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Abstract

This study aims to monitor mask performance in operando using all-printed humidity
sensor arrays based on BiFeO3/BiOCI heterostructures. Two screen-printed 19-sensor
arrays are fixed directly atop the mask, in order to analyze moisture levels in exhaled
breath and extract performance indicators. This approach allows for an examination of the
humidity saturation and absorption over time during operation. Accumulation of moisture
within the mask can affect its performance, and factors like breath humidity, mask material,
and ambient conditions influence this. Results show that the measured data follows an
exponential decay, achieving correlation factors of over 0.9 for all tests. We also detect
breathing differences through feature extraction, investigating the respiration rates and
signal amplitudes for both normal and deep breathing. Furthermore, we animated the
airflow in the mask in both 2D and 3D, allowing for the eventual detection of leaks for
ill-fitting masks. This study introduces an innovative approach for the assessment of mask
fit and longevity, contributing to improving mask efficacy and public health outcomes.

Keywords: humidity sensor array; KN95 mask; feature extraction; time-series analysis;
occupational health; breathing monitoring

1. Introduction

Respiratory disorders present a significant global health concern, with an estimated
544 million people suffering from chronic respiratory diseases in 2016 [1]. The global SARS-
CoV-2 (COVID-19) pandemic also underscored the critical importance of respiratory health
during one of the most challenging health crises in recent history [2].

Respiratory protection using N95/KIN95 masks helped reduce transmission, providing
a physical barrier against the inhalation of dust, bacteria, and airborne virus particles [3,4].
KIN95 masks are designed to filter at least 95% of airborne particles of sizes down to 0.3 mi-
crons and are recognized as an effective tool to limit the spread of respiratory diseases
like COVID-19 [5]. Still, incorrect positioning can significantly hamper their protection effi-
ciency [6]. Studies show that improperly positioned masks significantly reduce protection
effectiveness against airborne particles [7,8].

The qualification of KN95 facemasks involves several key parameters like filtration ef-
ficiency, fit testing, and breathability. Researchers have recently attempted to monitor mask
performances in operando in order to achieve better protection and improve fundamental
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understandings [5]. The most promising approaches must still contend with factors like
variability in breathing patterns and mask fitting among different users [9].

Printed sensor technologies provide a straightforward approach for mass production,
which lowers costs and facilitates their integration into useful devices [10]. These arrays
can potentially (1) provide more accurate and complete datasets compared to single sensor
studies and (2) capture information about the local turbulence of airflow patterns inside
the mask, thereby serving as an indicator of proper mask positioning [11]. This innova-
tive approach could prove highly beneficial, favoring optimal efficacy and, ultimately,
public health.

Related Work

Recent years have seen a push to integrate wearable sensors and electronics into face
masks to make them more efficient, reliable, and versatile [12-14]. These smart masks
hold great potential, enabling the capture of complex physical, chemical, environmental,
and biological information and patterns [13]. Depending on the intended application,
various nanomaterials are employed, such as carbon aerogels [15], MXenes [16], or Au-TiO;
nanocomposites [17].

Some recent studies have explored single-sensor systems for breathing detection and
monitoring. Ultrathin pressure sensors inserted into face masks were used for breathing
detection [18]. Temperature-sensitive LSMO/Mica sensors placed under the nose were
also used to monitor various breathing patterns [19]. A paper-based pressure sensor con-
figuration was also used to distinguish between normal, deep, and held breaths based on
electrical current variations [20].

While these single-sensor studies yielded some success, they remain limited to a
specific area on the mask. For this reason, other studies explored sensor arrays as a way
to add spatial information into the datasets. Graphene-based coatings used as strain
sensors were applied on surgical masks, detecting breathing by measuring strain-induced
resistance changes [21]. A 4 x 8 array of similar pressure sensors was arranged from nose
to chin along the inner mask’s surface to achieve 2D respiration profiling [22]. While these
studies demonstrate the potential of sensor arrays, their primary goal remains material
characterization and development.

