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ABSTRACT 

Cryptocurrency blockchain networks safeguard digital assets using cryptographic keys, with wallets playing a critical role in 
generating, storing, and managing these keys. Wallets, typically categorized as hot and cold, offer varying degrees of security 
and convenience. However, they are generally software-based applications running on microcontrollers. Consequently, they are 
vulnerable to malware and side-channel attacks, allowing perpetrators to extract private keys by targeting critical algorithms, 
such as ECC, which processes private keys to generate public keys and authorize transactions. To address these issues, this work 
presents EthVault, the first hardware architecture for an Ethereum hierarchically deterministic cold wallet, featuring hardware 
implementations of key algorithms for secure key generation. Also, an ECC architecture resilient to side-channel and timing 
attacks is proposed. Moreover, an architecture of the child key derivation function, a fundamental component of cryptocurrency 
wallets, is proposed. The design minimizes resource usage, meeting market demand for small, portable cryptocurrency wallets. 
FPGA implementation results validate the feasibility of the proposed approach. The ECC architecture exhibits uniform execution 
behavior across varying inputs, while the complete design utilizes only 27%, 7%, and 6% of LUTs, registers, and RAM blocks, 
respectively, on a Xilinx Zynq UltraScale + FPGA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Introduction 

Cryptographic keys play a vital role in securing user assets
within the blockchain ecosystem. They provide a robust layer
of security by enabling authentication, identity verification, and
data integrity [ 1 ]. Moreover, cryptographic keys facilitate safe
user interaction within the network. This limits the access
and modification of sensitive data to authorized users only.
Blockchain networks, such as Ethereum [ 2 ] and Bitcoin [ 3 ],
extensively use public-private cryptographic keys to protect user
assets. Furthermore, while anyone can access public keys, the
secrecy of private keys is paramount since they are used to prove
ownership, notably giving the owner access to all digital assets.
Accordingly, a compromised private key can result in significant
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losses, as it grants an attacker full control over all assets in the
associated account [ 4 ]. 

Blockchain users utilize cryptocurrency (crypto) wallets to store
and track the keys securely. Crypto wallets are devices or
programs that generate, store, and manage public and private
cryptographic keys [ 5 ]. These wallets are considered “hot” when
based online. Users use them to sign transactions, buy and sell
crypto assets, as well as generate and store cryptographic keys
[ 6 ]. Some notable examples of hot wallet applications include
MetaMask [ 7 ], Coinbase [ 8 ], and Edge [ 9 ]. Conversely, “cold”
wallets generate, store, and manage keys offline. Also, the wallets
do not directly interact with the user’s requests to sign trans-
actions; instead, they exchange keys with hot wallets, which in
cense, which permits use, distribution and reproduction in any medium, provided the original 
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FIGURE 1 A cold cryptocurrency physical wallet. It manages keys 
offline and is indirectly connected to the blockchain network via a hot 
wallet to enhance the security of the keys. 
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turn interact with the user’s requests [ 10, 11 ]. Consequently, cold
wallets are considered the safest type of crypto wallets. Figure 1
shows a common cold physical crypto wallet. Physical wallets are
termed “hardware wallets” in literature, not because they possess
a hardware architecture but because they are physical devices.
The figure shows that the wallet communicates with a hot wallet
during utilization. Some common physical crypto wallets include
Trezor T by SatoshiLabs [ 12 ], Ledger Nano S by Ledger [ 13 ], and
KeepKey by ShapeShift [ 14 ]. 

The crypto wallets discussed above can either be non-
deterministic (ND) or hierarchically deterministic (HD) [ 15 ].
The former type generates one pair of corresponding private and
public keys, while the latter uses one master key to generate
almost infinite public and private keys. HD wallets are currently
the most popular type in the market due to their better key
management property [ 15 ]. 

As previously discussed, crypto keys, stored in crypto wallets, are
vital in securing user assets on the blockchain network. Conse-
quently, the ability of crypto wallets to securely generate, store,
and manage crypto keys is equally crucial. Several techniques in
the literature propose different methods of enhancing the security
of crypto wallets. For instance, CryptoVault is a platform that
generates and maintains keys inside an Intel Software Guard
Extension (SGX) enclave. This allows users to utilize private keys
in a process highly isolated from other processes executing in
the same environment [ 16 ]. Additionally, CryptoVault presents a
secure approach for storing and retrieving a backup key from an
external repository. Likewise, the secure blockchain lightweight
wallet based on TrustZone (SBLWT) is a crypto wallet that utilizes
isolation to safeguard private keys [ 17 ]. The wallet is designed
to secure simplified payment verifications (SPV) used in mobile
devices that store partial blockchains due to resource constraints.
Moreover, various crypto wallets in the industry, such as Ellipal
Titan [ 18 ] and COLDCARD [ 19 ], claim to utilize isolation (air-
gap) technology to secure the keys. In contrast, the hot-cold
hybrid decentralized exchange (HCHDEX) method stores crypto
wallet data locally on personal devices. It enables direct trans-
actions between two devices with no dependence on a central
server [ 20 ]. Furthermore, the HCHDEX method employs a secure
two-way authentication technique, utilizing robust handshaking
between e-wallets and lightweight distributed ledger technology
(DLT) nodes. 

It is worth noting that the literature works discussed above pro-
pose crypto wallets that are software implementations running
off microcontroller units (MCUs). This observation is also true for
2 of 26
various market-leading crypto wallets. For instance, COLDCARD 

[ 19 ], Ledger Nano X [ 13 ], and Trezor Model T [ 12 ] run on an
STM32 MCU. Therefore, the risk of malware attacks is often
persistent [ 21 ]. Also, attackers who gain physical access to the
device can exploit physical attacks, such as the side channel
analysis (SCA), to retrieve private keys by leveraging unintended
information leakage from power consumption, electromagnetic 
(EM) emissions, or timing variations [ 22 ]. In many attacks, adver-
saries target critical algorithms in the wallet, such as the elliptic
curve cryptography (ECC) and HMACSHA-512 algorithms, to 
extract the private keys. 

ECC is a fundamental algorithm used by crypto wallets to gener-
ate public keys given private keys and to sign every transaction
authorized by the owner. Moreover, it is the most complex and
computationally intensive algorithm in a wallet. It is also sensitive
to branching and conditional operations, which can lead to
leakage of private data, making it a prime target for attackers
seeking to exploit vulnerabilities in the wallet’s security [ 23 ].
Blockchains like Ethereum and Bitcoin utilize the SECP256K1 
algorithm, an ECC variant whose detailed explanation is provided
in Section 2.4 . 

Various security breaches are reported in the literature where
SECKP256K1 within the crypto wallets has been targeted. For
example, private keys were extracted from a Trezor one wallet
using a simple power analysis (SPA) attack [ 24–26 ]. Furthermore,
SCA was used to successfully attack the STM32 MCU used
by various commercially available wallets [ 27, 28 ]. Also, an
adversarial attack was modelled to extract private keys from an
isolated wallet in seconds by infecting it with malicious code [ 4 ].
As a result, wallet hacks play a significant role in the billions of
dollars lost to crypto theft [ 29, 30 ]. 

Hence, a hardware architecture-based crypto wallet can offer 
distinct advantages. It can integrate cryptographic operations 
directly into the hardware, rather than relying on general-purpose
software environments. Field programmable gate array (FPGA) 
devices are designed to function on a physical level, where config-
urations are essentially embedded into the hardware, resembling 
a “hard-wired” setup. This makes it extremely challenging for an
attacker to alter the configuration of an FPGA implementation in
a structured and predictable manner [ 31 ]. This tailored approach
not only isolates sensitive processes but also ensures that the
wallet is executed in a dedicated, tamper-resistant environment, 
minimizing exposure to malware. 

Moreover, an ECC algorithm secure against SCA attacks could
further enhance security by preventing adversaries from extract- 
ing private keys or sensitive information through power and
time analysis. Integrating an SCA-resistant ECC within the 
wallet architecture ensures the protection of private keys even
under physical proximity attacks, making it a robust solution for
securing crypto wallets. 

1.1 Contributions 

This work proposes EthVault, the first complete hardware archi-
tecture of an Ethereum HD cold wallet, along with its FPGA
implementation. Moreover, it introduces a SECP256K1 architec- 
IET Blockchain, 2025
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TABLE 1 Summary of mathematical and logical notations used in 
this work. 

a ≫ 𝑘 Shift 𝑎 to the right by 𝑘 bit 
⋘ 𝑘 Rotate left by 𝑘 bit 
𝑎 ∥ 𝑏 𝑎 is concatenated with 𝑏
⊕ Modulo-2 addition 
⇒ Transforms to 
≠ Not equal to 
𝑒𝑥 An array of zeros, with a 1 at index 𝑥

FIGURE 2 A high-level architecture of a HD crypto wallet. The wal- 
let can generate Ethereum cryptographic keys, addresses, and signatures. 
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ture resistant to SCA and the first hardware architecture of the
child key derivation (CKD) function. Also, the design emphasizes
minimal resource requirements for algorithms used in the wallet
to meet the market demand for a small, portable crypto wallet.
The algorithms include: 

∙ The elliptic curve point addition (ECPA) protocol using
complete addition equations. 

∙ The Montgomery ladder algorithm using the ECPA and the
elliptic curve point doubling (ECPD) to perform elliptic curve
point multiplication (ECPM). 

∙ The binary inversion algorithm (BIA) used to convert projec-
tive to affine coordinates. 

∙ The hash-based message authentication code (HMAC)-secure
hash algorithm (SHA)-512 algorithm. 

∙ The CKD function utilized by the HD wallet to generate child
keys. 

∙ The Ethereum checksum algorithm used to compute the
Ethereum checksummed address. 

∙ The password-based key derivation function-2 (PBKDF-2)
used to generate mnemonics in HD wallets. 

∙ The elliptic curve digital signature algorithm (ECDSA) for
digitally signing transaction data. 

To guide the design process, we set quantifiable design goals:
a logic utilization of under 70 k look-up tables (LUTs), and a
minimum throughput of 10 kbps sufficient for real-time sign-
ing. These targets were derived from our analysis of existing
FPGA implementations of the cryptographic building blocks
within the wallet, as well as the performance requirements
of the current Ethereum blockchain, discussed in detail in
Section 4 . 

1.2 Outline 

The subsequent sections of this work are structured as follows.
Section 2 discusses key algorithms in an Ethereum hd wallet,
notably, their functionality and role in the wallet. Section 3
describes the hardware architecture of EthVault, including that
of key algorithms, while Section 4 discusses the implementation
results on an FPGA Xilinx board. Moreover, Section 5 outlines
potential threats to the wallet and discusses possible mitigation
techniques, whereas Section 6 addresses the limitations of Eth-
Vault and directions for future work. Finally, Section 7 concludes
this work with a summary. 

2 Preliminaries 

This section delves into the workings of an Ethereum HD wallet,
focusing on the key algorithms that underpin its functionality.
Each algorithm is discussed in detail to provide a thorough
understanding of its operations and significance, to help readers
gain a comprehensive understanding of how these components
work together to enable the wallet’s features. Table 1 shows the
notations used in this work. 
IET Blockchain, 2025

 

The next section highlights the structural arrangement and 
functionality of an Ethereum HD crypto wallet. 

2.1 The Ethereum Hierarchically Deterministic 
Wallet 

The Ethereum HD crypto wallet operates through four main
processes as illustrated in Figure 2 . The processes, which include
entropy creation, human-readable backup and seed creation, key 
derivation and management, and blockchain address creation, 
work together to ensure the security, usability, and compatibility
of the wallet with blockchain standards. 

2.1.1 Entropy Creation 

In an Ethereum HD crypto wallet, the process begins with an
random number generator (RNG) that generates a random value
𝑒, which serves as the source of entropy for creating the master
key 𝑚. A high-entropy RNG is crucial, as it ensures a more secure
master key. 

2.1.2 Backup and Seed Creation 

Next, the BIP-39 protocol utilizes 𝑒, an optional personal iden-
tification number (PIN) input from the user, and the phrase
“mnemonics” in American standard code for information inter- 
change (ASCII) format to produce random mnemonic phrases
3 of 26
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FIGURE 3 The HD wallet structure for a 3-level key derivation path 
(e.g., 𝑚∕0′∕0′∕𝑘′) as outlined by the Bitcoin improvement proposal (BIP)- 
32 standard, adapted from [ 32 ]. 
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and a 512-bit seed number [ 33 ]. This protocol employs the
PBKDF-2, a function based on the HMACSHA-512 and SHA-256
hash algorithms. The mnemonic phrases are 12 or 24 randomly
selected human-readable words that serve as a backup and
recovery mechanism for HD wallet keys and addresses [ 33 ]. 

2.1.3 Key Derivation and Management 

In this part, the seed value and the phrase “Bitcoin seed” in
ASCII format are used as inputs to the HMACSHA-512 function
to generate the master private key 𝑚 and chain code 𝑐. Following
the BIP-32 and BIP-44 standards, the CKD function uses 𝑚 and
𝑐 alongside HMACSHA-512 and SECP256K1 algorithms to derive
child private and public keys. 

The BIP-32 standard serves as the foundation for all HD wallets,
defining a deterministic structure for generating child private and
public keys from a single master key [ 32 ]. Figure 3 illustrates
the hierarchical structure of BIP-32-based HD wallets. At the
root (depth zero), HMACSHA-512 (denoted by HMC) utilizes a
random number 𝑒 to generate the master key 𝑚. Moreover, a CKD
function is used to generate the other nodes of the hierarchical
tree from depth one to three. Notably, the nodes at depth three
correspond to blockchain addresses. 

Building on BIP-32, the BIP-44 standard provides a practical
application tailored to various cryptos [ 34 ]. It defines a spe-
cific path consisting of five hierarchical levels, each comprising
constants and variables executed sequentially within the BIP-
32 framework. These unique paths allow BIP-44 protocol to
support multiple cryptos, ensuring compatibility across different
blockchain ecosystems. 

