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ABSTRACT Sixth-Generation (6G) networks aim to deliver unprecedented network performance by
facilitating intelligent, ultra-low-latency, and massively connected applications that seamlessly integrate
the physical and digital domains through context-aware operation. These applications work across physical
and digital environments. Within this broader shift, digital twins (DTs) have demonstrated notable
improvements in overall network performance by creating high-fidelity digital counterparts of physical 6G
systems. These DTs give researchers and operators a way to view network behavior as it evolves, to forecast
likely performance patterns, and – crucially – to adjust key processes such as beamforming, resource
allocation, and interference management. Even so, the value of DT-based optimization is limited by several
practical factors. Their effectiveness depends a great deal on access to reliable and sufficiently rich data,
and the inherent complexity of 6G environments often makes accurate modeling and efficient resource
coordination challenging. This paper examines how a range of generative artificial intelligence (GenAI)
models can be used alongside DTs to strengthen resource allocation and improve security in 6G networks.
It also sets out a GenAI-enabled DT framework for various 6G-enabling applications, highlighting the
potential roles of different GenAI models in supporting semantic communications, the metaverse, integrated
sensing and communication (ISAC), AI-generated content (AIGC), and reconfigurable intelligent surfaces
(RIS). This paper concludes by drawing attention to emerging conceptual frameworks for DT–GenAI
integration. It notes several research challenges that have yet to be resolved, and outlines future directions
for deploying GenAI-augmented DTs to achieve intelligent, adaptive, and resilient 6G networks.

INDEX TERMS Generative AI, digital twins, metaverse, 6G network design, resource management,
network security.

I. INTRODUCTION

SIXTH-GENERATION (6G) wireless networks mark a
substantial shift in the way communication systems are

envisioned. In fact, they are expected to deliver performance
levels that far exceed current capabilities (including peak
data rates reaching 1 Tbps and end-to-end latency of under
1 ms), and highly pervasive connectivity across a wide

range of environments [1]. The 6G ecosystem is expected
to enable applications, including the metaverse, augmented
reality (AR), immersive extended reality (XR), virtual reality
(VR), and 3D holography [2], [3]. These 6G applications
require adaptable, zero-orchestration network architectures
that seamlessly integrate ultra-reliable low-latency communi-
cation (URLLC), enhanced mobile broadband (eMBB), and
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massive machine-type communication (mMTC) use cases
within a unified framework [4], [5], [6], [7].
To support the vision and stringent requirements of

6G networks, reconfigurable intelligent surfaces (RISs) can
dynamically adjust the phase shifts and amplitudes of
reflected signals to smartly control wireless propagation
environments [8]. Semantic communication is a networking
technology that focuses on transmitting the intended mean-
ing of information rather than raw data. It supports
context-aware and task-driven information exchange [9].
Artificial intelligence-generated content (AIGC) is an emerg-
ing technology that can generate content in real time,
facilitating ultra-low-latency communication, adaptive secu-
rity mechanisms, and efficient bandwidth utilization in
6G networks [10]. Integrated sensing and communication
(ISAC) is a networking technology that enhances network
intelligence by combining the sensing and communication
capabilities through dual-functional radar-communication
systems, thereby facilitating the development of a unified
framework. Collectively, when integrated into 6G networks,
these technologies can deliver ultra-reliable, intelligent, and
context-aware communication infrastructures. To understand
how these enabling technologies shape practical system
design, it is also important to consider several outstanding
technical challenges.

A. CHALLENGES
Although the technologies that enable 6G provide significant
gains in overall network performance, they also introduce a
number of related challenges [11]. A significant difficulty
lies in creating intelligent frameworks that can keep a DTs
aligned with the physical 6G network it represents, and
to do so in real time [12]. A further challenge arises
from the need for high-fidelity AI models that can both
capture the behavior of a 6G network with precision and
predict how its state is likely to change [11]. Another
important issue is ensuring that trained AI models can
generalize well across heterogeneous 6G networks [13],
[14], [14], [15], [15]. A related challenge stems from 6G
networks being expected to rely on a decentralized and zero-
trust architecture. As a result, novel security threats will
arise from integrating 6G technologies into a distributed
network. This requires developing intelligent and resilient
frameworks to protect data integrity in decentralized 6G
environments [15], [16], [17]. Getting this right matters for
two reasons: it supports more efficient use of network
resources, and it underpins strong security in future 6G
systems. These challenges motivate recent efforts to explore
how generative artificial intelligence (GenAI) and digital
twins (DTs) can jointly improve 6G systems.

B. MOTIVATION
A growing body of literature shows that both GenAI
models [18], [19], [20], [21] and DTs [22], [23], [24]
contribute noticeably to performance optimization in a range
of 6G-enabling technologies [25], [26]. DTs, in particular,

offer a high-fidelity, real-time view of the physical 6G
network [22], [23]. These virtual counterparts make it possi-
ble to run predictive analyses and monitor network conditions
continuously, both of which are essential for achieving the
expected levels of performance. In addition, they support
more flexible integration of network components; they
allow 6G systems to adjust more effectively to demanding
performance and reliability constraints. GenAI models play
a complementary role by producing synthetic datasets and
adversarial examples that mirror real 6G operating con-
ditions. This helps reduce dependence on collecting large
volumes of real-time data. For this reason, GenAI is regarded
as a key element in building self-managing 6G networks that
can adapt to unfamiliar scenarios while remaining robust and
intelligent [27], [28], [29], [30], [31].
The integration of GenAI methods and DTs within the

6G environment has led to substantial gains in operational
efficiency and in the quality of services delivered by
6G systems. The authors in [32] developed a GenAI
and DT framework that generates high-fidelity network
scenarios for smart cities. Their work enabled proactive
network planning and improved resilience in dynamic 6G
environments. In addition, a hybrid edge-cloud DT and
GenAI framework has been proposed to support mobile
AIGC services in the Internet of Everything (IoE). In
this architecture, GenAI facilitates intelligent, zero-touch
decision-making. Meanwhile, the DTs are leveraged to
optimize the allocation of computing resources required for
efficient and personalized AIGC service delivery [33].
Beyond IoE applications, the researchers in [34]

developed a DT-assisted framework for Internet-of-Vehicles
(IoV) networks to optimize task offloading across edge
servers. This approach supports real-time decision-making,
energy-efficient operations, and timely task completion by
continuously mirroring the states of vehicular and roadside
units. The authors developed a Gen-TWIN framework, in
which a GenAI model generated realistic synthetic RF
datasets to address limited measurements for AI-driven RAN
optimization. The results indicated improvements in model
training as well as prediction accuracy [35].
Across recent literature, there is clear evidence that

GenAI and DTs are being used within 6G networks for
purposes such as network optimisation and security [32],
[33], [34], [35]. Even so, a more systematic study is still
needed. It is necessary to develop a unified framework
that brings DTs and GenAI together in a way that fully
supports 6G-enabling applications. The main aim of this
paper is to examine how DTs and different GenAI models
can work jointly to optimize the performance and security
of 6G-enabling applications. In doing so, the paper also
reviews current progress in the field and outlines several
challenges and future research directions for integrating
GenAI models and DTs into 6G network design. Overall,
this combined DT–GenAI approach allows for smoother data
synchronization, more intelligent network optimization, and
stronger predictive analytics—capabilities that are essential
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for addressing the emerging challenges associated with 6G
deployment.

C. COMPARISONS AND KEY CONTRIBUTIONS
Recent surveys have examined the role of GenAI in next-
generation wireless systems. For example, the authors of [18]
explored the applications of various GenAI models to
improve wireless communication systems and outlined their
potential applications specifically for 6G networks. In [46],
the researchers took a closer look at the role of large language
models (LLMs) and provided a systematic review of how
such models could be introduced into the telecommunica-
tions sector. The paper analyzed the applications of large
GenAI models in 6G networks, summarized potential use
cases, and provided details on the associated practical and
theoretical challenges. It further highlighted how 6G can
achieve promising results by connecting multiple on-device
large GenAI models, thereby laying the groundwork for the
collective intelligence paradigm. In addition, [29] explored
various GenAI models and their applications in enhancing
the physical-layer security of 6G networks.
Beyond GenAI-oriented work, existing studies also high-

light the role of DTs in improving performance in 6G
networks. The authors in [37] systematically reviewed the
applications of DTs for 6G networks. They investigated
the role of DTs in intelligent transportation systems, 6G
networks, healthcare, aviation, manufacturing, and urban
intelligence in smart cities. The paper [38] developed a DT-
enabled framework for 6G networks. The study concluded
that DTs will serve as a major enabler of 6G services,
providing reliability and scalability. In another paper [39], the
researchers explored the applications of DT technology in 6G
communication networks, considering it a promising tool for
research, design, implementation, and optimization of next-
generation systems. The researchers also identified several
open challenges for deploying DT technology in evolving
6G systems, including data provisioning, cross-application
access management, network management, and security.
The researchers [41] systematically reviewed DT-based

6G applications and discussed the associated challenges and
future directions related to infrastructure and connectivity,
management of mobile users, data security, and privacy.
In [42], the authors explored DT as an emerging technology
to design, simulate, diagnose, and optimize 6G networks.
They further discussed how DT networks (DTNs) can be
deployed in Omniverse, a scalable and real-time reference
platform for building and operating metaverse services, and
also emphasized the potential of DT technology to transform
industries and improve lives in 6G systems and beyond.
These works highlight the significance of DTs as virtual
representations of physical network components, enabling
tasks such as simulation, analysis, and network optimization.
Taken together, these studies show that DT technology

has significant potential for emulating, evaluating, and
optimizing wireless systems. While the upcoming era of
6G communication promises substantial improvements in

network performance, it also introduces new challenges for
the development and implementation of wireless network
DTs. The authors of [44] analyzed the requirements for
DTs of 6G networks and investigated the applications
of GenAI technology for addressing these requirements.
They also examined the applications of generative models
(GMs), including diffusion models (DMs) and transformers,
for empowering 6G-enabled DTs from varied aspects,
such as deployment, slicing capability, and physical-digital
synchronization.
In [43], the researchers developed a metaverse framework

for healthcare networks to enhance resource allocation. The
integration of the metaverse allowed healthcare systems to
leverage AI for efficient data access and analysis, improve
patient care with prompt diagnoses, and address security con-
cerns with innovative encryption methods. This integration
facilitated better coordination and optimization of healthcare
services and supported more effective management of data
and resources within the network.
Paper [40] explored the application of VR and the

metaverse for wireless network design, with a main focus on
enhancing collaboration and communication in 3D virtual
environments. By employing DTs to simulate real-world
settings, the study aimed to improve training and operational
practices in smart factories through interactive avatar models.
An experimental framework for a VR-powered metaverse
was proposed that featured key components such as object-
oriented configurations and multi-user systems. Initial testing
within a smart factory context aligned with Industry 4.0 stan-
dards demonstrates the framework’s efficacy and potential
for real-time global connectivity, yielding promising results
for educational and commercial adoption.
In [13], the authors provided a thorough discussion on

the role of 6G and AI in realizing immersive metaverse
experiences. Particularly, they explored several fundamental
technologies of 6G and AI, for instance, wireless com-
munication technology, learning paradigms, and computer
vision in the metaverse context. In addition, they examined
the combined role of 6G and AI technologies in acquiring
self-optimizing capabilities, tactile feedback, and ubiquitous
intelligence for various metaverse applications ranging from
remote surgeries to holographic telepresence. They also
highlighted the sustainable facet of metaverse applications
followed by the services, ongoing projects, and use cases and
clarified several open challenges and future directions for
researchers and developers of metaverse services. Another
study [45] comprehensively reviewed the transformative
impact of GenAI in the metaverse and explored how
GMs like autoregressive models, transformers, generative
adversarial networks (GANs) and variational autoencoders
(VAEs) can generate contextually relevant and realistic
content in domains like 3D objects, video, image, and
text. The authors also identified the open challenges, such
as interoperability, computational efficiency, ethics, content
control, realism, and data quality, which need further
attention.
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TABLE 1. Survey comparison.

While existing research has explored various aspects
of 6G, including GenAI, DT, and metaverse technologies,
as summarized in Table 1, there remains, to the best of
our knowledge, a gap in the literature concerning the
interplay between different GenAI models and DTs for
6G-enabling applications. This paper addresses this gap by
providing a comprehensive analysis of the synergies and
potential applications of these emerging paradigms in the
context of the challenges posed by 6G network design. The
contributions of our survey are as follows.

• This paper conducts a comprehensive investiga-
tion into the collaborative interplay between various
GenAI models and DTs to support the integra-
tion of enabling technologies and the metaverse
into 6G networks, with a focus on optimizing
performance and security. Through a systematic anal-
ysis of existing literature and emerging trends, this
study identifies the potential applications, opportunities,

and challenges associated with this technological
integration.

• It develops a synergistic framework for a diverse range
of 6G use cases that demonstrate the practical applica-
tions of integrating GenAI and DTs as potential enablers
in 6G network design. The enabling technologies and
applications explored span multiple domains, including
semantic communications, the metaverse, ISAC, AIGC,
and RIS, showcasing the transformative impact of this
synergy on the security and optimization of next-
generation wireless networks.

• Lastly, the paper identifies key research directions
and open issues that need further investigation in
GenAI- and DT-assisted 6G network design, partic-
ularly in how these technologies support enabling
applications. This involves addressing fundamental
challenges such as data interoperability, computa-
tional scalability, privacy, and ethical concerns, as
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FIGURE 1. The organization of this paper.

well as developing standardized frameworks and
methodologies.

D. SCOPE OF THIS SURVEY
This survey paper is structured to investigate the integration
of GenAI and DT for 6G and the metaverse. The organiza-
tional structure of this paper is given in Fig. 1. Sections I
and II provide the background knowledge, open challenges,
and the main motivation behind the study of the GenAI-
DT interplay in 6G and the metaverse. Section III focuses
on the role of GenAI in 6G networks and discusses its
uses for optimizing the physical layer, resource allocation,
traffic synthesis, and security. It also evaluates applications
of various GenAI models. Section IV assesses the design
and architecture of DTs within 6G-enabling technologies
and applications. Section V comprehensively develops a
framework for the interplay between GenAI and DTs for the
optimization and security of key 6G applications, including
semantic communications, ISAC, THz, AIGC, and RIS.
Section VI explores the value of using GenAI and DT
together in metaverse applications. Section VII identifies
future research directions and challenges that could be

enabled by this synergy for 6G network design. Finally, the
conclusion of the survey is presented in Section VIII.