In this study, we focus instead on their improved ability to shed light on complex
breathing patterns and their use for mask degradation assessments. BiFeOj3 offers unique
biocompatibility properties, making it a well-suited material system for humidity sensing.
Indeed, recent advances in BiFeO3 sensing materials highlight several complementary
strategies for enhancing humidity detection. Surface-area engineering is one approach,
as demonstrated by BFO nanoparticles combined with carbon fibers, which create highly
porous composites that increase the number of active adsorption sites [23]. Defect and
ferroelectric engineering is another approach. The introduction of oxygen vacancies, to-
gether with controlled ferroelectric polarization, produces strong internal electric fields
and efficient charge-transport pathways, resulting in highly sensitive and rapid humidity
responses [24]. BFO nanofibers obtained by electrospinning further contribute to improved
sensing through their large surface-to-volume ratio and mechanical robustness [25]. More
recently, printed BFO-based heterojunctions, particularly BiFeO3/BiOCl systems, have
shown that combining BFO with a suitable partner semiconductor can extend the opera-
tional humidity range and increase signal stability [26].

In this work, a printed array of such sensors is used to investigate the complex spatial
patterns and temporal variations in the airflow and filtering capacity of a commercial
KN95 mask. For researchers and designers, this can provide a new and unique window
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to understand complex structure—property interrelations and ultimately improve their
performance, lifetime, and efficiency.

Using this printed array of BFO-BiOCI heterostructures-based humidity sensors we
then capture detailed breathing patterns, tracking variations in airflow. We successfully
monitor humidity levels over time and across the mask surface. This innovative approach
provides insights into mask fit and highlights markers for optimal mask lifespan and usage.

Most importantly, this work provides insights into long-term mask performance by
evaluating humidity accumulation and absorption, which affects both breathability and
filtration efficiency [27]. Given that factors such as breath humidity, mask materials, and
environmental conditions influence these properties, further study is essential to fully
understand and enhance mask effectiveness [28].

2. Materials and Methods
2.1. Fabrication of Printed Humidity Sensors

Humidity sensors are screen-printed using BiFeO; powder dispersed in a commercial
ink vehicle provided by Henkel (Diisseldorf, Germany) (SOL725). The fabrication steps for
the BiFeO3; powders and humidity sensors have already been described in our previous
studies [10,29]. As reported, both the amount of BiFeO3; powder and the annealing temper-
ature are be optimized to obtain the best sensing performances. Tuning such parameters
allows us to reach the highest surface area and increase the sensitivity of the sensors, which
is an important parameter for any humidity sensors. From previous studies, we established
that BiOCl nanosheets grow atop BiFeOs particles due to chemical etching. This chemical
reaction takes place during evaporation of the ink vehicle when annealing the sample to
300 °C [10]. Such heterostructures increase the performances of the printed sensors, as a
seven-fold increase in the active surface area has been reported. Due to the sensing mate-
rial, the sensor’s behavior is reversed in relation to humidity, i.e., resistance decreases as
humidity increases. Characterization of this material was carried out in other studies by the
co-author Paul Fourmont, where XRD, thickness, and calibration data can be found [10,26].

The arrays of humidity sensors are printed using a methodology that involves printing
two successive layers on a polyimide sheet. Firstly, an EDAG725 silver ink (Henkel,
Diisseldorf, Germany) [30] layer is screen-printed to form conductive silver interdigitated
electrodes. This layer is then baked at 300 °C for an hour to remove the solvent and ensure
an optimal electrical conductivity. Secondly, the active layer made of SOL725 and BiFeOs
powder is screen-printed atop the silver traces. Polyimide sheets are then annealed at
300 °C for 10 min to enable the growth of BiOCl nanosheets atop the BiFeOjs particles, for a
final thickness of 14 + 2 uym. As shown in Figure 1, arrays made of 19 sensors are printed
on each polyimide sheet to collect relevant data.

