposed greenhouse 
models and interfaces in the literature cannot be easily used or adapted 
to analyse other CEA or non-CEA spaces (e.g., office, retail store) for 
BI-CEA applications. These tools also offer limited modelling options for 
heating, ventilation, and air conditioning (HVAC) systems, which re
stricts their applicability for the design and energy analysis of the HVAC 
systems in CEA spaces.

Conventional buildings exhibit significant variations in geometry, 
envelope, vocation, occupancy, HVAC systems, etc. Nevertheless, 
several software tools have been developed to assess their energy per
formance. For decades now, building performance simulation (BPS) or 
building energy modelling (BEM) tools [25,37,58,109,119] have been 
used to model building thermal loads, assess the energy performance of 
designs, promote the implementation of energy-efficient HVAC systems, 
and quantify demand response control sequences, etc. More than 200 
tools are listed in the Building Energy Software Tools directory [36]. 
These tools have been leveraged since at least 2012 to assess CEA spaces’ 
thermal and energy performances. Still, a crucial component of the en
ergy and mass balances of CEA spaces – the crop-level energy balance – 
is not often inherently modelled in these tools.

Between 2012 and 2025, 95 papers related to energy modelling of 
CEA production space (greenhouses, plant factories, vertical farms, etc.) 
using BPS software tools (EnergyPlus, TRNSYS, etc.) were reviewed 
from the Scopus and Compendex databases (Table 1), where GH, CEA- 
HD, and iRTG referred to greenhouses, high-density controlled envi
ronment agriculture, and integrated rooftop greenhouse, respectively. 
Yet, among the reviewed papers that used a BPS software tool, 50 did not 
include crop transpiration as part of the CEA space energy model.

When a crop energy model was included, ten introduced a constant 
humidity gain with a fixed value regardless of the indoor conditions 
(Table 1). This is concerning because the crop energy balance signifi
cantly influences the space peak loads, and failing to model crops could 
result in improperly sized HVAC equipment, especially for CEA-HD 
spaces [31,111]. More importantly, crop heat exchanges are influ
enced by the size of the leaves, which represents an effective area for 
latent and sensible heat exchanges. These exchanges are influenced by 
the lighting intensities as well as the indoor air conditions [112,113]. 
Out of the reviewed papers, 41 of them incorporated some crop energy 
modelling, which included the use of empirical data [67,128], the 
TRNSYS pool model, and user-specific models such as those proposed by 
Bonachela et al. [26], Frankenstein and Koenig [46], Ishigami et al. 
[59], and Pieters and Deltour [93], as shown in Table 1. However, few 
have considered the influence that indoor air conditions have on the 
crop energy balance. As such, it was recommended to add vapour 
pressure deficit (VPD) calculation capabilities to BPS software tools [5].

Thus, the coupling of BPS software tools with CEA-related sub- 
models has been investigated for over a decade [71]. The capabilities of 

these tools have been described extensively [37,38,119]. The two more 
commonly used tools for CEA energy modelling are TRNSYS and Ener
gyPlus: among the reviewed papers, 37 % used EnergyPlus, 54 % used 
TRNSYS, and 3 % used other tools (Table 1). TRNSYS is a more 
research-oriented commercial tool, where one can write and customise 
code relatively easily and leverage the solver for specific research needs. 
EnergyPlus is free software, but modifying or tailoring it to a particular 
modelling need can be more challenging. Basic routines can be added 
through an Energy Management System (EMS) routine using the Ener
gyPlus Runtime Language (ERL) language, and a Python API has been 
recently introduced. Although TRNSYS is flexible, customisable, and 
well-suited for research applications, co-simulation with EnergyPlus is 
valuable because it offers advanced and detailed modelling of building 
physics (e.g., heat transfer, HVAC systems, controls) that are not as 
easily implemented in TRNSYS. In addition, EnergyPlus is freely avail
able and has become increasingly accessible through its EMS routines 
and Python API. A crop energy model was included in about 45 % of the 
cases for both tools (EnergyPlus and TRNSYS). Energy modelling of 
CEA-HD represents about 10 % of the reviewed papers. However, none 
of the modelled CEA-HD spaces in EnergyPlus included a fully integrated 
crop energy model that could be used under different growing 
conditions.