II. CHALLENGES IN ENABLING TECHNOLOGIES FOR 6G
NETWORKS
The advancement of 6G networks, driven by the need
to support sophisticated applications such as autonomous
systems, XR, DTs, the metaverse, and massive IoT,
necessitates the successful integration of key enabling
technologies [18], [47]. These technologies, including RIS,
ISAC, THz communication, and AIGC, are crucial for
maximizing network performance, reliability, and security.
However, their convergence introduces significant technical
problems [11]. First, establishing efficient data synchro-
nization across diverse, heterogeneous systems is essential.
Second, constructing high-fidelity models that can accurately
reflect dynamic network conditions is critical for reliable
operation. Third, optimizing DT synchronization is necessary
to ensure cost-effective data transfer. Furthermore, two addi-
tional factors complicate deployment: the development of
robust security mechanisms to counter emerging threats and
the generalization of AI models across varied applications.
Finally, in order to realize the full potential of 6G technology,
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TABLE 2. Challenges for 6G-enabling applications and technologies.

it is essential to overcome these challenges. Table 2 provides
a summary of the specific technical challenges that are
associated with the integration of these enabling applications.

1) Data Synchronization: A key technical challenge in
integrating new technologies into 6G networks is
achieving precise data synchronization across dis-
parate systems [11], [48]. Efficient 6G functionality
relies on the exact coordination of components, such
as communication, sensing, and AI solutions. For
example, real-time synchronization between sensing
and communication modules is critical to accurately
align acquired data with network protocols. Failure
in this process, which becomes more severe as
the network expands, directly causes resource mis-
alignment, inaccurate decision-making, and inefficient
network operation. This underscores the requirement
for robust, real-time synchronization mechanisms in
6G.

2) High-Fidelity Modeling: The development of high-
fidelity models for complex network environments is
a significant challenge when integrating technologies
into 6G [54], [55]. These models are required to accu-
rately represent the network’s real-time physical and
digital states by incorporating dynamic elements like
traffic, environmental conditions, and user behavior.
This accuracy is critical for real-time decision-making
and optimization in demanding applications, such as
autonomous driving. Although essential for simulating
and predicting network performance, these models
must simultaneously be adaptive and computationally
efficient to effectively manage large, dynamic systems.
Their absence severely limits the network’s ability
to dynamically adjust, predict failures, and optimize
resources.

3) Generalization Across Diverse 6G Environments: A
further challenge concerns the generalization of AI
frameworks when integrating enabling technologies
and applications into 6G networks, particularly given
the diverse range of environments in which 6G systems
will operate [18], [49]. These networks will span
urban, rural, indoor, and outdoor environments, each
with its unique challenges. A solution that works well
in one environment may not perform as effectively in
another, particularly when considering complex factors
such as signal propagation, environmental noise, and
user behavior. For instance, the communication models
used in dense urban areas with numerous connected
devices may not work well in rural areas, where
fewer devices are involved and network conditions
are less predictable. To ensure consistent network
performance and reliability across all applications, the
employed models, algorithms, and solutions must be
generalizable across diverse environments. Moreover,
AI technologies should be adaptable to diverse appli-
cations, such as communication, sensing, and other
6G services, which is crucial for their broader
applicability.

4) Security: The integration of enabling technologies and
applications into 6G networks presents a significant
security challenge because of the increased exposure
to diverse threats [16]. The convergence of commu-
nication, sensing, and AI in 6G networks increases
the network’s susceptibility to malicious attacks. For
example, the increased interconnectivity of devices and
sensors in smart cities, the metaverse, or industrial
systems may expose the network to vulnerabilities
such as data breaches, unauthorized access, and manip-
ulation of critical systems. Additionally, the use of
advanced technologies like AIGC can be exploited
to generate misleading data or launch cyberattacks,
further complicating security measures [10]. Ensuring
robust security while maintaining the high performance
and scalability of 6G networks is essential. This
challenge involves securing sensitive data, preventing
adversarial threats to network models, and ensuring
the integrity and trustworthiness of communication
and sensing functions. Given the interconnected and
dynamic nature of 6G networks, developing secure
protocols and defense mechanisms that can handle
diverse threats while maintaining optimal performance
will be essential for enabling safe and reliable network
operations.

III. GenAI IN 6G NETWORKS: ENABLING APPLICATIONS
AND TECHNOLOGIES
Generative artificial intelligence (GenAI) is a subset of AI
that focuses on generating content, such as text, images,
or videos, by learning from extensive datasets [50]. In
the context of 6G, GenAI can be leveraged to create
realistic network traffic models, simulate complex user
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interactions, and generate predictive scenarios that aid in
network planning and management [18]. These capabil-
ities are crucial for optimizing network operations and
service provisioning in real-time, thereby enhancing the
adaptability and efficiency of 6G networks. For instance,
reference [26] discusses how GenAI models can optimize
resource allocation and improve overall network performance
in complex and dynamic 6G environments. Additionally,
reference [18] provides a comprehensive survey on GenAI
applications in 6G wireless intelligence, emphasizing its role
in physical-layer design, network optimization, and security
enhancements. They demonstrate how GenAI can model
complex channel conditions and design adaptive communi-
cation strategies, resulting in improved spectral efficiency
and reduced latency. Furthermore, reference [14] explores the
concept of wireless network DTs for 6G, identifying GenAI
as a key enabler for real-time monitoring, optimization, and
predictive maintenance, thereby enhancing network reliabil-
ity and performance. These studies collectively underscore
the transformative potential of GenAI in addressing the
challenges of 6G networks, offering innovative solutions for
performance enhancement across various use cases.
The following section provides a brief overview of key

GenAI algorithms relevant to 6G. Subsequently, we explore
how these models can enhance 6G-enabling technologies
and applications, including network optimization, security
frameworks, and physical-layer design.

A. GENAI MODELS
The focus of GenAI models is to understand and learn
the original input data distribution using iterative train-
ing. This acquired knowledge helps generate data closely
resembling the original distribution, thereby ensuring a high
degree of accuracy. GenAI models have shown promising
results in applications, including robotics, natural language
processing (NLP), speech recognition and generation, and
visual recognition tasks [51], [52]. This section discusses
five fundamental GenAI models: GANs, VAEs, energy-based
models (EBMs), diffusion-based GMs (DGMs), and flow-
based GMs (FGMs).

1) GANs: GANs consist of two primary components:
a generative model G and a discriminative model
D [53]. The generative network learns to generate
synthetic data that closely resembles the original
data distribution, while the discriminative network
distinguishes between real and generated data [54].
This process is formulated as a minimax game, with
the objective function V(D,G) defined as:

min
G

max
D

V(D,G) = Ex∼pdata(x)
[
logD(x)

]

+ Ez∼pz(z)
[
log(1 − D(G(z)))

]
(1)

Here, pdata(x) denotes the distribution of real data sam-
ples, and pz(z) denotes the distribution of random noise
vectors. The objective function comprises two terms:
the first term learns to optimize the likelihood that the

discriminator accurately classifies real data samples as
real, while the second term learns to maximize the
likelihood that the discriminator accurately classifies
the generated data samples as fake.

2) VAEs: A VAE is a type of GenAI composed of
two primary components: an encoder and a decoder
network [55]. The encoder network, denoted as
qφ(z|x), maps the input data x to a probability
distribution over latent variables z with parameters φ.
This distribution is typically Gaussian, parameterized
by a mean vector μ and a covariance matrix �. The
decoder network, denoted as pθ (x|z), takes samples
from the latent space z and generates reconstructed
data points x̃. The objective function for training
VAEs involves maximizing the evidence lower bound
(ELBO), which is defined as:

L(θ, φ; x) = Eqφ(z|x)
[
log pθ (x|z)

] − DKL
[
qφ(z|x)||p(z)] (2)

where Eqφ(z|x)[ log pθ (x|z)] represents the reconstruc-
tion loss, and DKL[qφ(z|x)||p(z)] is the KL divergence
between the approximate posterior qφ(z|x) and the
prior distribution p(z). This objective function moti-
vates the encoder to learn a latent-variable distribution
that closely matches the prior distribution and ensures
that the generated samples are faithful to the input
data [56].

3) Energy-Based Models: EBMs are a class of GenAI
models that assign an energy value E(x) to each
input data sample x, representing how likely the
sample is under the model. The training objective
of an EBM is to minimize the energy for real data
samples while assigning higher energy to generated
or unlikely samples, shaping the energy landscape of
the data space. Unlike traditional generative models
that explicitly compute probability distributions, EBMs
focus on learning this implicit energy function [57].
In the context of EMs [58], the energy function
is realized through the discriminator D, and the
corresponding objective functions for the discriminator
and generator are defined as:

LD(x, z) = E(x) + [
m− E(G(z))

]
+,

LG(z) = E(G(z)), (3)

where x is a real data sample, z is a noise vector,
G(z) is the generated sample, E(·) is the energy
assigned by the discriminator, m is a positive margin,
and [·]+ = max(0, ·) yields non-zero gradients only
when E(G(z)) < m. Minimizing LD encourages the
discriminator to assign low energy to real samples
and high energy to generated ones, while minimizing
LG trains the generator to produce samples with low
energy.

4) DGMs: A DGM is defined as a Markov process that
gradually perturbs a data sample x0 into noise over
T timesteps through a forward noising process. This
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process is not a simple Gaussian perturbation with
increasing variance, but is formally expressed as [59]:

q(xt | x0) = N (
xt;√

αt x0, (1 − αt)I
)
, (4)

where αt = ∏t
s=1(1−βs) is the cumulative product of

the noise schedule βs, and I denotes the identity matrix.
This recursive formulation ensures that the forward
process is a Markov chain.
To enable sample generation, a reverse process is
learned via a neural network εθ (xt, t) that predicts the
noise added at each timestep. The training objective is
typically formulated as the epsilon-prediction loss:

Lε = Ex0,ε∼N (0,I),t
[‖ε − εθ (xt, t) ‖2], (5)

which directly minimizes the error in noise estimation.
Alternatively, the v-prediction loss has been proposed
to stabilize training and improve performance [60]:

Lv = Ex0,ε,t
[‖v− vθ (xt, t) ‖2], (6)

where v denotes a reparameterized target that combines
both x0 and ε. These training objectives allow DMs to
learn the reverse generative process that maps Gaussian
noise to realistic data samples.

5) Flow-Based Models: FGMs are a class of GenAI
that employ probabilistic flow formulations to support
data generation. Unlike other GMs, such as GANs
and VAEs, which directly model the data distribu-
tion, FGMs convert a simple distribution, typically
a Gaussian distribution, into the target distribution
through a series of invertible transformations. The
transformation process is differentiable, allowing for
the computation of gradients during both training
and generation using back-propagation algorithms.
This property enhances the efficiency of training and
learning in flow-based models [61].
Mathematically, the transformation process in flow-
based models is represented as a sequence of invertible
functions. Let z ∼ p(z) be a random variable sampled
from a simple distribution, such as a Gaussian dis-
tribution with mean μ and covariance matrix �. The
flow-based model maps z through a series of invertible
transformations fi to generate the output sample x. This
transformation process can be expressed as:

x = fK ◦ fK−1 ◦ · · · ◦ f1(z) (7)

where K represents the number of transformations in
the flow, and ◦ denotes the composition of functions.
Each invertible transformation fi is parameterized by
a set of learnable parameters θi, which are optimized
during the training process to reduce a suitable loss
function.

6) LLMs: LLMs are trained on vast, heterogeneous
datasets, enabling them to capture semantic struc-
tures and knowledge representations, which makes
them powerful tools for network management in 6G

FIGURE 2. The role of GMs in 6G networks: design and applications.

networks [62]. These models demonstrate exceptional
proficiency across a spectrum of downstream tasks.
They exhibit the capacity to comprehend input prompts
and generate text responses that closely resemble
human-produced content. Their impact on technology
interaction is profound, contributing significantly to
advancements in artificial general intelligence (AGI).
Mathematically, their behavior can be described using
a parameterized function fθ , where θ denotes the
model parameters. Given an input prompt x, an LLM
generates text output ŷ by optimizing the parameters θ

to maximize the likelihood of producing ŷ conditioned
on x. This process can be formulated as:

ŷ = arg max
y
P(y|x; θ) (8)

B. GENAI FOR 6G-ENABLING TECHNOLOGIES AND
APPLICATIONS
The integration of GenAI into 6G network architecture has a
crucial part in enhancing performance, security, and resource
management across 6G core applications. Fig. 2 illustrates
the role of GMs in 6G applications. These applications,
including AIGC, THz communication, the metaverse, ISAC,
and RIS, generate distinct traffic demands that necessitate
compliance with strict requirements for ultra-low latency,
high reliability, and massive connectivity. For instance,
ISAC demands the seamless merging of communication and
sensing data for dynamic resource allocation [63], while
RIS needs real-time signal reflection optimization [22].
Moreover, THz communication relies on optimal frequency
deployment [18]. In the same manner, metaverse experiences
and AIGC require adaptive, high-quality, and low-latency
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TABLE 3. Summary of the potential role of GenAI models in wireless networks.

delivery services [10], [64]. GenAI facilitates these necessi-
ties by employing MEC servers at the network’s periphery.
GenAI utilizes this platform to process varied traffic data,
performing necessary pre-processing, feature extraction, and
intelligent storage and thus guarantees optimal resource
allocation and maximizes system-wide efficiency.
In addition to data management, the GenAI architecture

provides a robust framework for predictive and adaptive
optimization across the enabling technologies. Central to this
architecture is the integration of GenAI models that exploit
both real-time and historical network data to dynamically
adjust network parameters and optimize system performance.
For example, traffic characteristics and propagation mod-
els are synthesized by GenAI models for refining signal
reflection patterns during RIS deployment. This results in
enhanced coverage and beamforming [96]. For ISAC, these
models enable the fusion of sensing and communication
information to allow quick adjustments for resource alloca-
tion, interference control, and QoS maintenance [97].

Moreover, in THz communication, GenAI plays an impor-
tant role in modeling high-frequency wave propagation to
optimize frequency resource allocation and reduce environ-
mental signal degradation [19], while in AIGC, it adapts
content encoding and transmission strategies based on real-
time network conditions [21]. Besides that, in metaverse
applications, GenAI generates highly detailed, dynamic,
and immersive virtual environments, which enhance the
user experience [98]. This integrated GenAI framework can
be a transformative enabler for continuous, autonomous
optimization, ensuring that the unique requirements of each
enabling technology are met while simultaneously bolstering
network security through proactive threat detection and
anomaly simulation. Thus, the inclusion of GenAI models
improves the performance and functionality of applications
across 6G networks. Table 3 lists the applications of GenAI

in 6G network design and explains how it optimizes the
technologies that enable various use cases.