Figure 1. BFO humidity sensor arrays designed to fit masks. Orange dots are the active layer, printed
atop the conductive silver interdigitated electrodes.
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2.2. Experimental Setup

After printing humidity sensor arrays, polyimide sheets are laser cut using an LPFK
Protolaser U3 (LPFK, Garbsen, Germany). Two polyimide sheets are then symmetrically
sewn on each side of a KN95-type mask with the sensors facing it, as shown in Figure 2.
Both sensor arrays are connected to a Keithley DAQ6510 data logger (Tektronix, Beaverton,
OR, USA) [31] to ensure an optimal reading of the electrical resistance values from each
sensor. This device enables the measurement and data collection of all electrical resistance
variations via multiplexed sampling with 3 Hz frequency. To ensure that no screen-printed
sensor is defective, an evaluation phase is first performed. The electrical resistance of all
the sensors is measured after being attached to the KN95 mask, before it is worn. The
measurements taken outside the mask offer an indication of relative humidity permeation,
thus providing a depiction of moisture accumulation within the mask. Therefore, all
the electrical resistance values are related to the relative humidity of the room [32]. The
ambient temperature and humidity are recorded throughout the entire data collection with
a ThermoPro TP359 (ThermoPro, Toronto, ON, Canada) which has tolerances of +0.2 °C
and +2% RH.

Ambient

.. ‘“~LI5\“
conditions f 1%
ey 1 I
T
%1% |

Keithley DAQ6510

Humidity sensor
array on mask

LN

[@8)

Figure 2. Schematic representation of our experimental configuration.

2.3. Experimental Protocol

For this test, we recruited four healthy participants through convenience sampling.
All participants (two women, two men, age 33.0 + 12.1 years) gave informed consent before
participating in the study, which was approved by the institutional Ethics Committee
(Certificate H20240806). Participants had to be able to wear the KN95 mask for 35 min
and be non-smokers. During the measurements, the participants were seated on stable
chairs with armrests to ensure stable data collection [33]. The measurements were repeated
on three consecutive days. Each of the four participants wore their assigned mask on all
tests, keeping the same sensors throughout. The experimental configuration is illustrated
in Figure 2.

Following the initial compliance assessment of all sensors, we initiated a two min
data recording of the electrical resistance of all the sensors without wearing the KN95
mask. This step allowed us to assess the relative humidity of the room, which served as
a baseline for the calibration of the mask. Following this, the subjects were instructed to
wear the mask. All participants adhered to the subsequent protocol: normal respiration
for four minutes followed by deep breathing for one minute—both inhales and exhales
though the nose—and this was repeated six times for all participants, for a total duration of
30 min [9]. The resistance was then measured for another two min, without wearing the
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mask, at the end of the protocol. This step was added to verify how the humidity in the
mask changes immediately after it is removed.

2.4. Kinetic Modeling

From the electrical resistances values obtained during our measurements, several
parameters can be used in a kinetic model to analyze the variation in the data. We find that
three parameters (4, b, ¢) can be used in a kinetic model to accurately model the mask’s
behavior and the data variability. The kinetic model relies on a first-order equation linked
to the diffusion of water particles through a membrane represented by Fick’s law, which
states that the amount of gas that goes through a sheet of tissue is proportional to its area,
but inversely proportional to its thickness [34].

d¢

J=-DE M
where | represents the diffusion flux, D is the diffusion coefficient, and Z—f is the concentra-
tion gradient [35].

Fick’s second law, )

o¢p ¢

5 = Pay2 2)
takes into account the temporal change in concentration due to diffusion. This equation
reflects the physical constraints of the mask’s material and the inevitable slowdown of the
absorption rate once the material reaches saturation [36].

Solving this equation for a membrane of finite thickness yields a series of exponentially
decaying eigenmodes. Over longer durations, all higher-order modes decay rapidly, and
the solution is dominated by the slowest mode, which is why the kinetics of the measured
electrical resistances follow the equation of exponential decay :

R(t) = ae " +c+r(t) 3)

The mathematical representation of this kinetic model relates to the fundamental principles
found in Fick’s laws of diffusion. The term r(t) represents the variable volume of inhaled
and exhaled respiratory air, directly influenced by variations in lung volume [37], but was
not considered in this modeling.

In this equation, c represents the equilibrium resistance /humidity reached at t — o
once the internal water concentration has equilibrated with the external humidity. The
coefficient a = Rg — ¢ corresponds to the amplitude of the resistance change following a
humidity step, and reflects the difference between the initial and final moisture contents
within the membrane. The parameter b is the decay rate and equals the inverse of the char-
acteristic time constant associated with moisture transport inside the membrane. Therefore,
it indicates the speed at which moisture permeates through the mask, reflecting how swiftly
molecules move from an area of higher concentration to an area of lower concentration [38].