The reviewed literature highlights the need for improved modelling 
approaches that can accurately represent the diverse conditions and 
systems found in CEA spaces. More specifically, lighting and crops, the 
two main internal loads, must be adequately represented [113]. Crops 
absorb photosynthetically active radiation (PAR) emitted by the light
ing, which drives photosynthesis and raises leaf surface temperatures. 
Simultaneously, transpiration releases water vapour through stomata, 
resulting in latent heat loss that cools the crops, which is influenced by 
indoor environmental conditions. Since lighting is both an energy input 
and a means to meet daily light integral requirements, representing crop 
heat exchanges with simple static terms cannot capture hourly feedback. 
Accurate modelling is therefore essential to reproduce the dynamic in
teractions between lighting, crops, and indoor environmental conditions 
maintained by HVAC systems. This can be addressed by coupling mul
tiple tools to model and simulate specific systems and building concepts 
[22]. Effective CEA co-simulation requires key features such as runtime 
control, interactive data exchange, usability and ease of implementa
tion. Among the most widely used BPS tools for CEA modelling, 
TRNSYS, built on a modular structure with a central solver, provides 
more flexibility, timestep control and straightforward data exchange 
between components. However, it can become computationally slower 
for large systems, particularly when numerous components are coupled 
together, as is often the case for CEA applications. In contrast, Ener
gyPlus supports variable exchange during runtime through external in
terfaces such as EMS and Python API, enabling direct scripting, runtime 
interaction, and efficient data access. Its integrated solver further en
hances computational efficiency. Building on these strengths, this paper 
proposes an approach to support BPS of CEA spaces by integrating a crop 
energy balance model into the EnergyPlus building simulation software 

Fig. 1. Different types of CEA spaces: (a) greenhouse (GH), (b) BI-CEA, and (c) CEA-HD.
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[37] via external coupling using the Python API. The integration of the 
crop energy model into EnergyPlus is verified using data available in the 
literature. The following sections present the proposed modelling 
method (Section 2) and the results of implementing the crop energy 

sub-model (Section 3), followed by a discussion (Section 4) and 
conclusion (Section 5).

2. Method: crop energy modelling in EnergyPlus

The reviewed literature revealed that the necessary level of detail to 
accurately represent the energy balance at the crop level in CEA spaces is 
limited in BPS software, particularly for EnergyPlus. This section details 
the modelling method developed to estimate the sensible and latent heat 
gain/loss induced by crops in the EnergyPlus software. This consists of 
two parts: (1) the algorithm used to solve the energy balance at the crop 
level and (2) its integration into EnergyPlus via the Python API.

2.1. Crop energy balance model

The crop-level energy balance can be represented using an energy 
balance at the leaf level [92] or detailed physiological growth models 
[29,63]. The model implemented in this study is based on the 
steady-state lettuce model proposed by Graamans et al. [52], which was 
experimentally validated under controlled conditions as part of a study 
of a controlled-environment agriculture (CEA) space. This crop energy 
model has also been previously integrated into TRNSYS, with the system 
of equations solved using the superlinear secant method [111]. In the 
present work, the same steady-state lettuce crop energy model is 
implemented in EnergyPlus to estimate the heat gain/loss induced by 
crops under varying indoor conditions, including lighting intensity, 
temperature, and humidity setpoints. To ensure proper integration 
within the existing simulation framework, the steady-state model was 
selected over the recently available dynamic crop model. In the 
steady-state model, the LAI remains fixed over time, while heat ex
changes vary with lighting and indoor air conditions. In contrast, the 
dynamic model accounts for plant growth (with a varying LAI) together 
with lighting and indoor air conditions to estimate yield and heat ex
changes, but requires a larger set of input parameters [113]. The energy 
balance is illustrated in Fig. 2 and defined by Eq. (1). Eq. (1) is formu
lated based on the assumptions proposed by Stanghellini [108], which 
consider the impact of longwave radiation (q˝LWX,plt) and thermal stor
age within the leaves and stems as being negligible [108]. This energy 
balance is computed at the leaf level. It includes three main terms: the 
net shortwave radiation absorbed by the plant surface (q˝SW,plt), the 
convective (q˝conv,plt) and the latent (q˝latent,plt) heat exchanges between 
the leaf and its environment as defined by Eqs. (2) to (4). Under the 
model assumptions, convective heat exchange is treated as a sensible 
heat gain or loss to the surrounding space. 

q˝SW,plt − q˝conv,plt − q˝latent,plt = 0 (1) 

q˝SW,plt = (1 − ρr)⋅Pel⋅fv⋅CAC (2) 

q˝conv,plt = LAI⋅ρa⋅cpa

Tplt − Ta

ra
(3) 

Table 1 
Examples of CEA space models in BPS software.

