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 A B S T R A C T

In this paper, we tackle the challenge of three-dimensional estimation of expressive, animatable, and textured 
human avatars from a single frontal image. Leveraging a Skinned Multi-Person Linear (SMPL) parametric body 
model, we adjust the model parameters to faithfully reflect the shape and pose of the individual, relying on 
the mesh generated by a Pixel-aligned Implicit Function (PIFu) model. To robustly infer the SMPL parameters, 
we deploy a multi-step optimization process. Initially, we recover the position of 2D joints using an existing 
pose estimation tool. Subsequently, we utilize the 3D PIFu mesh together with the 2D pose to estimate the 3D 
position of joints. In the subsequent step, we adapt the body’s parametric model to the 3D joints through rigid 
alignment, optimizing for global translation and rotation. This step provides a robust initialization for further 
refinement of shape and pose parameters. The next step involves optimizing the pose and the first component of 
the SMPL shape parameters while imposing constraints to enhance model robustness. We then refine the SMPL 
model pose and shape parameters by adding two new registration loss terms to the optimization cost function: 
a point-to-surface distance and a Chamfer distance. Finally, we introduce a refinement process utilizing a 
deformation vector field applied to the SMPL mesh, enabling more faithful modeling of tight to loose clothing 
geometry. As most other works, we optimize based on images of people wearing shoes, resulting in artifacts in 
the toes region of SMPL. We thus introduce a new shoe-like mesh topology which greatly improves the quality 
of the reconstructed feet. A notable advantage of our approach is the ability to generate detailed avatars 
with fewer vertices compared to previous research, enhancing computational efficiency while maintaining 
high fidelity. We also demonstrate how to gain even more details, while maintaining the advantages of SMPL. 
To complete our model, we design a texture extraction and completion approach. Our entirely automated 
approach was evaluated against recognized benchmarks, X-Avatar and PeopleSnapshot, showcasing competitive 
performance against state-of-the-art methods. This approach contributes to advancing 3D modeling techniques, 
particularly in the realms of interactive applications, animation, and video games. We will make our code 
and our improved SMPL mesh topology available to the community: https://github.com/ETS-BodyModeling/
ImplicitParametricAvatar.
1. Introduction

Photo-realistic avatars has the potential to revolutionize fields rang-
ing from XR to healthcare, and most notably the entertainment indus-
try, by greatly enhancing the user experience while interacting with 
virtual humans. Despite significant recent advancements, the task of 
crafting realistic human avatars still presents significant challenges. 
Traditional methods [1,2] rely on extensive input data such as multiple 
views, video sequences or depth information, underscoring the need 
for more efficient and accessible techniques. Progress in the field of 3D 
human modeling, while notable, encounters major challenges, particu-
larly in faithfully reproducing the human morphology. The complexity 

I This article is part of a Special issue entitled: ‘ACM MIG24’ published in Computers & Graphics.
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of this task is exacerbated when modeling from a single image, a 
constraint that offers a promising path towards more accessible and 
practical applications. Deep learning-based methods [3,4] for predict-
ing parametric body models produce compact and animatable surfaces, 
but face difficulties in accurately capturing details such as clothing 
nuances and textures, essential aspects for creating realistic avatars. 
The Pixel-aligned Implicit Function (PIFu) based methods [5–8] mark a 
significant advancement and are capable of reconstructing a 3D model 
with high resolution from a single image. However, these methods 
encounter difficulties in generating a compact mesh that accurately 
reconstructs all body parts, such as the hands and the head. Due 
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to their representation by small pixel regions in the image space, 
recreating these parts proves particularly complex. This difficulty is 
exacerbated by the use of the marching-cubes algorithm to generate 
a mesh. Furthermore, the outputs of the PIFu-based methods are not 
directly animatable, their meshes are not compact, and they lack fo-
cusing in hard to represent areas (face, hands, and feet). The ICON 
method [8] stands out for its use of a parametric human model. It 
optimizes the parameters to adjust to the rendering of the silhouette 
and normals. However, although directly animatable, this method can 
remove the fine details of the mesh due to the used parametric body 
mesh normals, which tend to be smooth, and lacks specific cloth-
ing details. The PHORHUM method [5], focusing on predicting the 
illumination to reconstruct albedo colors, encounters limits in color 
fidelity, thus diverging from realism. Moreover, PHORHUM, trained 
on perspective images, does not perform well across a wide range of 
camera configurations. The method of Mallek et al. [9] reconstructs an 
animatable SMPL-X avatar with a good texture, but its optimization of 
the feet region introduces visible and annoying artifacts. Moreover, the 
geometric details of the clothing are limited by the lower resolution of 
the SMPL-X mesh. In conclusion, while body shape modeling methods 
exist, they might not be as effective in texture reconstruction or anima-
tion. Combining these three aspects – modeling, animation, and texture 
reconstruction – from a single image remains a major challenge.

Our proposal offers a unique approach to generating a compact, 
animatable, expressive, and textured 3D avatar from a single frontal 
image in A-Pose, building upon the method of Mallek et al. [9]. Fig. 
1 represents our 3D human body reconstruction pipeline, which relies 
on the Pixel-aligned Implicit Function for high-resolution 3D Human 
Digitization (PIFuHD) [7] as well as on OpenPose [10] to initialize 
the shape and pose of the avatar. We extract the 3D pose based on 
the 2D pose, and then fit the Skinned Multi-Person Linear eXpressive 
(SMPL-X) [11] model to the target PIFuHD mesh. Compared to the 
PIFuHD mesh, SMPL-X is easy to animate and has a compact mesh. 
Conversely, the SMPL-X model does not allow to model the specific 
shape details found in the PIFuHD mesh. To overcome this, we then 
add a deformation vector field to the mesh and optimize it to model 
geometric details, such as the clothing geometry. This approach allows 
us to combine the detailed PIFuHD mesh with the compactness and 
ease of animation provided by the SMPL-X model. We also demonstrate 
how to further increase the fine details while preserving the advantages 
of SMPL-X. Next, we extract the texture and complete it using color 
interpolation and an image inpainting method. Our approach aims to 
offer a faithful representation of a wide range of human morphologies 
while facilitating the animation of the obtained avatar, thus widening 
its application potential in various contexts. Our main scientific and 
theoretical contributions are:

1. The introduction of a deformation vector field to model the 
details from the PIFuHD mesh onto the compact and easy to 
animate SMPL-X model;

2. A multi-step optimization process to adjust the SMPL-X model to 
fit humans wearing tight to loose clothing;

3. The design of an easily animatable new SMPL-X mesh topology, 
appropriate for images of people wearing shoes;

4. A novel approach for the generation and completion of textures 
resolving silhouette and back of the head artifacts.

With these contributions, our approach ensures realistic, fast, and 
stable animation of clothed avatars directly in off-the-shelf animation 
software.