1) PHYSICAL LAYER DESIGN

GenAI is crucial for enhancing the physical-layer design
of 6G networks and overcoming the inherent primary
obstacles in 6G systems [18]. GenAI utilizes its capacity for
identifying intricate data patterns to boost the efficiency of
wireless communication across various domains:
1) Channel Estimation and Equalization: In RIS-assisted

and THz communication environments, dynamic and
highly reflective propagation conditions introduce
severe channel impairments. GenAI can learn and
adapt to these complex characteristics, and make
more accurate channel estimation and equalization,
which are crucial for maintaining reliable, low-latency
communication [19], [65], [66].

2) Modulation Scheme Recognition and Classification:
The dynamic and heterogeneous nature of THz and
ISAC-based communication networks also require
effective modulation schemes. GenAI can automati-
cally identify and categorize modulation schemes from
received signals, facilitate adaptive waveform design,
and enhance spectral efficiency across various 6G
applications [67].

3) Advanced Detection and Decoding: Signals in the
THz, RIS, and millimeter-wave bands suffer sig-
nificant signal degradation due to pronounced high
path losses and molecular absorption. Systems can
learn the intrinsic structures of signals, effectively
compensate for channel noise and distortions, and
significantly enhance existing error-correction mecha-
nisms by utilizing advanced GenAI-powered detection
and decoding techniques. This approach achieves
robust, consistent data transmission by directly solving
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the core challenge of maintaining high reliability in
the highly complex 6G environments [18], [99].

2) NETWORK OPTIMIZATION

Integrating 6G technologies requires advanced network
optimization to achieve low latency, ultra-reliability,
spectrum efficiency, and adaptive resource alloca-
tion [100], [101]. Traditional fixed optimization methods
are unable to handle the complex, dynamic, and high-
dimensional nature of these systems. GenAI offers a
data-driven solution that enhances intelligence, real-time
adaptation, and decision-making by generating optimal
network configurations based on learning from network
history.
The influence of GenAI in optimizing 6G-enabling tech-

nologies is discussed below:
1) Adaptability towards Non-Stationary Environments:

6G networks typically function within non-stationary
environments. The performance under such environ-
ments is challenged by factors such as varying user
movements, constantly fluctuating channel conditions,
and changes in available spectrum. This is particu-
larly evident in RIS-assisted networks, ISAC, AIGC,
and THz communication systems, where real-time
adaptability is essential for beamforming, interference
mitigation, and link reliability. GenAI continuously
learns from past network states to enhance adaptability
and also predict optimal configurations in response to
environmental changes [10], [70], [71], [102].

2) Resource Allocation: The efficient management and
distribution of resources is considered to be critical
for RIS, AIGC, the metaverse, and ISAC in het-
erogeneous 6G networks. This resource distribution
can be effectively optimized through GenAI, which
can predict user demands for key network resources,
including bandwidth, transmission power, and special-
ized network slices. GenAI facilitates the proactive
optimization of resource allocation by predicting these
requirements in real time. This predictive capability of
GenAI is highly critical for dynamically adjusting RIS
configurations and implementing adaptive spectrum
management in 6G. The automated prediction of
demand and the consequent adjustment of network
resources are essential for overall system optimization
and sustained user satisfaction, irrespective of the
highly variable operational conditions inherent to 6G
environments [73].

3) Data Augmentation: Data scarcity and generalization
issues are key challenges within the context of 6G-
enabling applications and technologies. In order to
mitigate these issues, GenAI produces synthetic data
to augment limited real-world datasets. This approach
is critical for network optimization and ensuring
high-fidelity performance and robust network config-
urations, even in non-stationary environments, thereby
enhancing 6G network reliability [18], [26], [74].

3) GENAI FOR NETWORK SECURITY

The convergence of 6G technologies and applications intro-
duces novel vulnerabilities and attack vectors that need
advanced security solutions [18], [103]. GenAI can play a
crucial role in strengthening the robustness of 6G systems.
It can assess extensive network data by identifying complex
anomalies and continuously learning from real-time network
behaviors. This enables GenAI to detect emerging threats,
mitigate risks, and adapt to evolving attack patterns, thereby
ensuring the resilience of 6G networks against advanced
cyberattacks.

1) Anomalies and Attack Detection: Due to high data
rates, ultra-low latency, and massive connectivity,
6G networks significantly increase the attack surface
and create diverse security challenges [104]. GenAI
addresses these threats by continuously evaluating
network traffic and learning from real-time data to
detect and mitigate threats [18], [103]. Moreover,
security is further enhanced when cutting-edge tech-
nologies like blockchain are integrated with GenAI,
as this can help analyze large datasets for anomaly
detection and offer early threat warnings. The use
of blockchain and quantum computing provides
immutable and transparent data storage for secure,
verifiable transactions. This combined approach is
vital for environments with rapidly fluctuating network
conditions, allowing GenAI to predict and prevent
threats by detecting subtle anomalies across diverse
settings [89], [90], [91], [92], [103].

2) Spoofing/Jamming Detection and Protection:
Sophisticated 6G communication techniques, such as
beamforming and resource allocation, are vulnerable
to spoofing and jamming attacks that disrupt the
signal flow [94]. GenAI is essential for identifying
and mitigating these attacks [18]. GenAI can
analyze traffic in real-time to detect unusual signal
manipulations and differentiate between legitimate
and malicious signals by learning expected network
and signal behaviors. This capability guarantees
the robustness of 6G networks and prevents
service disruptions, especially in applications that
need precise coordination, such as ISAC-based
systems [93], [95].

C. HOW GENAI ENHANCES DTs FOR 6G
DTs provide virtual representations of physical 6G
networks for simulation, monitoring, and intelligent
control. However, DTs face several inherent limitations
when deployed independently. These include data
scarcity that limits model fidelity, adaptability issues
that hinder generalization to unseen scenarios, and
semantic gaps that prevent interpretation of high-
level context. These issues restrict the capability of
DTs to fully capture the dynamic 6G and metaverse
environments.
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TABLE 4. DT limitations and GenAI solutions in 6G networks.

As summarized in Table 4, GenAI is utilized in the fol-
lowing sections to effectively address these constraints,
thus enhancing DT performance and adaptability.

1) GENERATIVE DATA AUGMENTATION FOR DTs

DTs in 6G networks are limited by data scarcity,
which impairs their ability to accurately model
complex network dynamics and develop reliable
resource allocation policies. This significantly reduces
the robustness and reliability of DT simula-
tions [44]. This issue is addressed by GANs, which
generate high-quality synthetic data that has unob-
served network states and diverse traffic patterns
to supplement insufficient real-world measurements.
This augmentation enhances model fidelity and
generalization and supports accurate performance
evaluation and optimization in dynamic 6G environ-
ments [105], [106].

2) GENERATIVE TRANSMISSION FOR DTs

DTs often struggle to accurately model transmission
processes in 6G wireless networks, particularly when
unpredictable interference, dynamic channel condi-
tions, and varying traffic loads are present [111]. This
constraint limits a DT’s ability to capture semantic
relationships between signals and network behaviors,
which ultimately reduces 6G network performance.
In addition, DMs address this concern by gener-
ating realistic synthetic transmission scenarios that
reflect diverse channel conditions. The integration of
DMs enables DTs to optimize transmission strate-
gies, improve semantic communication accuracy, and
enhance overall network performance [111], [112].

3) GENAI AS DTs

The utility of 6G DTs is limited by data constraints.
However, GenAI can function as a virtual DT to
generate high-fidelity synthetic representations for
accurate simulation and evaluation [108]. GenAI mod-
els like Transformers learn the semantic and temporal

relationships between network states and actions by
interpreting network control messages (e.g., resource
allocation, handover, etc.) as structured sequential data.
This enables the generation of realistic policies that
replicate network functions. This approach establishes
message-level DTs that support semantic communica-
tion and adaptive resource management in 6G, even
without fully deployed physical DTs.
When functioning as a DT, GenAI significantly
enhances 6G network performance [44]. These GenAI
models simulate real-time network states and appli-
cation characteristics, offering predictive insights into
channel conditions, traffic demands, and resource uti-
lization [109], [113], [114]. 6G networks can achieve
higher efficiency, scalability, and adaptability by lever-
aging GenAI-based DTs, which would unlock new
possibilities for wireless communication systems in the
era of advanced connectivity [13].

4) GENAI-ENHANCED DT TRAINING FOR 6G
APPLICATIONS

DTs in 6G networks are constrained by insufficient
real-world data, rare network events, the time-varying
nature of network states, and dynamic traffic condi-
tions, which limit their ability to accurately model
network states and optimize resource allocation. GenAI
models, such as GANs and DMs, provide a solu-
tion by generating high-fidelity synthetic network
data, including traffic patterns, user behaviors, and
previously unobserved network scenarios. By training
DTs on both real and generative data, the twins learn
to predict fluctuations in spectrum demand, latency,
and throughput, enabling proactive and context-aware
resource allocation for applications such as holo-
graphic communications, semantic-driven services, and
URLLC. Additionally, a GenAI model functioning
as DT training supports semantic-aware adaptation,
allowing DTs to capture not only quantitative metrics
but also the contextual meaning of network inter-
actions. This approach ensures that DTs maintain
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optimal performance and predictive capability even
in conditions where conventional training data is
sparse or incomplete, effectively bridging the gap
between theoretical DT modeling and practical 6G
deployment [110], [115].

D. SUMMARY OF LESSONS LEARNED
GenAI has emerged as a main enabler for optimizing
6G performance and security. It notably augments
the physical layer by enhancing signal process-
ing that leads to higher data rates, reliability, and
spectral efficiency. In network optimization, GenAI
greatly facilitates dynamic resource allocation and
adaptive management to reduce latency. Most impor-
tantly, GenAI ensures high-level security by providing
advanced-level threat detection and anomaly mitigation
in real time. Additionally, GenAI also generates
synthetic datasets and predictive models to facilitate
improvements in key 6G applications, such as MEC,
AIGC, semantic communications, ISAC, and AR/VR.
All the above-mentioned core capabilities set GenAI
up as a cornerstone for enhancing the efficiency, adapt-
ability, and security of 6G networks [13], [109], [114].

IV. DTs IN 6G NETWORKS: ENABLING
APPLICATIONS AND TECHNOLOGIES
The DT paradigm creates virtual replicas of phys-
ical network elements for comprehensive modeling,
simulation, and analysis [116]. By bridging physi-
cal and digital realms, DTs provide deep predictive
insights that might be crucial for informed decision-
making. In 6G networks, where high data rates, low
latency, and reliability are essential, DTs are central to
network optimization [41], [117]. DTs permit testing
configurations, resource allocation, and performance
under varying conditions, enabling proactive manage-
ment that reduces costs and enhances efficiency [23].
Real-time data updates ensure DTs support adaptive
decision-making and increase 6G network resilience.
DTs are pivotal in enhancing 6G security [118]. They
provide a platform to develop robust defense strategies
by simulating diverse attack scenarios, such as DDoS
and unauthorized access [10]. Furthermore, an impor-
tant feature of DT technology is the integration of
real-time network data to develop proactive, adaptive
security schemes for emerging threats. Moreover, DTs
model behaviors like interference and mobility to
reduce system vulnerabilities, improve resource allo-
cation, and optimize network configuration [22], [24].
The DTs’ predictive capacity thus strengthens security
and sustains performance in dynamic 6G environ-
ments [23], [115].

A. DT ARCHITECTURE FOR A 6G NETWORK
A DTN is a digital replica of the entire lifespan of
a physical network, which utilizes models and data

FIGURE 3. DTNs for 6G network optimization, management, and security [42].

to create a physically precise platform for network
simulations, to offer up-to-date network state and
predict future status [38]. According to the ITU-T
recommendation [119], there will be three layers in
a reference 6G DTN architecture: (1) 6G physical
network layer, (2) 6G twin layer, and (3) 6G network
application layer. Figure 3 highlights the integration
of DT technology into 6G networks, demonstrating
its potential to fundamentally revolutionize network
design and optimization.

1) 6G PHYSICAL NETWORK

The 6G physical network layer encompasses all tangi-
ble network components–including the core, transport,
and radio access networks–which serve as the direct
interface for exchanging data and control messages
with the DT layer [42]. This layer is optimized
for ultra-low latency and high capacity, supporting
complex industrial applications. It thereby outperforms
previous generations [5]. It covers all logical and
physical assets (e.g., network elements, services,
and base stations). These are digitally twinned to
create a holistic virtual replica that enables optimized
resource orchestration, performance enhance-
ment, and cost-efficient network management by
operators [120]. Enabling applications (e.g., smart
transportation, AR/VR, THz, and AIGC) facilitate
the transmission of network states and characteristics
from the physical layer to the 6G twin layer, as
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shown in Fig. 3. These resulting DT states function
as real-time virtual representations, capturing crucial
operational parameters, such as channel conditions,
mobility patterns, and QoS requirements, derived from
deployed network sensors and devices.

2) 6G TWIN

The core of a 6G DTN is the 6G twin layer, which
is structured into three critical domains: the data
domain, the model domain, and the management
domain, as in Fig. 3. The data domain collects real-
time data from the physical network to create a detailed
repository that informs the model domain. The model
domain integrates both functional and basic models
to represent the network’s topology and constituent
elements. These models are essential for numerous
key functions, including network planning, fault detec-
tion, traffic analysis, and performance optimization.
Functional models utilize machine learning algo-
rithms to improve network configuration, security, and
optimization. Furthermore, the integration of enabling
technologies (e.g., RIS, ISAC, THz frequencies, and
AIGC) enhances network performance by optimiz-
ing physical-layer characteristics, ensuring seamless
communication, and increasing network flexibility.
The modular architecture of 6G DTNs facilitates
hybrid simulations and real-time, data-driven decision-
making, which are essential for effective network
design. The management domain integrates vital secu-
rity mechanisms (e.g., encryption, authentication, and
integrity protection) and employs continuous model
updates to sustain optimal performance. By merging
AI-driven decision-making with virtualized environ-
ments, the 6G twin layer enables dynamic, secure, and
efficient network management, thus forming a robust
foundation for future 6G networks.

3) 6G NETWORK APPLICATION

Various applications in the 6G network application
layer interface with the twin layer to effectively convey
the service demands. This interaction allows the
intelligent provisioning and control of the underlying
physical network [42]. Traffic demands and user
requirements from 6G-enabling technologies, such as
dynamic spectrum allocation, adaptive beamforming,
intelligent traffic routing, and predictive maintenance
based on real-time network conditions, are contin-
uously forwarded to the twin layer, wherein these
inputs are processed to optimize network performance.
The application layer uses twin-layer insights to
guarantee seamless service delivery and efficient
resource utilization, thereby fulfilling the strict QoS
and energy efficiency demands of next-generation
networks.

