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A B S T R A C T

Traditional power flow optimization fails to account for the coupling between network loss and the cost of 
converters, and overlooks both transmission loss and distribution equipment loss. This paper proposes a bi-level 
coordinated optimization framework that integrates an improved artificial fish swarm algorithm (AFSA) and a 
hardware cost model to resolve this conflict. This framework has developed a two-layer model consisting of an X- 
Y layer optimal power model and a Z-layer optimal reconstruction model, which explicitly combines hardware 
costs and inverter losses, effectively resolving the conflict between minimizing control actions and reducing 
system losses. Furthermore, an enhanced AFSA featuring adaptive recombination behavior significantly im
proves resource utilization efficiency and reduces computation time. The results verified on the experimental 
distribution network platform show that, compared with traditional methods, the proposed approach reduces the 
total economic cost by 7.97 %, enhances the wind power consumption capacity by 12.42 %, and increases the 
average minimum voltage by 6.81 %, while maintaining a comparable level of transmission loss.

1. Introduction

With the widespread penetration of distributed generation with in
verters and power electronic devices in distribution network, the losses 
of equipment are gradually dominated by the losses of transformers and 
energy storage devices (Rahman et al., 2020; Zhao et al., 2022; Miao 
et al., 2018; Chen et al., 2023; Bayat et al., 2025). The losses in tradi
tional distribution network mainly originate from transmission loss and 
losses in distribution equipment.The utilization frequency of trans
formers and energy storage has been enhanced to some extent through 
optimal power flow and distribution network reconfiguration, further 
increasing the proportion of losses in distribution equipment (Mahdavi 
et al., 2024a, 2024b; Song et al., 2022; Huang et al., 2023; Lejeune and 
Dehghanian, 2020; Fan et al., 2022).This implies that, in order to reduce 
losses in the distribution network and enhance its efficiency and eco
nomic feasibility, it is necessary to consider the coordinated optimiza
tion of distribution equipment and transmission losses (Gao et al., 2022; 
An et al., 2022; Liu et al., 2019; Zheng et al., 2021).

Previous studies have mainly focused on the optimization of trans
mission loss and the selection of distribution equipment locations and 

capacities. In (Chew et al., 2019; Yang et al., 2021; Li et al., 2025), the 
optimal power flow method was primarily employed to optimize the 
distribution network (Chew et al., 2019). proposed a binary integer load 
distribution model in order to optimize distribution losses and system 
voltage imbalance. A binary load allocation model was utilized to 
simplify the multi-objective problem and enhance voltage stability 
while reducing system losses (Yang et al., 2021). proposed an enhanced 
DistFlow model that replaced active and reactive power with their ratios 
to voltage magnitudes as state variables. This modification reduces the 
errors introduced by the traditional branch flow linearization method, 
which completely ignores the transmission loss term. As a result, the 
accuracy of power flow optimization is improved (Li et al., 2025). 
developed a two-level coordinated optimization model for transmission 
and distribution networks. By applying second-order cone relaxation to 
transform quadratic inequalities into standard conic form, the original 
problem was converted into a convex optimization problem that can be 
efficiently solved. This approach minimized load shedding and 
enhanced grid stability under extreme contingencies (Tavalaei et al., 
2024; Al-Ismail, 2020; Huang et al., 2021). employed distribution 
network reconstruction to reduce network losses (Tavalaei et al., 2024). 
introduced an efficient mathematical optimization model integrating 
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Nomenclature

Variable Change in active power of node j
ΔPj Change in active power of node j
Ui Voltage amplitude of node i
Pj0 Active input of node j at rated voltage
Qj0 Reactive power input at node j under rated voltage
fset Set reference frequency
Uj Node J voltage amplitude
Gji Conductivity between node j and node i
Bji The electronegativity between node j and node i
θji Voltage phase angle difference between node j and node i
ΔPA

j Changes in active power injected into port A
PA

j Active power injected into port A
gA

i Conductivity of Port A
θj Voltage current phase angle difference at node j
bH

i Electromagnetic properties of H port
Floss system losses
Pt

ij Active power of the line from node i to node j at time t
Qt

ij Reactive power of the line from node i to node j at time t
rij Impedance of the line from node i to node j at time t
ut

i Voltage at node i at time t
psl,k Switching Loss
pol,k Conduction loss
gre Unit reconstruction loss cost coefficient
Pr