2. Related work

This section explores three elements of research regarding the recon-
struction of 3D human,body. We begin by exploring parametric models, 
then proceed to discuss 3D reconstruction, and conclude by analyzing 
texture extraction and completion methods.
2 
2.1. Parametric body model

Two primary strategies stand out in 3D human body modeling. The 
first one is based on the kinematic skeleton, emphasizing an articulated 
structure that primarily focuses on joint movement without capturing 
body shape details. The skeleton model is widely utilized in 2D human 
pose estimation [10,12,13]. It conceptualizes the human skeleton as a 
hierarchical tree structure, incorporating articulated joints. The second 
strategy utilizes parametric models [11,14,15], allowing for separate 
optimization of body shape and posture. The Skinned Multi-Person 
Linear (SMPL) model [15] utilizes a base shape and linear deformations 
to capture a variety of human shapes and poses. Its popularity in both 
industry and academia is attributed to its flexibility and its ability 
to seamlessly animate the avatar in off-the-shelf animation software. 
SMPL-X [11] represents a significant evolution of the SMPL model, 
incorporating fully articulated hands and an expressive face, while still 
providing a compact mesh.

2.2. 3D reconstruction of the human body

Significant advancements have been made in the field of avatar 
creation. Some methods utilize multiple images [2,16,17], video se-
quences [18–20], or depth information [21–24]. While these methods 
are interesting when having access to more sophisticated capture setup, 
our research concentrates on the challenge of reconstructing avatars 
from a single image. Reconstructing 3D avatars from a single image typ-
ically revolves around two distinct strategies. The first strategy relies on 
the use of a parametric body model. A parametric model approximates 
the shape of the human body to be reconstructed and is characterized 
by a small set of parameters. These parameters define the shape and 
pose of the body. The estimation of a parametric model can be achieved 
through an optimization process of its parameters [1,2,9,11,25,26]. 
Most of the related work optimizes SMPL-X based on images of people 
wearing shoes or socks. For instance, the DINAR [27] method, as well 
as the PeopleSnapshot [1] and X-Avatar [28] datasets, consist of only 
people wearing shoes or socks. In other papers (PIFu [6], PIFuHD [7], 
ICON [8], and PHORHUM [5]) and datasets (Renderpeople [29] and 
THuman [30]), the proportion of images corresponding to barefoot 
people is small (less than 3%). While improving the reconstruction of 
feet for barefoot images is another interesting problem, we propose 
to improve the reconstruction for images of people wearing shoes and 
socks. With its detailed toes, the SMPL-X model cannot properly fit a 
shoe shape. Through their deformation vector, Mallek et al. [9] deform 
the toes toward the shape of shoes, but given the mesh topology of the 
toes, their optimization process often generates artifacts in the feet and 
toes region. Alternatively, the parametric model’s parameters can be 
directly regressed via a Deep Neural Network (DNN) model [3,4,31,32]. 
DNN-based methods have recently shown promising results in recon-
structing human meshes from a single image. These methods directly 
map raw pixels to model parameters, allowing for the production of 
parametric models in a feed-forward manner through neural networks.

The second strategy estimates morphology details in the form of 
an implicit function representation [5–8,33]. The primary objective of 
these PIFu-based methods lies in obtaining an abundance of details, 
encompassing hair, and clothing. PaMIR [34] uses a DNN-based method 
to generate an implicit field with features extracted from the input 
image. ECON [35] generates front and back normals from the input 
image, which are passed to a DNN-based method to reconstruct the 
front and back meshes which are then aligned and completed. Human-
Ref. [36], SiTH [37], TeCH [38] and DiffHuman [39] generate front 
and back normals from the input image, and use DNN-based methods 
to generate a distance field from which a mesh is later extracted. A 
significant drawback of the methods presented in this paragraph lies 
in the inaccurate modeling of small geometric details such as hands 
and face. These methods often produce lower-quality results in the 
hands and face areas due to the limited number of pixels compared 
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Fig. 1. Illustration of our single-image reconstruction approach. From left to right: Input RGB image, SMPL-X after fitting, SMPL-X+D, rendered avatar, and 
avatar rendered in multiple poses.
to their complexity, resulting in inaccuracies or distortions. Another 
concern with these methods is the mesh, which contains many more 
triangles than a parametric body mesh. Additionally, it is difficult to 
animate the mesh, and the animation often needs to resort to advanced 
DNN techniques [40]. Furthermore, the distribution and shape of the 
triangles provides lower quality animations compared to parametric 
body meshes.

2.3. Texture extraction and completion

Recent advancements in texture extraction and completion for 3D 
human body reconstruction from single images have shown promis-
ing developments. The Pose with Style method [41] leverages Dense-
Pose [42] to map the image space to the UV space of SMPL textures. 
It also enables the automatic synthesis of missing texture parts. While 
effective, this method struggles with preserving subject face details 
and accurately reproducing hands and clothing textures. DINAR [27] 
introduced a method combining neural textures with the SMPL-X body 
model. DINAR achieved good quality and easily animatable avatars. 
It uses a diffusion model that enables realistic reconstruction of the 
texture in occluded regions, such as the back of a person from a 
frontal view. However, despite the realism of people wearing tight 
clothing, challenges arise from defects in the SMPL-X mesh generated 
by SMPLify-X [11], essential for texture extraction. These defects, 
particularly noticeable in clothing regions, stem from the limitation 
of the SMPL-X model, designed solely for modeling human bodies and 
not clothing. To get rid of the concerns related to the SMPL-X model, 
some methods [6,34] extract a fine-detailed mesh from the input image 
before generating the textures. Nevertheless, these methods produce 
blurry and low quality textures. Another group of methods [33,36–39] 
uses diffusion models to generate the textures, but does not use the 
SMPL-X model, thus resolving some of the concerns faced by DINAR. 
While the resulting textures are interesting, the avatar is hard to 
animate with off-the-shelf software.