Crop Energy 
Models

BPS tool Space 
type

References

No crop energy 
model

EnergyPlus GH Fabrizio [45]; Alvarez-Sánchez et al. 
[8]; Treethidtaphat et al. [118]; 
Zhang et al. [131]; Lee et al. [74]; 
Denzer et al. [42]; 
Gao et al. [49]; Thomas et al. [115]; 
Chen et al. [33]; Dahlan et al. [39]; 
Léveillé-Guillemette and Monfet [76]; 
Chen et al. [34]; Molina et al. [85]; 
Mohsenipour et al. [84]; Lebre et al. 
[69]; Jahangir et al. [60]; Kaliakatsos 
et al. [64]; Ma et al. [79]; Pakari and 
Ghani [91]; Tian et al. [116]

TRNSYS GH Attar et al. [14]; Attar and Farhat 
[15]; Awani et al. [17]; Ha et al. [55]; 
Ataei [13]; Vadiee et al. [121]; Awani 
et al. [18]; Henshaw [57]; Jin et al. 
[62]; Rasheed et al. [96]; Yildirim and 
Bilir [129]; Rasheed et al. [97]; Asa’d 
et al. [11]; Rasheed et al. [98]; Pineda 
et al. [94]; Rasheed et al. [99]; 
Rasheed et al. [100]; Sayyah et al. 
[103]; Torres Pineda et al. [117]; 
Wang et al. [123]; Yang et al. [126]; 
Agrebi et al. [3]; Chahidi and 
Mechaqrane [32]; Mohammadi et al. 
[83]; Rasheed et al. [101]; Lee et al. 
[73]; Ogunlowo et al. [89]; Rabiu 
et al. [95]; Rasheed et al. [102]

TRNSYS CEA-HD Yang et al. [127]
Constant 

humidity 
gain

EnergyPlus GH Harbick and Albright [56]; Dahlan 
et al. [40]

GH & 
CEA-HD

Fuller et al. [48]

TRNSYS GH Candy et al. [30]; Semple et al. [106]; 
Semple et al. [104,105] Vadiee and 
Martin [120]; Ahamed et al. [4]; 
Adesanya et al. [1]

FAO - Penman 
[92]

EnergyPlus GH Alinejad et al. [6]
GH & 
CEA-HD

Liebman-Pelaez et al. [77]

Living 
wall

Wang et al. [122].

TRNSYS GH Baglivo et al. [19]; Mazzeo et al. [82]; 
Bonuso et al. [27]

GH & 
CEA-HD

Zhang and Kacira [130]

Stanghellini 
[107]

EnergyPlus GH Benis et al. [24]
iRTG Ledesma et al. [70]

TRNSYS GH Choab et al. [35]; Lee et al. [75]; 
Banakar et al. [23]

Other GH Ward et al. [124]; Altes-Buch et al. 
[7]

Graamans et al. 
[52]

EnergyPlus GH Jans-Singh et al. [61]
GH & 
CEA-HD

Graamans et al. [53]; Graamans et al. 
[54]

CEA-HD Eaton et al. [43]
TRNSYS CEA-HD Lalonde et al. [68]; Talbot and Monfet 

[111]
Other EnergyPlus GH Chahidi et al. [31]; Ouazzani Chahidi 

and Mechaqrane [90]
EnergyPlus iRTG Nadal et al. [87]; Muñoz-Liesa et al. 

[86]
TRNSYS GH Mashonjowa et al. [81]; Amin and 

Kissock [9]; Goto et al. [51]; Liu et al. 
[78]; Yeo et al. [128]; [67]

Unspecified TRNSYS GH Bambara and Athienitis [20]; 
Bambara et al. [21]

Other GH Lee et al. [72]

