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 A B S T R A C T

We propose an approach to synthesize textures for the animated free surfaces of fluids. Because fluids deform 
and experience topological changes, it is challenging to maintain fidelity to a reference texture exemplar 
while avoiding visual artifacts such as distortion and discontinuities. We introduce an adaptive multiresolution 
synthesis approach that balances fidelity to the exemplar and consistency with the fluid motion. Given a 2D 
exemplar texture, an orientation field from the first frame, an animated velocity field, and polygonal meshes 
corresponding to the animated liquid, our approach advects the texture and the orientation field across frames, 
yielding a coherent sequence of textures conforming to the per-frame geometry. Our adaptiveness relies on 
local 2D and 3D distortion measures, which guide multiresolution decisions to resynthesize or preserve the 
advected content. We prevent popping artifacts by enforcing gradual changes in color over time. Our approach 
works well both on slow-moving liquids and on turbulent ones with splashes. In addition, we demonstrate good 
performance on a variety of stationary texture exemplars.
1. Introduction

Exemplar-based texture synthesis is a longstanding research topic 
in computer graphics. The goal is to synthesize an output texture that 
resembles an input texture exemplar without being an exact duplicate. 
The film and game industries often need textures for visual effects, 
and they require methods that can synthesize large textures from a 
small exemplar. At the same time, simulated fluids are often used for 
visual effects, and while texturing the surfaces of these fluids is of 
great interest, doing so is challenging. Texture synthesis on the surface 
of fluids requires special attention to ensure that the patterns do not 
exhibit too much distortion or discontinuity and to reduce temporally 
incoherent texture motion. Furthermore, splashes result in topological 
changes to the surface, amplifying concerns related to distortions and 
discontinuities of the texture.

Most texture synthesis methods generate 2D planar textures, which 
cannot be applied to surfaces without introducing discontinuities or 
distortions. Some texture synthesis methods allow the creation of a 
texture on a static 3D surface. Many such methods synthesize the 
texture colors on the vertices of the mesh, which improperly couples the 
geometric and texture resolution. Other methods flatten the 3D surface 
into a texture atlas before conducting the texture synthesis, allowing 
independent mesh and texture resolutions. Only a few methods allow 
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the synthesis of textures on the animated free surface of a fluid. These 
methods suffer from a variety of problems such as exhibiting stiff 
texture patterns, producing ghosting of the patterns from the exemplar, 
and displaying objectionable discontinuities throughout the animation.

In this work, we present a new approach (Fig.  1) for texturing fluids 
that aims to preserve fidelity to a texture exemplar, maintain temporal 
coherence, reduce distortions, and favor the continuity of the patterns, 
even during complex deformations and topological changes. Our ap-
proach requires as input a texture exemplar (we expect a stationary 
texture), an animation (velocity field together with sequence of meshes, 
obtained from a typical off-the-shelf simulator), and an orientation field 
on the first frame. An existing appearance-space method synthesizes 
the texture for the first frame. For subsequent frames, the velocity field 
advects the texture from frame to frame in 3D and in per-frame 2D atlas 
parameterizations; these are used to condition the synthesis to favor 
temporally consistent features.

Strict advection of the texture quickly results in heavily distorted 
features which diverge from the look of the exemplar, even if
appearance-space texture corrections are applied to the texture. To 
address this, from the advected texture, we create a multiresolution ad-
vection pyramid, used together with a multiresolution synthesis pyramid
which will contain the newly synthesized texture. One might imagine 
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Fig. 1.  Our synthesis process. Inputs: (a) texture exemplar, (b) 3D mesh together with an orientation field, (c) animated frames with velocity field. (d) We 
synthesize an animated texture which can be used in off-the-shelf 3D software.
initializing the coarsest level of the synthesis pyramid from the coarsest 
level of the advection pyramid, and then creating higher-resolution 
levels by only upsampling and conducting appearance-space texture 
correction. While this strategy produces good-quality textures that are 
faithful to the exemplar, the temporal continuity is very poor.

We thus introduce multiresolution per-texel decision criteria to set 
each synthesized texel either from the same-level advection pyramid 
(more faithful to the advected texture) or from upsampling the coarser 
synthesis pyramid level (more faithful to the texture exemplar). Our 
criteria to decide between the advection and synthesis pyramid are 
based on detecting stretching both in 2D and in 3D. Our approach also 
prevents frame-to-frame sudden and drastic changes in color (popping 
artifacts) by replacing them with gradual changes in color over a few 
frames.

Our final animated liquids show that our approach is successful in 
promoting textures faithful to the exemplar while encouraging tem-
poral consistency, even in the presence of severe disruptions to the 
surface such as splashes. The paper contains numerous examples of 
animated fluids with various textures, including both arbitrary textures 
and plausible textures such as foam. Our main contributions can be 
summarized as follows:

• Identification of locally distorted texels based on 2D and 3D 
features;

• Adaptive multiresolution texture synthesis approach with advec-
tion and synthesis pyramids;

• Advection of the texture and orientation field adapted to the 
appearance-space synthesis and texture atlases;

• Interpolation, extrapolation, and downsampling of the UV coor-
dinates used in the appearance-space synthesis;

• Mechanism for gradual change in color to prevent popping arti-
facts.

2. Related work

Our review concentrates on exemplar-based texture synthesis meth-
ods. Such methods take as input an exemplar texture and synthesize a 
new output texture that is visually the same as the exemplar. Additional 
information about the texture synthesis area can be found in the survey 
by Wei et al. [1].