The BIP-44 path 𝑚/ 𝑝 𝑢𝑟 𝑝 𝑜 𝑠 𝑒′/ 𝑐 𝑜 𝑖 𝑛_𝑡𝑦 𝑝 𝑒′/ 𝑎 𝑐 𝑐 𝑜 𝑢𝑛𝑡′/ 𝑐 ℎ𝑎 𝑛𝑔𝑒 /
𝑎 𝑑 𝑑 𝑟 𝑒 𝑠 𝑠_𝑖𝑛𝑑 𝑒 𝑥, contains the root 𝑚, representing the master
4 of 26
private key and the five levels. Moreover, 𝑎 𝑑 𝑑 𝑟 𝑒 𝑠 𝑠_𝑖𝑛𝑑 𝑒 𝑥 is
a 32-bit variable defining the index of the key generated by
the wallet. The remaining levels are 32-bit constants unique
to different cryptos. For instance, Ethereum follows the path
𝑚∕44′∕60′∕0′∕0∕ 𝑎 𝑑 𝑑 𝑟 𝑒 𝑠 𝑠_𝑖𝑛𝑑 𝑒 𝑥. The apostrophe ( ′) in the path
indicates the use of the BIP-32 hardened derivation method
within the CKD function. 

Hardened and non-hardened key derivation methods, as defined 
in BIP-32, provide users with the flexibility to balance trade-
offs between security, backup and recovery, and transaction
convenience [ 32 ]. Non-hardened keys are calculated as taking
the HMACSHA-512 hash of (Parent private key ‖ Index), where
index ≥ 231 , whereas hardened keys are calculated as taking
the HMACSHA-512 hash of (Parent public key ‖ Index), where
index < 231 [ 33 ]. As shown in Figure 3 , the BIP-44 path also
facilitates the precise location of blockchain addresses within a
HD wallet structure. 

2.1.4 Ethereum Address and Signature Creation 

At this stage, the address-generation process applies the Kec-
cak hash function to create uniquely checksummed Ethereum
addresses. This sequence ensures both security and adherence to
cryptographic standards when generating crypto keys. Further- 
more, the wallet employs the ECDSA algorithm to digitally sign
and authorize transactions using the derived child private keys. 

This section outlined the stages of the Ethereum HD wallet and
the cryptographic algorithms employed in each step. Figure 4
expands this process into six distinct sequential stages based on
their outputs and specifies the algorithms applied at each stage.
The first three stages are executed once for every new entropy
generated by the RNG, while the child private–public key and
address stages are repeated 𝑛 times, where 𝑛 is the number of
child keys required by the user. The signature stage is executed
each time a transaction is authorized. EthVault implements all
stages and is designed to efficiently reuse the algorithms to
minimize resource utilization. 

The following section introduces the SECP256K1 algorithm, a key
cryptographic element used in Ethereum wallets. 

2.2 The SECP256K1 Algorithm 

This subsection discusses the SECP256K1 elliptic curve, its arith-
metic properties, and its vulnerabilities to SCA in the context of
scalar multiplication. 

2.2.1 Elliptic Curve Parameters 

SECP256K1 is a specific elliptic curve (EC) among the diverse
variants used in ECC. These variants include the Weierstrass,
Edwards, Hessian, and Koblitz curves [ 35 ]. Moreover, ECC is a
form of public key cryptography based on an EC over a finite
Galois field (GF) [ 36 ]. There are two main types of finite fields
commonly used in ECC: prime fields, denoted by 𝐺 𝐹 ( 𝔽𝑝 ) , where
𝑝 is a large prime number and binary extension fields, denoted by
IET Blockchain, 2025
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FIGURE 4 Execution flow of the Ethereum HD wallet, illustrating the sequential stages from entropy generation to transaction signing, along 
with the cryptographic algorithms applied at each stage. 𝑛 is the number of child keys needed by the user. 

FIGURE 5 (A) ECPA is the addition of two points ( 𝑷 and 𝑸 ) on the 
elliptic curve. (B) ECPD is the addition of a point 𝑷 on the elliptic curve 
with itself. Adapted from [ 37 ]. 
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𝐺 𝐹 ( 𝔽2𝑚 ) , where 2𝑚 is the number of elements in the field and 𝑚
is a positive integer [ 36 ]. The EC is defined by the cubic equation:

𝑦2 + 𝑥 𝑦 = 𝑥3 + 𝑎 𝑥 + 𝑏 , (1)

where 𝑥 and 𝑦 are coordinates on the EC, and 𝑎 and 𝑏 are
constants that define the curve. After a linear change of variables,
Equation ( 1 ) is transformed into Equation ( 2 ), expressed in
standard short Weierstrass form. It returns a public key solution
comprising ( 𝑥, 𝑦) for variables 𝑎, 𝑏 in the GF [ 37 ]. 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. (2)

2.2.2 Elliptic Curve Operations 

ECPA and ECPD are arithmetic operations used to compute
public keys on the EC [ 38 ]. ECPA defines adding two points on
the curve, as shown in Figure 5A . Given points 𝑷 = ( 𝑥0 , 𝑦0 ) and
𝑸 = ( 𝑥1 , 𝑦1 ) on the EC, ECPA comprises two processes. First, draw
a straight line through points 𝑷 and 𝑸 . The line intersects with the
curve at point − 𝑹 = ( 𝑥2 , 𝑦2 ) . Second, reflect the point − 𝑹 by the
x -axis to obtain the results of the ECPA as shown in Equation ( 3 ).

𝑹 = 𝑷 + 𝑸 . (3)

Conversely, ECPD defines adding a point on the EC with itself, as
shown in Figure 5B . Given point 𝑷 = ( 𝑥0 , 𝑦0 ) on the curve, ECPD
also comprises two steps. First, draw a tangential line to the curve
at point 𝑷 . The line intersects with the curve at the point − 𝑹 =
( 𝑥1 , 𝑦1 ) . Second, reflect the point − 𝑹 by the x -axis to obtain the
results of the ECPD as shown in Equation ( 4 ) 

𝑹 = 2 𝑷 . (4)
IET Blockchain, 2025
ECPA and ECPD are used to compute the scalar ECPM on the
EC. Scalar ECPM is an integral ECC operation as it is the primary
process used to calculate the public key. Scalar ECPM has the
form 𝑹 = 𝑘 ⋅ 𝑷 . It is the sum of 𝑘 copies of 𝑷 , such that: 

𝑹 = 𝑘 ⋅ 𝑷 =
𝑘 ∑
𝑖= 1 
𝑷 , (5) 

where 𝑘 is a positive integer, and 𝑹 and 𝑷 is a points on the
curve. This work will use the Montgomery Ladder algorithm to
compute ECPM [ 36 ]. Figure 3 further explains the Montgomery
Ladder algorithm. 

The Koblitz Curve ECC variant over GF( 𝔽𝑝 ), known as the
standards for efficient cryptography prime 256 bits Koblitz 1
(SECP256K1), is an EC whose 𝑎 and 𝑏 parameters of ( 2 ) are 0
and 7, respectively [ 23 ]. Moreover, other parameters such as the
generator 𝑮 , synonymous to 𝑷 in Equation ( 5 ), and the base point
of 𝑮 denoted as 𝑛 are specified. SECP256K1 is the core algorithm
used by the Ethereum crypto wallet to generate a public key from
a private key and sign transactions. 

2.2.3 Side Channel Attack Attack on SECP256K1 

In protocols that utilize ECC, 𝑘 in Equation ( 5 ) is usually
considered a private key. Hence, a successful attack correctly
derives 𝑘 via unauthorized means. For example, an SCA can
exploit the current drawn or EM waves emitted by an ECC device
while processing 𝑘. The attacks rely on the variations in power
consumption when bit value 1 or 0 of 𝑘 is processed (i.e., 𝑘𝑖 where
𝑖 is the index) [ 24–26 ]. 

The Montgomery Ladder algorithm depicted in 1 is popularly
used to calculate ECPM [ 36 ]. It details the bitwise processing
of the secret key 𝑘 from most significant bit (MSB) to least
significant bit (LSB). The algorithm is balanced because the
sequence of mathematical operations is independent of the 
private key. Hence, the literature considers the algorithm safe
against simple SCA attacks [ 39 ]. Nevertheless, the algorithm still
contains inconsistencies that potentially make it susceptible to 
differential power analysis (DPA) and timing attacks. 

The ECPD in each branch of the if statement is performed on
different registers. When 𝑘𝑖 is 1, ECPD is performed on 𝑹𝟏 .
Conversely, when 𝑘𝑖 , is 0 ECPD is performed on 𝑹𝟎 . These differ-
ences create distinct power consumption patterns and execution 
time discrepancies due to the use of different registers, memory
locations, and data paths. Variations in power consumption,
delays, and propagation times among these hardware resources
5 of 26
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ALGORITHM 1 Montgomery ladder algorithm, adapted from [ 41 ]. 

Input : 𝑷 ∈ ( 𝑥, 𝑦, 𝑧) , 𝑘 = ( 𝑘𝑡− 1 , . . . , 𝑘0 ) with 𝑘𝑡− 1 = 1 

Output : 𝑹 = 𝑘𝑷 

Initialisation : 
1: 𝑹𝟎 ← 𝑷 

2: 𝑹𝟏 ← 2 𝑷 

LOOP Process : 
3: for 𝑖 = 𝑡 − 2 : 0 do 
4: if 𝑘𝑖 = 1 then 

5: 𝑹𝟎 ← 𝑹𝟎 + 𝑹𝟏 

6: 𝑹𝟏 ← 2 𝑹𝟏 

7: else 
8: 𝑹𝟏 ← 𝑹𝟎 + 𝑹𝟏 

9: 𝑹𝟎 ← 2 𝑹𝟎 

10: end if 
11: end for 
12: 𝑹 ← 𝑹𝟎 

13: return 𝑹 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALGORITHM 2 Equations for complete, projective ECPA for 
SECP256K1. Taken from [ 23 ]. 

Input : 𝑷 = ( 𝑋1 , 𝑌1 , 𝑍1 ) , 𝑸 = ( 𝑋2 , 𝑌2 , 𝑍2 ) on 
𝐸 ∶ 𝑌2 𝑍 = 𝑋3 + 𝑏𝑍3 and 𝑏3 = 3 ⋅ 𝑏. 

Output : ( 𝑋3 , 𝑌3 , 𝑍3 ) = 𝑷 + 𝑸 ; 
1: 𝑡0 ← 𝑋1 ⋅ 𝑋2 12: 𝑋3 ← 𝑡1 + 𝑡2 23: 𝑡1 ← 𝑡1 − 𝑡2 

2: 𝑡1 ← 𝑌1 ⋅ 𝑌2 13: 𝑡4 ← 𝑡4 − 𝑋3 24: 𝑌3 ← 𝑏3 ⋅ 𝑌3 

3: 𝑡2 ← 𝑍1 ⋅ 𝑍2 14: 𝑋3 ← 𝑋1 + 𝑍1 25: 𝑋3 ← 𝑡4 ⋅ 𝑌3 

4: 𝑡3 ← 𝑋1 + 𝑌1 15: 𝑌3 ← 𝑋2 + 𝑍2 26: 𝑡2 ← 𝑡3 ⋅ 𝑡1 

5: 𝑡4 ← 𝑋2 + 𝑌2 16: 𝑋3 ← 𝑋3 ⋅ 𝑌3 27: 𝑋3 ← 𝑡2 − 𝑋3 

6: 𝑡3 ← 𝑡3 ⋅ 𝑡4 17: 𝑌3 ← 𝑡0 + 𝑡2 28: 𝑌3 ← 𝑌3 ⋅ 𝑡0 

7: 𝑡4 ← 𝑡0 + 𝑡1 18: 𝑌3 ← 𝑋3 − 𝑌3 29: 𝑡1 ← 𝑡1 ⋅ 𝑍3 

8: 𝑡3 ← 𝑡3 − 𝑡4 19: 𝑋3 ← 𝑡0 + 𝑡0 30: 𝑌3 ← 𝑡1 + 𝑌3 

9: 𝑡4 ← 𝑌1 + 𝑍1 20: 𝑡0 ← 𝑋3 + 𝑡0 31: 𝑡0 ← 𝑡0 ⋅ 𝑡3 

10: 𝑋3 ← 𝑌2 + 𝑍2 21: 𝑡2 ← 𝑏3 ⋅ 𝑡2 32: 𝑍3 ← 𝑍3 ⋅ 𝑡4 

11: 𝑡4 ← 𝑡4 ⋅ 𝑋3 22: 𝑍3 ← 𝑡1 + 𝑡2 33: 𝑍3 ← 𝑍3 + 𝑡0 
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can be exploited by attackers to extract the scalar 𝑘 [ 29, 30, 39 ].
Moreover, the conventional Weierstrass EC addition operation
involves branching when performing ECPA, ECPD, or handling
a point at infinity. The branching introduces timing variability,
which can be exploited to compromise the secret key [ 23 ]. 

Various works in literature have proposed ways to protect the
Montgomery Ladder algorithm against SCA. The work in [ 40 ]
proposed a method to randomize the sequence of writing 𝑸𝟎 

and 𝑸𝟏 inside the loop. However, the addressing did not change,
making the risk of SCA persistent. Moreover, using complete
addition formulas removes the branching in the Weierstrass EC
addition operation [ 23 ]. However, since the Montgomery Ladder
algorithm is vulnerable to SCA, employing the equations still
makes the threat prevalent. 

This work employs temporary registers, parallel processing, and
complete ECPA formulas to prevent variations during ECPM. A
detailed explanation of the proposed algorithm is provided in
Section 3.2 . 

The following section presents the BIA as implemented within
the SECP256K1 EC cryptography scheme. 

2.3 The Binary Inversion Algorithm 

The BIA computes the multiplicative inverse of elements in an
ECC’s finite field. In SECP256K1, for instance, it can convert the
projective coordinates back to the affine coordinate system. We
analyse the arithmetic operations performed in the utilized ECC
to understand the significance of BIA. 