In conclusion, the SMPL-X parametric body model has several ad-
vantages (easy to optimize, compact mesh, and animatable). Methods 
which reconstruct avatars with the SMPL-X body representation often 
lack details such as clothing, some struggle in reconstructing proper 
shoe-like feet geometry, and many of them do not reconstruct the 
texture for the avatar. PIFu-based methods provide fine details, but are 
hard to animate, do not provide easy to use texture maps, and struggle 
to reconstruct fine details such as those found in the hands and the 
face. Finally, texture extraction and completion methods often struggle 
with hands and clothing. Building upon the work of Mallek et al. [9], 
we propose a new approach to cope with all of the problems at once: 
recreating an easily animatable avatar, from a single image of human 
wearing tight or loose clothing. Our avatars benefit from fine details, 
good representation of the face, hands, and feet, a compact mesh, and 
textures.
3 
3. Proposed methodology

Our methodology (See Fig.  2), designed as a multi-step pipeline, 
aims for detailed, animatable 3D reconstruction of a human subject 
from a single frontal image. Our pipeline begins with the extraction 
of the target mesh, utilizing PIFuHD [7], coupled with the acquisition 
of 2D pose estimations via OpenPose [10]. We then compute three-
dimensional joints. We optimize a global alignment of the SMPL-X 
model [11], optimizing its translation and rotation parameters, and 
then further refine the model’s pose and shape parameters. We intro-
duce a deformation vector adjustment to overcome SMPL-X’s clothing 
modeling limitations, followed by a specialized algorithm for texture 
extraction and completion based on the PIFuHD mesh colors. Finally, 
we can render the textured SMPL-X+D mesh in various poses and 
camera angles.

3.1. Mesh definitions

Meshes are denoted by 𝑀 , defined as a set {𝑉 , 𝐹 }, where 𝑉  rep-
resents the vertices and 𝐹  represents the triangular faces. The SMPL-X 
model takes as input a translation  ∈ R3, a global rotation  ∈ R3, 
pose parameters for the body and hands 𝜃 = {𝜃𝑏, 𝜃ℎ} ∈ {R23×3,R30×3}, 
shape parameters for the body 𝛽 ∈ R300, as well as facial expression 
parameters 𝜓 ∈ R10. This mesh has a fixed topology with a constant 
number of vertices and faces: 
𝑀SMPL-X( ,, 𝜃, 𝛽, 𝜓) = {𝑉SMPL-X, 𝐹SMPL-X} ⊂ R𝑛1×3,N𝑚1×3, (1)

where 𝑛1 = 10475 is the number of vertices and 𝑚1 = 20908 is 
the number of faces. The PIFuHD mesh exhibits a variable topology, 
adapting its number of vertices 𝑛2 and faces 𝑚2 to the level of detail 
captured from the input image: 
𝑀PIFuHD = {𝑉PIFuHD, 𝐹PIFuHD} ⊆ R𝑛2×3,N𝑚2×3. (2)

3.2. Pose estimation

Utilizing OpenPose [10], we extract 2D skeletal data, represented 
as blue points in Fig.  3, which correspond to joints within the image. 
We project the PIFuHD mesh onto the image plane to generate the 
projected mesh vertices 𝑀 ′

𝑝 = {(𝑥, 𝑦, 0) ∣ (𝑥, 𝑦, 𝑧) ∈ 𝑉PIFuHD}. The 2D 
joints and projected vertices are now in the same reference frame. We 
select 𝑘 = 20 points from 𝑀 ′

𝑝 closest to each OpenPose-detected joint 𝐽𝑖, 
employing a K-means algorithm to split the corresponding vertices from 
𝑀PIFuHD into two distinct sets, 𝑖 and 𝑖, laying respectively onto the 
front and back surfaces of the 3D mesh. We then average the centroids 
of these sets for each joint, thus achieving the 3D joint estimation 
𝐽target(𝑖). For facial keypoints, a similar technique is adopted, but this 
time, only the center point of the front set is used to lift each keypoint to 
3D. Note that this simple process is not overly sensitive to the precision 
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Fig. 2. Illustration of the reconstruction and texturing of the SMPL-X+D mesh from a single image, along with rendering results in various poses and viewpoints.
Fig. 3. Orthographic projection and 3D pose estimation approach. The back 
shows the 𝑀PIFuHD mesh, while the foreground shows the orthographic pro-
jection, 𝑀 ′

𝑝, of this mesh onto the XY plane. The blue points illustrate the 2D 
joint estimates obtained through OpenPose. The red points correspond to these 
blue points lifted to the front and back surfaces of the 𝑀PIFuHD mesh. While 
the joints for the hands are processed in the same way, they are not shown 
here because the density of points was not appropriate for the visualization.

of the 2D pose estimation algorithm and allow us to obtain a robust 
initialization to the 3D location of joints without requiring complex 
constraints normally used in 3D lifting of 2D poses [43]. Furthermore, 
our approach can take advantage of future pose detectors, as long as 
they are compatible with the SMPL-X joints.

3.3. Multi-step registration approach

Our methodology emphasizes a sequential optimization for the 
SMPL-X model parameters, further refined by a deformation vector 
applied to the resultant 𝑀SMPL-X mesh, aiming for convergence with 
the target 𝑀PIFuHD mesh. This process involves minimizing specific cost 
functions at successive stages.

Our pose optimization concentrates on body 𝜃𝑏 and hand 𝜃ℎ joint 
parameters. The joints of the jaw and eyes in the SMPL-X model 
are not adjusted due to their minimal impact on the avatar’s overall 
appearance. The optimization is carried out within a differentiable 
framework, relying on a cost function derived from the output mesh 
𝑀SMPL-X( ,, 𝜃, 𝛽, 𝜓) and the joint positions 𝐽SMPL-X( ,, 𝜃, 𝛽, 𝜓), where 
  and  represent global translation and rotation, respectively, and 𝜃, 
𝛽, and 𝜓 denote pose, shape, and facial expression parameters.
4 
3.3.1. Pose optimization
In the initial stage, we set the SMPL-X model parameters , 𝛽, and 

𝜓 to zero, and establish a neutral ‘‘A’’ pose for 𝜃. The initial translation 
 = 𝑇0 is estimated from the difference in the bounding box centers 
of 𝑀PIFuHD and 𝑀SMPL-X. Note that PIFuHD and SMPL-X are by default 
of similar sizes, corresponding to human proportions, allowing for their 
alignment without the need for scaling. Subsequently, we refine subsets 
of our parameters through a sequence of optimization stages, each 
using specific optimization criteria. We begin by refining   and , 
aiming to minimize a joint discrepancy cost function: 
argmin

 ,

(

joints
)

, (3)

where joints measures the squared 𝐿2 norm of the difference between 
the SMPL-X joints and 𝐽target(𝑖) joints extracted from 𝑀PIFuHD.