Pixel-based methods synthesize the output texture on a pixel-by-
pixel basis. Efros and Leung [2] pioneered this method, using a best-
match search to find a neighborhood in the exemplar similar to the 
neighborhood in the output. Wei and Levoy [3] accelerated the search 
with a specialized data structure and later used the same technique 
to synthesize colors on 3D meshes [4]. While this is closer to what 
we want to achieve, they synthesize the colors on the vertices of the 
mesh which links the resolutions of the mesh and the texture. This 
2 
limits flexibility and makes it more complicated to generate high-
resolution textures for lower-resolution meshes. Lefebvre and Hoppe 
[5] synthesize textures by working on the UV coordinates of the ex-
emplar instead of RGB colors; this work was later extended [6] to 3D 
objects by parameterizing the surface to a 2D atlas where the synthesis 
is conducted. Appearance-space texture synthesis [6] introduced com-
pressed search windows and drastically reduced synthesis time. It also 
support 2D advection of the texture through a surface velocity field. 
While this is going in the direction of our work, it keeps the same 
atlas throughout the whole animation and as such does not support 
surfaces that evolve through time, like liquids. Another drawback of 
the work of Lefebvre and Hoppe [6] is its long precomputation times; 
subsequent methods [7,8] replace the offline precomputation step with 
an online random walk search that is equally effective, greatly reducing 
precomputation. Our approach uses the appearance-space compression 
and atlas of Lefebvre and Hoppe [6] together with the random walk 
search of Busto et al. [8]. We provide a significant extension to the 
method of Lefebvre and Hoppe [6] which is limited to static meshes.

Texture optimization methods [9–11] optimize to find a set of 
overlapping windows of texels from the exemplar. Optimization was 
also used to synthesize texture based on a 2D orientation field [12]. 
On structured exemplars, such methods perform remarkably well. How-
ever, as noted by Jamriška et al. [13], applying them to more stochastic 
textures tends to produce wash-out, where detail is lost in regions of 
the output texture. Jamriška et al. [13] reduce wash-out by preventing 
excessive reuse of the same window of texels from the exemplar. 
Despite these improvements, most optimization methods [9–12] are 
limited to synthesizing static 2D textures. While the method of Jamriška 
et al. [13] can synthesize animated textures, the textures remain 2D and 
cannot be applied to dynamic surfaces.

Solid texture synthesis generates textures over entire volumes, 
avoiding reliance on surface parameterizations and UV mapping. Such 
methods are expensive to execute and solid textures are costly to 
store, as the texel count increases as the cube of the spatial resolution. 
Kopf et al. [14] introduced a method for generating 3D solid textures 
from 2D images. It combines non-parametric texture optimization with 
histogram matching. To improve synthesis speed, Dong et al. [15] 
proposed a method that takes advantage of the GPU. Chen et al. 
[16] proposed a method based on tiling, deformation, and resampling 
techniques, capable of working in real-time. Takayama et al. [17] 
synthesized local volumetric patches with partial overlap, producing 
visually coherent solid textures with sharp features and smooth color 
variations. While solid texture methods can synthesize volumetric 
textures and bypass the need for surface parameterization, challenges 
remain for dynamic or animated surfaces. In order to obtain plausible 
animated textures, the solid texture contents would need to be advected 
by the surface motion, a task not considered by the preceding methods. 
Advecting full 3D data would be computationally expensive compared 
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to advecting a 2D atlas, and furthermore, no practical solution currently 
exists for temporal coherence in this setting.

Texture synthesis with Convolutional Neural Networks (CNN) [18] 
and Generative Adversarial Networks (GANs) [19] can generate a great 
variety of textures through the generative capabilities of deep neural 
networks. Relying extensively on image convolutions, these synthesis 
methods work very well to output rectangular 2D images. In the case 
of synthesis on 3D surfaces, the continuity, regularity, and grid-type 
layout between adjacent texels, required by the convolution kernels, is 
not present. The work of Kovács et al. [20] partly solves the problem 
by defining CNN operations on meshes, then minimizing the distances 
of VGG-19 features measured over the mesh and the examplar. The 
process is slow (around 50 min for a 1024 × 1024 output) and produces 
blurry patch seams related to overlapping CNN footprints. Instead of us-
ing CNNs, the method of Hu et al. [21] uses diffusion-based inpainting. 
It is successful at allowing users to paint a texture on a 3D mesh. One 
drawback of the methods of Hu et al. [21] and Kovács et al. [20] is that 
they rely on resampling (from the CNN footprint or camera-space 2D 
diffusion) onto a 2D atlas which introduces a certain level of blurring. 
Similarly, while methods employing latent diffusion models for texture 
synthesis look promising [22,23], such methods generate 2D images 
and are remapped onto the mesh; many images must be generated from 
different views so as to fully cover the mesh. An alternative proposed by 
Mitchel et al. [24] synthesizes texture directly on a mesh; synthesized 
texture quality is good, although expensive per-texture training is a 
concern. None of these methods have so far been applied to animated 
meshes, and temporal coherence and fidelity to the surface motion will 
pose formidable obstacles to adopting methods based on deep neural 
networks for texturing fluids.
Texturing Liquids. Currently, few methods can address texture synthe-
sis over the evolving surface of simulated liquids. The method of Neyret 
[25] advects a texture, but is limited to 2D advection. In a similar way, 
the methods of Lefebvre and Hoppe [6], Yu et al. [26], and Jamriška 
et al. [13] support 2D advection, but they are not directly applicable 
to the problem of texturing 3D fluids. Methods like those of Bargteil 
et al. [27], Kwatra et al. [28], and Narain et al. [29] are able to 
texture the free surface of fluids. However, they store colors per-vertex 
directly on the mesh, interlinking the mesh and texture resolutions, 
which is far from convenient. Since these three methods are extensions 
of the texture optimization method of Kwatra et al. [9], they also suffer 
from wash-out with some textures. Yet other methods [30–32] texture 
liquids by performing a patch-based texture synthesis. These patch-
based methods present issues like stiff texture patterns [30], visible 
color discontinuities between patches [32], and ghosting [31]. While 
these methods [30–32] rely on a texture atlas like ours, rendering to 
the atlas from the patches is a time-consuming process.
Appearance-space texture synthesis.  Since our approach extends 
the method of Lefebvre and Hoppe [6], we will describe that method 
in more detail. Their method parameterizes 3D meshes to 2D atlases 
where the output texture texels will be computed. Instead of working 
with texture colors, the method uses 8D appearance-space vectors; 
instead of storing such 8D vectors in the output texture directly, it 
stores UV coordinates linking back to the compressed exemplar.