2.5. Data Processing and Analysis

Signal processing and data analysis is performed using Python (version 3.12.4). First,
motion-related outliers are removed from the rolling mean of the raw data. These erratic
values are mostly generated when participants have to put on or take off the mask during
the data collection. Not only are these values removed, but an interpolation of the signal
is computed to replace them. Then, to detect the differences between normal and deep
breathing patterns, we extract features from the signal for an easier and more telling detec-
tion than only the electrical resistance signal. Using SciPy’s library of functions (version
1.15.0), it is possible to detect the peaks in the signal, which in this case are the duration of
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each breath At. Once this feature is acquired, we can then compute other features for each
breath. To ensure that this At is valid, an algorithm has also been implemented to identify
anomalies in breathing duration. If a 1 s breath is measured, the neighboring data points
are evaluated manually to determine whether the peak detection is erroneous. For this
work, we extract the respiration rate (RR = §3), its frequency (f = 4;), and the maximal
and minimal resistance values in order to obtain the signal’s amplitude (A = Ryax — Rypin)-
With this information, the detection of the breathing mode is more direct than only relying
on the resistance, since its mean value remains similar, while the amplitude differs between
deep and normal breathing.

For the curve fitting model, we use SciPy’s curve_fit function. Based upon the visual
appearance of the resistance curve and the sensors’ behavior (Figure 3), it appears clear
that the signal shows similarity to an exponential decay. Thus, it is the function from
Equation (3) that is used to fit the curve. Due to the abrupt changes occurring in the signal
before and after wearing the mask, we only fit the data during the stable breathing period
(200s <t <1920s).
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Figure 3. Mean resistance value comparison on day 2 for all four participants, in logarithmic scale.
Zoomed-in portion shows the variation between normal and deep breathing.

3. Results and Discussion
3.1. Mask Filtering Assessment

Figure 3 plots the average electrical resistance of the sensors for all participants on
day 2; the difference between normal and deep breathing is noticeable in all four cases. The
humidity sensors show the same behavior with a different trend line, depending on each
user. The difference in amplitude is highlighted in the inset in Figure 3. During some of the
tests, certain sensors encountered issues, resulting in unreliable signals. This is due to the
connector to the acquisition system, which can apply strain to the printed circuit and lose
signal. Consequently, their misreadings were excluded from the calculation of the array’s
mean signal to ensure accuracy (details are reported in Supplementary Information Section,
Figure S1 and Table S1).

The mask membrane absorbs moisture as the users breathe. However, as the mem-
brane dries between uses, its baselines slowly returns towards its initial state, due to a
lower humidity in the room. Such features are determined by observing different initial
values for consecutive days. Figure 4 shows the evolution using 24 h intervals. Indeed,
the mask rids itself of most of its trapped humidity in the ambient conditions detailed in
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Table 1. The ambient humidity was lower on day 1, but similar for day 2 and 3 (around
50% RH). We can notice that sensors dry up. Altogether, the starting value and trend line
depend on relative ambient humidity.

Three day comparison P1

Three day comparison P2

— D1 — |B1
D2 D2
107 — b3 10’ — D3
Normal Breathing Normal Breathing
. Deep Breathing e Deep Breathing
g g1o°
o 10° o
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] @105
» »
£ 100 g
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Figure 4. The average resistance curve for three consecutive days in logarithmic scale for (a) Partici-
pant 1; (b) Participant 2; (¢) Participant 3; (d) Participant 4

Table 1. Ambient temperature and relative humidity for four participants across three days.

. Day 1 Day 2 Day 3
Participant
Temp (°C) R.H (%) Temp (°C) R.H (%) Temp (°C) R.H (%)

P1 23.7 214 229 51.3 22.7 51.3
P2 222 31.8 229 54.5 22.7 51.1
P3 239 21.2 22.3 55.4 23.0 50.2
P4 23.0 30.8 229 50.9 22.7 51.5
Mean 23.2 26.5 228 53.0 22.8 51.0

Since the sensors’ resistance changes inversely to humidity, a lower humidity will
increase the initial electrical resistance value [29]. Therefore, on Figure 4 for each partici-
pant, we see the same similar initial electrical resistance values for the three consecutive
days, consistent with the mean humidity values: day 1 (26.5%), day 2 (53.0%) and day 3
(51.0%). For day 1, since the relative humidity was so low, the data acquisition system
fluctuated between values around 108 and “overflow”, indicating that the values exceeded
the maximum sensitivity range, so we limited those values at 108, which explains why all
the day 1 curves show similar starting points around 108.