Next, we address potential local minima leading to non-human 
poses by introducing a soft constraint on hand, idxℎ, and body, idx𝑏, 
joints: 
sc =

∑

𝑖∈idxℎ

(

max(0, 𝑎 − 𝜃𝑖) + max(0, 𝜃𝑖 − 𝑏)
)

+
∑

𝑘∈idx𝑏

𝛼𝑘‖𝜃𝑘‖
2
2, (4)

where 𝑎 = −0.8 rad, and 𝑏 = 0.5 rad (values are not symmetric because 
of the SMPL-X hand rest pose) and 𝛼𝑘 are weighting coefficients: 

𝛼𝑘 =

{

10 if 𝑘 ∈ {2, 5, 8, 9, 10, 11, 12, 13, 14}
1 Otherwise.

(5)

The range of values for 𝑘 corresponds to selected joints in the head, 
shoulders, torso and feet regions. A higher weight on these prevents 
the reconstructed body from incorrectly leaning forward/backward.

We now optimize for 𝜃 and 𝛽0 with: 

argmin
𝜃,𝛽0

(

𝜆𝑗𝑜𝑖𝑛𝑡𝑠joints + 𝜆𝑠𝑐sc
)

, (6)

where 𝜆joints = 2, 𝜆sc = 1, and 𝛽0 corresponds to the first component 
of the SMPL-X shape parameters and can be seen as mostly controlling 
the scale of the body.

3.3.2. Shape optimization
Our shape optimization framework is built upon two principal cost 

functions: a Chamfer loss (chamfer) and a bidirectional point-to-surface 
loss (P2S), chosen to refine the SMPL-X model’s alignment with the 
PIFuHD mesh. The Chamfer loss quantifies the proximity between 
SMPL-X and PIFuHD vertices. Our point-to-surface loss selects the 
closest pairs of vertices between two meshes 𝑀𝐴, which will correspond 
to 𝑀PIFuHD, and 𝑀𝐵 , which will correspond to 𝑀SMPL-X in this section. 
We introduce mesh 𝑀𝐵 here as in Section 3.3.3 we will use the same 
loss with the SMPL-X plus deformation vector mesh. The loss computes 
the distance between vertex pairs projected onto the normal vector 
of the vertex from mesh 𝑀 . Our loss favors adjustment of the 𝑀
𝐵 𝐵
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vertices locally and perpendicular to the 𝑀𝐵 surface, thus reducing 
lateral sliding: 

P2S(𝑀A,𝑀B) =
1

|𝑀A|

∑

𝑝∈𝑀A

dist(𝑝, 𝑣̃)+

1
|𝑀B|

∑

𝑣∈𝑀B

dist(𝑝̃, 𝑣),
(7)

where 𝑣̃ = argmin𝑣∈𝑀B
‖𝑝 − 𝑣‖22 and 𝑝̃ = argmin𝑝∈𝑀A

‖𝑝 − 𝑣‖22. The 
distance dist(𝑝, 𝑣) is expressed as: 

dist(𝑝, 𝑣) =
|𝑛𝑣 ⋅ (𝑣 − 𝑝)|

‖𝑛𝑣‖2
, (8)

where 𝑛𝑣 denotes the normal at vertex 𝑣, obtained by the normalized 
average of the normals of the faces adjacent to 𝑣.

Our optimization function at this stage fine-tunes the SMPL-X model 
parameters ( , , 𝜃, 𝛽, 𝜓):
argmin
 ,,𝜃,𝛽,𝜓

(

𝜆𝑐ℎchamfer + 𝜆𝑃 2𝑆P2S(𝑀PIFuHD,𝑀SMPL-X)

+𝜆𝑗𝑜𝑖𝑛𝑡𝑠joints + 𝜆𝑠𝑐sc
)

, (9)

with weighting coefficients 𝜆ch = 10, 𝜆P2S = 1, 𝜆joints = 1000, and 
𝜆sc = 1.

3.3.3. Deformation vector optimization
To address the SMPL model’s limitations in representing clothing, 

we add per-vertex deformation vectors. Inspired by previous work [1,
19], but adapted to our single-image context, this method allows 
for more precise clothing representation. We optimize deformation 
vectors  ∈ R𝑛1×3 to adjust to the clothing geometry on the SMPL-
X mesh, aiming to minimize the same point-to-surface loss between 
the adjusted mesh and the PIFuHD target. To ensure stability and 
realistic mesh deformation, we incorporate a regularization term reg, 
combining Laplacian smoothing, normal consistency and an 𝐿2 norm 
on the deformation vector: 
reg = 𝜆1Laplacian + 𝜆2normals + 𝜆3‖‖

2
2 + 𝜆4‖idx𝑓&ℎ‖

2
2, (10)

where 𝜆1 = 10 and 𝜆2 = 10. We set a different weighting on the defor-
mation vector loss idx𝑓&ℎ  for the face and hands (𝜆4 = 104) compared 
to the deformation vector loss  for the other parts of the body (𝜆3 = 1). 
The hands and face are not always correctly reconstructed by PIFuHD 
and it is best in these regions to favor the SMPL-X shape by penalizing 
large deformation vectors. At this stage, our optimization equation is 
thus formulated as: 
argmin



(

P2S(𝑀PIFuHD,𝑀SMPL-X +) + reg
)

, (11)

where the two losses are simply added together. This deformation 
vector optimization greatly improves the clothing representation, cap-
turing the wrinkles and later helping with the texture extraction. Our 
optimization strategy effectively integrates local adjustments within a 
broader global framework through the parameterization of the SMPL-
X model. This approach ensures that any local changes, such as those 
between specific points and vertices, are seamlessly incorporated into 
the overall structure of the SMPL-X model. Additionally, we enhance 
the fidelity of these adjustments by employing Laplacian and normal 
consistency losses. These losses are crucial as they maintain the mesh 
smoothness and continuity, ensuring that local optimizations do not 
compromise the global integrity and realistic appearance of the model. 
Thus, our method achieves a balance between refining detailed features 
and preserving surface smoothness.

The high-resolution mesh of 𝑀PIFuHD results in significant compu-
tational time and memory usage during the optimization. Our exper-
iments demonstrated that subsampling 𝑀PIFuHD to match the vertex 
count of the 𝑀SMPL-X mesh, significantly reduces computation time 
while having a negligible impact on the resulting quality. To achieve 
a reduction in the number of vertices 𝑉 , we employed a farthest 
PIFuHD
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point sampling method [44]. Note that we do not coarsen the mesh; we 
only subsample the vertices as the polygons of PIFuHD are not needed 
in our loss functions.