Lefebvre and Hoppe use texture pyramids for both the exemplar and 
the output texture to apply a hierarchical synthesis. After initializing 
the coordinates at the coarsest level of the output pyramid, the method 
starts at the next finer level of the output pyramid by upsampling from 
the coarser level. The upsampling step generates the intermediate UV 
coordinates necessary to cover the same UV range as the coarser texel 
did (and also accounting for an orientation field through its Jacobian; 
see the paper [6] for additional details). After the upsampling step, 
two successive passes of best-match search are performed to refine the 
UV coordinates at the current resolution level. For each output texel, 
the exemplar UV coordinates are used to retrieve their corresponding 
8D appearance-space vectors. The best match is the one with least 𝐿
2

3 
distance on the 8D appearance-space vectors. The UV coordinates of 
the best match from the exemplar are then written to the output texel. 
The method processes the other levels in the same fashion, proceeding 
coarse to fine. After computing all best-match searches of all levels, the 
output texture is populated by converting the UV coordinates to RGB 
colors.

3. Texture synthesis on fluids

We aim to texture the deforming surface of a 3D fluid animation, 
based on a 2D texture exemplar. The novel texture should be faithful 
to the exemplar, despite synthesizing it on a curved 3D surface; this 
implies reducing spatial discontinuities as well as spatial stretching and 
compression of the patterns. Furthermore, the texture evolves tempo-
rally which often produces popping. To address these challenges, we 
introduce a new adaptive, multiresolution texture synthesis approach.

The main inputs to our approach are the texture exemplar, the 
animated fluid provided in the form of per-frame meshes and velocity 
field (which are easy to obtain from typical fluid simulation software), 
and a 3D orientation field for the first frame (used to orient the texture 
features). The output of our approach consists of a set of per-frame 2D 
textures, each parameterized to the corresponding per-frame mesh.

On the first frame, we synthesize a texture over the mesh with the 
method of Lefebvre and Hoppe [6] which synthesizes UV coordinates 
that index back to the exemplar. This initial texture closely resembles 
the exemplar; no complications due to fluid motion have yet influenced 
the texture appearance.

At each subsequent frame, we execute multiple steps to synthesize 
that frame’s 2D texture. First, we advect both the texture and the orien-
tation field from the previous frame using the provided velocity field. 
A multiresolution advection pyramid is populated by downsampling the 
advected texture from fine to coarse (Section 3.3) up to the number of 
levels in the exemplar, log2(𝑤) where 𝑤 is the exemplar width in texels. 
As we typically synthesize at a resolution higher than the exemplar, 
the advection pyramid is truncated at log2(𝑤) levels. The advection 
pyramid contains texture that can be used at the current frame, but 
may contain deficiencies such as stretching, which the remainder of 
our synthesis process strives to address.

We copy the coarsest level of the advection pyramid to the coarsest 
level of a multiresolution synthesis pyramid. The synthesis pyramid, is 
the same size and shape as the advection pyramid; once complete, it 
contains the output texture in its finest-scale level. Following initial-
ization, we iterate over the synthesis pyramid, level by level, from 
coarse to fine (Section 3.5). We detect stretched areas (see Section 3.4) 
and wherever there is stretching, we use freshly synthesized data from 
the coarser synthesis pyramid level (faithful to the exemplar, but with 
weaker temporal coherence); in areas that are not stretched, we use 
data from the same level of the advection pyramid (good temporal 
consistency and good fidelity to the exemplar because stretching was 
absent). Before iterating to the next level, we run a window-based 
best-match method with the exemplar to improve texture quality.

After the synthesis pyramid is fully populated, we conduct an ad-
ditional step to prevent popping artifacts (Section 3.6), as follows. We 
detect when a synthesized texel has a significantly different color from 
the previous frame, and eliminate the potential popping by gradually 
interpolating between the previous color and the synthesized color. Fig. 
2 and algorithm 1 summarize the steps of our approach.