B. ADAPTIVE MODELING METHODS FOR 6G DTNs
In 6G DTNs, it is crucial to maintain accurate and
adaptive models due to the highly dynamic nature
of network environments [121]. Classic modeling
techniques mostly depend on fixed reward functions
in reinforcement learning (RL), which might limit
the model’s ability to respond to varying network
conditions [122]. To address these limitations, an
intelligence-based reinforcement learning (IRL) frame-
work has been proposed that introduces a high-level
metric, termed intelligence, for quantifying cogni-
tive improvement. This method helps the DTs in
autonomously adapting to network dynamics and thus
eliminates the need for explicit reward functions, which
in turn leads to better flexibility and robustness. In their
framework, network requirements and network states
are modeled as multi-dimensional random variables by
allowing the DT to handle uncertainties and optimize
multiple objectives simultaneously [123], [124].
Adaptive modeling also incorporates multi-granularity
techniques in which the DT adjusts the level of
detail in its representation according to real-time
network conditions. It is particularly valuable for 6G
applications, in scenarios like URLLC, eMBB, and
mMTC, wherein the network conditions can fluctuate
in a rapid and unpredictable manner. DTs can accu-
rately reflect the state of physical network elements,
support predictive maintenance, and optimize resource
allocation by dynamically updating models on the basis
of real-time telemetry and network feedback [125].
This adaptability is particularly crucial for 6G because
each application area poses distinct challenges, for
instance, URLLC use-case requires precise real-time
synchronization to avert service interruptions, eMBB
demands high-throughput optimization under variable
traffic loads, and mMTC must efficiently scale to sup-
port massive device connectivity. Adaptive DTs may
tailor their models to these heterogeneous requirements
through the integration of reinforcement learning and
AI-driven feedback loops, and by doing so, ensure
accurate network representation while maintaining
computational efficiency [126]. Ultimately, adaptive
modeling enhances the robustness, reliability, and
scalability of 6G applications, which in turn, facil-
itates intelligent resource management together with
robust end-to-end service delivery across various use
cases [127].

C. DTs FOR 6G-ENABLING TECHNOLOGIES AND
APPLICATIONS
DT technology is essential for optimizing the security,
intelligence, and efficiency of 6G-enabling technolo-
gies [41], [128]. DT models enable rapid prototyping,
facilitating the creation of virtual models and network
simulations, and helping with the optimal placement
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of network resources (e.g., nodes and access points)
to enhance AR and VR performance and coverage.
This approach supports iterative design and testing
in a virtual environment, substantially minimizing the
cost and time associated with physical prototyping and
ultimately contributing to the development of resilient
and adaptive network architectures [129], [130].
Besides immersive AR/VR services, short video
streaming is a major source of traffic in 6G networks.
DTs improve short video streaming applications by
modeling user behavior, content demand, and network
conditions in real time, thereby enabling predictive
caching, adaptive resource allocation, and edge com-
puting optimization [131]. This proactive management
approach reduces latency, minimizes buffering, and
ensures a high quality of experience (QoE), under-
scoring the significant role of DTs in optimizing
high-volume, latency-sensitive 6G services.
DTs play an essential role in the development of
6G-enabling technologies. Particularly, within AIGC
networks, their function is to construct high-fidelity
virtual models that meticulously replicate the end-
to-end network parameters and services governing
the generation, transmission, and final delivery of
AIGC [10]. This capability also supports proactive
threat detection, anomaly identification, and the devel-
opment of robust security measures [10]. In the case of
ISAC networks, DTs jointly optimize communication
and sensing parameters by simulating key factors, i.e.,
CSI, interference levels, and mobility patterns [24].
This act ensures seamless coordination between the
sensing and communication functions, which is essen-
tial for emerging 6G applications such as autonomous
transportation and smart city infrastructures.
Additionally, in RIS and THz communication
networks, DTs provide a virtual simulation platform
for iterative testing and optimization of signal pro-
cessing techniques, phase-shift configurations, and
beamforming strategies [22], [42], [132]. This helps
ensure greater reliability and security in dynamic envi-
ronments [22], [42], [132]. Furthermore, DTs notably
contribute to semantic communication, which focuses
on transmitting meaningful information instead of
raw data. By digitally emulating the semantic feature
structures of transmitted signals, DTs allow for the
optimization of signal encoding and interpretation
processes. This function effectively reduces bandwidth
consumption and improves communication efficiency.
This is particularly useful in AI-driven 6G applications,
where accurately capturing the semantic intent of
transmitted information is essential to maintain data
integrity to ensure context-aware network operation.
DTs play a vital part in large-timescale resource
allocation by integrating predictive modeling with
optimization-based decision-making. DTs construct
accurate virtual models of spatio-temporal network

dynamics by continuously aggregating historical user
mobility patterns, network telemetry, and service
demand statistics [37], [133]. These models enable
proactive reservation of computing, spectrum, and
storage resources, thereby ensuring reliable service
delivery for 6G networks.
Such capabilities are especially important for 6G
applications. For instance, in eMBB, DT-assisted
forecasting enables the pre-allocation of capacity for
high-throughput services such as immersive XR. In
URLLC, long-horizon resource reservation guarantees
mission-critical service reliability under dynamic con-
ditions, whereas in mMTC, periodic IoT traffic can be
anticipated to enable scalable and efficient allocation
strategies [134].
DTs employ predictive intelligence, simulation, and
long-term optimization to achieve robust, reliable, and
efficient management across large timescales, surpass-
ing instantaneous control for all 6G applications. The
incorporation of DTs within the core of 6G network
design and operation allows researchers and engineers
to realize unprecedented efficiency, adaptability, and
security. This convergence is anticipated to establish
a robust and intelligent next-generation communica-
tion ecosystem. Following this, we will examine the
specific enhancements DTs provide to 6G networks,
with a focus on their contributions to optimizing
network design, improving physical-layer security, and
bolstering overall network security.

1) DT FOR PHYSICAL LAYER DESIGN

DTs are crucial for improving 6G physical-layer
design. They simulate the real-time behavior of
enabling technologies, making it possible to address
security vulnerabilities and optimize RF communi-
cation [135]. These capabilities are essential for
ensuring the robustness of RIS-assisted communica-
tion, metaverse, THz links, ISAC, and AIGC in 6G
networks [128]. DTs improve physical-layer security
in the following key areas:

a) Dynamic Threat Landscape: DTs enable real-
time monitoring and anomaly detection for
RIS-based wireless environments to prevent
unauthorized beam manipulation or adversarial
attacks on reconfigurable metasurfaces [118].
For THz communication, DTs predict path
loss, signal degradation, and jamming attacks,
which allow dynamic reconfiguration of trans-
mission strategies to maintain secure and efficient
links [136]. Furthermore, DTs improve metaverse
security through comprehensive monitoring and
predictive analytics, which facilitate early threat
detection and proactive mitigation. Continuous
analysis of network behavior helps DTs identify
vulnerabilities and reinforce the resilience of the
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infrastructure supporting AR applications within
the metaverse [137].

b) Vulnerability to Physical Attacks: DTs can repli-
cate possible physical attack scenarios on ISAC
systems. Their primary utility is to pinpoint
weaknesses within the system where mali-
cious entities could compromise or exploit the
integrated sensing and communication capabili-
ties [138]. DTs ensure secure operation of joint
communication and radar sensing by preemp-
tively addressing limitations in waveform design
and spectrum sharing. In the same manner,
DTs improve RIS deployment by mitigating
eavesdropping risks through optimized phase-
shift configurations.

c) Securing RF Communication: DTs enhance secu-
rity for high-frequency THz and mmWave
transmissions by optimizing RF signal manage-
ment and encryption techniques [136], [139].
This capability is critical for AIGC-powered
immersive applications, which necessitate robust
encryption and interference mitigation to prevent
unauthorized access and content manipulation.
Moreover, this function simultaneously guar-
antees the ultra-reliable wireless connectivity
required for real-time services, such as holo-
graphic communication.

2) DT FOR NETWORK OPTIMIZATION

DTs have turned out to be a transformative enabler for
6G networks that offer real-time simulations, predictive
analytics, and intelligent decision-making to enhance
the performance and security of 6G technologies
and applications [140], [141]. DTs enable proactive
resource allocation, adaptive security mechanisms,
and energy-efficient network management by con-
tinuously integrating real-time data acquired directly
from network components. These functionalities are
necessary for optimizing several 6G-enabling technolo-
gies, such as RIS, THz communication, ISAC, the
metaverse, and AIGC.
The optimization capabilities of DTs improve 6G
network performance and security in these key areas:
a) Dynamic Resource Allocation: 6G networks

require dynamic and intelligent resource alloca-
tion to efficiently handle varying traffic loads and
service demands. DTs facilitate real-time traffic
modeling, predictive analytics, and the develop-
ment of optimization strategies. The preliminary
goal is to enhance spectrum utilization, reduce
latency, and ultimately improve overall network
performance [142]. By simulating network
behaviors under different conditions, DTs help
fine-tune configurations for RIS-assisted com-
munication, metaverse, ISAC frameworks, and
THz-based ultra-high-speed networks [2], [143].

b) Energy Efficiency: Given the growing complexity
of 6G infrastructures, it is critical to achieve
energy efficiency [144]. DTs simulate power
consumption patterns, which facilitate the imple-
mentation of dynamic energy-saving strategies
across varied network elements, such as RIS-
assisted smart environments, THz transceivers,
and AI-driven network functions. The critical
insights drawn from these simulations con-
tribute directly to green 6G deployments [145].
Specifically, they not only optimize power man-
agement within wireless access points, edge
computing nodes, and intelligent base stations but
also simultaneously ensure the maintenance of
high system reliability.

3) DT FOR NETWORK SECURITY

DTs offer a substantial enhancement to 6G network
security by creating a virtual simulation platform that
accurately mirrors the entire physical 6G network
environment. This capability enables proactive threat
detection, continuous security monitoring, and the
implementation of dynamic responses to security
incidents [146]. This approach addresses the unique
security and privacy challenges inherent in 6G
applications and technologies such as RIS, THz com-
munication, ISAC, metaverse, and MEC, by offering
predictive insights and improving resilience against
emerging threats.
a) Proactive Threat Detection: The growing

dynamic nature and complexity of 6G networks
lead to a proportional increase in the sophisti-
cation of cyber threats that target 6G-enabling
applications [147]. Traditional, reactive security
methods fail to fulfill the demands of 6G
networks due to the large scale and extensive
complexity introduced by complicated 6G
environments. In order to address this challenge,
DTs provide real-time simulations that create
virtual replicas of network activities within the
physical environment. These virtual network
replicas help with the constant monitoring of
the network for the timely identification of
anomalies [135], [137], [148]. Moreover, in
order to enhance proactive security measures,
DTs also simulate attack scenarios and assess
the response in real time. This leads to robust
security designs for 6G technologies.

b) AI-Based DTs for Enhanced Security: Due to the
increased complexity and massive volumes of
data generated in 6G networks, it is necessary
to devise advanced analytics to efficiently detect
and respond to cyber threats [16]. The AI-driven
algorithms combined with DTs serve as a very
powerful tool for increasing the security of 6G
networks [140]. DTs can leverage ML models to
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analyze vast amounts of data from 6G-enabling
applications to detect patterns that may indicate
potential security risks. For instance, AI models
can be trained on the synthetic datasets created
by DTs to predict attack vectors, identify unusual
activity, and generate automated real-time threat
responses [149]. AI-driven DTs significantly
improve the accuracy and efficiency of security
within 6G infrastructure by continuously adapt-
ing to evolving cyber threats. This enhanced
resilience assists AI-driven DTs in safeguarding
sensitive information and maintaining reliable
communication across diverse 6G technologies,
including THz systems, ISAC, and distributed
cloud platforms.

D. SUMMARY OF LESSONS LEARNED
DTs are instrumental in optimizing 6G networks by fur-
nishing real-time virtual representations that are highly
critical for network design, resource allocation, security
management, and overall network optimization. DTs facili-
tate precise simulations and predictive modeling capabilities,
which eventually serve to enhance the performance of
complex 6G systems, particularly in applications such as
THz communication, semantic communications, and AIGC.
By facilitating dynamic resource allocation, DTs optimize
spectrum usage, minimize latency, and maximize data rates,
thereby ensuring efficient communication in environments
requiring high throughput and low latency. Furthermore,
DTs improve security by continuously monitoring network
activity, detecting anomalies, and mitigating cyber threats in
real time, ensuring resilience and reliability. Through these
capabilities, DTs support intelligent network management,
bolster security measures, and enable seamless operation of
6G applications, driving innovation and accelerating digital
transformation across industries and societies.

V. INTERPLAY BETWEEN GENAI AND DT FOR
6G-ENABLING APPLICATIONS
The 6G network is designed to achieve ubiquitous con-
nectivity, integrate native intelligence, and ensure global
coverage. This objective necessitates novel network design
approaches to effectively manage both the highly dynamic
nature of wireless environments and the demands of diverse
service requirements [14], [150]. These challenges need the
development of an intelligent framework that can precisely
synchronize data across various network infrastructures to
ensure seamless connectivity [151]. Achieving high-fidelity
modeling is another critical network design factor for
accurately representing the physical and virtual elements
of the network and facilitating effective optimization and
simulation [23]. Successful generalization of AI models to
cover unseen and diverse wireless environments is a critical
step while developing robust frameworks for enhanced
performance across varying wireless conditions.

To address these challenges, a framework is proposed
(as illustrated in Fig. 4) that seamlessly integrates DTs and
GenAI to offer a transformative solution for optimizing 6G
network design. This framework establishes a synergistic
interaction by combining the real-time modeling precision
of DTs with GenAI’s predictive and generative capabilities
that result in a scalable and adaptable solution that enhances
both network performance and security. The framework
is organized into multiple connecting layers to ensure
efficient resource allocation, real-time adaptability, and high-
fidelity modeling. The layers of the proposed framework are
comprehensively discussed as follows:

1) Real-Time Emulation Layer: The real-time emulation
layer incorporates the DT that serves as the foundation
of the architecture by offering a real-time, digital rep-
resentation of the physical 6G network. It continuously
updates data from the physical 6G network to ensure
that the network remains synchronized with its current
operational state, providing an accurate and up-to-date
model for performance optimization. Based on this
foundation, different GenAI models, such as LLM,
transformers, GANs, and DMs, are used to emulate
real-time semantic-level user preferences and network
conditions based on 6G applications in order to
improve DTs’ capabilities. The requirement of constant
data updates for DT is significantly reduced by these
GenAI models. As a result, real-time data collection
constraints are minimized, and model accuracy is
maintained at the same time. The integration of GenAI
models and DT technologies ensures the adaptability
of the system. This enables 6G applications to quickly
adjust to changes in environments, traffic demands,
and users’ mobility, and to maintain smooth operations
even in rapidly changing scenarios.