Like those in most related work, our reconstructions rely on images 
of people wearing shoes or socks. The SMPL-X model, with its detailed 
geometry, including individually articulated toes, is ill-designed for 
optimization toward a shoe geometry. We thus introduce a modification 
to the SMPL-X mesh topology in the foot region. We replaced the toe 
details with a closed surface resembling shoes (Fig.  4). We manually 
selected the faces corresponding to the inner sides of the toes and 
removed them from both the 3D model and the UV map (Fig.  4(b)). We 
then added new faces to close the 3D mesh and added corresponding 
faces to the UV map (essential for texture extraction, Section 3.4). Note 
that, in this process, we rely only on the original SMPL-X vertices. 
Vertices which were located on the sides of the toes are now unused 
(and ignored in all optimization steps). As we rely only on the original 
SMPL-X vertices, we preserve the ability to use the original skinning-
based animation without any change. Only the number of faces and 
vertices is slightly less. By adopting this approach, the modified model 
retains the general shape of the feet while easing the optimization 
process. We will release our proposed shoe-like SMPL-X mesh topology 
to the community.

Even though SMPL-X can model most clothing details found in 
PIFuHD, it sometimes fails to recover finer clothing wrinkles and 
discontinuities. To overcome this, we create a new mesh, SMPL-X×4, 
which is a finer version of SMPL-X (1-to −4 subdivision), as seen in 
Fig.  5, and adapted some aspects of our framework. First, we compute 
skinning weights for the new vertices and also we subdivide the UV-
map mesh. The added vertices are considered in the optimization steps. 
The point-to-surface loss function (Eqs.  (7) and (8)) now uses a regular 
Euclidean distance between the corresponding vertices 𝑣 ∈ 𝑀SMPL-X×4
and 𝑝 ∈𝑀PIFuHD: 
dist(𝑝, 𝑣) = ‖𝑣 − 𝑝‖2. (12)

This change is justified by the fact that the resolution of the subdi-
vided mesh is sufficiently high, eliminating the need for projecting 
vertices with respect to the normal vector. Furthermore, because of 
the difference in number of vertices, the point to surface loss (P2S, 
Eq.  (7)) behaves in a slightly different way. The increased number 
of vertices sometimes pulls the vertices of 𝑀SMPL-X×4  in regions of 
𝑀PIFuHD showcasing a noisy surface or erroneous protrusions. To avoid 
pulling the surface too far at each optimization iteration of Eq.  (7), each 
optimization iteration ignores mesh 𝑀𝐴 (𝑀PIFuHD) vertices for which 
the distance of Eq.  (12) is further than 2 cm. Through the successive 
optimization iterations, the surface deforms more locally and gradually. 
As such, the surface is smoother. Also, the tuning of loss parameters 
has been adjusted to better regulate the influence of each component 
of the loss functions on the overall model training. Specifically, 𝜆1
was adjusted to 2 to increase its regulative impact, whereas 𝜆2 was 
increased to 1e5 and 𝜆4 to 1e8 (𝜆3 remained unchanged).

In our computational framework, the Adam optimizer [45] is con-
sistently utilized across all stages. We conducted a parameter sweep to 
select good learning rates for each step of our approach (See Tables  5–8 
of the Appendix for details). The selected learning rates are as follows: 
10−3 for the rigid transformation optimization (Section 3.3.1, Eq.  (3)), 
10−4 for the pose optimization (Section 3.3.1, Eq.  (6)), 10−2 for the 
shape optimization (Section 3.3.2), and 10−4 for the deformation vector 
optimization (Section 3.3.3).

3.4. Texture extraction and completion

Now that the geometry is adjusted, we extract the color information 
for the avatar from the PIFuHD mesh. Employing a blend of interpola-
tion techniques followed by a texture inpainting technique ensures a 
faithful texture representation. For each texel center in the UV map 
of SMPL-X, we identify the closest triangle and convert the texel’s 
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(a) Original SMPL-X

(b) SMPL-X after faces removal

(c) New SMPL-X mesh topology

Fig. 4. Topology modification of the SMPL-X model. (a) Original SMPL-X feet mesh with corresponding UV map. (b) Mesh resulting from the toe inner side 
removal. (c) New shoe-like topology.
Fig. 5. Left: Original SMPL-X mesh. Right: SMPL-X×4 (1-to −4 subdivision). The bottom images zoom in on the shoulder and arm regions.
position to barycentric coordinates within this triangle of the SMPL-
X+D mesh. From the corresponding 3D position, we fetch the color 
from the nearest PIFuHD mesh vertex.
6 
Colors at the silhouette of the PIFuHD mesh exhibit color leakage 
from the background as can be seeing in Fig.  6. To identify these wrong 
silhouette texel colors, we extract the colors from the original image, 
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Fig. 6. Silhouette color leakage. From left to right — the input image, the PIFuHD mesh, and the resulting texture extracted from PIFuHD.
Fig. 7. From left to right: Texture extracted from PIFu-HD, texture after linear interpolation in the silhouette areas, texture following the application of the LaMa 
inpainting method on the back of the head.
and from an image with a different uniform background color. This 
second image is generated by detecting the background in the original 
image using the Rembg tool [46] and replacing it with a uniform color. 
Texels exhibiting differences in colors correspond to silhouette texels 
and should be synthesized. Horizontal linear interpolation is used to fill 
these silhouette texels from the left and right ‘‘valid’’ texel colors. Fig. 
7 illustrates this process. Another challenge in the extracted texture lies 
in the fact that the PIFuHD method employs a naive symmetry to assign 
colors to the back of the avatar. This negatively impacts occluded parts 
in the region at the back of the head. To address this issue, we employ 
the LaMa image inpainting method [47]. This method requires an input 
image and a mask specifying the area to be inpainted. In our case, we 
manually crafted a static mask targeting the back of the head. This 
mask remains unchanged and applied to all reconstructions, regardless 
of variations in the input images. This approach is justified by the fact 
that in the UV space of SMPL-X, the posterior region of the head is 
always at the same position. The use of this method allows for a more 
realistic back of the head, as illustrated in Fig.  7(c).