3.1. First frame synthesis

At the first frame, we synthesize the texture using an existing 
appearance-space texture synthesis method [6]. This multiresolution 
method synthesizes UV coordinates that index into the exemplar. We 
later convert these coordinates to colors to get the final texture, and the 
final animations will be rendered with typical off-the-shelf 3D software.
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Fig. 2. Pipeline of our approach. The synthesized UV coordinates are mapped to the red and green channels for depiction (boxes corresponding to advection and 
synthesis).
Texture synthesis [6] for frame1 in synthesis_pyramid(level𝑚);
// Pyramid levels: m is finest, 0 is coarsest
foreach frame𝑖, 𝑖 ∈ 2,… , 𝑛 do

// advection pyramid
Advect synthesis_pyramid(level𝑚, frame𝑖−1) texels to 
advection_pyramid(level𝑚, frame𝑖) foreach
level𝑗 , 𝑗 ∈ 𝑚,… , 1 do // fine to coarse
Downsample level𝑗 to level𝑗−1;

// synthesis pyramid
Copy advection_pyramid(level0) to synthesis_pyramid(level0) ;
foreach level𝑗 , 𝑗 ∈ 1,… , 𝑚 do // coarse to fine

foreach element ∈ level𝑗 do
if there is stretching at element then

Set synthesis_pyramid(level𝑗 , element) by 
upsampling from synthesis_pyramid(level𝑗−1, 
element) ;

else
Copy advection_pyramid(level𝑗 , element) to 
synthesis_pyramid(level𝑗 , element);

Apply best-match search correction on 
synthesis_pyramid(level𝑗) ;

Convert UV coordinates from synthesis_pyramid(level𝑗) to 
colors ;

Algorithm 1: Overview of our approach.

3.2. Surface parameterization

The objective of the surface parameterization is to obtain a 2D 
space in which to conduct our appearance-space texture synthesis. For 
every frame, we parameterize the 3D surface to a 2D atlas using the 
method of Sheffer et al. [33]. The atlas is created independently at each 
frame, i.e., there is no relationship between atlases at different frames. 
While independent atlas creation simplifies atlas creation and imposes 
no constraints on the simulation or meshes, it complicates tracking 
texels between frames. We track texel positions by transforming 2D 
atlas positions to 3D spatial positions; this is further discussed in the 
next subsection.

3.3. Advection

For a given frame, we advect texture from the previous frame, 
ultimately producing an animated texture following the fluid motion. 
However, although the textures are stored in 2D atlases, the fluid ve-
locity field is given in 3D (at vertex positions, in our implementation). 
We therefore need a process to transfer the 2D texture coordinate to 
4 
Fig. 3. UV coordinates of a current frame 𝑖 are computed by backtracking to 
the previous frame based on the velocity field.

3D and back. The process is described in this section and illustrated in 
Fig.  3.

For each texel, we first convert its 2D position to a 3D point 𝐩 using 
barycentric coordinates (𝑤1, 𝑤2, 𝑤3) within the 2D triangle containing 
the texel. We interpolate the velocity from the 3D triangle’s vertex 
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Fig. 4. Advection of the orientation field by backtracking to the position on the previous frame. 
velocities 𝐯1, 𝐯2, 𝐯3 using barycentric interpolation:
𝐯 = 𝑤1𝐯1 +𝑤2𝐯2 +𝑤3𝐯3.

Next, we advect the 3D point 𝐩 backwards with the time interval 𝛥𝑡
between two frames:
𝐩′ = 𝐩 − 𝛥𝑡 ⋅ 𝐯.

The backtracked point 𝐩′ is projected onto the closest triangle of the 
previous 3D mesh. We then compute the barycentric coordinates of this 
projected 3D point and apply them to the corresponding 2D triangle to 
retrieve the texel position in the previous frame’s atlas.

The obtained position will usually not align exactly with the center 
of a texel in the atlas. The advected texture value is therefore deter-
mined by interpolating from the texels around the position; details are 
found in Section 3.7. After we are finished populating the finest level 
of the pyramid through advection, we downsample to coarser levels.

Akin to the method of Lefebvre and Hoppe [6], our approach uses 
an orientation field to control the direction of the texture features. 
The user provides a 3D orientation field over the surface at the first 
frame, with an orientation vector at each mesh vertex. Unlike Lefebvre 
and Hoppe [6], we need to deal with the advection of that orientation 
field throughout the animation. We use the method of Kwatra et al. 
[28] to advect the orientation field from the past frame to the current 
frame. Doing so means backtracking from each 3D vertex in the current 
frame to a 3D position on the 3D mesh of the past frame, using the 
inverse velocity of the current frame. From that position, we obtain 
the orientation of the closest vertex.

Having obtained the past frame’s orientation, we are not finished: 
the previous orientation also needs to be rotated by the velocity field. 
We follow the strategy of Kwatra et al. [28], anchoring the orientation 
vector to the current frame vertex, and separately advecting the head of 
the orientation vector. The head is set at a distance 𝑑 from the current 
frame vertex in the direction of the past frame orientation, where 𝑑
is half the average length of the edges incident on the current frame 
vertex. We use the closest position to the head on the current-frame 
mesh to determine what velocity to apply to the head.

We do a barycentric interpolation of the velocity, advect the head 
using that interpolated velocity, and project it to the closest position on 
the current frame mesh. From the projected, advected head we compute 
the new orientation vector, which is the displacement from the current 
frame vertex to the newly computed head. The full advection process 
is illustrated in Fig.  4.

As we aim to have an orientation field with as few discontinuities 
as possible, we complete the orientation field update with a smooth-
ing step [28]. Smoothing is particularly important when there are 
topological changes in the surface (e.g., splashes).

3.4. Stretching detection

When surfaces deform and experience significant topological
changes, advection can generate textures with visible artifacts. Texture 
stretching, as depicted in Fig.  5, is a prominent and disturbing visual 
5 
Fig. 5.  Advected texture after a single frame of animation compared to 
the result after our synthesis approach. Left: Without synthesis, the texture 
becomes severely stretched, even after a single frame. Right: Our approach 
detects stretched regions and synthesizes new texture there.

artifact produced by advection. Unlike other minor defects, stretch-
ing cannot directly be repaired by best-match search correction; we 
therefore propose a specific approach to addressing it. We detect local 
stretching using two complementary criteria: the 3D displacement rela-
tive to neighboring texels in the previous frame, and the UV coordinate 
distance to neighbors in the current frame.