The sensors’ signal can be divided into three main phases: before, during, and after
each breathing session. The measured electrical resistance drops significantly once the mask
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is worn and rises up as soon as it is taken off, sometimes creating peaks and instability in
the data, as seen in Figure 4a. During the breathing, the sensors stabilize around a baseline.
As mentioned previously, the sensors’ response is modeled to fit an exponential decay
function. Figure 5 shows the compliance between the function and the data for P3 on D2,
with an R? = 0.987. Only one set of measurements is reported in Figure 5, but all data
follow a similar trend and are reported in the Supplementary Materials (Figure S2).

Curve fitting P3 D2
17x10

1.65x 10°
1.6 x 10°

105 4

1.55x 10°
1.5x10°

1.45x 103 T T T
1200 1250 1300 1350 1440

Resistance (Q)

—— @a=12653.357, b=0.00536, c=1539.701

lR(t) =ae P+ r:l —— @a=16635313.919, b=0.04466, c=0

500 750 1000 1250 1500 1750 2000
Time (s)

103

o
N
o
o

Figure 5. Fitting of the electrical resistance of the humidity sensors. Black segments are before/after
breathing. Orange segment is duration of breathing.

Table 2 includes computed R? coefficients for all participants and Figure 6 shows the
variation in the model’s coefficients 4, b, c from the exponential decay Equation (3). Al-
though the decay constant b stays consistent throughout the tests, the filtering degradation
remains similar, and the ambient conditions parameters 2 and ¢ do change.

The model used to fit the data is an exponential R(t) = ae~" + c. A logarithmic scale
is used for better readability, and the exponential’s coefficients change throughout the time
interval of 0 to 2000 s. For small values of ¢,

log (ae~%) + ¢ ~ log (ae~") = log (a) — bt 4)

the constant ¢ will be negligible in size compared to the exponential, simplifying the
equation into a straight line, where log (a) is the intercept and —b is the slope. However,
as t increases, the exponential part of Equation (4) becomes negligible, resulting in log (c),
which is the saturation baseline of our sensors. As the sensors’ humidity changes are
fairly drastic, the purple line shows the initial descending slope, while the red line fits the
saturation of the mask’s sensors. This second fitting enables the extraction of the interesting
parameters related to decay and saturation. Coefficient a of the first fitting (in purple) gives
a more accurate initial value than the second one would.

Although the decay constant b stays consistent throughout the tests, because the
filtering degradation of the masks” membranes remains similar, the ambient conditions
parameters a (initial value) and ¢ (saturation value) do change. The variation in the
coefficients a, b, and c, used in Equation (4) to fit the data of all participants, is shown in
Figure 6. Similar trends are found for all tests. However some differences are visible for P2
and P4 and are attributed to the relative humidity increase by 10% compared to P1 and P3
on Day 1 (Table 1).
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Table 2. R? coefficients of the exponential model fitting for all participants on all days.
D1 D2 D3
P1 0.988 0.938 0.987
P2 0.984 0.976 0.902
P3 0.958 0.973 0.967
P4 0.988 0.982 0.907
Coefficient Evolution P1 106 Coefficient Evolution P2
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Figure 6. Coefficient comparison for all tests with the model equation R(t) = log (ae~) + c for
(a) Participant 1; (b) Participant 2; (¢) Participant 3; (d) Participant 4. The corresponding curves can
be found in the Supplementary Materials in Figure S2.