2) Feature Abstraction Layer: The main function of this
layer is to abstract and reduce the high-dimensional
data generated by the real-time emulation layer. GenAI
techniques, such as VAEs, reduce redundancy and
retain important features to compress and encode
high-dimensional data into a low-dimensional rep-
resentation. Moreover, transformers further extract
important network characteristics, such as traffic
attributes and sophisticated propagation, which are
crucial for managing resources and optimizing com-
munication. This feature extraction process ensures
that only relevant information is processed, which
will result in reduced system overhead and efficient
decision-making.

3) Decision-Making Layer: The features extracted in the
feature abstraction layer are used in the decision-
making layer for intelligent decision-making. This
layer uses predictive models, such as LLMs, VAEs, and
RL, to decode the traffic and then optimize resource
allocation methods. LLMs interpret network and appli-
cation context to extract semantic insights, while
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FIGURE 4. The proposed GenAI-DT architecture for 6G network optimization and security.

RL agents iteratively explore and evaluate actions.
Together, they learn optimal 6G resource allocation
policies by updating decision strategies on the basis of
the observed network states and performance feedback.

4) Feedback Validation Layer: The feedback validation
layer provides a feedback loop to DTs, ensuring
that the decisions made in the decision-making layer
are aligned with 6G-enabling applications. This layer
performs validation by comparing simulated outcomes
within the DT against actual network performance.
It uses LLMs and RL to regularly fine-tune decision
parameters based on real-world feedback and enhance
6G network accuracy and reliability. This ensures
network adaptation to unforeseen environments and
maintains optimal performance, which is vital for
mission-critical 6G applications.

Next, we will discuss how this integrated framework,
combining the strengths of DTs and GenAI, can be applied to
various 6G-enabling technologies, demonstrating its potential
to optimize network security, enhance resource allocation,
and support a wide range of advanced use cases.

A. SEMANTIC COMMUNICATION
Semantic communication is an enabling technology for
6G networks that shifts communication from traditional

bit-based transmission to a context-aware framework focused
on the meaning of transmitted data [160]. Unlike tradi-
tional wireless networks that prioritize bit-level transmission,
semantic communication aims to convey only the use-
ful meaning of the transmitted data. By doing so, it
enhances communication efficiency and improves the overall
performance of 6G applications.
Semantic communication architecture consists of a seman-

tic encoder that extracts useful information from raw data,
a semantic wireless channel that transmits the encoded
information, and a semantic decoder that is used to
reconstruct the intended meaning at the receiver [160].
Consequently, the development of semantic communication
presents significant challenges for6G networks. Some of
the key challenges are to handle diverse multimodal data
while preserving context [161] and to fulfill the stringent
URLLC requirements for 6G applications like immersive
experiences. Besides this, real-time collaboration, intelligent
automation [160], and accurate data synchronization across
distributed communication networks [162] are other notable
challenges. Additionally, developing robust and reliable
AI models with generalization capability is particularly
challenging for 6G network design.
In the following subsection, we delve into the appli-

cations of GenAI and DTs and their synergistic interplay
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TABLE 5. GenAI models and their applications in semantic communications.

in optimizing the performance and security of semantic
communications. The discussion highlights how the interplay
of these technologies influences the adaptability, efficiency,
and resilience of next-generation networks.
GenAI: GenAI has emerged as a key technology for

enabling semantic communications within 6G networks to
optimize data extraction, encoding, and transmission. It also
accurately reconstructs the intended semantic information
across multiple modalities. In the past few years, different
GenAI architectures have been used for specific semantic
communication tasks. VAEs, with probabilistic encoder-
decoder architectures, efficiently map high-dimensional data
into a structured latent space and enable joint source-
channel coding (JSCC), semantic compression, and robust
reconstruction across image, text, and audio modali-
ties [152], [153]. GANs are employed to enhance JSCC
and semantic coding as well as to mitigate signal distor-
tions, and thus improve reconstruction fidelity for image
and text transmissions [154], [155]. DMs leverage forward
diffusion and reverse denoising processes to provide chan-
nel modeling, semantic coding, and channel equalization,
which makes them particularly suitable for audio, image,
and multimodal transmissions over noisy wireless chan-
nels [156], [157]. LLMs and transformer-based architectures
serve as both semantic encoders and decoders, as well as
auxiliary knowledge bases, which enable precise multimodal
semantic alignment, context-aware reasoning, and dynamic
multi-user knowledge sharing. These capabilities enable
physical-layer semantic coding by capturing complex cor-
relations across data modalities and interpreting high-level
semantic information, thus making them very suitable for
multi-user and adaptive 6G wireless communication scenar-
ios [158], [159].

Overall, as summarized in Table 5, transformer-based
LLMs are the preferred GenAI architecture for seman-
tic communications under the semantic fidelity constraint.
This preference arises from their advanced abilities in
high-dimensional semantic feature extraction, context-aware
reconstruction, and multimodal alignment, which are the key
to guaranteeing strong semantic fidelity and low latency in
rapidly changing 6G environments.
DTs: DTs significantly enhance semantic communications

by serving as real-time virtual models of physical semantic
communication networks [23]. These DTs constantly update
critical parameters such as user mobility, SNR, and wireless

channel conditions to synchronize with the physical network.
DTs enable adaptive adjustments to the encoder-decoder
architecture by maintaining real-time alignment, which
ensures efficient data processing and robust transmission,
even in fluctuating wireless environments [115]. In addition
to real-time synchronization, DTs model a variety of wireless
environments incorporating network digital twin, simulat-
ing unobserved network system conditions that improve
prediction accuracy and enhance the system’s adaptabil-
ity [163]. These simulations allow the encoder-decoder
architecture to process semantically rich information under
variable network conditions, ensuring consistent performance
across a wide range of 6G applications. Furthermore, to
achieve efficient channel characterization and high fidelity,
a digital twin channel (DTC) framework is developed to
accurately mirror the physical channel characteristics in
the digital domain to enable proactive decision-making for
communication nodes [164]. The DTC enhances the semantic
communication framework by the transmission of useful
information by ensuring a synchronized alignment between
the digital and physical channel representations. This inter-
play of DTC with semantic communications is crucial for
optimizing context-aware data delivery and envisioning the
development of efficient and intelligent 6G.
Interplay: The interplay between GenAI and DTs devel-

ops an adaptive and intelligent framework that addresses
critical challenges, including high-fidelity modeling, data
synchronization, and resource allocation to enhance semantic
communication in 6G [165]. The framework (as illustrated in
Fig. 5) consists of four main layers, i.e., the status emulation
layer, feature abstraction layer, decision-making layer, and
feedback validation layer. These layers are summarized in
Table 5 and also further discussed in the following section.

1) Real-Time Emulation Layer: The real-time emula-
tion layer integrates DTs to provide a virtualized
representation of the physical semantic network by
effectively capturing key parameters such as user
behavior, traffic patterns, and channel conditions.
This layer utilizes GenAI models (i.e., GANs and
DMs) to emulate semantic network characteristics and
thus establish a high-fidelity virtual representation of
the physical infrastructure. GANs synthesize realis-
tic network states by capturing correlations across
key metrics, including semantic information, latency,
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FIGURE 5. A layered framework of GenAI–DT for semantic-aware network optimization and security.

TABLE 6. Summary of GenAI–DT framework layers for semantic network optimization.

and throughput, whereas DMs refine these generated
samples by modeling them and learning to map
initial random noise into structured, realistic network
scenarios. By integrating GenAI models with DTs,
this layer minimizes the frequency of DT updates
while maintaining accurate and representative network
models.

2) Feature Abstraction Layer: This layer encodes and
abstracts high-dimensional emulated data to derive
actionable, meaningful insights, as the data received
from the real-time emulation layer is time-series and
highly dimensional, and cannot be used for network
management policies. This layer utilizes VAEs to
encode the emulated features into a latent space
by effectively retaining critical semantic information
and reducing dimensionality. VAEs enable efficient
compression and robust representation of network
states by learning the distributions of the semantic

data. Additionally, GenAI models such as diffusion-
based encoders can be integrated to compress the
latent representations further and capture complicated
high-dimensional dependencies under noisy network
conditions. The resulting feature embeddings are
used as inputs for the decision-management layer.
This ensures that adaptive resource allocation and
semantic-aware network control rely on high-fidelity,
semantically meaningful data originating from the
emulated network environment.

3) Decision-Making Layer: The decision-making layer
receives the latent abstracted semantic features from
the feature abstraction layer to derive intelligent, data-
driven decisions. The encoded data from the feature
abstraction layer is first processed by GenAI models,
such as VAEs and transformers, that utilize a shared
knowledge base. VAE decoders reconstruct and trans-
late low-dimensional, context-enriched representations
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into interpretable formats to retain critical information
for network optimization. The shared knowledge
base is crucial in this process, providing a common
framework that improves the efficiency and accuracy
of semantic decoding. By leveraging this shared
information repository, variational autoencoders can
interpret and reconstruct the intended meanings of the
transmitted data in an effective manner. Subsequently,
LLMs and reinforcement learning frameworks use
these decoded insights to enable multi-user seman-
tic coordination and context-aware decision-making.
These frameworks further help in the formulation
of policies that optimize the extraction, alignment,
and reconstruction of semantic information across
heterogeneous network scenarios [166].

4) Feedback Validation Layer: This layer simulates the
decisions that are made at the decision-making layer in
the DT environment and validates them against actual
network performance. By feeding back predictions
from the decision-making layer, this layer incorpo-
rates LLMs and RL agents to fine-tune the model
parameters. This eventually enhances the semantic
encoding-decoding pipeline for future iterations. This
iterative process enhances the DTs’ predictive semantic
decoding capabilities and keeps the system responsive
to dynamic network conditions. The constant improve-
ment in model predictions ensures that the semantic
encoder-decoder architecture is quite effective even in
unseen network conditions.

Security: The security of semantic communication is
enhanced by the interplay of GenAI and DTs, as this
synergy allows for vulnerabilities to be addressed at both
the semantic and operational levels [25]. DTs create virtual
replicas of the network, having critical components such
as a semantic encoder and decoder. This helps in doing
controlled, simulation-based security testing across diverse
operational environments [30]. These simulations enable the
detection and analysis of threats, such as irregular traffic
patterns, unauthorized access, and adversarial attacks [31].
The DTs provide a dynamic environment for detecting
and countering threats in real-time through the replication
of diverse network conditions, including potential attack
scenarios, varying traffic loads, and interference. This
capability considerably boosts defense mechanisms and
facilitates the development of robust security techniques.
The integration of DTNs further enhances security by
permitting efficient processing of large datasets and real-time
optimization [167].
GenAI further complements the capabilities of DTs

and DTNs by addressing semantic vulnerabilities through
its predictive capabilities [168]. For example, LLM-twin
frameworks, in which the mini-giant model collaborations
and novel intra-twin and inter-twin communication mech-
anisms are combined, enhance resource efficiency while
mitigating potential security threats [167]. This approach
simultaneously enhances resource efficiency and mitigates

potential security threats. GenAI models, such as GANs
and VAEs, can simulate adversarial attacks designed to
exploit LLM-based components and proactively test coun-
termeasures. Additionally, GenAI can safeguard sensitive
data during the testing and training phases by generating
semantically accurate yet anonymized datasets. Furthermore,
the integration of LLMs into DTNs provides much better
security against potential threats than federated learning-
based DTNs. This synergy across GenAI, DTs, and DTNs
establishes a robust and adaptive security framework that
ensures the integrity, confidentiality, and resilience of seman-
tic communication systems in 6G networks.

B. RECONFIGURABLE INTELLIGENT SURFACES
RIS are smart radio environments that can intelligently con-
trol the incoming incident waves by dynamically adjusting
the amplitude and phase shifts of RIS elements to enhance
signal coverage and energy efficiency and mitigateinterfer-
ence in wireless networks [174]. RIS architectures developed
for 6G network optimization and security pose significant
challenges such as network generalization, high-fidelity
network modeling, and real-time data synchronization [175].
To address these challenges, intelligent and adaptive frame-
works are required to optimize RIS’s performance and
security in 6G networks. In the next section, we will explore
the applications of GenAI and DTs and how their interplay
can address these challenges in RIS for 6G network design.
GenAI: Integrating GenAI models with RIS in 6G

networks introduces transformative capabilities for address-
ing challenges in wireless network optimization. By
leveraging the data-driven emulation capabilities of GenAI,
RIS can dynamically reconfigure electromagnetic wave
properties to adapt to rapidly changing wireless propagation
environments [96]. GenAI algorithms can generate realistic
synthetic datasets that mimic diverse real-world applications
and thus enable RIS to intelligently adapt phase shifts and
beamforming strategies to varying wireless conditions [172].
Notably, GAN-based convolutional blind denoising and
convolutional blind denoising networks enhance RIS’s abil-
ity to mitigate interference, improve SNR, and maximize
network coverage, particularly in multipath fading and
mobile environments. For instance, studies [169] and [170]
highlight the effectiveness of GANs in CSI estimation,
wherein a convolutional blind denoising GAN for noise
removal and enhanced CSI accuracy is introduced in [169].
Wei et al. [170] addressed instability challenges in GAN-
based CSI estimation. Conditional GANs, as in [171],
further demonstrate the ability to generate realistic channel
responses through adversarial training by effectively learning
data distributions and reducing reliance on exhaustive real-
world data.
Beyond channel estimation, GANs also enable deployment

design and phase shift optimization, as shown in [172], where
a DRL framework combined with GANs optimizes IRS
placement and beamforming matrices, improving scalability
and resource allocation in 6G networks. In [173], the
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TABLE 7. GenAI models and their applications in RIS networks.