SECP256K1 executes modular arithmetic operations, includ-
ing addition, subtraction, multiplication, and division in an
affine coordinate system, that is, GF( 𝔽𝑝 ) where 𝔽𝑝 ∈ ( 𝑥, 𝑦) [ 38 ].
6 of 26
However, modular inversion/division is the most expensive in 
complexity, area, and execution time [ 42, 43 ]. Nevertheless,
transforming the coordinates from affine to projective reduces the
number of modular division operations performed by SECP256K1 
[ 38 ] (i.e., GF( 𝔽𝑝 ) where 𝔽𝑝 ∈ ( 𝑥, 𝑦, 𝑧) ). 

Therefore, 2 depicts a set of equations used to compute the 
complete ECPA in the projective coordinate system over prime-
order elliptic curves [ 23 ]. However, SECP256K1 must perform
one final modular division to return the final results to affine
coordinates, that is, ( 𝑥, 𝑦, 𝑧) ⇒ ( 𝑥𝑧− 1 , 𝑦𝑧− 1 ) . SECP256K1 utilizes
the BIA to compute the modular inversion 𝑧− 1 . The algorithm
shown in 3 is based on the Extended Euclidean algorithm (EEA)
which calculates the multiplicative inverse of an integer 𝑧 ∈ 𝔽𝑝 
by calculating two variables 𝑟 and 𝑞 that satisfy: 

𝑧 𝑟 + 𝑝𝑞 = gcd ( 𝑧 , 𝑝) = 1 , (6) 

where gcd is a function used to calculate the greatest common
divisor of two numbers [ 43 ]. 

The following section introduces the PBKDF-2 algorithm used in
the human-readable backup and seed creation part of the wallet. 

2.4 The Password-Based Key Derivation 

Function-2 

The PBKDF-2 is a widely utilized cryptographic hash algorithm
for generating secure keys given a password [ 44 ]. The algorithm
takes a user-defined password and other variables to generate a
unique key 𝑑𝑘out as follows: 

𝑑 𝑘out = 𝑃 𝐵 𝐾 𝐷𝐹 2PRF ( 𝑃 𝑤𝑑 , 𝑆𝑙𝑡, 𝑐, 𝑑𝑘𝐿𝑒𝑛 ) , (7) 

where 𝑃 𝑤𝑑 is the user-defined password, 𝑆𝑙 𝑡 is a salt variable used
to further strengthen the security of the key, 𝑃 𝑅 𝐹 is the preferred
IET Blockchain, 2025
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FIGURE 6 PBKDF-2 using SHA-512. PBKDF-2 is used by BIP-39 to generate the seed ( 𝑑𝑘out ) used by the HD wallet given the mnemonics and salt 
as 𝑃 𝑤𝑑 and 𝑆𝑙 𝑡 respectively. 

ALGORITHM 3 Binary inversion algorithm. Adapted from [ 43 ]. 

Input : 𝑧 ∈ [1 , 𝑝] , 𝑝

Output : 𝑟 = 𝑧− 1 mod 𝑝
Initialisation : 

1: 𝑢 ← 𝑧; 𝑣 ← 𝑝; 𝑥 ← 𝑒0 ; 𝑦 ← 0 

LOOP Process : 
2: while 𝑢 ≠ 0 do 
3: while 𝑢(0) = 0 do 
4: 𝑢 ← 𝑢 ≫ 1 

5: 𝐢𝐟 𝑥(0) = 0 𝐭𝐡𝐞𝐧 𝑥 ← 𝑥 ≫ 1 𝐞𝐥𝐬𝐞 𝑥 ← 

( 𝑥 + 𝑝) ≫ 1 𝐞𝐧𝐝𝐢𝐟 

6: end while 
7: while 𝑣(0) = 0 do 
8: 𝑣 ← 𝑣 ≫ 1 

9: 𝐢𝐟 𝑦(0) = 0 𝐭𝐡𝐞𝐧 𝑦 ← 𝑦 ≫ 1 𝐞𝐥𝐬𝐞 𝑦 ← 

( 𝑦 + 𝑝) ≫ 1 𝐞𝐧𝐝𝐢𝐟 

10: end while 
11: if 𝑢 ≥ 𝑣 then 

12: 𝑢 ← 𝑢 − 𝑣

13: 𝐢𝐟 𝑥 > 𝑦 𝐭𝐡𝐞𝐧 𝑥 ← 𝑥 − 𝑦 𝐞𝐥𝐬𝐞 𝑥 ← 

𝑥 + 𝑝 − 𝑦 𝐞𝐧𝐝𝐢𝐟 

14: else 
15: 𝑣 ← 𝑣 − 𝑢

16: 𝐢𝐟 𝑦 > 𝑥 𝐭𝐡𝐞𝐧 𝑦 ← 𝑦 − 𝑥 𝐞𝐥𝐬𝐞 𝑦 ← 

𝑦 + 𝑝 − 𝑥 𝐞𝐧𝐝𝐢𝐟 

17: end if 
18: end while 
19: 𝐢𝐟 𝑢 = 1 𝐭𝐡𝐞𝐧 𝑟 ← mod ( 𝑥, 𝑝)𝐞𝐥𝐬𝐞 𝑟 ← 

mod ( 𝑦, 𝑝) 𝐞𝐧𝐝𝐢𝐟 

20: return 𝑟
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cryptographic hash function such as SHA-256 or SHA-512, 𝑐 is the
number of iterations, and 𝑑𝑘𝐿𝑒𝑛 is the desired size of the output. 

Figure 6 illustrates how to compute the digest of PBKDF-2. In the
figure, 𝑖 is the resulting quotient after dividing the desired size of
output 𝑑𝑘𝐿𝑒𝑛 by the output size of 𝑃 𝑅 𝐹. Hence, in the case where
𝑃 𝑅 𝐹 is SHA-512 and the desired output size is 512, 𝑖 = 1. 𝑆𝑙 𝑡 is
concatenated with 𝑖 and used as the input to the first instance
of HMACSHA-512. From the second instance to instance 𝑐 − 1 ,
the previous HMACSHA-512 digest is used as the input to the
IET Blockchain, 2025
current instance. The algorithm uses 𝑃 𝑤𝑑 as the second input
to all the HMACSHA-512 computations. Moreover, it calculates 
the exclusive OR ( ⊕) of the output of each HMACSHA-512 digest
and concatenates the output of each 𝑖 operation to get 𝑑𝑘out . BIP-
39 uses PBKDF-2 with 𝑐 = 2048 to compute the seed used in the
HD wallet. 

The following section talks about the Keccak hash function used
to generate Ethereum addresses. 

2.5 The Keccak Hash Function 

The Keccak hash function, like many others, is designed to
offer robust security by preventing collision attacks and other
vulnerabilities [ 2 ]. The core of the Keccak hash function is the
sponge construction technique, which operates in two phases: 
absorbing and squeezing. During the absorbing phase, the input
message is divided into blocks, and a permutation function
iteratively processes these blocks, integrating the input message 
into the function’s state. In the squeezing phase, the function
extracts the output from its state by repeatedly applying the same
permutation function until the desired output size is achieved
[ 45 ]. This flexible sponge construction enables Keccak to produce
digests of varying sizes, making it suitable for a wide range
of applications. 

The Keccak family includes four primary hash functions, catego-
rized by the size of their digests: Keccak-224, Keccak-256, Keccak-
384, and Keccak-512 [ 46 ]. In blockchain technology, different
variants of Keccak are utilized in various system components.
For example, Stellar employs Keccak-512 in its consensus protocol
[ 47 ], while Ethereum uses Keccak-256 in its address generation
process. Specifically, Ethereum generates an address by hashing 
the public key with Keccak-256. Additionally, Keccak is used
to create a checksummed Ethereum address, ensuring greater 
security and integrity. In this work, we utilize an open-source
Keccak-256 hardware implementation provided by the Keccak 
group [ 48 ]. 

In the next section, we introduce the HMACSHA-512 algorithm
used in various stages of the key generation process. 

2.6 The HMACSHA-512 Algorithm 

The HMAC based on SHA-512 (HMACSHA-512) is an algorithm
proposed by the national institute of standards and technology
(NIST) to ensure data integrity and authenticity [ 49, 50 ]. The
7 of 26
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ALGORITHM 4 The child key derivation (CKD) function as 
described in BIP-32. Adapted from [ 32 ]. 

Input : 𝑘, 𝑐, 𝑛, 𝑝
1: if 𝑛 ≥ 231 then 

2: ℎ ← 00 ||𝑘
3: else 
4: 𝑏 ← secp256k1 ( 𝑘) 
5: ℎ ← serialize ( 𝑏) 
6: end if 
7: ℎ̂ ← ℎ ||𝑛 
8: 𝑙, 𝑟 ← hmacsha512 ( 𝑐, ℎ̂ ) 
9: 𝑘̂ ← mod ( 𝑙 + 𝑘, 𝑝) 
10: 𝑐 ← 𝑟

11: return 𝑘̂ , 𝑐 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALGORITHM 5 Pseudo algorithm for Ethereum checksum. 
Adapted from [ 51 ]. 

Input : 𝑎 , 𝑑 ← keccak 256( 𝑎 ) 
Output : 𝑑 

Initialisation : 
1: 𝑑 ← 𝑎

2: 𝑗 ← length ( 𝑎)∕4 

3: 𝑘 ← 3 

LOOP Process : 
4: for 𝑖 = 𝑗 − 1 to 0 do 
5: if 𝑎( 𝑘 ∶ 𝑘 − 3) > 9 then 

6: if 𝑑( 𝑘 ∶ 𝑘 − 3) > 7 then 

7: 𝑑 ( 𝑘 ∶ 𝑘 − 3) ← capital (𝑑 ( 𝑘 ∶ 𝑘 − 3)) 

8: end if 
9: end if 
10: end for 
11: return 𝑑 
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HMACSHA-512 takes two inputs called key 𝑘 and message 𝑚 and
outputs a 512-bit digest as follows: 

HMAC ( 𝑘, 𝑚) = H ( 𝑘 ⊕ 𝑜 𝑝 𝑎 𝑑 ∥ H ( 𝑘 ⊕ 𝑖𝑝 𝑎 𝑑 ∥ 𝑚)) , (8)

where H( ⋅) denotes the SHA-512 hash function. Moreover, 𝑜 𝑝 𝑎 𝑑
is the outer padding, which is 0x36 repeated 64 times, and 𝑖𝑝 𝑎 𝑑
is the inner padding, which is 0x5C also repeated 64 times [ 49 ].
HMAC uses 𝑖𝑝 𝑎 𝑑 and 𝑜 𝑝 𝑎 𝑑 to modify the key and message
before applying the hash function to enhance security. Section 2.1
explains that HMACSHA-512 is used to create the master seed
and mnemonics in an Ethereum HD wallet. Section 3.4 provides
further details on the proposed hardware architecture of the
HMACSHA-512 algorithm. 

The next section introduces the CKD function, which is integral
to the hierarchical structure of the wallet. 

2.7 The Child Key Derivation Function 

The CKD function in the BIP-32 standard for HD wallets (see
Figure 3 ) allows deriving child keys from a parent key in a secure
and reproducible manner. The CKD function utilizes SECP256K1
and HMACSHA-512 hash algorithms. Algorithm 4 depicts the
execution process CKD function. 

The inputs 𝑘, 𝑐, 𝑛, and 𝑝 are the private key, chain code,
child number, and the prime field modulus for SECP256K1,
respectively. The private key and the chain code are digests from
the HMACSHA-512 hash function, where 256 LSBs of the digest
are the chain code, and 256 MSBs of the digest are the private key.
Lines 1–2 describe how the 𝑖 𝑓 condition specifies the creation of
hardened keys. It appends 𝑥00 at the beginning of 𝑘 if 𝑛 ≥ 231 .
The 𝑒 𝑙𝑠 𝑒 statement in lines 3–6 describe how the CKD function
creates normal keys. First, SECP256K1 generates a child public
key 𝑏 using 𝑘 as input. Second, the CKD function executes a
serialization function, taking 𝑏 as input. The serialization process
takes 256 MSBs of the 512-bit long 𝑏 value as the public key. It then
prepends 𝑥02 if the 256-bit LSB integer 𝑏 is even or 𝑥03 if the value
is odd. 
8 of 26

 

After the 𝑖 𝑓- 𝑒 𝑙𝑠 𝑒 statement, the CKD function creates a hardened
or normal key, ℎ. Line 7 creates ℎ̂ by concatenating ℎ and the child
number 𝑛. Line 8 then uses HMACSHA-512 with 𝑐 and ℎ̂ as key
and message, respectively, to generate 𝑙 and 𝑟. Here, 𝑙 is the 256
MSBs of the HMACSHA-512 digest while 𝑟 is the remaining 256
LSBs of the digest. Line 9 performs modulo 𝑝 addition of 𝑙 and 𝑘.
The CKD function returns 𝑐 and 𝑘̂ as child chain code and child
private key, respectively. 

The following section discusses how the Ethereum address
is generated. 

2.8 The Ethereum Address 

The Ethereum address is derived by computing the Keccak-256
hash of the public key and extracting the 160 LSBs of the resulting
digest. To improve readability and reduce the risk of input errors,
a checksummed address is then generated according to the
Ethereum improvement protocol (EIP)-55 protocol, as illustrated 
in Algorithm 5 [ 51 ]. This process takes the lowercase hexadecimal
Ethereum address, denoted 𝑎, and computes its Keccak-256 hash,
producing a digest 𝑑. For each alphabetical character in 𝑎, if
the corresponding nibble in 𝑑 is greater than 7, the character is
converted to uppercase using the function capital (). This results
in a mixed-case Ethereum address that incorporates a checksum,
enabling basic error detection during manual entry. 

The following section discusses the ECDSA. 

2.9 The Elliptic Curve Digital Signature 
Algorithm 

ECDSA is a cryptographic algorithm based on EC arithmetic
that generates digital signatures to ensure both data integrity
and authenticity. It is widely deployed and standardized by
organizations such as the International Standards Organization 
IET Blockchain, 2025
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ALGORITHM 6 Pseudo algorithm for signature-generation in 
ECDSA. Adapted from [ 53 ]. 