ess,k Energy storage configuration power at node k
Er

ess,k Energy storage configuration capacity at node k

floss
inv Transformer loss

floss
net Network loss

fPQ Power quality
ac,bc Converter switch loss coefficient
il,rms Effective current value of the node l
pmax

wind,i,Δt Peak output active power of the wind farm at node i during 
time period Δt

pwind,i,Δt The actual active power output of the wind farm at node i 
during the time period Δt

vt
B Node voltage at point B of the grid connection point

UN,B The Nth harmonic of the voltage at point B of the grid 
connection

vt
l Node voltage at port l at time t

vt− 1
l Node voltage at port l at time t-1

FVS Voltage offset at the connection point of the power grid
FTHD Voltage quality at the connection point of the power grid
FVF Voltage fluctuations at the connection points of the power 

grid
Pi The total active power consumption of the inverter and the 

load connected to node i
Qi The total reactive power consumption of the inverter and 

the load connected to node i
pmax

b,t±Δt Peak active power at point b near time t
pmin

b,t±Δt The valley active power at point b near the point of grid 
connection at time t

pess,t±Δt Corresponding energy storage operating power of pmax
b,t±Δt

pess,t∓Δt Corresponding energy storage operating power of pmin
b,t±Δt

Xi The current position of the artificial fish
Xj New location randomly selected by artificial fish
Xnext New position of artificial fish after movement
Yc Food concentration at the center position
Yi The food concentration at the current artificial fish 

location
Yj Food concentration at the optimal partner location

δ Crowding concentration factor
nf Number of visible partners within the domain
Ki Variation overlap index of artificial fish i
Kimax The largest mutation overlap indicator in the current 

population
P Recombination probability
Xk1,k2,k3 Three different individuals in the mutant fish population 

that meet the recombination criteria
XiDM Mutation candidate solution
YiDM XiDM’s food concentration
ffc food concentration
Parameters Constant impedance load coefficient
αi Constant impedance load coefficient
βi Constant current load factor
γi Constant power load factor
KPa Frequency regulation coefficient
f Frequency
T Load frequency coefficient
N Physical node
K virtual node
KQa Power regulation coefficient
Fji Equivalent connectivity matrix between node j and node i
Hji Equivalent interconnection matrix between node j and 

node i
Δt time interval
slc Life loss coefficient
soc service factor
smc maintenance factor
sp1 Loss coefficient of node k switch
sp2 Conductivity loss coefficient of node k
Nre Accumulated usage times
Nmax

re Maximum available times
kde Equivalent annual depreciation coefficient for energy 

storage
koc Energy storage operating cost coefficient
kmc Energy storage maintenance cost coefficient
minv,k Transformer usage cost
cess,k Energy storage usage cost
cp Unit power cost of energy storage
ce Unit capacity cost of energy storage
fhoc Hardware usage cost
vess,k Energy storage utilization coefficient of node K
vinv,g Cost saving coefficient of node g inverter
Ωess Inverter node set
Ωinv Collection of energy storage nodes
fwind Maximum wind power consumption capacity
d1,2,3,4 Normalized weight factor
cwind Abandoned wind power price per unit of electricity
φ Optimize time set
v(i) A set of branch nodes with node i as the head end node
vN Rated voltage value
il,max Upper limit of injected current at port l
il,min Lower limit of injected current at port l
vl,max Upper limit of node voltage
vl,min Lower limit of node voltage
pl,max Upper limit of active power of node l
pl,min Lower limit of active power of node l
Ql,max The upper limit of reactive power of node l
Ql,min Lower limit of reactive power of node l
pmax