TABLE 8. Summary of GenAI–DT framework layers for optimizing RIS networks.

authors developed an LLM-based framework that leverages
pre-trained LLMs to optimize reconfigurable intelligent
metasurface antenna configurations. By utilizing the seman-
tic and cross-modal reasoning capabilities of LLMs, along
with few-shot learning, the framework can dynamically
adjust RIS parameters to achieve high-performance wireless
communication with reduced training overhead.
As highlighted in Table 7, under the common constraint

of dynamic propagation environments, GAN integrated with
DRL and transformer-based LLMs are the preferred GenAI
models for RIS networks, due to their ability to perform
optimized real-time adaptive beamforming, dynamic resource
allocation, and context-aware semantic parameter tuning in
rapidly varying 6G channel environments.
DTs: DTs play a key role in optimizing RIS performance

by offering real-time simulations and accurate RIS envi-
ronment modeling [22], [132]. DTs constantly monitor and
assess various factors, including terrain, interference, signal
strength, and mobility patterns, to ensure effective resource
allocation. Furthermore, DTs simulate RIS performance
across varied scenarios in order to identify resource alloca-
tion optimization demands for power, beamforming, channel
estimation, and user scheduling [176]. These simulations
provide useful insights regarding the impact of RIS con-
figurations on network performance, which enable dynamic
adjustments for an improved data throughput, reduced
interference, and improved signal coverage [177]. This real-
time feedback mechanism ensures the adaptive response
of RIS to changing network conditions, thereby ensuring
smooth integration with complex network topologies. DTs
are instrumental in optimizing RIS deployment strategies.
DTs can create a detailed environmental model that helps

the system make data-driven decisions regarding resource
assignment and thus maximize spectral efficiency [177].
Interplay: Integrating GenAI and DTs with RISs offers

a groundbreaking approach for 6G network optimization
by addressing challenges, such as non-line-of-sight (NLOS)
propagation and user mobility, in an effective manner.
This collaboration ensures high-fidelity modeling and better
data synchronization by leveraging the ability of GenAI
to generate diverse synthetic datasets and the ability of
DTs to create real-time virtual replicas [166]. The proposed
framework is composed of several layers, as summarized in
Table 8, which collectively demonstrate its effectiveness in
RIS network optimization.
1) Real-Time Emulation Layer: The real-time emulation

layer receives a virtual replica of the physical RIS-
based networks that consists of RIS configuration
states, channel characteristics, and user mobility pat-
terns. GANs are integrated to emulate interference
dynamics, generate realistic CSI samples, perform
blind denoising, and enhance the accuracy of CSI,
particularly in multipath fading scenarios. Furthermore,
DMs are incorporated to learn stochastic temporal
variations, iteratively refine noisy CSI samples through
denoising iterations, and support adaptive equalization
in highly dynamic wireless environments. The DMs
and GANs together provide a data-driven emula-
tion framework that learns RIS–channel interactions,
reduces the overhead of frequency DT updates, and
provides high-fidelity inputs to the feature abstraction
layer.

2) Feature Abstraction Layer: In this layer, high-
dimensional data from the RIS network is converted
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FIGURE 6. A synergistic GenAI and DT framework for optimizing performance and security in RIS networks.

into compact representations required for effective
data transmission. GenAI algorithms, such as VAEs,
are used to reduce complex RIS data into a con-
cise latent space, preserving the most pertinent
features needed to optimize RIS reflection param-
eters. Moreover, transformers are also incorporated
to learn the spatiotemporal correlations within RIS
networks, including user demand, traffic flow, and
interference patterns, thereby accurately predicting
RIS performance across dynamic network states. This
abstraction reduces communication overhead while
preserving essential features needed for RIS control
and semantic-aware decision-making.

3) Decision-Making Layer: The latent features that are
extracted from the feature abstraction layer are
leveraged in this layer to improve security and
resource allocation decisions within RIS networks.
LLMs provide context-aware reasoning capabilities
used to interpret network and RIS states. This
interpretation, in turn, helps in making effective
decisions regarding the optimal configurations of
phase shifts, beamforming vectors, and physical
deployment parameters. RL agents obtain oper-
ational policies through environmental interaction
and then utilize network performance metrics such
as energy efficiency, latency, and throughput as
reward signals to adaptively refine RIS configurations.
Together, LLMs and RL enable semantic-aware,

real-time, and high-performance RIS control in 6G
networks.

4) Feedback Validation Layer: This layer incorporates
LLMs and RL to analyze feedback and validate
RIS configurations through iterative learning and
dynamic adaptation. The DT environment is used to
systematically compare the outcomes of RIS-based
networks against real-world performance metrics to
ensure operational alignment. In addition, adaptive
feedback loops combine LLMs and RL to dynamically
fine-tune RIS parameters, such as phase shifts and
beamforming directions, in response to changes in
network conditions. This constant refinement process
ensures optimal SNR, enhanced coverage, and seam-
less performance, even in dynamic 6G environments,
which are characterized by high mobility and changing
environmental conditions.

Security: The interplay between GenAI mod-
els [178], [179], [180] and DTs [148], [181] can
substantially enhance the security of RIS networks. The
GenAI and DT interplay provides an adaptive and proactive
framework that can effectively counter the constantly
evolving cyber threats. However, the capability of RIS
systems to dynamically manipulate electromagnetic waves
may introduce security threats, for instance, signal jamming,
malicious beamforming, and eavesdropping attacks [182].
GenAI can leverage historical and synthetic data to create
predictive models that identify attack patterns and simulate
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TABLE 9. GenAI models and their applications in ISAC.

possible weaknesses within RIS configurations. For example,
GenAI models can predict the location and intensity of a
jammer in case of a signal jamming attack, which would
enable the RIS system to adjust its reflection coefficients
dynamically. Moreover, by integrating these predictions with
DT simulations, RIS networks can maintain their secure and
reliable settings in various environments.
This security framework is further improved by DTs,

which create high-fidelity virtual environments that precisely
replicate RIS operations and potential attack scenarios [181].
These simulations help DTs in testing the efficacy of
countermeasures that are predicted by GenAI against
diverse attack strategies. For example, DTs can model
the impact of eavesdropping attempts on RIS commu-
nication channels. It will help to ensure that the RIS
configurations generated by GenAI models reduce signal
leakage while preserving privacy. DTs enable real-time
monitoring of RIS behaviors by continuously updating the
virtual twin with real-world data, and provide immediate
alerts for irregularities, such as adjustments of unautho-
rized beamforming or unusual interference patterns. This
dynamic interplay between GenAI and DTs ensures that RIS
networks remain resilient against emerging security chal-
lenges while optimizing their operational performance in 6G
environments.

C. INTEGRATED SENSING AND COMMUNICATION
ISAC is a networking paradigm that jointly designs the
communication and sensing modules by leveraging the dual-
functional radar communication systems to develop a unified
system [26], [183]. The ISAC network enables the network
infrastructure to function as a distributing sensing network,
with elements like BSs, user devices, and RIS serving as data
acquisition nodes [184]. Through the propagation, scattering,
and propagation of radio waves, ISAC systems extract
wireless environmental data, such as signal propagation
characteristics, mobility patterns, and user locations. This
real-time sensing capability of ISAC optimizes the dynamic
resource allocation and improves user experiences [26].
ISAC optimizes spectrum efficiency and redefines how
networks interact with their environment adaptively, making
it a transformative enabling application for 6G network
design. Next, we discuss the applications of GenAI and DT
and how their interplay can enhance the performance and
security of ISAC-enabled 6G networks.

GenAI: GenAI offers transformative capabilities to
optimize ISAC for 6G by addressing critical challenges, such
as data scarcity and resource allocation [18], [97]. GANs
are widely applied in ISAC for enhancing signal processing
and generating realistic synthetic data. The GANs optimize
beamforming, channel estimation, CSI compression, and
resource allocation with incentive and scheduling mecha-
nisms [185]. They are also effective for synthetic ISAC data
generation, feature compression, signal reconstruction, noise
suppression, and modeling of complex high-dimensional
joint sensing communication distributions [97]. At the
physical layer, GenAI models such as VAE and transformers
optimize high-dimensional data, where efficient reconstruc-
tion, compression, and channel representation are critical.
They optimize scenarios such as denoising noisy signals,
feature extraction, and robust modeling of continuous data
distributions [97]. For example, GenAI generates optimized
signal beams that improve target detection accuracy while
mitigating interference, which is crucial for ISAC systems.
GenAI models, such as normalizing flows, are used in ISAC
for probabilistic modeling and posterior estimation, which
enable accurate latent variable inference for sensing and
communication tasks. DMs generate high-fidelity ISAC data,
perform denoising, and model robust distributions under
noisy networks [97]. They perform well for radio map
estimation, channel reconstruction, and secure signal genera-
tion, and provide realistic datasets. Finally, transformers and
LLMs play a crucial role in semantic and multimodal ISAC
by enabling the interpretation of high-dimensional sensing,
communication, and contextual data [186], [187], [188].
They also optimize predictive beamforming, multi-target
detection, semantic feature extraction, and the creation of
semantic DTs, and enhance resource allocations. The inte-
gration of LLMs in ISAC enables meaning-driven insights
by bridging raw sensor data with actionable insights.
As summarized in Table 9, under the common constraint

of high-fidelity perception in dynamic wireless environments,
transformers and LLMs are the preferred GenAI models
for ISAC due to their ability to perform context-aware
multimodal interpretation, semantic feature extraction, and
predictive beamforming.
DTs: DTs generate virtual representations of physical

networks, which enable the real-time optimization of 6G
performance within ISAC systems [24]. DTs provide a robust
framework for modeling, simulation, and prediction, and thus
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FIGURE 7. Synergic framework for the interplay of GenAI and DT for ISAC network.

TABLE 10. GenAI-driven layered framework for ISAC with DT integration.

effectively address the challenges arising from highly mobile
and dynamic network conditions. For example, a DT-enabled
ISAC framework can facilitate the smooth integration of
heterogeneous sensing data. It enables accurate environ-
mental awareness, which leads to informed decision-making
that is necessary for effective interference management and
resource allocation [135]. DTs also improve ISAC reliability
by maintaining high-fidelity synchronized data from the
physical layer, which improves interference mitigation and
channel estimation techniques [190].

Additionally, DTs provide dynamic management of
resources across multiple domains, ensuring the scalability
of ISAC operations and addressing data synchronization
and latency issues [191]. The capability of DTs to infer
information regarding wireless sensing channels also helps
to optimize ISAC systems. For example, DTs can emulate
and predict NLoS directions or provide partial channel
information that can help optimize joint communication and

sensing beamforming designs. These capabilities allow DTs
to enhance sensing performance across LoS as well as
NLoS scenarios. DTs provide a unified platform for real-
time optimization, reliability, and security, which affirms
their critical architectural role in the advancement of ISAC-
enabled 6G networks.
Interplay: The integration of GenAI and DTs is crucial

for ISAC applications in 6G networks. GenAI effectively
predicts network demands, which helps in the intelligent allo-
cation of communication and sensing resources. Moreover,
the synthetic data generated by GenAI is used by the DTs
for creating accurate replicas of the physical network. This
interplay allows ISAC systems to manage complex and
dynamic environments in an effective manner and at the
same time ensures the efficient utilization of resources within
heterogeneous 6G networks. The following section discusses
how this GenAI- and DT-assisted ISAC framework can
effectively optimize 6G network performance.
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1) Real-Time Emulation Layer: In the real-time emulation
layer, DTs are employed for creating virtual models of
the ISAC network communication and sensing param-
eters, such as CSI, multimodal data, and interference
patterns. This virtual environment enables the system
to simulate various scenarios, ultimately facilitating
the joint optimization of sensing and communication
parameters. Moreover, GANs generate synthetic radar
echoes, interference patterns, wireless propagation
patterns, and joint communication–sensing channel
states, enabling the simulation of realistic dynamic
ISAC conditions. Conditional GANs can also be incor-
porated to generate ISAC environment characteristics
tailored to specific interference or mobility scenarios.
It also mitigates the DT synchronization challenges by
generating realistic synthetic data, reducing the need
for continuous high-volume data exchange between
the physical ISAC network and the DT. On the
other hand, DMs can also be employed to learn the
stochastic variations of the ISAC network, such as
noise, fading, and mobility, by learning the probability
distributions of joint sensing–communication signals.
This approach allows the system to generate high-
fidelity synthetic signals that can model various radar
and communication parameters, including transmission
power, beamforming techniques, waveform selection,
and resource allocation in the time-frequency domain.

2) Feature Abstraction Layer: The feature abstraction
layer is used to encode high-dimensional ISAC data,
such as CSI or radar measurements, into compact
latent representations. VAEs and transformers are
incorporated for dimensionality reduction to extract
semantic-rich features, allowing the framework to
process useful information while discarding redundant
or noisy data. The abstraction of useful information
facilitates the efficient allocation of resources for
beamforming, power control, and interference manage-
ment. Contrarily, the sensing data extraction provides
valuable insights into mobility patterns, environmen-
tal variations, and object detection. This feature
abstraction process enables efficient feature extraction,
denoising, and uncertainty modeling, and allows sub-
sequent layers, such as decision-making, to operate
on high-quality, information-rich inputs for accurate
analysis and system optimization.

3) Decision-Making Layer: This layer interprets the
abstracted features from the feature abstraction layer
to generate context-aware actions in ISAC systems.
Initially, transformers and VAEs are used to decode
sequential and temporal dependencies in the latent fea-
tures, which enables predictions of mobility patterns,
channel dynamics, and traffic demands. LLMs are
incorporated in this layer for semantic understanding
in order to perform task-oriented reasoning, adaptive
resource allocation, and context-aware scheduling. RL
frameworks can be employed to further optimize the

decisions by learning such policies that maximize long-
term rewards, such as reliability, throughput, or sensing
accuracy, under dynamic network conditions. From a
communication perspective, this combination enables
the adjustments of dynamic beamforming to maximize
throughput, enhance signal quality, and minimize
interference. For sensing tasks, it optimizes radar
parameters to ensure accurate detection and tracking
of objects in complex environments. These models
together can enable real-time adaptation to changing
conditions, such as user mobility, interference, and
environmental variations, thereby ensuring an adaptive
and intelligent ISAC operation.

4) Feedback Validation Layer:The feedback validation
layer uses LLMs and RL to fine-tune ISAC config-
urations based on deviations between physical and
virtual environments. The DT environment helps in
comparing the performance of real-world metrics
with the outcomes of the simulated ISAC network
to ensure alignment with operational needs. RL is
incorporated in this layer for learning optimal policies
for beamforming, waveform design, and resource
allocation. These adjustments in real time optimize
sensing and communication functions and ensure
robust performance in highly dynamic environments.
ISAC systems utilize feedback loops to refine configu-
rations so as to improve SNR and resource allocation.