Input : Curve prime 𝑝, order of 𝐺 𝑛, private key 
𝑑 ∈ [1 , 𝑛 − 1] , 𝑧 ← SHA256( 𝑚 𝑠𝑔 ) 

Output : Signature ( 𝑟 , 𝑠 ) 
1: Select nonce 𝑘 ← [1 , 𝑛 − 1] 

2: Compute ( 𝑥1 , 𝑦1 ) ← 𝑘 ⋅ 𝐺 over 𝔽𝑝 
3: 𝑟 ← 𝑥1 mod 𝑛

4: 𝑠 ← 𝑘− 1 ( 𝑧 + 𝑑 ⋅ 𝑟) mod 𝑛

5: return ( 𝑟 , 𝑠 ) 
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(ISO), the American National Standards Institute (ANSI), and the
NIST [ 52 ]. 

The ECDSA process consists of three stages: key generation,
signature generation, and verification. In the key generation
stage, a private key is multiplied by the base point of the chosen
EC to produce the corresponding public key, as discussed in
Section 2.2 . In the signature generation stage, the private key, the
message hash, and auxiliary variables are used to compute the
digital signature. Finally, in the verification stage, the receiver
uses the message and public key to reconstruct the signature and
compare it with the received signature. If they match, the message
is considered valid [ 53 ]. 

Ethereum employs ECDSA to generate digital signatures for
transaction authorization. Notably, it uses the SECP256K1 EC to
perform the signing. In practice, physical crypto wallets typically
implement the key generation and signature generation stages
to manage private keys and signing operations securely. The
signature generation procedure is summarized in 6 . 

On 6 , the ECDSA algorithm takes as input the order of the
generator point 𝐺 (denoted as 𝑛), the private key 𝑑, and the SHA-
256 hash digest of the transaction data 𝑧. In line 1, a nonce 𝑘 is
generated, either uniformly at random from the interval [1 , 𝑛 − 1]

or deterministically using the RFC 6979 protocol [ 54 ]. On line 2,
the corresponding elliptic curve point 𝑘𝐺 is computed. Line 3 sets
the 𝑥-coordinate of this point, reduced modulo 𝑛, as the signature
component 𝑟. On line 4, the second signature component 𝑠 is
derived as 𝑘− 1 ( 𝑧 + 𝑑 𝑟 ) mod 𝑛. Finally, line 5 outputs the signature
pair ( 𝑟 , 𝑠 ) . 

The following section provides an in-depth exploration of the
hardware design and implementation details of EthVault. 

3 Proposed Hardware Architecture of EthVault 

This section presents the proposed EthVault architecture. It
begins with an overview of the wallet’s design, optimizations,
and core functionalities. It then details the proposed archi-
tectures of the integrated cryptographic and key-management
algorithms, including SECP256K1, BIP-39, BIA, HMACSHA-512,
CKD, Ethereum checksum, and the ECDSA. 

For each architecture, we highlight the specific optimization
strategies implemented, as well as the testing and validation
IET Blockchain, 2025
techniques employed, including the sources of the test vectors.
Additionally, the coverage report for each algorithm was gen-
erated using the Vivado code coverage tool [ 55 ], with coverage
evaluated for statement, branch, and condition metrics. This
tool produces coverage reports for each sub-module of a design
rather than just the top level. Therefore, we compute the average
coverage across all sub-modules and report it as the statement,
branch, and condition coverage for the entire module. 

3.1 Architecture of EthVault 

Figure 7 illustrates the proposed architecture of EthVault. The
design includes several input/output (IO) interfaces that facilitate 
communication with both the end user and a hot wallet, enabling
data exchange and transaction approval. The specifics of this
interaction are further detailed in Section 4.10 . 

The input signal 𝑛 specifies the number of child key pairs
(private/public) and their corresponding Ethereum addresses 
to be generated. The 𝑠 𝑡𝑎 𝑟 𝑡 signal initiates the key generation
process, while the 𝑠 𝑒 𝑙 input selects which key pair is to be used for
subsequent operations. Moreover, 𝑧 is the SHA-256 hash digest of
the transaction data to be signed. Also, EthVault operates using a
single synchronous clock, denoted as 𝑐𝑙 𝑘 . 

Additionally, the output 𝑚𝑐 𝑠 represents the mnemonic phrase
generated by the wallet, while the input 𝑚𝑐 𝑠 𝐼𝑛 allows users to
provide a mnemonic phrase to recover previously generated keys.
The 𝑘𝑒𝑦 output contains the public key and the Ethereum address
selected by 𝑠 𝑒 𝑙. Finally, 𝑟 and 𝑠 represent the components of the
transaction data signature. 

3.1.1 Module Functions of EthVault 

Figure 7 also highlights the main components integrated within
the EthVault architecture. Registers R1 to R4 are used to store
intermediate and final values during the key generation process.
The CKDF component implements the CKD function, which 
includes two submodules: HMACSHA512, responsible for exe- 
cuting the HMACSHA-512 algorithm, and SECP256K1, which 
performs EC operations on the SECP256K1 curve. 

The RNG module supplies entropy for mnemonic generation, 
while the BIP39 module uses this entropy to generate mnemonics.
The BIP39 module also internally invokes the CKD function to
derive the master and intermediate keys. The CNTR module
functions as a counter, iterating from 0 to 𝑛–1 to produce the
𝑎 𝑑 𝑑 𝑟 𝑒 𝑠 𝑠_𝑖𝑛𝑑 𝑒 𝑥 variable of the derivation path. 

The SR component handles the serialization of the public key
into a compressed format. The KECCAK256 and CHECKSUM 

components implement the Keccak-256 hash function and the 
Ethereum request for comment (ERP)-55 checksum algorithm, 
respectively. The HEX2ASCII module converts the hexadecimal 
Ethereum address into its ASCII format. 

Modules PAD0 and PAD1 append zero bits to their respective
inputs to produce a 1 600-bit output, as required by the Keccak
sponge function. The RAM module serves as storage for the
9 of 26
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FIGURE 7 Proposed hardware architecture of EthVault. The constants 𝑝 𝑢, 𝑐 𝑡, 𝑎 𝑐 , and 𝑐 ℎ represent the parameters of the BIP-44 path, 
corresponding to 𝑝 𝑢𝑟 𝑝 𝑜 𝑠 𝑒 , 𝑐 𝑜 𝑖 𝑛_𝑡𝑦 𝑝 𝑒 , 𝑎 𝑐 𝑐 𝑜 𝑢𝑛𝑡, and 𝑐 ℎ𝑎 𝑛𝑔𝑒 , respectively. The variable 𝑛 denotes the number of child keys, which determines the 
𝑎 𝑑 𝑑 𝑟 𝑒 𝑠 𝑠_𝑖𝑛𝑑 𝑒 𝑥 of the path through the counter CNTR. The path widths are defined as 𝑎 = 1024 , 𝑏 = 512 , and 𝑐 = 256 . 
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generated key pairs, allowing efficient retrieval and selection,
while the ECDSA module implements the ECDSA algorithm
to sign transaction data. Finally, the control unit (CU) mod-
ule implements a finite state machine (FSM) that coordinates
the operation of all modules by generating control signals
to ensure correct sequencing and timing throughout the key
generation process. 

3.1.2 BIP44-Compliant HD Wallet Architecture 

EthVault fully implements the HD structure specified in the
Ethereum HD wallet standard, as detailed in Section 2.1 . The
wallet adheres to the BIP-44 specification by executing all
derivation steps along the standardized path. The constants
used in the BIP-44 derivation path are denoted in Figure 7
as 𝑝𝑢 (purpose), 𝑐𝑡 (coin type), 𝑎𝑐 (account), 𝑐ℎ (change),
and 𝑛 (address index), corresponding to the hardened path
𝑚∕44′∕60′∕0′∕0∕ 𝑎 𝑑 𝑑 𝑟 𝑒 𝑠 𝑠_𝑖𝑛𝑑 𝑒 𝑥 for Ethereum. 

The green region highlights the CKD engine, which performs
ECC arithmetic to compute child keys at each level. These
operations follow the hardened and non-hardened derivation
rules defined by BIP-32, which BIP-44 builds upon. 

3.1.3 Datapaths and Key Generation 

Figure 7 illustrates various internal signals and paths with
different widths. To enhance readability, some widths that can be
easily inferred are omitted. For instance, while the input width
of a register or multiplexer may be indicated, the corresponding
output width may not appear. However, it can be directly deduced
10 of 26
from the input. Additionally, certain widths are denoted by
letters: 𝑎 corresponds to 1024, 𝑏 to 512, and 𝑐 to 256. The signal
𝑐𝑚 represents the concatenation of the chaincode and the master
private key, while 𝑏 𝑡𝑐 𝑆𝑑 denotes the string “Bitcoin seed” in
ASCII format, padded with zeros for use during the master private
key and chaincode generation stage. Moreover, 𝑘 is the random 

value employed by ECDSA during signature generation. 

The red data path represents the Ethereum address generation
process. Here, the public key is hashed using KECCAK256 and
truncated to produce a 160-bit Ethereum address. In the figure,
the 160 LSBs of Ad represents this raw Ethereum address.
The corresponding checksummed address, cAd , is computed as
described in 5 , following the EIP-55 specification [ 51 ]. Moreover,
the compressed public key ( pub_key ), the private key ( priv_key )
and the checksummed ( cAd ) addresses are stored within the RAM
module as shown in the figure. 

To generate keys within EthVault, the user inputs the number
of keys to be generated using 𝑛 and commences key generation
using the 𝑠 𝑡𝑎 𝑟 𝑡 input. The RNG then generates a random number,
𝑒, which the BIP39 module uses to produce a seed and the
corresponding mnemonic phrase through 𝑚𝑐 𝑠 . The user securely
stores this phrase, which can be re-entered via the 𝑚𝑐 𝑠 𝐼𝑛 input
to recover the associated keys. HMACSHA512 then processes
the seed to compute the master key, 𝑚, as shown in Figure 3 .
Using this master key and the BIP-44 path, the wallet derives
𝑛 private/public key pairs. Each public key maps to a unique
checksummed Ethereum address ( cAd ), and the generated keys
are stored in the random access memory (RAM). The user
can select any key pair from memory using 𝑠 𝑒 𝑙 to send or
receive cryptos. 
IET Blockchain, 2025
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ALGORITHM 7 Montgomery Ladder algorithm with temporary 
registers. 

Input : 𝑷 ∈ ( 𝑥, 𝑦, 𝑧) , 𝑘 = ( 𝑘𝑡− 1 , . . . , 𝑘0 ) with 𝑘𝑡− 1 = 1 

Output : 𝑹 = 𝑘𝑷 

Initialisation : 
1: 𝑹𝟎 ← 𝑷 

2: 𝑹𝟏 ← 2 𝑷 

LOOP Process : 
3: for 𝑖 = 𝑡 − 2 : 0 do 
4: if 𝑘𝑖 = 1 then 

5: 𝑹𝟎 ← 𝑹𝟎 + 𝑹𝟏 

6: 𝑹𝟏 ← 2 𝑹𝟏 

7: 𝑹𝒕 ← 2 𝑹𝟎 

8: else 
9: 𝑹𝟏 ← 𝑹𝟎 + 𝑹𝟏 

10: 𝑹𝟎 ← 2 𝑹𝟎 

11: 𝑹𝒕 ← 2 𝑹𝟏 

12: end if 
13: end for 
14: 𝑹 ← BIA ( 𝑹𝟎 ) 

15: return 𝑹 
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3.1.4 Optimizations 

To enhance throughput in EthVault, the derivation path
𝑚 ∕𝑝𝑢 𝑟𝑝𝑜𝑠𝑒′∕𝑐𝑜𝑖𝑛_𝑡𝑦𝑝 𝑒′∕𝑎 𝑐 𝑐 𝑜 𝑢 𝑛 𝑡′∕𝑐ℎ 𝑎𝑛 𝑔 𝑒 ∕𝑑𝑑𝑟𝑒𝑠𝑠_𝑖𝑛 𝑑𝑒𝑥 is
optimized by avoiding redundant computations. Since part of
this path is repeatedly executed during the generation of multiple
keys, the output of the CKD function is stored in registers after
the first execution. Specifically, the result of the CKD function
for the partial path 𝑚 ∕𝑝𝑢 𝑟𝑝𝑜𝑠𝑒′∕𝑐𝑜𝑖𝑛_𝑡𝑦𝑝 𝑒′∕𝑎 𝑐 𝑐 𝑜 𝑢 𝑛 𝑡′∕𝑐ℎ 𝑎𝑛 𝑔 𝑒
is cached in registers and reused for subsequent key generations.
As a result, only the 𝑎 𝑑 𝑑 𝑟 𝑒 𝑠 𝑠_𝑖𝑛𝑑 𝑒 𝑥 needs to be computed for
each new child key. 

Additionally, the key derivation process involves repeatedly
executing algorithms such as HMACSHA-512, SECP256K1, and
SHA-512 at various stages, as outlined in Section 2.1 and demon-
strated by Figure 4 . To reduce the wallet’s size, the CKDF module
provides dedicated paths to use each of these algorithms, enabling
their reuse across different stages. 

3.1.5 Validation and Testing 

To generate test vectors for validation, an Ethereum HD wallet
implemented in Python was employed to produce entropy 𝑒
and the corresponding child private and public keys and their
derived addresses. Additionally, an online implementation was
utilized to generate random mnemonic phrases, from which
the corresponding private keys, public keys, and addresses were
obtained [ 56 ]. 

Moreover, we tested edge cases such as when 𝑒 = all 1s, 𝑒 =
all 0s, which represent the maximum and minimum possible
entropy values, respectively. Similarly, we tested 𝑚𝑐 𝑠 𝐼𝑛 = all 1s,
and 𝑚𝑐 𝑠 𝐼𝑛 = all 0s covering boundary scenarios for mnemonic-
to-seed conversion. 

The following section highlights the proposed architecture of the
SECKP256K1 algorithm. 