3.2. Breathing Detection

The integration of humidity sensor arrays with the masks enables the detection of
different breathing patterns and air flow. As explained in Section 2, a feature extraction can
be performed on the raw data to identify the breathing type (normal or deep). Figure 7a
shows the distinction in signal amplitude between deep (average 240 () and normal
(average 68 (1) breathing for Participant 3 on day 3. The five-minute cycles of breathing
are referred to as waves. Wave 1 is not considered, as it takes place while the sensors
are still absorbing humidity and not saturated. Figure 7b, on the other hand, displays
the differences in respiration rate; with longer and deeper breaths, the respiration rate
(RR) decreases. For Participant 3, an average variation of 7.7 breaths per minute between
regular and deep breathing is measured. The respiration rate depends on the participant’s
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breathing, but a clear difference between both patterns is visible, as reported in Table 3.
Wave 5 of deep breathing for Participant 3 on day 2 is not available, as the participant
missed the cue. The normal breathing rate detected is within the medical standard, which
states that it should be between 12 and 20 breaths per minute (bpm) [39]. The average
signal amplitude difference is included in the table, but no repeatable trend or pattern is
detected. Signal amplitude was inconclusive on day 1 for Participant 1 and is shown in the
Supplementary Materials. Additional signal amplitude and respiration rate are shown in
Figures S3-56 for comparison.

Breathing Signal Amplitude P3 D3 30 Respiration Rate P3 D3
278.5
B Normal m Deep B Normal mm Deep
263.3 21.9 20.8 21.8
21.4
20.1
239.6 21
’ 201.4 2198
20
13.7
13.0 13.1
Z 151 121
o
11.4
83.
76.;
64. 101
56. 59.
54
oA
w2 w3 w4 W5 w6 w2 w3 w4 W5 W6
Waves Waves
(@) (b)

Figure 7. (a) Mean signal amplitude and (b) mean respiration rate for P3 on day 3, for both normal
(blue) and deep (orange) breathing.

Table 3. Respiration rate (RR) for all four participants on three consecutive days. Each wave (W) is an
interval of 4 min normal breathing (N) + 1 min deep breathing (D). Average RR difference between
both is included, as well as average signal amplitude difference.

W2 W3 W4 W5 We _
Participant ARR (BPM) AR (Q)
N D N D N D N D N D
D1 201 76 212 75 217 70 205 69 208 80 13.4 -
P1 D2 186 75 184 88 191 87 186 79 181 79 10.4 238.4
D3 179 76 179 82 187 96 181 83 182 105 9.34 409.5
D1 195 52 187 49 175 52 187 48 192 54 13.6 308.5
P2 D2 171 80 188 86 179 76 - - 19.0 5.6 10.7 86.5
D3 188 48 188 52 189 49 197 102 205 6.9 12.9 921.3
D1 202 110 209 130 215 140 216 135 216 196 6.93 518.2
P3 D2 195 106 217 139 219 158 216 125 196 124 7.81 193.5
D3 214 121 201 114 219 130 208 137 21.8 131 8.57 166.7
D1 207 102 213 114 202 107 200 112 206 126 9.33 175.5
P4 D2 157 93 190 94 173 92 187 87 181 8.6 8.71 346.4
D3 222 128 216 110 210 97 207 84 208 89 11.07 2805.8

Using sensor arrays allows us to cover the entire mask surface, allowing for the
detection of breathing patterns and also possible leakage attributed to a displacement or
to improper fitting of the mask. Indeed, we are able to plot and visualize, both in 2D and
3D, the humidity movements during breathing. Figure 8 shows the variation in electrical
resistance due to humidity variation for inhalation and exhalation. To map the signals,
normalization of data on a scale from 0 to 1 is performed with the extrema X’ = ani;%’
where 0 indicates minimal humidity (after inhaling) and 1 indicates maximal humidr;jcny
(after exhaling). During inhalation, cooler air goes through the mask. On the contrary,

exhaled air is warmer and moisture-laden. This analysis can be separated into four different
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sections on the mask, identified in Figure 8. The sensors below the nose and in front of the
mouth (1) show the most noticeable resistivity changes. They go from minimal to maximal
humidity during a breath cycle. For the top sensors (2), the humidity stays at a minimal
value, which indicates that the mask is well-fitted. The exhaled air does not escape through
the top part of the face mask and external air does not come in through that part. This
may also be due to the fact that these sensors are less impacted by breathing. The bottom
sensors (5) show some changes in electrical resistance due to their positions on the face
mask, below the nose, where exhaled air flows downward and outward. Furthermore, the
KIN95 masks have a malleable metal rod on the nose that ensures an optimal fit, whereas the
part underneath the chin does not possess such a feature, resulting in a looser fit. The side
sensors (6), located on the cheeks, show moderate changes, as they are mainly influenced by
the fit of the mask and are less exposed to the airflow induced by the breath. Humidity does
increase during exhaling, as some air disperses to the sides, but the normalized resistance
stays quasi-constant in the upper range of our scale.