Security: GenAI models significantly enhance ISAC
network security through advanced capabilities like encod-
ing, adaptive beamforming, channel estimation, and anomaly
signal identification [97]. Specifically, models such as GANs
and DMs can learn complex wireless propagation environ-
ments to accurately predict channel states and thus facilitate
more secure communication that is resilient to spoofing or
jamming attacks. Furthermore, GANs can generate synthetic
data in ISAC to detect malicious signal injections in real
time, which in turn helps the network in quickly responding
to adversarial threats [194].
These GenAI techniques are further improved by DTs,

which provide high-fidelity virtual replicas of the ISAC
physical environment to facilitate real-time threat mitiga-
tion [195]. DTs can simulate the impact of potential attacks
on beamforming strategies, channel conditions, and sensing
performance through continuous synchronization with the
real-world ISAC communication and sensing data. This vir-
tual testing capability allows ISAC systems to timely predict
vulnerabilities, such as misconfigured encoding strategies or
identifying weak links in beam alignment. The interplay
of GenAI and DTs increases robustness against threats and
ensures that ISAC systems offer reliable communication and
highly accurate sensing under adversarial scenarios.

D. ARTIFICIAL INTELLIGENCE-GENERATED CONTENT
AIGC is anticipated to be a core application within 6G
networks that will promote immersive user engagement and
automated content generation in various domains, notably
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TABLE 11. GenAI models and applications in AIGC for 6G.

the metaverse, holographic systems, and AR/VR [18]. AIGC
reduces dependence on pre-stored data and enhances the scal-
ability of content delivery by enabling on-demand generation
of high-fidelity digital assets, interactive avatars, and adaptive
streaming content. AIGC enables edge devices and network
nodes to autonomously generate and adapt media streams in
latency-sensitive applications such as XR and real-time col-
laboration, thereby minimizing bandwidth requirements and
ensuring seamless user experiences [184], [196]. Moreover,
in large-scale 6G ecosystems, AIGC can support context-
aware and personalized services to increase communication
efficiency by embedding semantic meaning into generated
content rather than transmitting raw data. This positions
AIGC as a key enabler for next-generation digital services
and immersive environments in 6G. In the following, we
discuss the role of GenAI models in enabling AIGC for 6G
applications.
GenAI: GenAI holds a pivotal position in 6G system

design and drives the efficient management of network
resources, synthesizes diverse data modalities, and ensures
the integrated functionality across communication, sensing,
and computational capabilities [21]. GenAI models, includ-
ing GANs, LLMs, and ChatGPT, can produce realistic
synthetic datasets, which effectively mimic complex traffic,
user behaviors, and wireless environments, and substantially
support the design and simulation of 6G networks for
AIGC [184]. GANs and DMs are particularly effective for
generating high-fidelity videos and images, highly applicable
to AIGC scenarios within 6G networks. VAEs and FGMs
can optimize data compression and efficient content dis-
tribution, providing scalable frameworks for adaptive and
bandwidth-efficient delivery of video streaming data across
heterogeneous devices and networks [18].

GANs also generate data for training AI models in such
a way that the users’ privacy is preserved. This unlocks new
possibilities for AIGC in privacy-constrained and resource-
limited settings [26]. GenAI models, particularly LLMs, are
pivotal in advancing AIGC capabilities for 6G networks by
enabling the generation of diverse, high-quality, and context-
aware content while optimizing network resources [184].
Deploying LLM models such as ChatGPT at the network
edge enhances AIGC services in 6G by providing real-time
contextual and semantic understanding of user inputs [26].
By efficiently allocating computational resources, optimizing
user allocation, and selecting AIGC service providers with

sufficient resources, GenAI improves bandwidth utilization
and network efficiency [21]. LLMs further enhance AIGC
by generating communication scenarios and network config-
urations tailored to real-world conditions, such as channel
modeling and environmental simulations. LLMs can also
leverage textual prompts to dynamically model diverse com-
munication environments and optimize configurations. This
addresses the influence of external factors, such as vehicular
traffic and channel conditions, on network performance. This
synergy between AIGC and LLMs shows their exceptional
potential to achieve adaptive, robust, and resource-efficient
6G networks [192], [193].
As highlighted in Table 11, under the common constraint

of high-quality, context-aware content generation across
heterogeneous 6G networks, GANs, DMs, and LLMs are
the preferred GenAI models for AIGC due to their ability
to generate immersive multimedia content, perform semantic
reasoning, and support adaptive content delivery.
DTs: DT enhances AIGC by providing real-time syn-

chronization between physical and virtual environments, and
thereby enables dynamic resource allocation and efficient
content creation [10]. DTs permit the modeling of real-
world network conditions and user behaviors in a virtual
space, facilitating immersive and context-aware AIGC appli-
cations, such as the metaverse and smart cities. In 6G
networks, DTs optimize the network and content generation
processes through continuous monitoring, fault detection,
and predictive maintenance. For instance, DTs in space-
air-ground integrated networks synchronize UAV-collected
data with core networks to enhance AIGC services with
efficient resource management and reduced energy con-
sumption [197]. Furthermore, in healthcare, the creation
of personalized medical content via human DTs facilitates
the generation of data on rare diseases and the delivery
of customized services. This approach ultimately results
in improvements in personalized healthcare and medical
training [10]. This interplay between DTs and AIGC enables
more efficient, scalable, and responsive 6G networks by
ensuring high-quality content generation and optimized
network performance.
Interplay: The interplay between GenAI and DT frame-

works for AIGC is shown in Fig. 9. In the context
of 6G network design, this framework is essential for
optimizing content generation and resource management
across diverse and distributed applications. There are four
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FIGURE 8. Interplay of GenAI and DTs for performance optimization and security of AIGC network.

TABLE 12. Interplay of GenAI and DT for AIGC-6G networks.

fundamental layers of this framework, which directly address
key challenges, including data synchronization, high-fidelity
modeling, and generalization, thus enabling the seamless
generation of context-aware, real-time content within 6G-
enabled environments. A summary of these layers is provided
in Table 12.
1) Real-Time Emulation Layer: The real-time emulation

layer generates a dynamic virtual representation of
the AIGC network, which represents network states,
user behavior, multimedia content, and variations in
network traffic. To ensure accurate representation of
dynamic network traffic, this layer emulates real-time
network behaviors and conditions that adhere to strin-
gent QoS requirements, such as ultra-low latency, high
throughput, and reliable synchronization. This layer
uses GenAI models like GANs to synthesize AIGC
content that encompasses not only traditional media
(audio, video, images) but also semantic data that
encapsulates high-level, context-specific information

to enhance communication efficiency. This layer
also generates synthetic content to address the data
scarcity challenges, particularly in complex, data-
intensive applications where real-time, high-quality
data is essential. Furthermore, DMs learn the stochas-
tic variations in time-varying mobility, interference,
and fading to simulate realistic network traffic pat-
terns, user mobility, and environmental variations.
The maintenance cost of DT models is substantially
reduced by aligning AIGC-generated content with
dynamic network conditions. This directly enhances
the performance, scalability, and user experience of
6G applications in different areas such as immersive
VR/AR and smart cities.

2) Feature Abstraction Layer: The feature abstraction
layer encodes high-dimensional multimodal AIGC traf-
fic into low-dimensional compact latent representations
for efficient processing. The layer integrates a
knowledge base of semantic communications, which

VOLUME 6, 2025 10391



NAEEM et al.: SURVEY ON GenAI-DRIVEN DIGITAL TWINS

FIGURE 9. Interplay of GenAI and DTs for metaverse applications.

leverages past network insights to refine content
generation and encoding. GenAI models, such as VAEs
and transformers, compress high-dimensional, raw
multimodal data into low-dimensional representations
while preserving critical relationships, including traffic
patterns and mobility characteristics. This abstraction
process ensures that the multimodal AIGC traffic from
the status emulation layer is effectively translated into
actionable content for network optimization, and effec-
tively supports real-time, adaptive content generation
and the evolving needs of 6G applications.

3) Decision Making Layer: The decision-making layer
integrates VAEs, transformers, and DMs to efficiently
manage AIGC traffic for real-time resource allo-
cation in 6G networks. LLMs interpret high-level
service requests and translate them into semantic-
aware network policies. They also support multimodal
reasoning and help in aligning the user’s intent
with network control. Furthermore, semantic-aware
features from LLMs are leveraged by RL to optimize
scheduling, power allocation, and RIS configurations
in order to produce adaptive network control policies
for real-time AIGC network optimization.

4) Feedback Validation Layer: This layer verifies the
accuracy and relevance of AIGC-generated content
by comparing it with the real-time data obtained
from the DT models. It incorporates LLMs and RL

agents to compare these virtual decisions with real-
time data from the physical AIGC network. Based
on this comparison, the models fine-tune policies
and update resource management and configuration
strategies to reduce discrepancies between predicted
and actual network performance, thereby ensuring
semantic-aware optimization across the 6G AIGC
system. For example, in the case of edge com-
puting applications, it ensures that the proposed
configurations match real-world traffic conditions and
mobility patterns. This validation mechanism guar-
antees the reliability, adaptability, and scalability
of the AIGC-generated content across diverse 6G
environments.

Security: The integration of GenAI and DT technologies
is essential for securing 6G AIGC networks [115], [198].
The increasing decentralization of 6G networks notably
increases the risks of adversarial attacks, data poisoning, and
unauthorized access. This vulnerability is particularly critical
for applications that depend on real-time AIGC content
generation, e.g., autonomous systems, smart cities, and the
metaverse. GenAI models, including LLMs, dynamically
generate multimodal traffic, but robust security mechanisms
are still essential due to the vulnerability of these models
to cyber threats. A synchronized intelligent framework for
real-time monitoring, validation, and anomaly detection is
established by embedding DTs into the AIGC ecosystem,
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which ensures that both the content and network resources
are secure and fully compliant.
DTs simulate the behaviors of distributed AIGC applica-

tions and monitor deviations from expected traffic patterns
to enhance network security. DTs can proactively detect
different attack types by synchronizing the virtual and
physical network states in real time. For example, if any
anomaly is detected in the virtual model, RL and federated
learning techniques can be used to take the necessary secu-
rity measures while preserving user privacy. Additionally,
GenAI-based adversarial training can be utilized to generate
synthetic attack scenarios, which enables the continuous
improvement of AI models for effective threat detection
and mitigation. This interplay between GenAI and DTs not
only enhances intrusion detection but also fortifies AIGC
networks against emerging cyber threats and thereby ensures
a resilient and self-adaptive security mechanism in 6G
distributed environments.

VI. INTERPLAY OF GENAI AND DTs FOR THE
METAVERSE
Metaverse is a groundbreaking concept that integrates the
real and virtual worlds and uses holographic displays, AR,
and VR technologies for enabling its users to generate
and customize their own content and experiences [13].
Beyond this integration, the metaverse also offers a dynamic
digital space wherein users can continuously create content
with the help of smart devices and wearables. This special
attribute extends the potential applications of the metaverse
into various sectors such as education, healthcare, and
industrial manufacturing. Taking the rapid development of
the metaverse’s technical infrastructure into account, it can be
anticipated that it will soon transform daily lives by enabling
immersive virtual interactions. Nevertheless, the successful
implementation of these immersive experiences is heavily
dependent on the robust capabilities of 6G networks. The
capacity of 6G to provide high data transfer rates, ultra-low
latency, and guaranteed reliability is critical for the effective
functioning of the metaverse immersive applications [207].
Within 6G network architectures, the role of AR is

to integrate digital elements with the physical environ-
ment to generate interactive and highly immersive user
experiences. This capability is engineered to support real-
time, high-fidelity applications, such as remote collaboration
platforms, advanced gaming, and interactive educational
systems. However, the widespread implementation of AR
presents several significant technical challenges, such as data
synchronization, high-fidelity modeling, and generalization
across diverse network conditions [13]. Achieving a truly
seamless user experience requires extremely low network
latency, usually less than 1 ms. This critical performance
threshold is necessary to ensure the high level of respon-
siveness required for effectively merging and stabilizing the
virtual and physical environments [145]. VR is positioned
as a primary driver of 6G development, which requires
performance metrics that exceed current network capabilities

to support deep immersion. The 6G architectural design
for VR applications mandates the convergence of URLLC,
mMTC, and eMBB to jointly achieve seamless network
integration and extreme data throughput [208].
The intricate demands of the metaverse, specifically those

that are used by AR, VR, and holographic technologies,
need transformative enablers within 6G networks. These
components are critical for supporting the necessary high
throughput for multi-dimensional content and enabling
instantaneous data synchronization that is essential for real-
time operation. Holographic communication also requires
advanced rendering techniques to achieve fully immersive
experiences. Effective network optimization and resource
management are crucial for addressing interoperability
among devices and meeting the diverse demands of users in
the metaverse [13].
GenAI: The combination of GenAI and the metaverse

is expected to transform 6G networks. This integration
will create very immersive and smart applications that
need extremely reliable, fast communication and high band-
width [64], [98]. GenAI significantly improves the AR/VR
experiences [10], [204] by using GenAI models such as
GANs [199], VAEs [201], transformer-based architectures,
and LLMs [205] to create and adapt virtual content instantly.
Table 13 provides a summary of the applications of these
models in the metaverse.
The integration of GenAI models with AR/VR technolo-

gies results in the creation of highly realistic synthetic
data. Specifically, outputs like photorealistic 3D assets
and complex dynamic virtual environments are utilized to
advance AI model training, optimize system capabilities,
and facilitate content generation in real time [13]. GANs
and DMs, in particular, have shown exceptional results in
generating lifelike avatars, spatially consistent environments,
and adaptive textures that respond seamlessly to user interac-
tions and thus enable immersive applications, such as remote
collaboration, industrial simulations, and next-generation
entertainment [200]. Furthermore, VAEs play a pivotal role
in learning compact latent representations of multimodal
data, thereby improving generalization capabilities and
compression efficiency, which are essential for large-scale,
bandwidth-constrained AR/VR applications [202].
Besides content generation, transformer models and LLMs

also substantially improve real-time contextual awareness
in AR environments. This enhancement is achieved by
facilitating multimodal interactions, advanced natural lan-
guage processing, and automated intelligent content labeling,
alongside their content generation capabilities [203]. These
functionalities are essential in specific applications, such as
medical training assisted by AI. In this context, the dynamic
generation of instructional overlays and the provision of real-
time feedback serve to enhance both procedural learning and
clinical decision-making skills.
Beyond enhancing content realism and contextual intel-

ligence, GenAI-driven optimization strategies are also
instrumental in achieving efficient resource allocation within
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TABLE 13. GenAI models and their applications in the metaverse.