4. Results

In this section, we evaluate our 3D reconstruction approach using 
two open-access datasets. The X-Avatar dataset [28] features 20 sub-
jects from scanned real bodies, with synthetically generated images 
using PyTorch3D. It presents a good diversity across body shapes, 
poses, and demographics. PeopleSnapshot [1] captures 12 subjects in 
A-pose through perspective RGB video from a camera 2 m away. For 
testing, we used the video’s first frame showing the subject’s frontal 
view. Note that these two datasets do not overlap with PIFuHD training 
dataset.
7 
4.1. Quantitative evaluation

We benchmarked our results against those achieved by PIFu [6], 
PIFuHD [7], ICON [8], PHORHUM [5] and DINAR [27]. This com-
parison is based on a set of specific metrics. Intersection over Union 
(IoU) [48] measures segmentation accuracy by calculating the ratio of 
overlap between the predicted and actual silhouettes, where a higher 
score indicates better performance. Chamfer Distance (CD) [49] eval-
uates the similarity between two sets of vertices, with lower values 
denoting closer matches. Normal Consistency (NC) [50] assesses the 
agreement of surface normals between the reconstructed model and 
the reference, aiming for a score close to one for an ideal match. The 
Structural Similarity Index (SSIM) [51] and Peak Signal-to-Noise Ratio 
(PSNR) [52] gauge image quality, considering aspects like texture, 
luminance, and contrast, with higher values indicating superior image 
reconstruction. Finally, the Learned Perceptual Image Patch Similarity 
(LPIPS) [53] metric evaluates perceptual similarity between images, 
focusing on high-level visual features significant for human perception, 
where closer matches yield lower scores.

Table  1 presents comparative results based on the X-Avatar dataset. 
Our approach exhibits robust and competitive performance across var-
ious metrics, affirming its efficacy for single-view 3D reconstruction. 
While slightly outperformed in some cases, the differences are minor. 
The slight performance decrement is partly attributed to the use of a 
parametric body model, which, despite offering substantial flexibility, 
may struggle to capture small body or clothing details. Our results do 
not exhibit a pronounced advantage in metrics such as LPIPS, PSNR for 
rendered normals, and SSIM for rendered RGB images primarily due to 
the underlying structure of our model. Our reconstruction relies on a 
parametric model which utilizes less than six percent of the vertices of 
the PIFuHD model. This reduction in vertex density inherently limits 
our model’s capacity to capture extremely fine geometric details, such 
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Table 1
Numerical comparisons of single-view 3D reconstructions on the X-Avatar dataset. Best results are highlighted in bold green and 
second-best in amber. ‘‘Ours subdiv’’ corresponds to using the SMPL-X×4 mesh.
 Method 3D metrics Rendered normals Rendered RGB images Nbr  
 CD ↓ NC ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ IoU ↑ vertices ↓ 
 PIFu [6] 1.16 0.808 0.835 0.142 18.54 0.832 0.144 19.90 0.971 50,000  
 PIFuHD [7] 0.76 0.823 0.857 0.089 21.62 0.912 0.093 21.55 0.984 170,000  
 PHORHUM [5] 2.48 0.75 0.782 0.216 13.96 0.76 0.192 13.67 0.890 100,000  
 ICON [8] 2.98 0.721 0.833 0.125 18.48 0.805 0.143 17.89 0.947 48,000  
 Mallek et al. [9] 0.91 0.803 0.869 0.127 20.75 0.896 0.075 23.23 0.974 10,475  
 Ours 0.91 0.805 0.870 0.125 20.82 0.900 0.073 23.23 0.976 10,475  
 Ours subdiv 0.84 0.807 0.876 0.108 20.74 0.911 0.066 23.03 0.979 41,738  
Table 2
Quantitative comparison on the PeopleSnapshot dataset using rendered RGB 
image metrics. Our method achieves higher fidelity and segmentation quality 
than DINAR.
 Method Rendered RGB images IoU  
 SSIM ↑ LPIPS ↓ PSNR ↑ IoU ↑  
 DINAR [27] 0.947 0.070 26.88 0.871 
 Ours subdiv 0.985 0.029 33.55 0.955 

as hair, and to precisely converge to the complex geometries exem-
plified by PIFuHD. Note that PHORHUM, being specifically trained 
on perspective data, has a weaker performance on our orthographic 
projection setting. To reduce the misalignment between the source 
and the reprojected images, we have applied minor translation and 
scale adjustments before computing the quality metrics to allow for 
a fairer comparison. ICON performs worse than PIFuHD in terms of 
Chamfer distance. In the ICON paper, the experiments use difficult 
poses, effectively highlighting how ICON is significantly better than 
PIFuHD in that context. In contrast, our experiments were conducted 
with frontal images and relatively simple poses, a setting in which 
PIFuHD outperforms ICON, which explains the apparent discrepancy 
in Chamfer distance between our study and that reported in the ICON 
paper. Finally, we can note that our approach, with and without 
subdivision, outperforms the method of Mallek et al. [9] with the only 
exception of PSNR on RGB images. When considering our approach 
without subdivision, the numerical differences to the method of Mallek 
et al. [9] are smaller, mainly because our contribution in the foot 
modeling results in relatively few pixels in the overall image. Note 
that our optimization approach being non-deterministic, the optimized 
avatars slightly differ every time the optimization is computed. The 
results in Table  1 for our approach correspond to the median value 
over 10 optimizations.

We evaluated our approach alongside DINAR on the PeopleSnapshot 
dataset, and the results are shown in Table  2. This dataset consists of 
real-world perspective images, which correspond to the training envi-
ronment of DINAR. Additionally, since DINAR’s rendered outputs do 
not perfectly align with the input images, we further applied cropping 
and scaling adjustments to ensure a fairer comparison. Despite these 
conditions, our method consistently achieves higher fidelity and seg-
mentation quality, demonstrating robustness across both orthographic 
and perspective-based scenarios.

4.2. Qualitative evaluation

Quantitative evaluations do not always align with human percep-
tion. Therefore, we present qualitative results of our approach along-
side the methods of PIFu, PIFuHD, ICON, and PHORHUM on synthetic 
images in Figs.  8 and 9, as well as a comparison on real images in 
Fig.  10. Fig.  8 focuses on comparing input images to rendered images 
from identical viewpoints. Our rendered images closely mirror the 
source images. Conversely, PHORHUM reveals deficiencies in color 
restitution, attributed to their unreliable attempt at estimating scene 
8 
lighting for albedo color reconstruction. Alternative methods, including 
ICON, PIFu, and PIFuHD, exhibit performances comparable to ours, 
with the lower resolution of ICON and PIFu resulting in a slight loss 
of sharpness in the rendered images. Fig.  11 illustrates a comparison of 
foot reconstruction, highlighting the differences between the SMPL-X 
foot topology used in the method of Mallek et al. [9] and our shoe-like 
topology. Fig.  12 highlights the finer details on the clothes that are 
recovered when using the proposed subdivided mesh SMPL-X×4. While 
this subdivision strategy is optional, Table  1 shows that it improves the 
quantitative metric results, increasing the advantage of our proposed 
approach compared to the method of Mallek et al. [9].