sl,k Maximum switch loss at node k
pmin

sl,k The minimum value of switch loss at node k
pmax

ol,k The maximum value of conduction loss at node k
pmin

ol,k Minimum value of conduction loss at node k
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network reconfiguration and disjunctive convex hull relaxation. By 
combining the strengths of generalized disjunctive programming and 
disjunctive convex hull relaxation, this approach optimizes distribution 
network reconfiguration, reducing computational burden while 
achieving minimized energy loss and enhanced grid stability.In 
(Al-Ismail, 2020), a novel voltage fluctuation index and optimization 
algorithm were proposed to regulate bus voltages by switching capacitor 
banks and optimizing network reconfiguration, reducing system trans
mission loss.In (Huang et al., 2021), leveraged deep learning to learn the 
relationship between network topology and short-term voltage stability 
from historical data, improving short-term voltage stability in 
conjunction with loss optimization. Previous studies incorporated con
siderations for energy storage locations and transformer capacities (Xiao 
et al., 2022; Macedo et al., 2015; Chennaif et al., 2022; Mahdavi et al., 
2025). In (Xiao et al., 2022), the impact of energy storage integration 
was considered on a multi-objective model for network losses and 
voltage imbalance. The model was transformed into a convex quadratic 
programming problem, striking a balance between optimality and effi
ciency. In (Macedo et al., 2015), optimization of total loss in the dis
tribution network was performed by controlling the reactive and active 
power, the number of switchable capacitor units, the tap positions of 
voltage regulators and on-load tap changers, and the operational status 
of energy storage devices (Chennaif et al., 2022). proposed an improved 
electric system cascade extended analysis (ESCEA) method, which takes 
into account the optimization objectives of power supply loss proba
bility, life cycle cost, and levelized cost of energy, thus striking a balance 
between optimizing the new energy system and minimizing losses 
(Mahdavi et al., 2025). established a mixed integer convex optimization 
model accounting for time-varying load fluctuations. This approach 
enables simultaneous configuration of distributed generation (DG) units 
and capacitor banks, delivering enhanced accuracy in minimizing en
ergy losses and operational costs. However, existing methods failed to 
simultaneously optimize both line losses and equipment losses. 
Furthermore, frequent control actions for energy storage and trans
formers during optimization often incurred high overall economic costs.

To reduce distribution equipment losses while optimizing trans
mission losses, it is necessary to incorporate operational constraints on 
each device into the optimization objectives (Zheng et al., 2016; Chen 
et al., 2022; Gao et al., 2019), In (Zheng et al., 2016; Chen et al., 2022), 
the operational constraints on compensation devices were introduced 
into the model, along with limitations on the utilization of various 
channels and distributed energy sources. This approach effectively 
restricted the maintenance costs associated with individual devices to 
some extent. In (Gao et al., 2019), the impact of changes in distribution 

system operating efficiency on transformer losses was considered in the 
optimization process, and a multi-objective approach was employed to 
minimize operating costs and total power losses using a genetic algo
rithm to obtain Pareto optimal solutions, resulting in a certain degree of 
cost reduction in the optimization process. While the above methods 
partially considered the losses of distribution equipment and imposed 
certain limitations, they did not account for the coupling relationship 
between distribution equipment losses and the optimization control 
actions. As the optimization process advanced, the magnitude of sub
sequent reduction in transmission losses becomes limited, while the 
adjustment frequency of devices such as transformers increased, exac
erbating their losses. Therefore, an optimization method is required to 
address energy optimization comprehensively. It should also resolve the 
conflicting relationship between transmission loss optimization 
behavior and the hardware cost of distributed units.

Bi-level coordinated optimization method integrating improved 
artificial fish swarm algorithm and hardware cost model is proposed in 
this paper to address the previously mentioned issues. The method in
volves the incorporation of the optimization control behavior of trans
mission loss and hardware cost of distributed units into the bi-level 
optimization model. Moreover, the enhanced self-adaptation differential 
evolution based artificial fish swarm algorithm (SDAFSA) is proposed, 
which addresses the issue of the algorithm getting stuck in local optima 
by introducing self-adaptive recombination behavior during the fish 
swarm’s mutation process.The main contributions of this paper are as 
follows:

• The proposed bi-level coordinated optimization method, which 
incorporates a converter loss model in the X-Y layer optimal power 
strategy and a hardware cost model in the Z layer optimal reconstruction 
strategy, can achieve the coordinated optimization between trans
mission losses and hardware utilization costs of distributed units. 
Therefore the economic efficiency of the system can be enhanced.

• The proposed improved artificial fish swarm algorithm, through 
the incorporation of an adaptive recombination behavior model in the 
variation process, enables an increase in the global optimization capa
bility of the optimization parameters and a reduction in computation 
time and resource usage.

• Compared to the conventional artificial fish swarm algorithm based 
on differential evolution (DEAFSA), the designed self-adaptive recom
bination strategy in this study reduces the probability of repeated se
lection in the mutation process. This achievement allows for low 
memory usage and high optimization accuracy without affecting the 
computational time.