3.2 Architecture of SECP256K1 

As discussed in Section 2.2 , SECP256K1 consists of three key
processes: ECPA, ECPD, and ECPM. The ECPA operation calcu-
lates the sum of two distinct points on the EC, defined as 𝑹 =
𝑷 + 𝑸 . In contrast, ECPD represents the doubling of a point on
the curve ( 𝑹 = 2 𝑷 ). For efficient implementation, we compute
ECPD by applying the ECPA operation to the same point twice,
setting 𝑷 = 𝑸 to yield 𝑹 = 𝑷 + 𝑷 = 2 𝑷 . Additionally, scalar ECPM
computes the product of a point with a scalar integer, denoted
by 𝑹 = 𝑘 ⋅ 𝑷 ( 𝑷 is set as the generator point 𝑮 of SECP256K1).
This ECPM operation is implemented using the Montgomery
ladder algorithm, which incorporates both ECPA and ECPD
steps, as shown in 1 . To avoid costly inversion operations, we
perform ECPM in projective coordinates, requiring only one final
inversion to return to affine coordinates, that is, ( 𝑥𝑧− 1 , 𝑦𝑧− 1 ) ⇒
( 𝑥, 𝑦). 

Although physical crypto wallets are vulnerable to a wide range
of attacks, including power and timing analysis, electromagnetic
analysis (EMA), fault injection attack (FIA), memory attacks,
IET Blockchain, 2025
and brute-force attacks [ 4, 57 ], this work specifically focuses on
mitigating DPA and timing-based SCA. In particular, we propose
a modified Montgomery ladder algorithm with a temporary 
register, 𝑹𝒕 , as shown in 7 . This register ensures that 𝑹𝟎 is accessed
when 𝑘𝑖 = 1 and when 𝑘𝑖 = 0 𝑹𝟏 is accessed. Hence, maintaining
consistent power and timing patterns. 𝑹𝒕 ensures uniform access 
patterns by always involving both 𝑹𝟎 and 𝑹𝟏 in computations, 
regardless of the value of 𝑘𝑖 . Specifically, when 𝑘𝑖 = 1 or 𝑘𝑖 = 0 ,
ECPD is performed on both 𝑹𝟎 and 𝑹𝟏 . This design enforces
consistent power and timing patterns by maintaining uniform
memory access and data path utilization, thereby minimizing the
side-channel information leaked to an attacker. 

Furthermore, we employ the complete ECPA equations from 2
in the modified algorithm. These equations eliminate the con-
ditional branching typically associated with traditional ECPA 

processes on Weierstrass curves [ 23 ]. To further obscure any com-
putational patterns, all operations within each branch (addition 
and doubling) are executed in parallel, creating a uniform control
structure that conceals the order of operations. 

Figure 8 illustrates the proposed hardware architecture for the
modified Montgomery ladder algorithm presented in 7 , which
implements elliptic curve operations over SECP256K1. The light 
blue dashed modules represent the ECPA hardware architecture, 
which executes the equations in 2 . This Montgomery ladder
architecture utilizes two ECPA modules executing in parallel, 
with a CU module processing the bit values 𝑘𝑖 of the private key to
control all select and enable signals for multiplexers and registers.

The light orange module in the figure corresponds to the BIA
architecture. Since BIA is executed at the end of the ECPM
11 of 26
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FIGURE 8 The hardware architecture of the proposed Montgomery 
Ladder algorithm used to perform ECPM. PA0 and PA1 can perform either 
ECPA or ECPD in parallel, depending on the status of 𝑘𝑖 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2 SECP256K1 test vectors and edge-case purposes. 

𝒌 Purpose of the test 

0 Multiplication produces the point at infinity 
𝑛 − 1 Point negation and handling of scalars just below the 

group order 
𝑛 Scalars equal to group order reduce to zero and are 

rejected 
𝑛 + 1 Verifies modular reduction wraps around; behaves 

like 𝑘 = 1 

2256 − 1 Tests very large scalars and reduction modulo 𝑛
2255 Tests handling of scalars with the highest bit set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26341573, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/blc2.70028 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [10/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative 
process, it reuses 𝑹𝟏 and 𝑹𝒕 registers from the preceding ECPA
operations to optimize resource utilization. The rugged light red
region highlights this reuse. 

Each ECPA module executes the complete ECPA formulas
detailed in 2 . All operations in 2 are computed modulo 𝑝, where 𝑝
is the prime number specific to SECP256K1. Also, the BIA module
performs modulo 𝑝 operations as shown in 3 . Accordingly, we
design a modular arithmetic logic unit (MALU) that performs
modular addition, subtraction, and multiplication. A shift-and-
add algorithm is used to execute these modular operations
[ 58 ]. 

The inputs and outputs of the Figure 8 correspond to those
defined in 7 . Specifically, 𝑥, 𝑦, and 𝑧 denote the 256-bit projective
coordinates of the generator point 𝑮 , 𝑘 is the 256-bit private key
input, 𝑏3 represents the value defined in 2 , and 𝑹 is the output in
affine coordinates. The output of the BIA block is a bus containing
the contents of all five registers used by the BIA architecture. This
12 of 26
bus has a width of 1 280 bits, denoted as 𝑏. Furthermore, the
red and blue paths represent data buses carrying the outputs of
registers 𝑹𝟎 and 𝑹𝟏 , respectively. 

3.2.1 Optimizations 

In addition to mitigating DPA and timing SCA attacks using
temporary registers, parallel operations, and optimized ECPA 

equations, we aim to minimize resource utilization. Notably, the
architecture in Figure 8 employs only two ECPA modules, instead
of four, to achieve a more efficient and compact design. Also, the
BIA implementation shares registers with the implementation of 
the ECPM algorithm, as indicated by the rugged region in the
figure, further optimizing hardware resources. 

3.2.2 Validation and Testing 

Software implementations of the ECPA and BIA modules were
developed in Python to generate test vectors for verifying the
corresponding hardware architectures. Additionally, the offi- 
cial SECP256K1 implementation used by Bitcoin [ 59 ], along
with other widely adopted implementations available in Python 
libraries, was utilized to generate reference test vectors and
validate the correctness of the proposed SECP256K1 architecture. 

The test vectors for Equation ( 5 ) of SECP256K1 include edge
cases shown it Table 2 such as 𝑘 = 0 , 𝑘 = 𝑛 − 1 , 𝑘 = 𝑛, 𝑘 =
𝑛 + 1 , 𝑘 = 2256 − 1 , and 𝑘 = 2255 , where 𝑛 is the order of the
SECP256K1 generator 𝑮 . Also, other random values of 𝑘 were
used. Functional verification achieved a coverage of 98% for
statements, 96% for branches, and 97% for conditions. This
indicates that the test bench thoroughly exercised the design,
leaving only a small fraction of rarely triggered code untested. 

The following section introduces the proposed architecture of the
BIP-39 protocol. 

3.3 Architecture of BIP39 

Figure 9 presents the proposed hardware architecture for exe-
cuting the BIP-39 protocol. The protocol relies on the random
number 𝑒 generated by the RNG, the PBKDF-2 shown in Figure 6 ,
IET Blockchain, 2025
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FIGURE 9 Proposed hardware architecture of BIP-39 used to gen- 
erate the seed and mnemonics. The architecture uses HMACSHA-512 
module inside the CKD function and SHA-512 inside the HMACSHA-512 
module, reducing the size of the device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3 PBKDF2 edge cases for functional verification. 

Parameter Edge cases 

Password ( 𝑑) All 0s, All 1s, repeating patterns 
Salt ( 𝑆𝑙 𝑡 ) All 0s, All 1s, reused salts across different 

passwords 
Iteration count All 0s, All 1s, very large (stress test, 

e.g., 232 ) 
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and the SHA-256 algorithm to generate both the mnemonic codes
( 𝑚𝑐 𝑠 ) and the seed value ( 𝑑𝑘out ). 

The MNG module computes the mnemonic using the BIP-39
English wordlist, which contains 2048 words [ 60 ]. Its architecture
is shown in Figure 10 . In this design, 𝑛𝑐 represents the check-
summed entropy used to calculate the mnemonic indices. It is
derived using the following equations: 

𝐶 𝑆 = 𝐸 𝑁 𝑇 

32 
, 𝑀 𝑆 = 𝐸 𝑁 𝑇 + 𝐶 𝑆 

11 
, (9)

where 𝐶𝑆 is the checksum length in bits, 𝐸 𝑁 𝑇 is the entropy
length in bits, and 𝑀𝑆 is the number of mnemonic words.
Moreover, 𝐸 𝑁 𝑇 can take values of 128, 160, 192, 224, or 256 [ 61 ].
The checksum is generated by taking the SHA-256 hash of 𝑒. 

In EthVault, 𝐸 𝑁 𝑇 is set to 256. Hence, 𝑛𝑐 in Figure 10 is 256 bits,
and 𝑀𝑆 equals 24. Accordingly, MATA is created with 24 indices,
each 11 bits long. The wordlist is stored in STORAGE with 64-bit
word sizes. The size corresponds to the longest word in the list.
Since there are shorter words, the number of valid bits in the word
is appended to each word using 8 bits, denoted as 𝑙𝑒𝑛 in Figure 10 .

Using MATA as the index of selected mnemonic words in STOR-
AGE, MATB is formed, which contains the selected mnemonic
words. Then, by applying 𝑙𝑒𝑛 to collect the valid bits, we construct
𝑚𝑐 𝑠 , the mnemonic phrase arranged according to the indices.
Accordingly, 𝑚𝑐 𝑠 must contain consecutive valid bits, since it is
later hashed using HMACSHA-512. Any extra bit would lead to
an incorrect hash. 

The output, 𝑚𝑐 𝑠 in Figure 9 , is padded with zeros to ensure its
length is a multiple of 128 bytes, which corresponds to the block
size of the SHA-512 hash function. In the proposed architecture,
IET Blockchain, 2025
𝑚𝑐 𝑠 is padded to 2048 bits and stored in register R3, whose output
is denoted as 𝑑. The data in R3 is then divided into two equal
blocks: 𝑑 𝑅 = 𝑑 [1023 ∶ 0] and 𝑑 𝐿 = 𝑑 [2047 ∶ 1024] , each of which
is hashed using SHA-512. The resulting hash digest is stored in
R0, which serves as the 𝑃 𝑤𝑑 input to the PBKDF-2 function in
Figure 6 . Likewise, the 𝑆𝑙 𝑡 input in Figure 9 corresponds to the
𝑆𝑙 𝑡 input defined in Figure 6 . 

In an Ethereum HD, 𝑆𝑙 𝑡 is represented by the ASCII string
“mnemonics” which is padded with an optional 416-bit PIN cho-
sen by the user to enhance security. Since EthVault currently does
not require a PIN, 𝑆𝑙 𝑡 is instead padded with zeros. After storing
the SHA-512 digest in R0, the PBKDF-2 computation begins.
A counter, CNTR, tracks the execution of 2048 HMACSHA-512
operations, with each digest being XORed and stored in R1. The
seed generated in R1 ( 𝑑𝑘out ) is then used in the subsequent child
key derivation process. 

3.3.1 Optimization 

The proposed architecture uses the SHA-512 instance inside 
the HMACSHA-512 module. Also, the architecture uses the 
HMACSHA-512 module within the CKD function using control 
signals 𝑗 and 𝑘. By reusing these modules, the architecture mini-
mizes resource usage, as only one instance of each is required. 

3.3.2 Validation and Testing 

The SHA256 module was validated using official NIST test
vectors, which include a variety of edge cases [ 62 ]. In addition,
the PBKDF2 module employing the SHA-512 hash function, 
highlighted in the light red rugged region of Figure 9 , was
independently tested and verified using a Python implementation 
of its architecture. This Python implementation generated multi-
ple input-output test vectors with varying passwords, salts, and
iteration counts to ensure correct functionality across different 
scenarios. The validated edge cases are shown in Table 3 . 

Finally, the complete BIP39 implementation was tested and 
verified against the standard test vectors in [ 33 ], as well as
additional entropy and mnemonic combinations generated by 
[ 56 ]. These tests included edge cases for entropy ( 𝑒), such as
all zeros, all ones, repeated patterns, small values, and large
values, and for mnemonic input ( 𝑚𝑐 𝑠 𝐼𝑛), such as all zeros and all
ones. Moreover, the functional verification achieved a coverage 
of 99% for statements, 98% for branches, and 93% for conditions,
indicating the thoroughness of the test vectors. 
13 of 26
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FIGURE 10 Architecture of the MNG module. The input 𝑛𝑐 denotes the checksummed entropy 𝑒. The memory stores 2048 English mnemonic 
words, each with a bit-length specified by 𝑙𝑒𝑛. The MATA (24 ×11) and MATB (24 ×72) blocks perform word indexing and selection, while the VPAD unit 
creates the mnemonic using valid words. The resulting mnemonic word is provided at the output 𝑚𝑐 𝑠 . 

FIGURE 11 The hardware architecture of the proposed 
HMACSHA-512 designed for an Ethereum HD crypto wallet. The 
architecture has two pairs of key ( 𝑘_0 , 𝑘_1 ) and message ( 𝑚_0 , 𝑚_1 ) 
inputs that enable it to be used in all the stages of the HD wallet. 
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The following section discusses the proposed architecture of the
HMACSHA-512 hash algorithm. 

3.4 Architecture of HMACSHA512 

Figure 11 depicts the architecture of the proposed universal
HMACSHA-512. This single architecture handles HMACSHA-
512 hashing in various key derivation stages in the wallet by
selecting different inputs. Specifically, either k_0 and m_0 or k_1
and m_1 are chosen for 𝑘 and 𝑚 in Equation ( 8 ), respectively,
depending on the task (e.g., creating the seed value or generating
the master key). 

The PDC module prepares the input for SHA-512 by padding it
to a multiple of 1024 bits and dividing it into 1024-bit blocks.
For instance, when calculating the SHA-512 digest of a 1536-bit
input, denoted as 𝒙 , the input is first padded to 2048 bits, then
split into two 1024-bit blocks. The SHA-512 algorithm processes
the first block, retaining intermediate variables for subsequent
computation on the second block. The final output is the SHA-512
hash digest of 𝒙 . 