the 6G ecosystem. Techniques such as neural radiance
fields (NeRFs) render high-fidelity scenes while minimizing
computational and bandwidth overhead, which leads to
optimized performance of AR/VR applications in distributed
network environments [206]. These advancements establish
GenAI as a fundamental technology for AR and VR within
6G networks. GenAI facilitates the seamless connection of
digital and physical spaces by providing real-time interaction,
adaptability, and efficient resource usage [20].
As summarized in Table 13, GenAI models such as GANs,

DMs, and LLMs are the preferred choices for metaverse
applications operating within 6G networks. This preference
is driven by the stringent constraint of requiring low-latency,
high-fidelity content generation and interaction within real-
time XR environments. These models are specifically chosen
for their ability to deliver photorealistic 3D content synthesis,
perform context-aware semantic reasoning, and facilitate
spatiotemporal scene adaptation.
DTs: DTs optimize the AR and VR applications within

the 6G metaverse through improved network design, efficient
resource allocation, and enhanced security [2]. DTs enable
rapid prototyping and virtual simulations, which support
strategic placement of network resources (nodes, access
points) and ensure optimal performance for AR and VR
applications [129], [130]. Real-time data from the physical
world is utilized in DT technology to create realistic AR
experiences. In addition, DTs adjust network parameters to
optimize bandwidth and ensure consistent service quality.
DTs also provide sophisticated virtual environments for
VR applications that enable network designers to simu-
late and optimize network behaviors, such as bandwidth
allocation and latency, and also ensure high-quality VR
experiences [209]. The analysis and testing of network
configurations and resource allocation strategies in a virtual
environment are more efficient in terms of both time and
cost. Furthermore, DTs improve user experiences through
such predictive models that optimize resources in real-time,
reduce latency, and ensure smooth interactions. It needs to be
noted that DTs not just optimize performance but also ensure

a resilient and adaptive 6G infrastructure for AR and VR
applications through continuous system monitoring, anomaly
detections, and threat mitigation [137], [210].
Interplay: The interplay between GenAI and DTs is

essential to obtain optimal resource allocation and high
performance in 6G metaverse applications. Metaverse data,
i.e., user behavior and device performance, is collected in
real-time and used as an input for GenAI models, which
generate synthetic datasets to improve DT simulations. These
simulations depend on high-fidelity modeling to accurately
predict network performance and optimize resource alloca-
tion [211], [212]. Fig. 9 shows the significance of GenAI-DT
for metaverse applications.
The following discussion explores the role of the GenAI-

DT-based framework in optimizing 6G network performance.
It specifically highlights the framework’s ability to create
immersive experiences while ensuring robust network secu-
rity. Table 14 summarizes the role of different layers in the
GenAI-DT-based framework.
1) Real-Time Emulation Layer: This layer generates

a virtual representation of the physical metaverse
environment, which captures immersive interaction
parameters such as haptics, gaze, and gestures as
well as network states (including jitter, bandwidth,
and latency), and user mobility patterns. GANs gen-
erate synthetic AR/VR traffic, including interactive
events, holographic frames, and avatars, which play an
important role in addressing DT synchronization issues
for AR/VR metaverse services. Furthermore, DMs
enhance this by modeling stochastic variations, such
as multi-user dynamics, interference, and rendering
delays to ensure high-fidelity emulation of real-world
uncertainty.

2) Feature Abstraction Layer: The feature abstraction
layer transforms complex time-series AR/VR data, i.e.,
spatial audio, video, haptic feedback, and motion track-
ing, to compact latent representations. For holographic
communications, it employs a semantic encoding
technique to prioritize and compress essential 3D

10394 VOLUME 6, 2025



TABLE 14. GenAI–DT layered framework for metaverse (AR/VR) services.

data in order to reduce bandwidth consumption while
maintaining visual fidelity. In AR applications, it
processes real-time spatial and environmental data
to optimize object placement, interaction tracking,
and latency minimization for ensuring seamless user
experiences. For VR, this layer enables multi-sensory
data fusion in which visual, auditory, and haptic signals
are integrated to enhance immersion while reducing
unnecessary data transmission. VAEs are incorporated
to reduce high-dimensional multimodal data into low-
dimensional representations while preserving semantic
fidelity, traffic patterns, and mobility characteris-
tics. Transformers further enhance feature extraction
by capturing spatial-temporal dependencies across
modalities, thereby ensuring consistency between user
motion and rendered immersive scenes. This process
creates a well-structured representation of multimodal
data that reduces communication overhead while
retaining immersive fidelity for the decision-making
layer.

3) Decision-Making Layer: The decision management
layer uses the simplified, high-level features provided
by the abstraction layer to generate specific, executable
system control commands. VAE takes these abstracted
semantic features as input. It processes and trans-
forms these features to directly generate the necessary
actionable parameters for the AR/VR system, such
as tuning spatial accuracy, setting rendering priorities,
or defining latency constraints. This layer integrates
LLMs to perform semantic decoding, while RL agents
are used for dynamically learning optimal policies
for resource allocation. LLMs and RL facilitate the
context-aware adaptation of both network and compute
resources. This coordinated process is essential for
balancing the stringent immersive QoE demands across
heterogeneous multimodal traffic.

4) Feedback Validation Layer: The feedback validation
layer incorporates LLMs and RL to fine-tune meta-
verse applications. For this purpose, it establishes a
real-time feedback loop between DTs and the physical
6G metaverse network. Specifically for holographic
applications, this layer evaluates how the network han-
dles the transmission of vast amounts of holographic

data in real time. It uses RL for learning optimal
bandwidth allocation, caching mechanisms, and ren-
dering strategies to maintain high-fidelity projections
with minimal latency. This layer ensures smooth and
responsive operation within AR/VR environments by
confirming the accuracy of motion tracking, main-
taining multi-user synchronization, and optimizing the
adaptive rendering models driven by AI.

Security: The integration of GenAI models and DT
technologies in 6G networks considerably boosts the security
for AR and VR applications [103]. AR and VR environ-
ments require real-time data synchronization, seamless user
interactions, and robust protection against cyber threats due
to their immersive nature and extensive use of sensitive
user data. The virtual replicas of AR/VR systems created
by DT technology enable real-time monitoring, simulation,
and testing. These DTs and AI generative tools can function
together to proactively identify vulnerabilities and mitigate
potential risks [115], [198]. For instance, DTs establish
the operational baselines of AR/VR systems while GenAI
models continuously analyze deviations from these baselines
to detect anomalies such as unauthorized access or abnormal
data behavior. This interaction ensures data integrity and
offers protection against potential security breaches in
different scenarios.
GenAI models like GANs can generate synthetic data and

challenging adversarial scenarios for the DT environment,
which enable robustness evaluation of AR/VR systems [115].
This function is important for simulating specific cyberat-
tacks (e.g., man-in-the-middle and spoofing) against AR/VR
communication. DTs can analyze current security defenses
and propose targeted improvements. Moreover, GenAI helps
in developing flexible security policies by analyzing user
interactions and environmental data within AR/VR systems.
These policies dynamically adjust access controls, commu-
nication encryption, and multi-factor authentication to secure
real-time user experiences in 6G networks. Furthermore,
GenAI and DTs together help to mitigate user privacy
concerns by enabling intelligent monitoring of data. This
integration maintains the operational integrity of AR/VR
applications while simultaneously bolstering security, espe-
cially in sensitive sectors such as healthcare, virtual tourism,
and online education.
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TABLE 15. Summary of challenges and future directions in the interplay of GenAI and DTs for 6G-enabling technologies and the metaverse.

A. SUMMARY OF LESSONS LEARNED
GenAI supports accurate simulations and predictive
modeling by creating synthetic data. Additionally, DTs create
virtual replicas that dynamically adjust network parameters
to optimize immersive experiences. Furthermore, GenAI
synthesizes high-fidelity 3D content, videos, images, and
textual data that increases user engagement within the
metaverse environment. The integration of GenAI and DTs
not only improves performance but also increases the security
of the 6G metaverse environment against evolving threats
through proactive threat detection and the implementation of
adaptive defense strategies.

VII. CHALLENGES AND FUTURE RESEARCH
DIRECTIONS
While the integration of GenAI and DTs is vital for the
efficient development of 6G networks within the metaverse,
this synergy also introduces specific challenges. Table 15
summarizes the current open issues and difficulties associ-
ated with this interplay.

A. AI SAFETY, TRUST, AND EXPLAINABILITY
Integrating GenAI, particularly LLMs, into DT-driven 6G
systems raises severe concerns regarding AI safety, trustwor-
thiness, and explainability [213]. LLMs and multimodal AI
models can generate network policies, automate decision-
making procedures, and optimize traffic flow. However,
risks such as biased outputs, hallucinations, and adversarial
vulnerabilities occur due to their black-box nature [214].
Moreover, unverified AI-generated synthetic data may cause

inaccurate network optimizations or unexpected security
risks.
Future Directions: It is important to enhance the explain-

able AI (XAI) frameworks that are tailored for LLM-based
DTs to ensure improved transparency and trust in AI-driven
6G applications. Researchers should pay attention to robust
AI validation techniques and AI red teaming strategies to
rigorously test LLMs for vulnerabilities before deploying
within mission-critical scenarios. It is also crucial to develop
risk-aware AI architectures to reduce potential unintended
consequences arising from autonomous network operations
and DT-based simulation environments.

B. INTEROPERABILITY AND STANDARDIZATION
The integration of DTs and GenAI across varied 6G
infrastructures is significantly hindered due to the lack of
standardized interfaces, communication protocols, and data
formats [215]. The lack of cohesion within the AI ecosystem
acts as a constraint that impedes cross-platform functionality,
security policy consistency, and network management. Thus,
the scalability and deployment of AI-driven DTs across vari-
ous industries are eventually restricted by this fragmentation.
Future Directions: Cross-industry standardization is essen-

tial for guaranteeing the interoperability of integrated
DT-GenAI systems. Future research should focus on develop-
ing open-source frameworks and modular AI architectures to
ensure the interoperability of DTs across varied 6G network
applications, including smart healthcare and autonomous
transport. Moreover, collaborative AI governance frame-
works involving industry, academia, and regulatory bodies
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will play a vital part in shaping global policies for AI-driven
6G standardization.

C. SCALABILITY AND ENERGY-EFFICIENCY
Several scalability and energy-efficiency-related challenges
arise when DT and GenAI are integrated for 6G applica-
tions [34], [216]. The high computational requirements of
large-scale GenAI models, such as transformers, can result in
significant energy consumption, which limits their suitability
for deployment in resource-constrained 6G environments.
This energy efficiency constraint poses risks to the sustain-
ability of operations, especially with the expected increase
in connected devices and the variety of data types within
6G networks.
Future Directions: Research should investigate how to

integrate GenAI effectively with the underlying frameworks
of distributed Software-Defined Networking (SDN) and
federated learning. This configuration can optimize energy
consumption by dynamically adjusting the resource usage
in accordance with the real-time network conditions. It is
crucial to employ hardware accelerators and model compres-
sion techniques (i.e., quantization and pruning) to effectively
integrate GenAI models into DT frameworks. These methods
significantly reduce the required computational load. The
use of wireless federated learning is intended to enhance
communication efficiency and reduce energy use. This
process is critical for enabling smooth collaboration and
minimizing the energy cost associated with the training and
updating of models across multiple DTs. The strategic focus
on these domains will empower the interaction between DTs
and GenAI and will contribute significantly to the long-term
sustainability of 6G technologies and immersive metaverse
environments.

D. SEMANTIC MULTIMODAL TRAFFIC
The successful application of DTs and GenAI in semantic
contexts faces several critical challenges that require atten-
tion [217]. A primary problem is the need to establish robust
semantic protocols capable of accurately interpreting and
unifying the diverse data streams originating from both DT
and GenAI systems [218]. It is important to maintain real-
time processing and achieve minimal latency for dynamic
environments, such as smart cities and autonomous trans-
portation systems. Furthermore, effective decision-making,
particularly in complex scenarios demanding nuanced inter-
actions, relies fundamentally on a high degree of contextual
understanding. Finally, the integrated use of DTs and GenAI
is constrained by the management of large datasets produced
by metaverse applications. Consequently, the focus must be
on developing advanced models that simultaneously maintain
situational awareness and efficiently yield valuable insights.
Future Directions: Future research efforts should concen-

trate on developing interoperable and semantic frameworks
for distributed 6G applications that can enable seamless data
exchange across diverse systems and foster collaboration
and integration. The second critical research direction is

to explore agentic LLMs and transformer architectures to
advance semantic communication and contextual compre-
hension [219]. Researchers can effectively overcome the
challenges inherent in integrating DTs and GenAI by
investigating how these advanced models can improve user
interactions, deliver personalized experiences, and facilitate
complex decision-making within metaverse applications.
Finally, these initiatives are essential to develop innovative
solutions that support practical semantic applications in the
evolving 6G environment.

E. CHALLENGES OF DTs WITHOUT GENAI IN 6G
APPLICATIONS
Even though DTs provide a virtualized representation of
network elements, their standalone use in 6G applica-
tions encounters several limitations. These include difficulty
in modeling high-dimensional and dynamic channels for
RIS, restricted semantic feature abstraction for semantic
communication, limited adaptability in ISAC scenarios,
and scalability bottlenecks for data-intensive applications
such as AIGC and the metaverse. Such constraints limit
the capability of DTs to achieve real-time context-aware
optimization within the extremely dynamic 6G environments.
Future Directions: A critical area of research is to inves-

tigate the systematic shortcomings of DTs when deployed
without GenAI and subsequently identify how tailored
GMs can resolve these deficiencies. For example, DMs
and GANs may enhance high-dimensional modeling, VAEs
can improve semantic feature compression, and LLMs
can support adaptive reasoning across diverse contexts.
Investigating these synergies will lay the foundation for
robust DT–GenAI frameworks that enable adaptive learning,
semantic reasoning, and massive-scale intelligent resource
management for 6G applications.

VIII. CONCLUSION
The need for low-latency, intelligent, and context-aware
connectivity in 6G networks creates major challenges for
optimizing network performance and security. This paper
examines this issue by focusing on the integration of
GenAI models (such as GANs, DMs, VAEs, and LLMs)
with DTs, demonstrating how this combination can boost
resource allocation, network efficiency, and security. A
GenAI-enabled DT framework is proposed to show how
different GenAI models can support various 6G applications,
including semantic communications, the metaverse, ISAC,
AIGC, and RIS. Finally, the work identifies key research
challenges and future directions needed to develop resilient,
intelligent, and adaptive 6G networks.
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