The 3D stretching criterion is calculated for each texel at the finest 
resolution. We first find the position of each texel in 3D space by 
computing its barycentric coordinates within the corresponding tri-
angle of the surface mesh. We then backtrack this position to the 
previous frame using the velocity field. For each texel, we evaluate 
the Euclidean distances to its neighboring texels in 3D space at their 
previous positions. The minimum of these distances is compared against 
a threshold 𝜏3𝐷. If this distance is below the threshold, the texel is 
marked as stretching. A small distance in the previous frame indicates 
positions that were close together in the previous frame which have 
become far apart in the current frame, introducing stretching. We use 
the minimum distance as stretching is often anisotropic.

The UV coordinate distance criterion is also computed per texel 
at the finest resolution. Considering the UV coordinates stored in the 
advection pyramid, we determine the distances between the stored UV 
coordinates of a texel and the stored UV coordinates in its immediate 
neighbors. Then, we select the smallest UV distance and compare it 
against a threshold 𝜏𝑈𝑉 . Small UV distances mean that the details will 
appear stretched, and here too we take the minimum as the stretching 
can be anisotropic. Texels with distances below the threshold are 
marked as stretching. Texels considered as either 3D or UV stretching 
are considered as stretching during the synthesis step.
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3.5. Synthesis pyramid

The advection pyramid contains the advected texture at multiple 
levels of resolution. We will now populate the synthesis pyramid from 
coarse to fine, leading to the synthesized texture coordinates at its finest 
level. Our goal is to get a good compromise between the advected 
texture data from the advection pyramid (to promote temporal coher-
ence) and synthesizing coarse to fine without considering the advected 
texture data (for better fidelity to the exemplar).

With an animated liquid, the variable surface area can cause the 
texture features to become stretched and compressed. Compressed 
features require no special treatment: a best-match search method 
will automatically repair compressed areas, even working at a single 
level of resolution, since the support of the search window is larger 
than the size of the shrunken details. However, stretched features still 
pose a problem. When the surface stretches, the support of the search 
window is small compared to the texture feature size, and the best-
match process at the finest level cannot recover the missing larger-scale 
features.

Conversely, we could conduct a synthesis solely from the coarsest 
level of the advection pyramid. This would have a severe downside: 
temporal continuity would be lost (see accompanying video) since 
the coarsest level of a downsampled advected texture does not re-
tain enough of the advected features. This is nearly equivalent to 
resynthesizing the texture independently at every frame.

We thus designed an adaptive multiresolution approach that de-
cides, for each texel of each level of the synthesis pyramid, whether 
the texel should get its value from upsampling the partially synthesized 
coarser level synthesis pyramid or from the corresponding texel in the 
advection pyramid. We initialize the coarsest level of the synthesis 
pyramid with the coarsest level of the advection pyramid, and conduct 
two rounds of coherence best-match search. For the next levels from 
coarse to fine, we decide, on a per-texel basis, if the synthesis gets 
its value by upsampling from the coarser synthesis pyramid level or 
from the same level advection pyramid. For each synthesis texel, if 
all texels in the corresponding window at the finest resolution level 
are marked as stretching, the texel coordinates are obtained through 
upsampling from the coarser level of the synthesis pyramid. Otherwise, 
the advection pyramid at the same level provides the coordinates, 
favoring temporal continuity. After populating all texel values at a 
given level, we conduct two rounds of texture correction with best-
match search through a coherence random walk best-match search [8] 
based on PCA compressed exemplar features [6].

3.6. Popping reduction

Our synthesis process so far is effective, but when the liquid is 
slowly deforming, occasional local popping artifacts can occur, where 
there is a sudden and quite noticeable local change in color from one 
frame to the next. Popping prevention is a balance between remaining 
faithful to the exemplar and maintaining temporal continuity. Since the 
surface deforms, it is inevitable that we will need to introduce new 
patterns and it is not always possible to introduce them slowly while 
remaining faithful to the exemplar.

In our approach, we compute the 3D velocity of each texel and 
compare it to a user-specified velocity threshold (adjusted for a given 
simulation scenario). Only texels with a velocity slower than the thresh-
old will be considered for our popping reduction. At faster velocity, 
many changes typically need to happen, and they are hardly noticeable. 
Furthermore, the popping reduction is restricted to the texels where 
there is UV stretching. The rationale behind this is that the UV stretch-
ing is often linked to modifications in the texture to introduce new 
patterns which will reduce the stretching. For exemplars with large 
color differences, this can lead to the sudden color changes that we 
want to avoid.
6 
We detect abrupt popping by measuring the distance between the 
RGB color resulting from advection and the RGB color obtained from 
the best match. If the distance exceeds a threshold 𝜏pop, we want 
to transition between the advected color and the best-match color 
over a number of frames (5 in our examples). For such texels, we 
store advected and best-match colors. The detection could occur on an 
already transitioning texels, in which case the stored colors are reset, as 
well as the transition counter. Note that popping detection is computed 
only at the finest resolution of the synthesis pyramid. For texels where 
a color transition is active, we replace the best match coordinates of the 
first round of correction with those of a transition color, computed by 
linearly interpolating between the stored advection and the best-match 
colors.