To demonstrate the operation of the proposed architecture, let’s
consider an example where k_0 and m_0 are selected as inputs,
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corresponding to k and m in Equation ( 8 ). First, these inputs are
XORed with the padding values opad and ipad and concatenated
to form the initial HMAC input blocks. They are then padded and
divided into 1024-bit chunks, making them ready for processing
by the SHA-512 algorithm. The SHA-512 algorithm subsequently
performs four rounds of hashing, with an intermediate regis-
ter (R0) storing the partial results after each step. Each pair
of rounds corresponds to a separate instance of SHA-512, as
depicted in Equation ( 8 ). This operation demonstrates how the
architecture efficiently processes data in stages, producing the 
final HMACSHA-512 output through layered hash calculations 
and intermediate result handling. 

3.4.1 Optimizations 

As shown in Equation ( 8 ), the HMACSHA-512 process involves
executing the SHA-512 function (denoted by 𝐻( ⋅) ) twice. To
optimize resource usage, however, the proposed hardware archi- 
tecture, illustrated in Figure 11 , implements only a single instance
of the SHA-512 function for the entire HMACSHA-512 operation.
This design reduces resource consumption while still achieving 
the necessary functionality. 

Furthermore, as outlined in Section 2.1 , the HMACSHA-512
function is applied at various stages of the Ethereum crypto
wallet’s key generation process. To support this multi-stage
requirement, inputs k_0 , m_0 , k_1 , and m_1 are introduced,
allowing the creation of a universal HMACSHA-512 instance that
can be shared across all key generation stages. 

Additionally, Section 3.3 explains the role of the SHA-512 hash-
ing algorithm in the seed generation process. Therefore, the
architecture includes a dedicated 𝑡𝑜𝑆𝐻𝐴512 input which enables 
the wallet to use SHA-512 independently within the broader
HMACSHA-512 framework. 

3.4.2 Validation and Testing 

The HMACSHA-512 and SHA-512 architectures were indepen- 
dently tested and validated using test vectors containing edge
cases from [ 63 ] and [ 62 ], respectively. Additionally, further edge
cases were evaluated, in which the inputs 𝑘_0 , 𝑘_1 , 𝑚_0 , and 𝑚_1
IET Blockchain, 2025
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FIGURE 12 The proposed hardware architecture of the CKD func- 
tion. SR is the serialization of the public key to a compressed format. 𝑘_0 , 
𝑘_1 , and 𝑡𝑜𝑆𝐻𝐴512 are 1024-bit inputs. 
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consisted entirely of zeros or ones, and the control signals 𝑠 𝑒 𝑙_𝑘,
𝑠 𝑒 𝑙_𝑚 toggled to select different internal and external padding. 

The functional verification of HMACSHA-512 achieved 100%
coverage for statements, 100% for branches, and 97% for con-
ditions, while the functional verification of SHA-512 achieved
100% coverage for statements, 100% for branches, and 98%
for conditions. 

The next section discusses the proposed hardware architecture of
the CKD function. 

3.5 Architecture of the CKDF Module 

Figure 12 illustrates the proposed architecture of the CKDF
module in Figure 7 , as described in 4 . The inputs, 𝑘_0 and
𝑘_1 , represent the key inputs for the HMACSHA-512 function,
while the 𝑚_0 input is message data. The signal 𝑡𝑜𝑆𝐻𝐴512 is
the input to the SHA-512 function within the HMACSHA512
module. The parameters 𝑘 and 𝑛 are the private key and child
number, respectively, provided as inputs to the CKD function. The
modulus module (MOD) performs modular addition with respect
to 𝑝, the 256-bit prime number defined by SECP256K1. 

As described in 4 , the inputs 𝑘, 𝑐, and 𝑛 are loaded at the start
of the CKD function. Notably, 𝑐 is provided through the 𝑚_0
input, as illustrated in Figure 12 . The CKDF module then executes
according to the steps in 4 , processing these inputs to generate the
child private key and chain code. These outputs are subsequently
stored in the output registers (R0) for further use. 

3.5.1 Optimizations 

The algorithms employed by the CKD function also perform other
functions outside the CKD function. For instance, HMACSHA-
IET Blockchain, 2025

 

512 is utilized within the PBKDF-2 of the BIP-39 protocol to
generate seed values and is also involved in creating the master
private key and master chain code outside the BIP-39 and CKD
functions. Additionally, the SHA-512 algorithm, which operates 
within the PBKDF-2, computes various digests as outlined in
Section 3.3 . Similarly, after performing child key generation
within the CKD function, SECP256K1 is used again outside the
CKD function to compute public keys. 

To reduce the resources needed by the device, we optimized
the CKD function by modifying its algorithm and reusing
components for multiple processes, as depicted in the proposed
hardware architecture illustrated in Figure 12 . This design allows
each algorithm to be accessed directly through dedicated inputs
and output paths, enhancing resource efficiency. The inputs 𝑘_0 ,
𝑘_1 , 𝑡𝑜𝑆𝐻𝐴512 , and 𝑚_0 allow HMACSHA-512 and SHA-512 to
operate independent of the CKD function and store their outputs
in dedicated registers via the blue data path. Furthermore, the
SECP256K1 output is routed through the red data path to an
output register, enabling its reuse in external processes via the
input 𝑘. 

3.5.2 Validation and Testing 

To verify the correctness of the CKDF module, a software
reference model was developed in Python. Using a known seed,
the script generated a master key and chain code, followed by the
derivation of several child private keys. The generated keys were
verified against the outputs of an online HD wallet generator [ 56 ].

The CKDF hardware module was then tested using the master
key and chain code as inputs and validated by comparing
its output (child public and private keys) with the Python-
generated reference. Additionally, the internal cryptographic 
modules (HMACSHA-512, SHA-512, and SECP256K1) were tested 
independently using control signals, as they had already been
validated in earlier stages. 

Edge cases of the CKD function were also tested, including both
hardened and non-hardened key derivation (i.e., 𝑛 ≥ 231 and 𝑛 <
231 ), as well as invalid derivation scenarios resulting from edge
conditions in the modular arithmetic, such as scalar overflow,
resulting in 𝑘 mod 𝑛 = 0 , or attempts to derive a child key that
would produce a point at infinity. Moreover, the functional
verification of the CKDF module achieved 96% coverage for
statements, 96% for branches, and 90% for conditions. 

The following section discusses the implementation of the 
Ethereum checksum encoding. 

3.6 Architecture of Ethereum Checksum 

A checksummed Ethereum address consists of a mix of numbers
and both uppercase and lowercase letters. To create a hardware
implementation of the uppercase conversion described in Sec- 
tion 2.8 , the function capital() converts the hexadecimal address
to ASCII format. This conversion is optimized by using fixed
offsets for each 4-bit group of 𝑎, avoiding the use of LUTs and
reducing resource utilization. 
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FIGURE 13 Proposed hardware architecture of the ECDSA algorithm. The SECP256K1 elliptic curve operations are encapsulated within the CKDF 
module. The design integrates modular arithmetic blocks, including modular inversion, multiplication, and addition, to efficiently compute the signature 
values 𝑟 and 𝑠. 
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3.6.1 Validation and Testing 

This implementation was validated against the reference soft-
ware implementation proposed by Ethereum [ 51 ]. In addition
to the standard test vectors provided in [ 51 ], edge cases such
as inputs composed entirely of numbers, all zeros, and only
letters were also tested and successfully passed. Also, the
functional verification of the CKDF module achieved 100%
coverage for statements, 100% for branches, and 94% for condi-
tions. 

The following section discusses the proposed architecture of the
ECDSA algorithm. 

3.7 Architecture of ECDSA 

Figure 13 illustrates the proposed hardware architecture of the
ECDSA algorithm described in 6 . In the figure, R0 to R4 denote
registers, BINV represents the BIA algorithm defined in 3 , and
MM corresponds to the shift-and-add modular multiplication
algorithm proposed in [ 58 ]. The architecture employs three sub-
tractors and one adder. The inputs 𝑘, 𝑑, and 𝑧 denote the random
number, the private child key, and the SHA-256 digest of the
message to be signed, respectively. The parameter 𝑛 is the order
of the SECP256K1 EC, while 𝑟 and 𝑠 are the resulting signature
components. The subtractors perform modular reduction with
respect to 𝑛 on the values stored in the registers before further
processing is carried out. 

Once the wallet generates the public and private child keys
and stores them in RAM, the ECDSA architecture is used to
authorize Ethereum transactions. Specifically, the child private
key is used as 𝑑, a constant random number is used for 𝑘
(uniformly, where 𝑘 ∈ [1 , 𝑛 − 1] ), and the SHA-256 hash of
the transaction data is used as 𝑧. The corresponding public
key is then transmitted to the receiver for use in the veri-
fication stage of ECDSA. For multiple signature generations,
pipelining is employed: the computation of the next signature
begins immediately after the SECP256K1 and BINV modules
complete their operations for the current signature, thereby
improving throughput. 
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3.7.1 Optimization 

To optimize the ECDSA implementation, the SECP256K1 algo- 
rithm is embedded within the CKDF module. This integration
minimizes resource utilization by avoiding the need for additional
instances of the algorithm. Furthermore, the SECP256K1 and 
BINV modules are executed in parallel, along with the two
subtractors in the middle section and the subtractor–adder pair
at the rightmost part of the architecture. This parallel execution
significantly reduces the latency of the signing process. In
addition, pipelining is employed to further enhance the overall
performance of the wallet. 

3.7.2 Validation and Testing 

The ECDSA module was first developed, tested, and verified inde-
pendently before being integrated into the EthVault architecture. 

To ensure correctness, a reference software implementation was 
developed in Python, which generated various test vectors (i.e.,
𝑘, 𝑧, 𝑑, 𝑟, and 𝑠) that were applied as inputs and compared
against the outputs of the proposed hardware architecture. In
addition, test vectors were obtained from an online ECDSA
implementation [ 64 ] as well as from Project Wycheproof [ 65 ].
The functional verification of the ECDSA module achieved 94%
coverage for statements, 94% for branches, and 87% for conditions.

Several edge cases were evaluated, including settings where 𝑘, 𝑑,
and 𝑧 were assigned all 0’s, all 1’s, small values, and large values.
In addition, scenarios with 𝑘 > 𝑛, 𝑑 > 𝑛, and 𝑧 > 𝑛were tested, as
detailed in Table 4 , to ensure the robustness of the design under
atypical input conditions. 

The next section details the implementation results and discus-
sions of the proposed EthVault on FPGA. 

4 Implementation Results and Analysis of 
EthVault on FPGA 

This section presents the implementation results of EthVault 
on an FPGA. To the best of our knowledge, no comparable
IET Blockchain, 2025
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TABLE 4 ECDSA edge case test scenarios. 

Edge case Purpose of test 

𝑘 = 0 , 𝑑 = 0 , 𝑧 = 0 Tests invalid zero values. 
𝑘, 𝑑, 𝑧 = all 1s (maximum bit patterns) Ensures correct handling of maximum scalar values. 
Small values of 𝑘, 𝑑, 𝑧 (e.g., 1,2,3) Verifies correctness in minimal input scenarios. 
Large values of 𝑘, 𝑑, 𝑧 (close to 𝑛) Tests boundaries near the curve order 𝑛. 
𝑘 > 𝑛 Verifies modular reduction of ephemeral key scalar. 
𝑑 > 𝑛 Ensures private key modular reduction is correctly applied. 
𝑧 > 𝑛 Confirms message hash is reduced modulo 𝑛 when required. 
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hardware-based crypto wallet architectures have been reported
in the literature. As a result, the evaluation focuses on comparing
the critical building blocks of our design with similar components
from existing implementations. 

4.1 Target Platforms and Development Tools 

EthVault is implemented on a Xilinx ZCU104 Evaluation Kit (Part
number xczu7ev-ffvc1156-2-e), which features a Zynq UltraScale +
(US) ZU7EV MPSoC. The ZU7EV includes a programmable logic
(PL) section with 230,400 LUTs, 28,800 configurable logic blocks
(CLBs), 460,800 registers, and 44.2 Mb of RAM. Also, it features
a processing system (PS) with a quad-core ARM Cortex-A53
processor. However, EthVault implementation resides entirely
within the PL. 

SECP256K1 and HMACSHA-512 architectures are also imple-
mented on an Artix-7 FPGA (Part number xc7a200tfbg676-2) for
fair comparison against other 7-series FPGA implementations.
All modules are described in VHDL (version 2008 or later). Syn-
thesis and implementation are carried out in Xilinx Vivado 2022.2.
A constraint file defines the clock period, start and reset signals,
as well as the FPGA internal clock pin mapping. Verification is
carried out through simulation in Vivado, with outputs validated
against a reference software implementation [ 66 ]. 

4.2 Methodology and Metrics for Evaluation 

Comparative results for SECP256K1 and HMACSHA-512 are
shown in Tables 5 and 6 , respectively. The “Platform” column
in these tables specifies the types of FPGA devices used in the
corresponding references. It is important to note that the listed
platforms differ in capabilities and implementation methods,
which may limit the fairness of direct comparisons. However,
metrics such as the number of LUTs utilized are deliberately
used as they provide a more consistent estimate of the utilized
area across platforms (since the listed platforms feature LUTs
with similar input sizes). The area metric comprises LUTs, digital
signal processor (DSP) blocks, RAM blocks, and registers. 

Furthermore, the estimated power consumption of EthVault was
analysed in Table 9 , and its efficiency metrics were benchmarked
against the Trezor One physical wallet [ 67 ]. 

Latency is reported in both milliseconds (ms) and clock cycle
(CC). Throughput is computed as (Frequency ÷ CC) × 𝑘, where 𝑘
IET Blockchain, 2025
is the size of the output in bits [ 68 ]. The system clock constraints
are defined in the Xilinx design constraint (XDC) file to enforce
the target operating frequency. 