The remaining sections of this paper are organized as follows. 

Step Artificial fish movement step size
R A random number uniformly distributed within the 

interval [-1,1]

Visualperceived distance coefficient of variation
λ coefficient of variation
CiDM Cross probability threshold

Fig. 1. Hardware cost analysis for distributed units in a distribution network.
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Section 2 introduces the concept of distributed generation units, pre
sents the model for evaluating the equipment utilization costs of 
distributed units, and analyzes the coupling relationship between the 
optimization behavior of transmission loss and the equipment utilization 
costs of distributed units. Based on this analysis, a bi-level coordinated 
optimization model is proposed. In Section 3, the SDAFSA algorithm is 
introduced, including the principle of self-adaptation recombination and 
the algorithm’s optimization process. A comparative analysis of the 
computational cost of the algorithm is also provided. Section 4 presents 
experimental results and comparisons to validate the proposed 
approach. Lastly, Section 5 concludes the paper by summarizing the 
main findings.

2. The Bi-level coordinated optimization strategy

2.1. Analysis of modeling hardware costs for distributed units

The distributed generation units in the distribution network are 
shown in Fig. 1. In this unit, energy storage units are connected in 
parallel to the DC bus of the converter. For the purpose of modeling 
analysis and simplification,the virtual equivalent node method is 
introduced to equivalently represent the AC-DC nodes (Wu et al., 2021). 
The flow equation for network node injection is as follows: 

ΔPj =
[(

αiU2
i + βiUi + γi

)
Pj0
]
⋅[1 + KPa(f − fset)T]

− Uj

∑N+K

i∈1
Ui
(
Gji cos θji + Bji sin θji

)
= 0

(1) 

ΔQj =
[(

αiU2
i + βiUi + γi

)
Qj0
]
⋅[1 + KQa(f − fset)T]

− Uj

∑N+K

i∈1
Ui
(
Gji cos θji + Bji sin θji

)
= 0

(2) 

The flow equation for port injection is as follows: 

ΔPj
A = Pj

A − gi
A

(
∑N+K

j=1
FijUj

)2

+
∑N+K

j=1
FijUj

∑N+K

j=1
HijUj⋅

{

gi
A cos

[
∑N+K

j=1

(
Fij − Hij

)
θj

]}

+
∑N+K

j=1
FijUj⋅

∑N+K

j=1
HijUj

{

bi
H sin

[
∑N+K

j=1

(
Fij − Hij

)
θj

]}

= 0

(3) 

From Fig. 1, it can be observed that each distributed generation unit 
is a major component of the distribution network, and its usage cost 
accounts for a significant proportion of the overall system economic 
cost, considering both the transmission losses and the equipment costs.

Transmission losses mainly result from the energy losses in trans
mission and distribution lines (Azizi et al., 2023) and are expressed by 
(4). The usage cost of hard devices refers to the cost associated with the 
primary hardware components used in the distribution network, 
including the cost of energy storage and the cost of converters. The 
following introduces the modeling and analysis of energy storage usage 
costs and converter usage costs. 

Floss =
∑N

i=1

∑

j∈v(i)

(Pt
ij)

2
+ (Qt

ij)
2⋅rij⋅Δt

(ut
i)

2 (4) 

The usage cost of converters minv,k mainly includes the lifetime loss 
caused by reconstructions, routine operation, and maintenance of the 
equipment, as well as the switching and conduction losses under normal 
operating conditions. Considering that during the reconstruction pro
cess, the thermal stress generated by over current and over voltage due 
to structural changes is much greater than the switching losses under 
normal operating conditions, the lifetime loss coefficient is primarily 
determined by the number of reconstructions.This can be expressed by 
(5)-(6): 

minv,k = slc(1+ soc + smc)(sp1psl,k + sp2pol,k) (5) 

slc = gre⋅Nre
/
Nmax

re (6) 

where slc, soc, smc, sp1, sp2, psl,k, pol,k, gre, Nre, Nre
max are the lifetime loss 

coefficient, operation coefficient, maintenance co-efficient, switching 
loss coefficient, conduction loss coefficient, switching, and conduction 
losses at node k,cumulative usage count, and maximum available count, 
respectively.