We then assess the performance of our approach in generating 
rendered images from new perspectives with the X-Avatar (Fig.  9) and 
PeopleSnapshot (Fig.  10) datasets.

Our approach excels in estimating shape, pose, and colors, out-
performing PIFu and PHORHUM. PHORHUM, in particular, exhibits 
anomalies in color and pose estimation, while PIFu struggles with 
color completion issues, especially near the silhouette of the body. 
Furthermore, our approach benefits from the use of a parametric model, 
enabling the generation of more natural and realistic face and hand 
shapes.

Concluding this evaluation, it is crucial to highlight a distinctive ad-
vantage of our approach: the ability to easily animate the reconstructed 
3D avatars using linear blend skinning. This feature starkly contrasts 
with other methods that do not facilitate such direct animation. Il-
lustrating the animation capability of the proposed approach, Fig.  13 
presents three animations generated from the extensive AMASS dataset 
of human motions [54] showcasing the versatility of our approach.

Animation 1 (Fig.  13(a)) features a series of dance poses. Anima-
tion 2 (Fig.  13(b)) depicts an avatar executing gymnastic poses. Anima-
tion 3 (Fig.  13(c)) demonstrates the capacity of our approach to capture 
and reproduce a range of facial expressions and hand movements.

4.3. Ablation study

In this section, we present an ablation study on the multiple steps 
and optimizations of our model, focusing on geometric and color recon-
struction using the X-Avatar dataset. We conduct a series of tests where 
individual components are removed from our pipeline. Table  3 allows 
us to isolate and understand the impact of each component on the 
overall performance. The last row (Ours) shows that our full pipeline 
has the best and second best values for five out of nine measures, 
demonstrating that it outperforms most of the other configurations. 
Rows labeled ‘‘w/o P2S’’ in Table  3 and the column labeled ‘‘w/o P2S’’ 
in Fig.  14 illustrate the critical role of the point-to-surface loss in Eq.  (9) 
and (11), collecting the worst quantitative metric values. Rows ‘‘w/o 𝐿2
norm hand & face’’ and ‘‘w/o 𝐿2 norm body, hand & face’’ in Table  3 
show that the quantitative measures are better without the 𝐿2 norm, 
but the qualitative results are much worse as can be seen in Fig.  14 
‘‘w/o 𝐿2 norm hand & face’’ (similar qualitative problems occur for 
‘‘w/o 𝐿2 norm body, hand & face’’). The removal of the 𝐿2 norm for the 
hand and face parts in our model increases flexibility in the deformation 
process, allowing for a better coverage of these areas when projected in 
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Fig. 8. Qualitative evaluation of X-Avatar samples (same as input view).
Table 3
Comparison with respect to the ablated components. Best results highlighted in green, second-best in amber, worst in red italics.
 Method 3D metrics Rendered normals Rendered RGB images  
 CD ↓ NC ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ IoU ↑  
 Ours w/o sc Eq.  (6) 0.927 0.802 0.867 0.126 20.67 0.895 0.076 22.89 0.973 
 Ours w/o sc Eq.  (9) 0.910 0.801 0.867 0.127 20.79 0.896 0.076 23.29 0.973 
 Ours w/o P2S Eq.  (9) 1.304 0.768 0.830 0.169 18.47 0.864 0.111 19.41 0.936  
 Ours w/o Chamfer Eq.  (9) 0.916 0.801 0.867 0.126 20.62 0.896 0.076 22.79 0.972 
 Ours w/o regularization Eq.  (10) 0.899 0.795 0.865 0.130 20.57 0.896 0.080 22.87 0.972 
 Ours w/o Laplacian Eq.  (10) 0.920 0.801 0.866 0.126 20.65 0.895 0.076 22.82 0.973 
 Ours w/o normals Eq.  (10) 0.924 0.800 0.868 0.126 20.65 0.896 0.075 22.74 0.973 
 Ours w/o 𝐿2 norm body Eq.  (10) 0.917 0.801 0.866 0.127 20.65 0.895 0.077 22.83 0.972 
 Ours w/o 𝐿2 norm hand & face Eq.  (10) 0.903 0.801 0.869 0.126 20.88 0.900 0.075 23.61 0.975 
 Ours 0.910 0.803 0.869 0.127 20.75 0.896 0.075 23.23 0.974 
image space. However, one can see that the reconstruction of the hands 
in column ‘‘w/o 𝐿2 norm hand & face’’ of Fig.  14 is quite degraded 
compared to our full pipeline. According to Table  3, Eq.  (11) performs 
better in terms of Chamfer distance when ignoring the regularization 
term, but again we can see that the qualitative result is worse than the 
full pipeline (column ‘‘w/o regularization’’ in Fig.  14), with flipped and 
intersecting triangles on the body and hands.

4.4. Discussion

The quantitative and qualitative evaluations confirm the ability of 
our approach to deliver high-quality 3D reconstruction. It validates not 
only the numerical accuracy of our approach but also its robustness and 
flexibility across varied visual and functional scenarios. Our approach 
9 
is reasonably fast, requiring 2 to 4 min of computation to reconstruct 
the pose, shape, and texture of the results presented in this paper. Fig. 
15 presents the relative computation times of a representative example. 
We can see that with the regular SMPL-X mesh, most of the time goes 
toward texture extraction, while with the subdivided SMPL-X mesh, 
most of the computation time goes toward computing the deformation 
vectors. We used a computer with 2 cores at 2.2 GHz, 24 GB of memory 
and an NVidia L4 GPU.

The conducted experiments confirmed fidelity of the resulting mesh. 
Notably, the incorporation of a Laplacian regularization loss signifi-
cantly smoothed the mesh, reducing the irregularities and disconti-
nuities seen in previous methods. Table  4 highlights the distinctions 
between our approach and other methods. 
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Fig. 9. Qualitative evaluation of X-Avatar samples across varied perspectives, distinct from the initial view.
Fig. 10. Qualitative evaluation of PeopleSnapshot samples.
Table 4
Comparison according to several criteria.
 Method Single image input Shape variability Animation Expression Textured Compact representation 
 SMPLify-X 3 7 3 3 7 3  
 Video Avatar 7 3 3 7 3 3  
 PIFuHD 3 3 7 7 7 7  
 PHORHUM 3 3 7 7 3 7  
 Ours 3 3 3 3 3 3  
Our approach, while using a mesh with fewer vertices compared 
to PIFu, PIFuHD, ICON, and PHORHUM (≈ 6% compared to PIFuHD), 
achieves levels of details that are comparable to implicit function-based 
methods, leading to fine-detailed avatars. Unlike the PIFu-based meth-
ods relying on deep learning models like SCANimate for animation, 
our approach uses the SMPL-X model, favoring robust, widely-used 
10 
animation techniques like linear blend skinning. In terms of expressive-
ness, our approach, through the use of SMPL-X, allows for animations 
with a wider range of facial expressions and hand movements, sur-
passing other methods limited to body postures. Our texture process 
also outperforms others, providing avatars with rich and more detailed 
textures.
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(a) SMPL-X foot topology

  
(b) Our foot topology

 

Fig. 11. Comparison of foot reconstruction.
 