Fig. 2. Energy balance at the leaf level.
(Adapted from Talbot and Monfet [111])
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q˝latent,plt = LAI⋅λ
χs − χa

rs + ra
(4) 

where ρr is the reflection coefficient of the crop (-), Pel is the installed 
electric lighting power density (W⋅m-2), fv is the visible fraction (-), CAC 
is the cultivation area cover (-), LAI is the leaf area index (-), the total 
one-sided leaf area per horizontal surface unit [125], λ is the latent heat 
of vaporisation (kJ⋅kg-1), χs and is χa are the vapour concentration at the 
leaf surface and of the indoor air (g⋅m-3), rs (s⋅m-1) and ra (s⋅m-1) are the 
stomatal and aerodynamic resistances as defined by Eqs. (5) and (6)
respectively, ρa is the indoor air density (kg⋅m-3), cpa is the indoor air 
specific heat at constant pressure (kJ⋅kg-1), Tplt is the leaf temperature 
(◦C), Ta is the indoor air temperature (◦C), and ϕa is the relative hu
midity (%). The formulations used for the stomatal and aerodynamic 
resistances are according to those reported by Graamans et al. [52] and 
Talbot and Monfet [111]. They are estimated solely as a function of the 
photosynthetic photon flux density and for forced convection 
conditions. 

rs = 60⋅
(1500 + PPFD)
(200 + PPFD)

(5) 

ra = 100 (6) 

where PPFD is the photosynthetic photon flux density (μmol⋅s-1⋅m-2) and 
represents the number of photons in the 400–700 nm waveband incident 
per unit time on a unit surface. The 400–700 nm waveband is known as 
the photosynthetically active radiation (PAR) linked to the photosyn
thesis chemical process in the produced crops. The PPFD is used to 
compute the stomatal resistance and is estimated using the installed 
electric lighting power per unit area (Pel, W⋅m-2) and the photosynthetic 
photon efficiency (PPE, μmol⋅J-1) as described in Eq. (7). The proposed 
formulation implies that the crops intercept all the PAR emitted by the 
lighting fixtures. 

PPFD = Pel⋅PPE (7) 

The proposed model is programmed to be solved using a fixed-point 
iteration root-finding algorithm rather than the superlinear secant 
method, as implemented in the TRNSYS version of the model [111], for 
which convergence was not guaranteed. This modification improves 
code performance. Using fixed-point iteration implies writing the energy 
balance equation in the form described by Eq. (8), which has been 
shown to converge for |gʹ(x)| < 1 and where the rate of convergence is at 
least quadratic if gʹ(r) = 0, where r is the root. 

x = g(x) (8) 

As illustrated in Fig. 3, the algorithm, the API while loop, is solved by 
first calculating the vapour concentration at the leaf surface (χs, g⋅m-3) 
according to Eq. (9) for an initial leaf surface temperature (Tplt, ◦C) guess 
and indoor air conditions retrieved from the BPS software. The indoor 
air conditions are determined according to the indoor air temperature 
(Ta, ◦C), indoor air saturated vapour concentration (χ∗

a, g⋅m-3), air den
sity (ρa, kg⋅m-3), air specific heat at constant pressure (cp, kJ⋅kg-1), the 
latent heat of vaporisation (λ, kJ⋅kg-1), and the slope of the saturation 
function curve (ε, -). It is essential to mention that the indoor air satu
rated vapour concentration and the indoor air vapour concentration are 
not dependent on the leaf surface temperature. 

χs = χ∗
a +

ρa⋅cp⋅ε
λ

⋅
(
Tplt − Ta

)
(9) 

Once the algorithm has solved for the vapour concentration at the 
leaf surface, the latent heat gain per surface area (qʹ́

latent,plt, W⋅m-2) is 
computed according to Eq. (4). Then, the convective (sensible) heat gain 
per surface area (qʹ́

conv,plt , W⋅m-2) is computed according to Eq. (3), using 
the net radiation, often referred to as Rnet in the literature, which is 
equivalent to the short-wave radiation by electric lighting (qʹ́

SW,plt , W⋅m- 

2) presented in Eq. (2). A new leaf surface temperature is then estimated 
using Eq. (10). 

T̂plt = qʹ́
conv,plt⋅

ra(
LAI⋅ρa⋅cp

)+ Ta (10) 

The residual (res, ◦C) is computed using Eq. (11). On the next itera
tion, the leaf surface temperature (Tpl, ◦C) is replaced by the estimated 
leaf surface temperature (T̂pl , ◦C) at the previous iteration and the al
gorithm is run again until the convergence criterion of 10–5 ◦C is met. 
During an annual simulation, the algorithm converged in 6 iterations for 
most of the timesteps (10 min). Once the API While loop is solved, the 
values obtained are used by the HVAC system iteration loop to deter
mine the required capacities. 

res = T̂plt − Tplt (11) 

2.2. Implementation in EnergyPlus using an API

The EnergyPlus Python API is used to manage the data exchange 
between the crop energy balance and the thermal zone during the 
simulation run period using the «on_begin_new_environment» and the 
«on_inside_hvac_system_iteration_loop» EnergyPlus simulation calling 
points. The «on_begin_new_environment» is called only once during the 
simulation run time, and the «on_inside_hvac_system_iteration_loop» is 
called at least once every simulation timestep. Fig. 4 illustrates the 
proposed simulation process leveraging the EnergyPlus Python API and 
the energy balance at the crop level [52,111].

