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Proposed cervical model performance 
(trained nnU-Net v.2 3d_fullres) 

Deng et al. 
[8] 

model performance 

Vertebrae 

DICE H95 (mm) 
Test_public 
DICE / H95 

Test_private 
DICE / H95 

Test_VerSe 
DICE / H95 

Cross-val. 
[MIN, MAX] 

Int. val. 
µ ± σ 

Ext. test 
µ ± σ 

Cross-val. 
[MIN, MAX] 

Int. val. 
µ ± σ 

Ext. test 
µ ± σ 

C1 [0.937, 0.952] 0.947 ± 0.018 0.959 ± 0.022 [0.90, 1.22] 1.00 ± 0.28 1.28 ± 0.77 0.951 / 1.55 0.957 / 1.34 0.446 / 1.69 

C2 [0.953, 0.959] 0.959 ± 0.015 0.962 ± 0.041 [0.89, 1.02] 0.99 ± 0.44 1.25 ± 0.88 0.974 / 1.15 0.975 / 1.22 0.923 / 1.20 

C3 [0.929, 0.948] 0.895 ± 0.196 0.943 ± 0.032 [0.94, 1.47] 3.17 ± 7.58 1.74 ± 1.29 0.934 / 8.73 0.945 / 7.55 0.605 / 1.32 

C4 [0.922, 0.944] 0.890 ± 0.192 0.938 ± 0.046 [0.95, 1.48] 1.92 ± 2.76 1.50 ± 0.90 0.946 / 1.90 0.608 / 3.65 0.613 / 0.95 

C5 [0.929, 0.943] 0.903 ± 0.154 0.941 ± 0.036 [0.99, 1.36] 1.80 ± 2.35 1.72 ± 1.29 0.573 / 2.43 0.726 / 3.13 0.231 / 0.95 

C6 [0.872, 0.935] 0.923 ± 0.068 0.943 ± 0.027 [1.12, 3.21] 1.83 ± 2.24 1.42 ± 0.69 0.802 / 4.51 0.824 / 2.38 0.121 / 1.07 

C7 [0.822, 0.952] 0.941 ± 0.025 0.957 ± 0.022 [1.08, 8.96] 1.27 ± 0.84 1.27 ± 0.59 0.930 / 2.18 0.899 / 2.16 0.228 / 4.04 

T1 [0.872, 0.956] 0.953 ± 0.022 0.961 ± 0.089 [1.52, 3.25] 1.10 ± 0.70 1.32 ± 2.56 0.952 / 1.60 0.927 / 2.36 0.623 / 2.53 

[C1, T1] - 0.928 ± 0.111 0.951 ± 0.051 - 1.60 ± 2.99 1.43 ± 1.44 - - - 

[C1, L6] - - - - - - 0.869 / 5.40 0.840 / 6.41 0.619 / 6.23 

Cervical model vs. Full spine model 
(two-sided Mann-Whitney U-tests)  

Vertebrae 

DICE H95 (mm) 

Int. val. 
p-value 

Ext. Test 
p-value 

Int. val. 
p-value 

Ext. Test 
p-value 

C1 0,759 0,188 0,558 0,063 

C2 0,745 0,317 0,655 0,395 

C3 0,503 0,395 0,751 0,211 

C4 0,707 0,138 0,733 0,180 

C5 0,720 0,744 0,669 0,509 

C6 0,660 0,712 0,721 0,424 

C7 0,608 0,873 0,509 0,843 

T1 0,783 0,065 0,441 0,860 

[C1, T1] 0,338 0,379 0,184 0,037 

TRAINING SET 
 

VerSe 19-20 [10, 11]         HNSCC-3DCT-RT [12, 13]          MSDT10-Task03-Liver [13, 14] 
Multi-studies, Multi-scanners, Multi-institutions 

 

172 patients (56 ± 28 y.o., 63 % males) 

TEST SET 
 

TotalSegmentator [15] 
Multi-studies, Multi-scanners, Mono-institution 

 

268 patients (64 ± 15 y.o., 61 % males) 
Cross-validation 
135 (78 % Training) Internal validation 

37 (22 % Training) External test 
268 (1,56 x Training) 

Fold 0 
27 Fold 1 

27 Fold 2 
27 Fold 3 

27 Fold 4 
27   

Fold 0 
27 Fold 1 

27 Fold 2 
27 Fold 3 

27 Fold 4 
27   

Fold 0 
27 Fold 1 

27 Fold 2 
27 Fold 3 

27 Fold 4 
27   

Fold 0 
27 Fold 1 

27 Fold 2 
27 Fold 3 

27 Fold 4 
27   

Fold 0 
27 Fold 1 

27 Fold 2 
27 Fold 3 

27 Fold 4 
27   

The need for automatic segmentation of the spine keeps rising 
[1]

 
 
Patient-based and population-based finite element models of the 
cervical spine used to perform numerical simulations require 
perfectly segmented vertebral geometries from CT-Scans 

[2, 3]
 

 
Various segmentation models already exist, but always exhibit low 
performance on the cervical spine 

[4-8]
 

 
Cervical vertebrae are morphologically different than thoracic and 
lumbar vertebrae, which might explain low local performance 
 
nnU-Net is an adaptive versatile semantic segmentation method 
frequently used in medical images analyses 

[9]
 

Results show better performance results than the literature 
[4-8]

 for both 
the cervical and full-spine models 
 
Both presented models show similar performance results 
 
Unlike ours, models in the literature were trained with unbalanced 
labels

[4-8]
. This might explain why our models both perform similarly, 

but way better than the litterature 
 
Our models were not trained nor tested on a pediatric population, and 
neither on fractured, metastatic or instrumented vertebrae 

INTRODUCTION METHODS 

HYPOTHESIS 

Training a semantic segmentation model specifically on 
the cervical spine segment could lead to better local 
segmentation performance than using a segmentation 
model trained on the full spine 

 
Both approaches will be compared, using nnU-Net v.2 trained on 
publicly available datasets 

CONCLUSION 

RESULTS: SPECIFIC EXAMPLES AND GLOBAL PERFORMANCE 
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The content of this conference poster was presenting the following paper: L. Diotalevi, P. Léger, M. -H. Beauséjour, J. -M. Mac-Thiong and Y. Petit, "Trained nnU-Net model for semantic segmentation of human adult cervical vertebrae 
from CT-Scans," 2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Copenhagen, Denmark, 2025, pp. 1-7, doi: 10.1109/EMBC58623.2025.11253480.  
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