(a) w/o subdiv (SMPL-X)

  
(b) with subdiv (SMPL-X×4)

 

Fig. 12. Comparison without and with mesh subdivision.
5. Conclusion

In this paper, we tackled the challenge of generating 3D human 
avatars from a single image. Our approach extends the work of Mallek 
et al. [9]. We are driven by the objective to make these avatars realistic, 
animatable and expressive. By leveraging cutting-edge techniques such 
as PIFuHD, OpenPose, and the SMPL-X model, we have succeeded in 
producing 3D avatars that faithfully replicate the human morphology. 
We utilized PIFuHD to generate an accurate target 3D mesh and relied 
on OpenPose to estimate 2D joints that are subsequently lifted to 
3D. We then fit an SMPL-X model to this target mesh by applying a 
11 
sequence of optimization steps. We started with a rigid registration 
and then refined the shape and pose parameters. We introduced a final 
refinement process by applying a deformation vector to the SMPL-X 
mesh for a more faithful modeling of clothing geometry. Most often, 
avatars are reconstructed from images of people wearing shoes or 
socks. Thus, we modified the SMPL-X mesh topology to reflect that. 
Our modification maintains the same ease of use and animation of 
SMPL-X as we kept the exact same vertices and only changed the mesh 
topology. Furthermore, we demonstrate how to adapt our approach to 
a finer resolution SMPL-X mesh. We also showed that this subdivision 
strategy improves the quantitative metrics. Finally, we incorporated 



F. Mallek et al. Computers & Graphics 133 (2025) 104478 
(a) Animation 1

 
(b) Animation 2

 

 
(c) Animation 3

 

Fig. 13. Presentation of three rendered animations featuring three subjects in diverse body poses and expressions.
Fig. 14. Qualitative ablation.
a phase of texture extraction and completion. We showed that our 
approach outperforms the related work when considering several eval-
uation criteria: reconstructs from a single image, uses a compact mesh, 
models humans wearing tight to loose clothing, produces a plausible 
reconstruction of hands and face, synthesizes a realistic texture, and 
allows easy animation of the avatars. None of the methods we have 
compared to could simultaneously achieve a good performance on all 
of these criteria. 
12 
Overall, the proposed approach represents a significant step toward 
achieving realistic and animatable human avatars, laying the ground-
work for future improvements. While promising, our texture generation 
requires further refinement for enhanced fidelity. Investigating the use 
of diffusion-based models [33,36–39] has the potential to better capture 
the back side of the avatar. While our approach is successful regarding 
certain types of loose clothing, it does not yet support very loose 
garments, like skirts. Investigating other methods [34,35,37–39] which 
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Table 5
Parameter sweep with respect to the learning rate for the rigid optimization phase (Section 3.3.1, Eq.  (3)). Best results are 
highlighted in bold green and second-best in amber.
 Learning rate 3D metrics Rendered normals Rendered RGB images  
 CD ↓ NC ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ IoU ↑  
 1e−2 0.828 0.806 0.877 0.110 20.68 0.911 0.068 22.88 0.978 
 1e−3 0.850 0.806 0.878 0.109 20.76 0.911 0.068 22.97 0.978 
 1e−4 0.850 0.808 0.877 0.110 20.66 0.910 0.066 22.77 0.978 
Table 6
Parameter sweep with respect to the learning rate for the pose optimization phase (Section 3.3.1, Eq.  (6)). Best results are 
highlighted in bold green and second-best in amber.
 Learning rate 3D metrics Rendered normals Rendered RGB images  
 CD ↓ NC ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ IoU ↑  
 1e−3 0.850 0.807 0.877 0.109 20.71 0.911 0.067 22.87 0.978 
 1e−4 0.850 0.806 0.878 0.109 20.76 0.911 0.068 22.97 0.978 
 1e−5 0.850 0.807 0.877 0.110 20.65 0.910 0.068 22.83 0.978 
Table 7
Parameter sweep with respect to the learning rate for the shape optimization phase (Section 3.3.2). Best results are highlighted 
in bold green and second-best in amber.
 Learning rate 3D metrics Rendered normals Rendered RGB images  
 CD ↓ NC ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ IoU ↑  
 1e−1 0.87 0.800 0.871 0.117 20.37 0.905 0.073 22.74 0.973 
 1e−2 0.85 0.806 0.878 0.109 20.76 0.911 0.068 22.97 0.978 
 1e−3 0.88 0.798 0.871 0.116 20.35 0.905 0.073 22.75 0.973 
Table 8
Parameter sweep with respect to the learning rate for the deformation vector optimization phase (Section 3.3.3). Best results are 
highlighted in bold green and second-best in amber.
 Learning rate 3D metrics Rendered normals Rendered RGB images  
 CD ↓ NC ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ IoU ↑  
 1e−3 0.83 0.794 0.856 0.143 18.42 0.897 0.092 19.23 0.966 
 1e−4 0.85 0.806 0.878 0.109 20.76 0.911 0.068 22.97 0.978 
 1e−5 0.85 0.805 0.876 0.111 20.66 0.90 0.069 22.90 0.977 
Fig. 15. Relative computation times for the various steps of our approach, 
Align (Eq.  (3)), Pose (Section 3.3.1), Shape (Section 3.3.2), Deformation 
(Section 3.3.3), and Texture (Section 3.4), as well as for the original vs. 
subdivided SMPL-X mesh.
13 
successfully support loose garments could help in rethinking our use 
of the SMPL-X mesh to allow for different garment topologies while 
preserving the ability to easily animate the resulting avatar. While 
PIFuHD works well for the global shape of the body, its reconstruction 
of the hands is sometimes poor, and our approach suffers from that. 
Investigating better methods for the reconstruction of hands could 
provide significant improvements in that sense.
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Appendix

Tables  5–8 showcase the parameter sweep we conducted to select 
the best learning rates for the different steps of our approach.

Appendix B. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.cag.2025.104478.

Data availability

We will make our code and our improved SMPL mesh topology 
available to the community: https://github.com/ETS-BodyModeling/
ImplicitParametricAvatar.
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