The weather file and building description represent the typical in
formation needed to create a building energy model with building per
formance simulation (BPS) software. The parameters of the crop energy 
balance model, presented in Table 2, are stored in a separate file read 
before starting the simulation. The cultivated area cover (CAC), 

Fig. 3. Flowchart of the proposed fixed point iteration root-finding algorithm 
developed to solve the leaf level energy balance.
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estimated as being equal to 30.74 × LAI for LAI≤2.45 [114], and 
cultivated density (CD), defined as the sum of all the growing bed areas 
over the CEA space floor area, are derived from these inputs. The visible 
fraction (fv) is the percentage of energy converted into shortwave radi
ation, the radiant fraction (fLW) is the longwave radiation to the zone, 
and the balance is considered a convective gain.

The EnergyPlus simulation inputs, convective (sensible), and latent 
and radiative gains or losses, as illustrated in Fig. 3, are added to the 
thermal zone of the building model through the «OtherEquipment» ob
jects and the specific Python plugin objects. The code used to solve the 
crop energy balance is programmed in Python, is publicly available, and 
has been verified through inter-software comparison and a case study, as 
shown in the results section (Section 3).

3. Results

The proposed coupling approach is evaluated through a two-stage 
verification process using data from the literature. First, the accuracy 
of the modified algorithm is assessed by comparing the computed leaf 
surface temperature and the associated sensible and latent heat fluxes 
against reference values. Second, the integrated model is applied to a 
case study of a small-scale high-density controlled environment agri
culture (CEA-HD) space to compare peak load estimates and annual 
energy consumption, thereby assessing the impact of crop modelling on 
overall building performance simulation outcomes.

3.1. Leaf surface temperature and heat gains/losses

The first comparison verifies the implemented algorithm by focusing 
on the computed leaf surface temperature, where only the outputs of the 
crop energy model are investigated. The results from the EnergyPlus 
implementation—using a simplified box model with the ideal load 
option—are compared to those obtained from the open-access TRNSYS 
Type model. Both simulations apply the same crop-level energy balance 
equations and use the same weather file, ensuring identical conditions 
for evaluating the accuracy of the algorithm and its numerical 
behaviour.

The residuals between the leaf temperature simulated in TRNSYS 
and EnergyPlus are computed once steady-state conditions are reached 
in TRNSYS, i.e., with the first 20 first-time steps (200 min) excluded 
from the analysis. The maximum absolute difference (MAD) and the root 
mean square error (RMSE), defined according to Eqs. (12) and (13), are 
respectively 0.14 ◦C and 0.038 ◦C. 

MAD = max(|yi − ŷi|), i = 1…n (12) 

RMSE =

[∑n
i=1(yi − ŷi)

2

n

]1/2

(13) 

where yi is the TRNSYS reference value, ŷi is the EnergyPlus estimated 
output value, and n the number of reference values.

Following this first comparison, the convective (sensible) and latent 
heat gains/losses induced by the crops are calculated, as summarised in 
Table 3. To assess the agreement between the TRNSYS and EnergyPlus 
results, the normalised mean bias error (NMBE) and the coefficient of 

Fig. 4. Overview of the data exchange between EnergyPlus, the API and the crop energy balance model.

Table 2 
Parameters of the crop energy balance model used by the API.

Software Parameters Units

GUI Leaf area index (LAI) dimensionless
Cultivated Area m2

Electric lighting power density (Pel) W⋅m-2

Radiant Fraction (fLW) dimensionless
Visible Fraction (fv) dimensionless
Photosynthetic photon efficiency (PPE) μmol⋅J-1

Reflection coefficient of the crop (ρr) dimensionless
Thermal Zone name -

EnergyPlus Lighting Level W
Photoperiod Schedule boolean

Table 3 
Computed heat gain/loss from crop energy balance model in TRNSYS versus 
EnergyPlus.