It is important to note that during timing analysis, Xilinx Vivado’s
timing engine automatically evaluates timing using device- 
specif ic libraries that model the worst-case process, voltage,
and temperature (PVT) conditions corresponding to the selected 
FPGA speed grade. This ensures that the reported timing margins
and slack values reflect guaranteed operating limits under all
supported environmental variations. 

4.3 Submodule Implementation Overview 

Section 4.4 presents the implementation results of the proposed
SECP256K1 algorithm, including the SCA performed on the 
design deployed on an FPGA and a discussion of the findings.
Similarly, Section 4.5 details the implementation results of the
HMACSHA-512 algorithm. Section 4.6 provides results for the 
implementation of the BIP-39 and CKD algorithms. Furthermore,
Section 4.7 discusses the overall implementation results of Eth-
Vault. Section Section 4.8 compares EthVault with the Trezor One
crypto wallet. Section Section 4.9 evaluates the estimated power
consumption of EthVault, and Section 4.10 explores potential 
integration strategies with hot wallets, along with considerations
for real-world deployment. 

4.4 SECP256K1 

The comparison in Table 5 evaluates the proposed SECP256K1
implementation against state-of-the-art solutions. The results 
demonstrate that the algorithm performs more effectively on 
the Zynq-US board compared to the Artix-7. This performance
advantage is due to the advanced technology and superior
architectural features of the Zynq-US board. 

The number of LUTs utilized by the proposed design on the Zynq-
US is generally lower than most works in the literature, except
[ 70 ]. Specifically, the proposed implementation uses 12.5% more
LUTs than [ 70 ], but this is offset by its use of 1 036 fewer DSPs. On
average, the implementation achieves a 48% reduction in LUTs
compared to the other referenced works when targeting the Zynq-
US platform. 
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TABLE 5 Comparing implementation results of the SECP256K1 algorithm. 

Area Frequency Latency Throughputa 

Work Platform kLUT DSP RAM (kbits) Registers (MHz) (kCC) (ms) (bits/kCC) 

This work Zynq-US 21.48 0 0 13,881 250.00 1887.52 7.55 0.27 
This work Artix-7 24.00 0 0 13,385 90.00 1887.52 20.97 0.27 
Mehrabi et al. [ 69 ] Virtex-7 46.90 560 0 29,742 125.00 N/A 0.25 N/A 

Asif et al. [ 70 ] Virtex-7 18.80 1036 828 N/A 86.60 63.20 0.73 8.10 
Islam et al. [ 71 ] Virtex-7 35.60 N/A N/A N/A 177.70 262.70 1.48 1.95 
Romel et al. [ 68 ] Virtex-7 51.64 0 N/A 15,263 122.33 65.78 0.54 7.78 
Arunachalam et al. [ 72 ] Virtex-5 32.92 N/A N/A N/A 192.00 232.20 1.21 2.20 
Roy et al. [ 73 ] Virtex-5 39.68 0 N/A N/A 43.00 25.70 0.60 19.92 
Wang et al. [ 74 ] Virtex-7 23.10 N/A N/A N/A 105.30 N/A 0.08 N/A 

Yang et al. [ 75 ] Virtex-7 22.94 64 N/A N/A 123.27 13.65 0.15 37.51 
Asif et al. [ 76 ] Virtex-7 96.90 2799 7 452 N/A 72.90 215.90 2.96 2.37 
Javeed et al. [ 77 ] Virtex-6 22.15 N/A N/A N/A 95.00 220.10 2.30 2.33 

a Throughput is estimated by authors as: 512 
kCC 

TABLE 6 Comparison of implementation results of HMACSHA-512. 

Area Frequency Latency Throughputa 

Work Platform kLUT DSP RAM (kbits) Registers (MHz) (CC) ( 𝝁𝐬 ) (bits/CC) 

This work Zynq-US 4.90 0 36 2 592 200.00 335 1.66 1.53 
This work Artix-7 4.90 0 36 2 592 90.00 335 3.72 1.53 
Marcio et al. [ 49 ] Stratix-3 4.60 N/A 5.12 4 116 116.04 81 N/A 6.32 
Nguyen et al. [ 50 ] Virtex-7 4.28 0 N/A 1 310 168.56 N/A 2.01 N/A 

a Throughput is estimated by authors as: 512 ÷ CC. 
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For the Artix-7 platform, the results differ slightly. References [ 70,
74, 75 ], and [ 77 ] show lower LUTs usage compared to the proposed
design. However, these works often rely on other resources, such
as DSPs, or do not provide a complete breakdown of their resource
usage, complicating direct comparisons. 

The proposed SECP256K1 implementation stands out by not
utilizing any DSPs, a feature shared with [ 68 ] and [ 73 ]. However,
both of these works require a higher number of LUTs. In
contrast, other referenced designs either rely on DSPs or do
not report their usage. Similarly, our implementation does not
utilize RAM blocks, whereas other designs either use these
resources or omit such details. Additionally, our design is efficient
in register usage, employing 10% fewer registers than [ 68 ],
which itself has the second-lowest register count among the
compared implementations. 

Overall, the findings suggest that our implementation occupies
a smaller area compared to analogous designs in the literature,
making it a resource-efficient solution for resource-constrained,
low-power applications like crypto wallets. 

Our implementation achieves the highest frequency on the Zynq-
US. However, the maximum frequency is about three times
18 of 26
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slower on the Artix-7 platform, showcasing the contribution of
superior technology. Furthermore, the proposed implementation 
exhibits reduced throughput and increased latency compared 
to some works in the literature. This performance trade-off is
largely attributed to the design’s focus on minimizing hardware
resource usage, prioritizing efficiency over speed in resource- 
constrained environments. 

4.4.1 SCA Attack Analysis 

As highlighted in Section 1 , SECP256K1 is a critical algorithm
used in Ethereum wallets and is often targeted by attackers
attempting to extract private keys. To evaluate the resistance of
the proposed architecture against SPA and timing attacks, the
architecture was deployed on the Zynq-US board, and an SCA
experiment was conducted. 

The algorithm was configured to execute continuously in a
run-reset loop, operating with a 125 MHz internal clock. The
experimental setup is illustrated in Figure 14 . A 12 V DC voltage
source with a current capacity of 2 A was connected to the FPGA
through probes 𝑣 𝑝 and 𝑣 𝑛. To measure the current, a current
probe connected to channel one of an oscilloscope was clamped
IET Blockchain, 2025
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FIGURE 14 Setup for performing an SCA on the proposed 
SECP256K1 architecture deployed on a Zynq-US FPGA. 
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around 𝑣𝑝. Moreover, channel two of the oscilloscope measured
voltage through probes 𝑜 𝑝 and 𝑜𝑛. Additionally, the algorithm’s
start input was configured to output a trigger signal via the PMOD
GPIO connectors of the FPGA, which were then connected to
the oscilloscope’s trigger input through probes 𝑡𝑝 and 𝑡𝑛. The
oscilloscope’s math operation function was used to compute the
power trace by multiplying the current (channel one) by the
voltage (channel two). 

Before starting the algorithm, the current probe was degaussed to
eliminate the current drawn by the idle FPGA. The power trace
captured after starting the algorithm is shown in Figure 15a . A
noticeable increase in the power trace occurs when the trigger
signal is detected, indicating the start of the algorithm execution.
Additionally, the periodic dips seen in the power trace, occurring
every 15 ms, correspond to the algorithm’s reset instances. 

Figure 15b presents the power trace from the beginning to the end
of the algorithm’s execution. Based on the 125 MHz frequency and
the number of CCs reported in Table 5 , the measured duration
of 15 𝜇s in the figure is consistent with expectations. Attackers
often analyse the spikes observed in the trace during this period
to distinguish between the processing of binary values (1s and 0s)
[ 25 ]. This information, if exploited, can potentially reveal the pri-
vate key, emphasizing the importance of analysing and mitigating
such vulnerabilities in cryptographic implementations. 

Figure 16 presents the power traces of the proposed SECP256K1
architecture processing two distinct private keys. An offset was
added to observe and compare the two traces. Attackers often
exploit variations in such power traces to infer private keys
by statistical analysis [ 67, 78 ]. To evaluate the uniformity of
the proposed algorithm, we calculate the mean square error
(MSE) between the two traces shown in Figure 16 . The MSE is
determined as: 

MSE = 1 

𝑛 

𝑛 ∑
𝑖= 1 
( 𝑡1 − 𝑡2 )

2 , (10)

where 𝑛 is the total number of samples in each trace, 𝑡1 is the first
power trace, and 𝑡2 is the second power trace. 
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The calculated MSE for the traces is 0.001840, which is relatively
small compared to the magnitudes of the traces. This low MSE
value indicates a strong correlation between the two traces,
demonstrating that the proposed SECP256K1 architecture ensures
significant uniformity in power consumption when processing 
different keys. Consequently, this uniformity enhances resistance 
to SCA attacks, effectively reducing the system’s vulnerability. 

The following part discusses the implementation results of the
proposed HMACSHA-512 algorithm. 

4.5 HMACSHA-512 

Table 6 presents the implementation results of the proposed
HMACSHA-512 architecture on Zynq-US and Artix-7 FPGA 

boards, as illustrated in Figure 11 . The table also includes a
comparison with similar implementations from the literature. 

The proposed architecture requires the same amount of resources
(LUTs, DSPs, registers, and RAMs blocks) when implemented 
on both the Zynq-US and Artix-7 FPGA boards. However, the
maximum frequency attained is higher on the Zynq-US board due
to its emphasis on high performance. 

Resource utilization comparisons reveal that the proposed archi- 
tecture requires approximately 1.07 ×more LUTs than the design
in [ 49 ] and 1.14 × more than the design in [ 50 ]. Additionally, our
design uses 1282 more registers than [ 50 ] but 1524 fewer than [ 49 ].
Moreover, the proposed implementation utilizes 7 × more RAM 

than that used by [ 49 ]. Although the proposed design slightly
exceeds the resource requirements of prior works, this trade-
off supports the reuse of SHA-512 and accommodates additional
input capabilities. 

Furthermore, the Zynq-US implementation attains the highest 
maximum operating frequency among the compared designs in 
[ 49 ] and [ 50 ], while achieving a 1.2 × reduction in time latency
relative to [ 49 ]. Conversely, the Artix-7 implementation exhibits
a 1.9 × increase in time latency compared to [ 50 ]. In addition,
both the CC latency and throughput of our implementations on
the two boards are lower than those reported in [ 50 ]. This is
attributed to the relatively higher number of CCs, which is likely
a consequence of the resource-conservation strategy adopted in 
our design. 

The following section discusses the implementation results of the
BIP-39 protocol and the CKD function. 

4.6 BIP-39 and the CKD Function 

Table 7 presents the implementation results of the proposed
BIP-39 architecture, shown in Figure 9 , alongside those of the
CKD function, depicted in Figure 12 . While BIP-39 relies on
the HMACSHA-512 algorithm, its contribution to the area is
not included in the calculation of the BIP-39 architecture’s area.
This is because the HMACSHA-512 module is part of the CKD
function. However, Table 7 demonstrates that the area of the
BIP-39 architecture is very close to that of the CKD function. 
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FIGURE 15 Power trace of the proposed SECP256K1 algorithm with temporary registers deployed on the Zynq-US FPGA. 

FIGURE 16 The power traces observed when SECP256K1 processes two different private keys (MSE = 0.001840). 

TABLE 7 Implementation results of BIP-39 and the CKD function 
using a frequency of 167 MHz on the Zynq UltraScale. 

Metrics BIP-39 CKD 

Area 
kLUTs 17.08 25.43 
Registers 6 392 17,792 
DSP 0 0 
RAM (kbits) 0 36 

Latency 
(kCC) 692.83 1 887.86 
(ms) 4.149 11.305 
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The significant size of the BIP-39 architecture primarily stems
from the MNG module, shown in Figure 9 , which stores the
English mnemonic word list [ 60 ]. This module accounts for
71.4% of the total area utilized by BIP-39, highlighting it as a
major contributor to the architecture’s resource usage. Alter-
natively, an external memory could be utilized to store the
words, effectively reducing on-chip resource requirements while
maintaining functionality. 

Notably, a comparative analysis was not performed as no hard-
ware implementations of the CKD function were found in
the literature. 

The next section presents the implementation results of EthVault,
along with the resource utilization and timing analysis of its
core modules. 
20 of 26
4.7 Hardware Resource Utilization and Latency 
of EthVault 

Table 8 presents the resource utilization and latency of the indi-
vidual modules that comprise EthVault. Specifically, it reports the
area and timing characteristics of RAM, KECCAK256, SHA256, 
HMACSHA512, BIP39, SECP256K1, CKDF, and ECDSA. The table 
shows that CKDF, SECP256K1, and ECDSA modules dominate 
the total latency, contributing the most to the overall system
delay. This is expected, as these are computationally intensive
cryptographic operations. Similarly, the same modules utilize 
the highest number of LUTs and registers. However, the RAM
module uses the highest number of RAM blocks, as it stores the
generated child keys and addresses. The table also includes the
overall resource consumption and latency of the implemented 
EthVault architecture. 

The results indicate that EthVault utilizes only 27% of the avail-
able LUTs, 7% of the registers, and 6% of the RAM blocks on the
Zynq UltraScale + FPGA, with no usage of DSP blocks. The design
operates at a maximum frequency of 167 MHz. These results
demonstrate efficient resource utilization while upholding high- 
security standards, making the design ideal for secure hardware
wallet applications. 

The latency of EthVault is measured as the time required to gener-
ate the first private–public key pair along with its corresponding
address, and subsequently the second key pair and address. As
discussed in Section 3 , generating the second key pair requires less
time. Notably, it takes 377,506 CCs which is equivalent to 22.61 ms.
In comparison, calculating the first key pair takes 6,356,729 CCs.
This significant reduction in CCs for the second key pair improves
IET Blockchain, 2025
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TABLE 8 Comparison of hardware area and latency across individual modules and the complete EthVault system. 