For a typical scenario, the size of the connected components of 
neighboring texels undergoing the popping reduction transition is 
small. For the more than 37k components detected on a frame-by-
frame basis over the 240 frames of a representative animation, only 30 
were of size 100 texels or more. This means that the regions are small 
and infrequent, making our approach immune to the ghosting artifacts 
found in other methods. Furthermore, the identification of popping 
occurs on a per-texel basis. This is another strength of the approach: 
the affected regions change over time (e.g., can grow or shrink by a 
few texels on a frame-by-frame basis), making them hard to identify 
and follow and hence unlikely to be perceived as spurious structures.

Because we store UV coordinates in the synthesis pyramid, we need 
to identify UV coordinates of an exemplar color close to the transition 
color. We search among exemplar texels until we find UV coordinates 
close to the transition color. In our implementation, for efficiency 
considerations, we search until we find a color with a distance to the 
transition color that is below a threshold 𝜏interp. Given this transition 
color, we gradually bring the synthesized color closer to the stored best-
match color as we progress from frame to frame. When moving to the 
next frame, the stored advection and best-match colors are advected 
in a similar fashion to the UV advection (Section 3.3), but snapping to 
the closest texel in the previous frame, to avoid having the transition 
region grow every frame.

3.7. Implementation considerations

Surface parameterization. The area of the free surface of animated 
fluids often significantly expands and contracts as waves and splashes 
form and then reintegrate into the bulk of the liquid. Because we 
conduct the synthesis in atlas space (Section 3.2), we need to account 
for distortions in the fluid surface. We aim to ensure that the ratio of 
surface area remains constant between 3D and 2D atlas space. Frame to 
frame, we scale the 2D atlas surface to maintain the same 3D/2D ratio 
throughout the animation.

Interpolating UV coordinates. Advection requires us to fetch the 
UV coordinates from the past frame (Section 3.3). Simply snapping 
from the position toward the closest atlas texel introduces severe alias-
ing, potentially manifesting as a discordant vibrating appearance when 
the texture is animated. To minimize aliasing, we conduct interpola-
tion, but care must be taken since we are interpolating UV coordinates 
instead of colors. Fig.  6 shows the variation of UV coordinates in a 
typical atlas; U and V are respectively mapped to the red and green 
channels. Note the patches with smooth variation of coordinates, and 
also discontinuities at the boundaries of these patches. Interpolating 
UV coordinates across patch discontinuities would lead to interpolated 
coordinates spatially far away from each other in the exemplar, and 
consequently unrelated. Accordingly, the straightforward bilinear in-
terpolation only makes sense in regions of smooth variation of UV 
coordinates. At patch boundaries, a different strategy is required. Given 
the four texels surrounding the position in the atlas, we select the 
closest one and retain only those of the remaining three whose stored 
UV distance to it is less than 5% of the UV extent. We are left with one, 
two, three, or four texels, and depending on the number, we choose a 
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Fig. 6. A typical atlas with what we refer to as charts (separate parts of the 
mesh flattened to 2D) and patches (contiguous group of texels with smoothly 
varying UV coordinates).

different interpolation strategy. When four texels remain, bilinear inter-
polation is used; when three texels remain, barycentric interpolation 
is applied. If only one or two texels remain, we extrapolate the UV 
coordinates of the closest texel based on the difference between the 
position in the atlas and the center of the texel. This difference leads 
to a vector which is then interpreted relative to the Jacobian of the 
orientation field. We add the UV coordinate stored in the closest texel 
to that vector to get the UV coordinate to copy to the current frame 
texel.

Downsampling UV coordinates. A problem similar to UV inter-
polation is that of downsampling the stored UV coordinates in the 
advection pyramid. Simply averaging the four UV values only works 
if all texels are in the same patch. Instead of averaging, we pick the 
top-left texel and add a UV vector corresponding to moving from the 
top-left texel center to the central position of the four texels accounting 
for the Jacobian of the orientation field. For patches that properly 
account for the orientation field, this is equivalent to computing the 
average of the UV values. Moreover, this strategy is robust to cases 
where the four texels are not in the same patch.

Thresholds for stretching detection. The thresholds in Section 3.4 
are computed from user-specified ratios. Threshold 𝜏3𝐷 is defined from 
a user-specified ratio (varying within [0.8, 0.95] in our experiments) 
multiplied by the mean 3D distance to neighboring texels in the syn-
thesized first frame. Threshold 𝜏𝑈𝑉  is defined from a user-specified 
UV stretching ratio (varying within [0.3, 0.5] in our experiments) mul-
tiplied by the mean exemplar UV coordinate distance between each 
synthesized texel and its neighbors in the first frame.

Orientation in 2D. When doing the coherence random walk best-
match search [8] in Section 3.5, we need to convert the 3D surface 
orientation into per texel 2D orientation, done as follows. For each 
texel, we get its corresponding position in 3D, interpolate the orienta-
tion from the vertices of the corresponding triangle (by barycentric in-
terpolation) and convert the 3D orientation to 2D through the Jacobian 
matrix corresponding to the surface parameterization.

Best match in atlas space. Some care must be taken when doing 
the best-match search for a texel at the boundary of a chart (see Fig. 
6) in the atlas. As the neighbor texels are in a different chart, it is 
necessary to figure out where in the other chart to fetch the proper 
UV coordinate. Knowing that an edge at the boundary of the 2D charts 
corresponds to a 3D edge shared by two triangles, we identify the 
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neighbor 3D and 2D triangle and the related neighbor chart in the atlas. 
We index on the other side of the 2D edge (in the other chart) at the 
corresponding location.

Popping prevention. The threshold 𝜏pop to detect abrupt changes 
in color (Section 3.6) is defined through a user-defined ratio (varying 
within [0.2, 0.5]) converted to an RGB distance threshold by multiplying 
it by the maximum distance between any RGB color in the exemplar. 
The threshold 𝜏interp, used to determine whether we found an exemplar 
color close enough to the interpolation color, is derived from a user-
defined ratio (varying within [0.02, 0.1]) which is also converted to an 
RGB distance by multiplying it by the maximum distance between any 
two RGB colors in the exemplar.