In practical applications, the over current voltage generated during 
reconstruction is often mitigated through energy storage to reduce 
transformer losses and lifetime degradation, leading to the introduction 
of the energy storage utilization cost function.

The energy storage utilization cost cess,k primarily focuses on 
equipment operation costs and maintenance costs, which are converted 
into annual equivalent costs (Abomazid et al., 2022). Operation costs 
refer to the expenses incurred during the normal operation of the 
equipment, including energy consumption costs, maintenance costs, 
labor costs, etc. Maintenance costs, on the other hand, include regular 
maintenance costs and preventive maintenance costs required during 
normal operation. Considering that energy storage is used for over 
voltage and over current compensation in the transformer’s DC bus 
during the reconstruction process, it can be expressed as shown in (7). 

cess,k = kde(1+ koc + kmc)(cppr
ess,k + ceEr

ess,k) (7) 

where kde,koc, kmc,cp, ce,Pess,k
r ,and Eess,k

r are the annual equivalent 
depreciation coefficient of energy storage, the cost coefficient of an 
energy storage operation and maintenance, the cost per unit power and 
per unit capacity of energy storage, and the power and capacity of en
ergy storage allocation at node k, respectively. Here, l= 1,2,……k.

The total equipment utilization costs of distributed units, denoted as 
fhoc, is the sum of the usage costs of all energy storage and converter 
nodes. The energy storage utilization coefficient vess,k is introduced to 
indicate the usage status of energy storage at a particular node, which 
takes a value of one when energy storage is connected and zero other
wise. When energy storage is connected, the usage cost of the converter 
decreases with the reduction of losses. Therefore, the cost-saving coef
ficient of the converter node, denoted as vinv,g, is expressed as follows: 

Table 1 
Analysis of the Impact of Key Nonlinear Parameter Fluctuations on System Cost Fluctuations.

Slc(%) soc(%) smc(%) kde(%) koc(%) kmc(%) fhoc(%)

0.99234438 0.98478440 0.93977834 0.86685580 0.84256282 0.97888142 0.96033910
0.83760700 0.94149655 0.85001048 0.92321067 0.83593701 0.95154889 0.97767119
0.89283558 0.96635571 0.86306491 0.97037001 0.90777741 0.85800149 0.99203857
0.9187035 0.88464562 0.96703928 0.92904706 0.83972180 0.98673472 0.96455701
0.9647549 0.9010810 0.9875736 0.8752930 0.8032160 0.92804701 0.95442321
0.88644344 0.96489699 0.80246830 0.90247281 0.86606449 0.90630873 0.99552230
0.96693395 0.93139751 0.85843779 0.92691412 0.95860111 0.86823248 0.99919729
0.90531141 0.84957093 0.84444330 0.84695962 0.90686940 0.85194974 0.97544664
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fhoc =
∑

k∈Ωess
g∈Ωinv

vess,kcess,k + vinv,gminv,g (8) 

where vess,k, vinv,g, Ωess, and Ωinv are the energy storage utilization co
efficient at node k, the cost-saving coefficient of the inverter node g, the 
set of inverter nodes, and the set of energy storage nodes, respectively. 
The value of vinv,g∈(0,1).

In order to evaluate the variability of cost correlation coefficients 
between converters and pure energy utilization, parameter robustness 
tests were conducted within the model. The fhoc changes caused by ±
20 % random fluctuations in key nonlinear parameters such as Slc, Soc, 
Smc, Kde, Koc, and Kmc were tested. From the 10 sets of random test 
data in Table 1, it can be observed that the equipment utilization costs 
change by less than 5 %, indicating that the model still maintains strong 
stability and robustness under parameter uncertainty.

The conflicting relationship between equipment utilization costs of 
distributed units and transmission loss optimization behavior can be 
illustrated in Fig. 2, as derived from the comprehensive model. Without 

considering the optimization of hardware costs for distributed units, as 
transmission loss continues to be optimized, the system’s economic cost 
improves. However, when transmission loss optimization exceeds the 
boundary, its projection no longer falls within the red region of optimal 
economic cost but enters the blue region of suboptimal economic cost. 
Nevertheless, through coordinated optimization of hardware costs for 
distributed units and transmission loss, the projection can be brought 
back within the optimal range of the system’s economic cost.