Crop model 
output

TRNSYS EnergyPlus NMBE 
(%)

CV- 
RMSE 
(%)Lights 

off
Lights 
on

Lights 
off

Lights 
on

Convective 
heat gain/ 
loss (W)

− 84.5 72.3 − 84.9 72.4 0.04 0.7

Latent heat 
gain (W)

84.5 275.7 84.6 275.8 0.06 1.0
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variation of the root mean square error (CV-RMSE) are computed using 
Eqs. (14) and (15). These two standard metrics, commonly used in 
building energy simulation to evaluate energy, demand and water sav
ings [12], provide a basis for quantitative comparison. Notably, the 
radiative gains were identical in both models. The low values of the 
statistical indicators indicate good agreement and are considered satis
factory for algorithm verification. 

CV − RMSE =

[∑n
i=1(yi − ŷi)

2

(n − p)

]1/2/

y × 100 (14) 

NMBE =

∑n
i=1(yi − ŷi)

(n − p) × y
× 100 (15) 

3.2. Case study

As a second verification step, the peak demand and the annual en
ergy consumption of a small-scale experimental high-density controlled 
environment agriculture (CEA-HD) space, located within a Montreal 
(QC) institutional building maintained at an ambient temperature of 20 
◦C, are computed using the EnergyPlus ideal loads option. This com
parison assesses the impact of integrating the crop energy model on 
overall building performance metrics. This implies that only the loads 
were computed for the CEA space, with no detailed modelling of the 
heating, ventilation, and air conditioning (HVAC) system or specifica
tion of equipment capacities or performance data. The production sys
tem is a three-tier hydroponic nutrient film technique (NFT) system with 
a nutrient holding tank below and a light-emitting diode (LED) lighting 
system, as illustrated in Fig. 5. The production space has an envelope 
consisting of Structural Insulated Panels (SIPs), a foam core sandwiched 
between two oriented strand board (OSB) sheathings, having a thermal 
conductance of 0.12 W⋅(◦K‧m2)-1, a thermal capacity of 100 J⋅(kg‧◦K)-1, 

and a density of 113.17 kg⋅m-3. During the photoperiod, which lasts for 
16 h from 4:00 to 20:00, the space is maintained at a temperature of 21 
◦C and a relative humidity of 70 %. In comparison, it is being held at 18 
◦C with a 74 % relative humidity during the dark period (20:00 to 4:00). 
The installed electric lighting density is 144 W⋅m-2 of the cultivated area 
with a photosynthetic photon flux density (PPFD) of 288.5 μmol⋅s-1⋅m-2 

(PPE of 2), a visible fraction (fv) of 0.4 and a radiant fraction (fLW) of 
0.17. The LAI is estimated at 2.1, with a cultivated-to-footprint area 
ratio of 1.67.

As an initial verification step, the peak demands of the small-scale 
CEA-HD space are computed. In the absence of crops, the only 

internal heat gain is the sensible load from lighting, resulting in a peak 
dehumidification demand of zero. Under these conditions, the peak 
cooling and heating demands are 1290 kW and 50 kW, respectively. 
When crops are included, the peak demands are 778 kW for dehumidi
fication, 1042 kW for cooling, and 250 kW for heating (Table 4). These 
changes reflect the effects of crop transpiration: as crops release mois
ture, the increased latent load drives dehumidification demand, while 
the lower leaf temperatures cool the surrounding air, resulting in a 
sensible heat loss that contributes to heating demand. The results ob
tained using the proposed modelling method in EnergyPlus, described in 
Section 2, are compared with those from an equivalent TRNSYS model 
published by Talbot et al. [110]. Table 4 presents the peak demand and 
the annual energy consumption for dehumidification, cooling, and 
heating by both models. In both cases, humidification is negligible. The 
results indicate that both models lead to values of the same order of 
magnitude, with minor discrepancies observed. To ensure a consistent 
comparison, two modelling scenarios were evaluated in EnergyPlus: one 
excluding crop-reflected shortwave radiation (EnergyPlus w/o radiation 
in Table 4), which yielded results closely aligned with the TRNSYS 
model, as reflected by the relative errors (R.E.%) presented in Table 4, 
and a second scenario incorporating the crop-reflected shortwave radi
ation (EnergyPlus w/radiation in Table 4). This modification does not 
affect latent heat exchange or dehumidification demand, as the PAR 
available for photosynthesis remains unchanged. However, it does 

Fig. 5. Schematics of (a) the production system and (b) the enclosure.