4. Results

We tested our texture synthesis approach with different fluid simula-
tion scenarios and multiple texture exemplars. The test cases encompass 
a range of behaviors, including both viscous and inviscid flows, with 
and without splashes. Fig.  7 shows representative frames. In the first 
scenario (sphere), a spherical volume of fluid falls into a non-viscous 
liquid, creating significant splashes and rapid surface motion. This sce-
nario tests our approach’s ability to handle sudden topological changes 
and large deformations. In the second scenario (double dam break), 
we simulate a double dam break in which two blocks of fluid col-
lapse under gravity, producing complex surface flows and numerous 
splashes. This test evaluates the temporal coherence and stability of 
our approach under complex motion. In the third scenario (viscous 
drop), a viscous fluid falls and deforms slowly on an object and the 
ground, with no splashes. This test demonstrates the ability of our 
approach to work under smooth and gradual deformation. Finally, for 
the fourth scenario (viscous dam break), the flow evolves more slowly, 
without abrupt changes or fragmentation, emphasizing temporal con-
sistency in more stable simulations. Our selection of exemplars includes 
textures corresponding to real-world scenarios (lava, foam), textures 
commonly used in texture synthesis (purple cells, green cells, hooks), 
and structured textures (keyboard, bricks). In all cases, we can see that 
our approach encourages results with texture patterns faithful to the 
exemplar and promotes temporal coherence throughout the animation. 
Full animations of these results can be seen in the accompanying video 
and demonstrate good temporal continuity of the texture patterns.

4.1. Comparison with existing methods

We compared our approach against relevant previous methods: 
those which generate textures on the free surface of dynamic fluids. 
Fig.  8 and the accompanying video show the comparison between our 
approach and the methods of Kwatra et al. [28] and Gagnon et al. [31]. 
We can see that our texture colors are more faithful to the exemplar 
than those produced by the method of Kwatra et al. [28]. The method 
of Gagnon et al. [31] produces artifacts such as ghosting and double 
contours, which are not present in our results. Overall, our approach is 
free from these issues and generates more coherent texture animations.

In addition, we evaluated our approach against the method of
Gagnon et al. [30], which synthesizes textures using patches. As shown 
in Fig.  9, even when small patches are used, the contour of the patches 
is quite perceptible and introduces sharp edges not found in the ex-
emplar. This issue becomes more pronounced when larger patches are 
used, resulting in even more noticeable discontinuities. In contrast, 
our approach performs per-texel synthesis and avoids such artifacts, 
producing smoother and more coherent results.

We also compared our approach to the method of Gagnon et al. 
[32], which uses deformable patches to synthesize textures on fluids. 
Fig.  10 shows that our result is more faithful to its respective exemplar 
compared to the result of Gagnon et al. 2021. Moreover, their method 
often produces motion artifacts near patch boundaries due to its erosion 
mechanism. As the patches shrink, parts of them are removed, revealing 
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Fig. 7. Results from our approach. Scenario names, top to bottom: sphere, double dam break, viscous drop, viscous dam break. The exemplars are shown in the 
leftmost column. Left to right: frames extracted from the animation.
portions of underlying patches and creating an illusion of motion. In 
contrast, our approach performs synthesis per texel instead of relying 
on patches. This avoids boundary artifacts and undesirable motion 
artifacts. As shown in the accompanying video, the textures generated 
by our approach preserve fine texture features and have good coherence 
across the simulation frames.

Table  1 shows performance statistics for several test cases. The 
reported times correspond to the average per-frame duration of each 
stage of our approach. All experiments were conducted on an Intel(R) 
8 
Core(TM) i7-8700 CPU @ 3.20 GHz (6 cores) with 32 GB of RAM and 
an NVIDIA RTX A2000 GPU.

4.2. Discussion

In Fig.  11 and the accompanying video, we compare smaller and 
larger values of thresholds 𝜏3𝐷, 𝜏𝑈𝑉 , and 𝜏pop, modifying one threshold 
at a time to demonstrate their respective influence on the texture 
synthesis. With smaller values of 𝜏  and 𝜏 , our approach more often 
3𝐷 𝑈𝑉
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Fig. 8. Comparison of Kwatra et al. [28] and Gagnon et al. [31] vs. our 
approach.

Fig. 9. Comparison of Gagnon et al. [30] vs. our approach.

Fig. 10. Comparison of Gagnon et al. [32] vs. our approach.

Table 1
Average per-frame computation times (in seconds) for various stages of our 
approach.
 Scenario Pyr. Output Atlas Adv. Stretch Synth Pop. Total  
 Levels Res. Texels Det. Red.  
 Sphere 6 10242 185k 0.34 1.43 25.27 0.07 26.77 
 Double dam break 5 10242 115k 0.22 1.13 13.94 0.02 15.31 
 Viscous drop 5 20482 621k 0.96 4.83 63.26 2.02 71.07 
 Viscous dam break 5 10242 205k 0.34 1.45 27.23 0.51 29.19 

uses the advection texture information; consequently, the temporal 
continuity is good, but larger stretched patterns appear and the overall 
texture is less faithful to the exemplar. Conversely, larger values of 
𝜏3𝐷 and 𝜏𝑈𝑉  result in stronger reliance on the freshly generated values 
from the synthesis pyramid. In this scenario, the temporal continuity is 
low, but the texture on static frames is more faithful to the exemplar. 
The value of 𝜏3𝐷 is the most sensitive; slight increases can significantly 
decrease the temporal continuity. When considering 𝜏pop, lower values 
result in good temporal continuity, but the multiple transitions make it 
harder to preserve fidelity to the exemplar. With larger values of 𝜏pop, 
the transition is rarely used, resulting in increased popping artifacts. In 
conclusion, the degrees of freedom provided by 𝜏3𝐷, 𝜏𝑈𝑉 , and 𝜏pop help 
the user to tune the results as wanted and the effects of each threshold 
are predictable, making them easy to adjust.