Metrics RAM KECCAK256 SHA256 HMACSHA512 BIP39 SECP256K1 CKDF ECDSA EthVault 

Area 
LUTs 84 2484 1043 4365 17,083 21,067 25,430 10,043 62,209(27%) 
Registers 0 1607 915 2079 6414 13,872 17,792 4609 31,180(7%) 
RAM (kbits) 648 0 0 36 0 0 36 0 684(6%) 

Latencya 

(CC) 1 25 73 335 692,827 1,887,520 1887,855e 1,888,550d 6,356,729b 3,775,064c 

( 𝜇s ) 0.006 0.150 0.437 2.000 4 149 11,303 11,305 11,309 38,064 22,605 
a Frequency of 167 MHz is used. 
b First private-public key pair. 
c Subsequent private-public key pairs. 
d Signing data. 
e Time to create normal keys. 
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the overall throughput of the wallet when generating subsequent
keys. In particular, we estimate the throughput of the wallet
as: 

Throughput =
Frequency (MHz) 
Latency (CC) 

× Key size (bits) , (11)

where “Key size” corresponds to the total number of output bits
(private key, public key, and address). For Ethereum, this value
is 856 bits. Hence, the throughput of generating child keys and
addresses in EthVault 37.87 kbps, where frequency is 167 MHz and
latency is 377,506 CCs. 

Moreover, Table 8 shows that the latency of EthVault for signing
contracts is about 1,888,550 CCs, corresponding to the execution
time of the ECDSA algorithm. Given the 512-bit size of the
signature ( 𝑟 , 𝑠 ), the resulting throughput for signing transaction
data in EthVault is 45.27 kbps. 

The following sections compare the throughput of EthVault with
that of Trezor One and the Ethereum blockchain. 

4.8 Comparing EthVault, Trezor One, and 

Ethereum Blockchain 

Figure 3 shows that the CKD function computes keys using a key-
derivation path. The latency used by Trazor One physical wallet
to execute the CKD function and generate the master public
key is 386.59 ms. Moreover, the CKD function takes 94.30 ms to
execute each element in the given path [ 25 ]. Hence, assuming
that Trezor One employs the same technique as EthVault, storing
the partial CKD path as discussed in Section 3.1 , the latency for
deriving subsequent keys is 188.6 ms. Therefore, the latency of
generating the second key in EthVault is about 8 × less than that of
Trezor One. Moreover, we can estimate the child key generation
throughput of the Trezor One wallet as 4.5 kbps (Throughput
= 

1 

latency ( 𝑠) 
× 856). This suggests that the child key generation

throughput of EthVault is about 8 × higher. 

Also, the current Ethereum blockchain network has a transac-
tion rate of 15 to 20 transactions per second (TPS) [ 79 ]. This
IET Blockchain, 2025
suggests that a cold wallet signing transaction may have a min-
imum throughput of 10.24 kbps (Authors estimate Ethereum’s
throughput = TPS × (size of ECDSA signature)). Therefore, the
45.27 kbps transaction data signing throughput of EthVault is
sufficient to support user transactions in the current Ethereum
blockchain. 

The following section presents a detailed power evaluation of the
EthVault and Trezor One wallets. 

4.9 Power Evaluation 

Post-implementation power estimation of the EthVault archi- 
tecture was performed using Vivado. The total on-chip power
consumption on the Zynq UltraScale + FPGA board was 2204 mW,
with dynamic power accounting for 72% (1581 mW) and static
power contributing 28% (623 mW). The primary sources of
dynamic power were signal activity, contributing 42%, and 
logic operations, contributing 33%. This reflects the intensive 
cryptographic computations inherent in Ethereum wallet func- 
tionalities. The estimated junction temperature is 27.2 ◦C . While
the analysis was based on vectorless estimation, future work
will incorporate switching activity from post-implementation to 
enhance accuracy and guide low-power optimization. 

Additionally, power measurements for EthVault were performed 
using a Tektronix TDS 3012 Oscilloscope. The EthVault algorithm
was loaded onto the ZCU104 FPGA board, where a voltage probe
was connected to the FPGA’s power supply to measure voltage,
and a current probe was clamped onto the active power cable to
measure current. The oscilloscope’s built-in math function was 
then used to compute power as P = V × I . Prior to running
the algorithm (from mnemonic generation to signing, where 
a random entropy, 𝑒, was provided), the current probe was
degaussed (zeroed) to ensure that only the current drawn during
EthVault execution was captured. A trigger signal was connected
to the start input of EthVault to capture power traces precisely at
the beginning of computation on the Oscilloscope. Furthermore,
Vivado’s clocking wizard was used to configure a phase-locked
loop to generate the 167 MHz, driving EthVault from ZCU104’s
300 MHz clock. 
21 of 26
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FIGURE 17 Measured power utilization of HardVault during Ethereum HD key generation compared with the Trezor One. The curve shows two 
phases: a low-power BIP-39 stage ( ≈40 mW) and a higher-power child key derivation stage ( ≈140 mW). 
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For comparison, the power consumption of a Trezor One wallet
was also measured. The universal serial bus (USB) cable con-
necting the wallet to a computer was stripped to expose the
positive and negative supply lines. Voltage and current probes
were connected to channels one and two of the oscilloscope,
respectively, and the math function was again used to compute
instantaneous power consumption during wallet operation. The
wallet was not password-protected, and funds were transferred
from the wallet using the Trezor Suite desktop application [ 80 ]. 

Figure 17 compares the measured power consumption of Eth-
Vault and the Trezor One wallet. EthVault requires approximately
140 mW, which is about 16 × lower than the power estimated
by Vivado. We attribute this gap primarily to the conservative
default assumptions in Vivado’s Power Estimator, which tend
toward worst-case switching activity and operating conditions.
In contrast, the Trezor One wallet also utilizes around 140 mW.
Additionally, the figure shows that EthVault requires little under
40 mW during the first 4 ms, corresponding to the execution of the
BIP-39 algorithm for mnemonic generation. This measurement is
consistent with the runtime characteristics of the BIP39 module
reported in Table 8 . 

Similarly, the complete execution cycle lasts approximately 50 ms,
which corresponds to the combined duration of generating the
first private–public key pair (38.06 ms) and signing a transaction
(11.31 ms), as reported in Table 8 . 

To provide context for EthVault relative to existing market
solutions, Table 9 presents a comparison with Trezor One. The
table highlights selected security features, as well as performance
and efficiency metrics, namely throughput per area (TPA), energy
per operation (EPO), and power density (PD). Due to differences
in the target platforms, a direct comparison of area and area-
related metrics is not meaningful. Nevertheless, these values are
included to enable reference in future related works. 

The area of Trezor One is estimated based on the physical size
of the STM32F205RET6 MCU it uses, which is approximately
100 mm 

2 [ 81 ]. In contrast, the area of EthVault is expressed in
terms of the number of utilized LUTs. 
22 of 26
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As shown in Table 9 , EthVault requires about 8 × less EPO
than Trezor One, demonstrating improved energy efficiency. 
Furthermore, EthVault achieves a higher maximum frequency, 
lower power consumption, and greater throughput. However, 
TPA and ECPD cannot be directly compared due to the platform-
dependent area disparities noted earlier. 

The next section presents the system integration of EthVault and
its real-world deployment. 

4.10 System Integration and Real-World 

Deployment 

As illustrated in Figure 1 , a hardware cold wallet interacts with
a hot wallet to sign and authorize transactions without exposing
sensitive credentials. In this section, we provide insight into how
EthVault enables secure interaction with both a hot wallet and
the end user. 

Figure 7 illustrates the internal structure of the wallet. Gen-
erated child keys, private keys, and their associated Ethereum
addresses are stored in a dedicated RAM module. The private
key is used exclusively for signing transaction data using the
ECDSA algorithm. To maintain a high level of security, only
the signature, public key, and derived Ethereum address are
accessible externally, ensuring that the private key never leaves
the secure hardware boundary. EthVault outputs can be accessed
through controlled interfaces, such as USB or JTAG ports. 

The SHA-256 digest of the transaction data can be transmitted via
the USB interface. Once received, the FPGA internally processes
it using ECDSA to generate the signature, which is then sent to
the hot wallet. This approach ensures that the private key remains
fully protected at all times. 

Moreover, a display is used to show the 24-word mnemonics
through the 𝑚𝑐 𝑠 output during wallet initialization. For security
reasons, these mnemonics are not stored within the wallet at
any point. Instead, users are instructed to write them down and
store them safely. When a key recovery is needed, the user must
IET Blockchain, 2025
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manually re-enter the mnemonic phrase via the 𝑚𝑐 𝑠 𝐼𝑛 module,
using an attached input interface such as a keyboard or touch-
screen. This approach ensures that sensitive recovery information
never resides permanently within the device, reducing the risk of
extraction in the event of physical compromise. 

The following section outlines potential SCA attacks that could
still affect EthVault, assessing their likelihood and possible
mitigation strategies. 

5 Residual SCA Threats and Mitigation 

While many possible attacks exist, this section focuses on DPA,
FIA, and EMA attacks. DPA is a statistical technique used to
extract secret information by analysing data-dependent correla- 
tions in measured signals. The method involves recording multi-
ple traces of a signal, partitioning them into subsets, computing
the average of each subset, and then evaluating the differences
between these averages. By examining these differences, sensitive
information can be extracted [ 82, 83 ]. Although EthVault’s use of
temporary registers may provide protection against SPA attacks 
(as discussed in Section 3.2 ), DPA attacks could still target power
traces in the BIP39, HMAC-SHA512, or SECP256K1 modules to
recover the master key. To mitigate DPA, EthVault can introduce
countermeasures such as amplitude masking or noise injection. 
The former can be achieved by adding circuits that draw variable
power, while the latter can be realized by inserting variations in
timing or execution order [ 84 ]. These techniques help obscure
the power consumption patterns during key generation, thereby 
reducing vulnerability to DPA. 

In FIA, an attacker deliberately introduces faults into a com-
puting system to disrupt normal operation and extract sensitive
information. Such faults can be induced by exposing the target
device to high heat, injecting irregularities into the clock, or
radiating EM pulses [ 85 ]. EthVault could be vulnerable to FIA,
particularly during data signing, where the SHA-256 digest of
the transaction data 𝑧 is received from the software wallet.
Faults introduced into 𝑧 could disrupt normal execution and 
compromise the signing process. To mitigate this risk, EthVault
can employ redundant encryption of transaction data and com-
pare the resulting hashes before signing. This approach assumes
that faults are transient and unlikely to affect both executions
simultaneously. Additionally, EthVault could be encased in 
a tamper-resistant enclosure equipped with sensors to detect 
physical tampering attempts [ 85 ]. 

An EMA attack targets a device’s EM emissions during oper-
ation to extract secret data. EMA can take the form of simple
electromagnetic analysis (SEMA) or differential electromagnetic 
analysis (DEMA). In the former, an attacker relies on a single
EM measurement to directly recover part or all of the secret
data, while in the latter, multiple EM measurements are collected
to reduce noise, and statistical methods are applied to extract
the secret information [ 86 ]. Since EthVault generates keys in
stages, with only certain parts of the architecture active at a
time, it may radiate unique EM signatures that could be exploited
to extract private keys. To mitigate EMA, EthVault can employ
EM shielding to prevent emissions from escaping the device.
Additionally, injecting artificial noise can reduce the signal-to-
23 of 26
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noise ratio (SNR), thereby lowering the probability of successful
information extraction [ 87 ]. 

The following section outlines the limitations of this work and
potential directions for future research. 

6 Limitations and Future Work 

EthVault currently only supports the Ethereum blockchain with
a HD wallet structure. Future work will extend support to addi-
tional crypto, starting with Bitcoin, and introduce an ND mode to
offer users a choice between HD and ND key generation methods.

EthVault implements countermeasures against SPA and timing
attacks. Nevertheless, residual vulnerabilities remain, as dis-
cussed in the previous section. As future work, we plan to
transition to an application-specific integrated circuit (ASIC)
implementation and to incorporate additional protections against
advanced adversaries, including DPA, FIA, and EM side-channel
attacks. We also intend to perform a comprehensive security
analysis of the implemented countermeasures. 

At present, critical secrets (e.g., seed values and private keys)
reside in RAM. To ensure survivability without exposure in the
event of a reset or power loss, we will adopt secure retention
mechanisms. A potential approach would be to use an encrypted
battery-backed RAM with integrity protection, so that data
can be recovered on reboot only after successful verification.
Furthermore, to ensure reliable key storage during operation, a
hardware-based error detection and correction mechanism, such
as a parity bit or Hamming code [ 88 ], may be incorporated to
identify and, if possible, correct memory bit errors. 

Moreover, the current version of EthVault does not verify whether
the mnemonic words entered by the user are valid. As a
result, users may input words that are not part of the official
mnemonic list. Future versions of the wallet will include a
validation mechanism within drivers that interact with the wallet.
In the meantime, users are strongly encouraged to carefully
double-check their mnemonic words during key recovery. 

The current sources of entropy for 𝑒, used during the BIP-39
phase, and 𝑘, used in the signature generation phase, are imple-
mented as constant random values. In a practical deployment,
these parameters must be generated using a cryptographically
secure entropy source to ensure adequate security. Future ver-
sions of the wallet will incorporate a quantum random number
generator (QRNG) module designed to provide true randomness
for all entropy-dependent operations within EthVault [ 89 ]. 

7 Conclusion 

In this work, we present a hardware architecture for an Ethereum
HD cold wallet. In doing so, we propose a hardware architecture
for the CKD function. Additionally, we propose a SECP256K1
architecture designed to enhance security against SPA and timing
attacks. This architecture leverages complete point addition
equations, temporary registers, and parallel processing to achieve
robust protection. 
24 of 26
Our implementation results demonstrate that the building blocks 
of the proposed design are more compact compared to analogous
implementations in the existing literature, suggesting a smaller
overall size for the wallet. Furthermore, EthVault complies with
BIP-32, BIP-39, and BIP-44 standards, which blockchain users
highly value. 
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