Table 4 
TRNSYS and EnergyPlus “ideal” peak demand and annual energy consumption 
for a CEA-HD space.

TRNSYS EnergyPlus

w/o 
radiation

w/o 
radiation

R. 
E. 
(%)

w/ 
radiation

Dehumidification Peak demand 
(W)

725 778 7.3 778

Consumption 
(kWh)

4323 4371 1.1 4371

Cooling Peak demand 
(W)

932 934 0.2 1042

Consumption 
(kWh)

5415 5419 0.1 6045

Heating Peak demand 
(W)

247 250 1.2 250

Consumption 
(kWh)

693 698 0.7 696
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influence sensible cooling by increasing heat gains to the space when 
crop-reflected shortwave radiation is accounted for. Therefore, 
including radiation improves the representation of crop energy balance 
and more accurately captures the heat exchanges driving sensible 
cooling compared to the model without radiation.

Minor differences between the two software are expected due to 
different modelling assumptions, such as, for example, the radiative 
model or application of adiabatic boundary conditions (see Magni et al. 
[80]). Nonetheless, the results fall well within acceptable bounds, 
exceeding the benchmarking accuracy reported by BESTEST results. The 
BESTEST (Building Energy Simulation Test) is a standardised validation 
procedure for building energy simulation software, which evaluates 
performance across a series of test cases involving different building 
configurations. According to Neymark et al. [88], typical discrepancies 
in BESTEST are around 20 % in peak cooling demand and 15 % for 
annual cooling energy. In contrast, the current study showed much 
lower deviations. Furthermore, a visual inspection of the heat exchange 
rates, including room air temperature, relative humidity, and leaf tem
perature of the crop, revealed nearly identical profiles between the 
TRNSYS and EnergyPlus models, further validating the approach.

Modelling the crop energy balance remains a complex task for most 
building performance simulation practitioners due to the detailed bio
physical processes involved and the limitations of existing tools. An 
open-access implementation has been developed to streamline integra
tion into EnergyPlus workflows to support the broader adoption of the 
proposed modelling approach. This implementation automates the 
generation of required model parameters (as described in Table 2), 
simplifying the inclusion of CEA production space models within exist
ing thermal zone configurations. The tool is available on GitHub (htt 
ps://github.com/ltsb-etsmtl) to facilitate future research, replication, 
and practical application.

4. Discussion

The proposed crop-level energy model integration into EnergyPlus 
addresses a gap in the literature by offering sufficient detail for repli
cable implementation using the EnergyPlus API. This work outlines a 
detailed and referenced process to model CEA spaces, including the heat 
gain/loss induced by crops, within a free, supported, publicly available, 
and validated BPS software, EnergyPlus. While the implementation has 
been verified through comparison with published models, further vali
dation using real-world case studies is necessary. Such data would offer 
valuable feedback for refining the crop energy model and informing 
future tool developments. The proposed GUI is a basic version of a 
laboratory research tool designed to adapt and evolve based on users’ 
needs and feedback. Limitations of the current implementation of the 
crop energy model include simplified assumptions related to the lighting 
systems, the absence of crop growth, cultivar specificity, and the lack of 
consideration for abiotic stress metrics. These limitations will be 
addressed in future work by adapting the proposed crop model to align 
with the more advanced one developed by Talbot and Monfet [113]. 
Nonetheless, this incremental advancement represents a meaningful 
step towards achieving a more comprehensive modelling of CEA spaces 
by leveraging decades of energy-related research embedded within BPS 
software. The adaptable approach could be extended to other types of 
CEA environments, such as greenhouses or other types of crops. Imple
menting the model for different crop types can be easily achieved by 
adjusting the input variables, such as the LAI, lighting intensity and 
duration, and indoor air conditions, and modifying model parameters, 
including the reflection coefficient, stomatal resistance, and aero
dynamic resistance, based on values available in the literature for each 
specific crop.

5. Conclusion

The literature review highlighted the limited capability of current 

BPS software to model crop energy balances effectively. This paper 
proposed a publicly available method to integrate a crop-level energy 
model into EnergyPlus using its Python application programming 
interface (API). The method relies on a fixed-point iteration root-finding 
algorithm to solve the crop energy balance and was verified against 
results from a published TRNSYS model and a case study. By extending 
EnergyPlus with this modelling capability, the approach provides new 
opportunities for accurately designing, operating, and optimising CEA 
environments in building simulation research and HVAC system 
development.
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