Fig.  12 and the accompanying video illustrate the influence of the 
atlas resolution (5122, 10242, and 20482) on the synthesized results. One 
needs to keep in mind that the Jacobian scale needs to be adjusted to 
keep the same feature size in the rendered images. Results tend to be 
better when the scale of the Jacobian is one; lower-resolution atlases 
tend to be blurrier, while higher-resolution ones sometimes result in 
slight amounts of higher-frequency patterns. Overall, our approach 
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produces similar results across all resolutions, with synthesized patterns 
remaining visually consistent.

4.3. Ablation study

To better understand the contribution of the synthesis and advection 
pyramids in our approach, we performed an ablation study comparing 
three configurations. In the first, we used only the advection, propagat-
ing values from the previous frame only at the finest level and without 
performing any synthesis. In the second, we advect and downsample 
to get the advection pyramid, and then we perform synthesis for all 
texels and at all levels in each frame, only considering the advected 
data when copying the coarsest resolution of the advection pyramid 
to the synthesis pyramid. As shown in Fig.  13 and the accompanying 
video, the advection-only variant preserves temporal continuity but 
quickly loses texture detail and fidelity, whereas the synthesis-only 
variant preserves texture features well but lacks temporal coherence. 
Our full approach combines the strengths of both, promoting results 
which are faithful to the exemplar while encouraging temporal stability 
throughout the animation.

4.4. Limitations

Our approach suffers from some limitations: lower-fidelity repro-
duction on some exemplars, lower-quality synthesis on non-stationary 
textures, and reduced synthesis quality in later frames compared to 
the first frame. The video and Fig.  14 show one exemplar for which 
the random-walk of Busto et al. [8] does not recover compatible good 
matches and introduces areas corresponding to a local minimum in 
the best-match search. We thus lose the larger-scale features of that 
exemplar. Using a strategy similar to that of Jamriška et al. [13], 
limiting repeated selection of the same texel, would likely mitigate this 
issue.

Our approach produces produces good results for a variety of tex-
tures, but is most effective for stationary textures. For instance, results 
on the keyboard and brick textures are acceptable (see accompanying 
video), but inferior to results for stationary textures.

At the first frame, the synthesis is computed without any temporal 
continuity constraints and therefore the quality is slightly better than 
at frames later in the animation. Doing a more thorough synthesis at 
later frames is an avenue for potential improvement.

5. Conclusion

We presented an approach to conduct exemplar-based texture syn-
thesis on animated meshes from fluid simulations. An advantage of 
our approach is that it is agnostic to the specific fluid simulation 
method, as long as we can get animated 3D meshes and velocity 
fields. After a full multiresolution synthesis at the first frame, our 
approach advects the texture and orientation information from frame 
to frame. A multiresolution texture pyramid is built by downsampling 
the advected finest-resolution texture. We compute local stretch in 3D 
by advecting a neighborhood of texels to the previous frame and in 
2D by comparing the stored UV coordinates within a neighborhood 
of texels. Where we identified stretching, we upsample the coarser 
levels of the synthesis pyramid to improve coherence to the exemplar. 
Conversely, where no stretching is detected, we use the advected data 
to favor temporal coherence. This process is done in a multiresolution 
fashion and together with best-match correction at every level of the 
synthesis pyramid. We showed that our approach works on different 
fluid simulation scenarios and texture exemplars.

Our approach opens avenues for further research. An advantage of 
our approach is that it is agnostic to the simulation approach, making 
it amenable to methods which increase the resolution from coarser 
simulations [34,35]. Moreover, instead of using separate texture atlases 
at every frame, it could be interesting to investigate the tracking of 
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Fig. 11. Comparison of texture synthesis results using different threshold values for 3D stretching, UV stretching, and popping detection. The middle column 
(default) shows the value we selected as best for this simulation and texture.
Fig. 12. Synthesis results using atlases at different resolutions. The first and 
third rows show the texture atlases, while the second and fourth rows show 
the rendered fluid surfaces.

an explicit mesh throughout the animation [36]. Also, the 2D parame-
terization to an atlas and the frame-to-frame advection could be used 
in conjunction with other synthesis models such as diffusion models. 
The advection and multiresolution pyramid, together with the local 
10 
Fig. 13. Ablation study results showing texture synthesis on fluid simulation 
over time. Left: When only relying on advection we see significant stretching. 
Middle: Only synthesis variant, showing good texture details but suffering 
from temporal incoherence (see accompanying video). Right: Our adaptive 
approach, which combines advection and synthesis to produce good fidelity 
and temporal continuity. The figure shows selected frames from an animation, 
in temporal order from top to bottom. Note that all variants begin from the 
same first frame.
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Fig. 14.  Random-walk best match loses features from the input exemplar. 
Selected images from an animation.

stretching detection, could be used to control the diffusion process. Our 
popping prevention mechanism could as well be used should the diffu-
sion model introduce abrupt changes. The problem of texture synthesis 
over fluid surfaces remains a challenging one and we anticipate further 
advances in the coming years.
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