\ 1.0

Max
h 0'8
(2) 0.6

Inhalation

(1) %
Exhalation 2
\ £
o4 T

0.2

v

Time

Figure 8. Frames of animated 2D air flow in left section of the mask during deep breathing. Video S2
in the Supplementary Materials shows both sides of the mask during a 2 min interval.

We have also programmed an animation of the mask’s membrane in 3D. Figure 9
shows frames of Video S1, available in the Supplementary Materials. This animation enables
a complete perception and visualization of the airflow and detects irregularities. In future
work, this type of representation could be potentially useful to allow for better comparisons
between experimental data and computational fluid dynamics model predictions.

Breathing state; Normal Breathing state: Deep Breathing state: Deep Max

Figure 9. Frames of animated 3D air flow in left section of mask. Video S1 in Supplementary Materials
of a 2 min interval.
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3.3. Limitations and Future Work

This study aimed to detect different breathing patterns and model the behavior of
the sensors stitched on the mask. However, this approach also presents some limitations.
For this pilot study, the collected data suggest that breathing patterns can be successfully
detected through different breathing phases. This concept will certainly need to be ex-
panded in future tests using more extensive datasets and a more diverse participant pool.
We also assumed that the humidity sensors are consistent with a reference tool, as has been
demonstrated in one of our previous studies [40], with an error rate of 0.03 breaths/min
(0.17% relative error). Furthermore, we are aware that the external environmental condi-
tions not being completely controlled had an impact on the performance of the sensors. It is
still interesting to note the similar trends, regardless of the humidity. Statistical limitations
are acknowledged due to the small sample size.

Further research on our part will involve more participants, in a room with a controlled
environment, in order to test the system in various conditions to validate its robustness.
Future work involving machine learning algorithms will need to be implemented in order
to accurately predict breathing patterns, reduce the impact of noise, and detect breathing
anomalies. It would also be interesting to take advantage of the presence of a number of
sensors in the network to enable additional selectivity recognition as part of the known
electronic nose approach. Sensors could then detect various components of breath, such as
ketones and aldehydes [41-43].

4. Conclusions

This study demonstrates the integration of printed humidity sensors to detect breath-
ing patterns and assess the humidity absorption of the mask’s membrane. The two 19-sensor
arrays used in our study, completely covering the mask’s surface, detect variations in breath-
ing patterns and model the sensors’ behavior over time, using an exponential decay model,
with all R? > 0.902. Additionally, the sensors measure the respiration rate differences
between deep and normal breathing across all participants, indicating sensitivity to the
airflow. The generated heatmaps of airflow show great potential for further analysis in leak
detection and mask fitting, as we can already detect differences in sensors’ behavior accord-
ing to their position on the mask. Future work will focus on integrating machine learning
models to personalize device performance and take into account the differences in breath-
ing behavior amongst patients. We also plan to collect data for ill-fitted and well-fitted
masks, to train a model that will detect air leaks for better user safety and improvement of
the facemask’s protection. The findings of this study suggest that we can apply this system
to half-face respirators and achieve similar results, which would represent a significant
step forward in the development of intelligent protective equipment. Combining sensor
arrays with machine learning will unlock the improvement of respiratory protection in
workplaces and reduce exposure risks.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /525247623 /s1, Figure S1: Example of poor signal excluded for the
computed mean; Figure S2: Modeling curves for all tests; Figure S3: Participant 1 breathing features
for all tests; Figure S4: Participant 2 breathing features for all tests; Figure S5: Participant 3 breathing
features for all tests; Figure S6: Participant 4 breathing features for all tests; Table S1: Excluded
sensors for each test; Video S1: 3D animation of humidity variations in mask; Video S2: 2D animation
of humidity variations in mask.
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