2.2. The Bi-level optimization model

The bi-level coordinated optimization model is proposed in this 
section based on the coupling relationship between transmission loss 
optimization behavior and equipment utilization costs of distributed 
units, aiming to elucidate the coupling relationships among system 
variables and provide a foundation for control, as shown in Fig. 3. The 
model consists of the X-Y layers and the Z layer. In the Z layer, the 
reconstruction strategy is formed by combining basic reconstruction 
strategies according to the optimization objectives, and it changes with 

Fig. 2. Conflict between Transmission Loss and Hardware Cost.

Fig. 3. Bi-level coordinated optimization model.
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the actual connection mode of the transformers.

2.2.1. X-Y layer optimization mode
Establish a comprehensive optimal power model at the X-Y layer, 

with wind power consumption fwind, converter loss finv
loss, network loss 

fnet
loss, and power quality fPQ as optimization objectives. Construct an 

optimization objective function through weighted linear combination as 
shown in Eq. 9, and constrain the sum of weight factors to 1 to achieve 
multi-objective normalization. 

min F = min(d1f loss
inv + d2fwind + d3f loss

net + d4fPQ) (9) 

d1f loss
inv + d2fwind + d3f loss

net + d4fPQ = 1 (10) 

Among them, d1, d2, d3, and d4 are the corresponding weight factors 
for each function.

The loss equation of the converter is as follows: 

f loss
inv =

∑k

l=1
(aci2l,rms + bcil,rms) (11) 

Among them, ac, bc, il,rm represent the switch loss coefficient and 
node effective current value, respectively.

The expression for the output of unconsolidated distributed power 
sources is as follows: 

fwind =
∑

Δt∈φ
cwind(Pmax

wind,i,Δt − Pwind,i,Δt) (12) 

Among them, cwind, Pwind,i,△t
max , Pwind,i,△t, respectively represent the 

abandoned wind power price per unit of electricity, the peak output 
active power and actual output active power of the wind farm at node i 
during the time periodΔt, and φ are the optimized time set.

The system network loss equation is as follows: 

f loss
net =

∑N

i=1

∑

j∈v(i)

(Pt
ij)

2
+ (Qt

ij)
2⋅rij⋅Δt

(ut
i)

2 (13) 

Among them, Pij
t , Qij

t , Representing the active and reactive power of 
the line from node i to node j at time t, rij represents the impedance of the 
line from node i to node j at time t, ui

t is the voltage at node i at time t, 
and v(i) is the set of branch end nodes starting from node i.

The expressions for voltage offset FVS, voltage quality FTHD, and 
voltage fluctuation FVF at the grid connection point are as follows: 

fPQ = FVS + FTHD + FVF (14) 

FVS = |(VB
t − VN)/VN| (15) 

FTHD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑H

N=2

(
UN,B

U1,B

)
√
√
√
√ (16) 

FVF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Vl
t)

2
− (Vl

t− 1)
2

√

(17) 

Among them, VB
t , VN, UN,B,Vl

t, Vl
t− 1 respectively represent the node 

voltage at grid point b and the rated voltage value, the Nth harmonic of 
the voltage at grid point b, and the node voltage at port l at time t and t- 
1. Among them, node i is the set of branch end nodes of the head end 
node.

The constraints of the X-Y layer include power flow equation con
straints, net load constraints, current constraints, voltage constraints, 
active power constraints, and reactive power constraints.

The power flow equation can be expressed as: 
⎧
⎪⎨

⎪⎩

Pi = Ui

∑

j∈i
Uj
(
Gij cos θij + Bij sin θij

)

Qi = Ui

∑

j∈i
Uj
(
Gij sin θij − Bij cos θij

) ; i = 1, 2,⋯,m (18) 

Among them, Pi、Qi are the total active and reactive power values 
consumed by the converter and load connected to node i. Ui、Uj、Gij、 
Bij、θij represent the voltage amplitude of nodes i and j, the conductance 
and susceptance between nodes i and j, and the phase angle difference 
between nodes i and j. j∈i represents all nodes connected to node i.

The constraints on the fluctuation range of net load at the grid 
connection point are as follows: 

Pmin
flu ≤ Pflu =

⃒
⃒(Pb,t±Δt

max − Pess,t±Δt) − (Pb,t±Δt
min − Pess,t∓Δt)

⃒
⃒ ≤ Pmax

flu (19) 

Among them,Pb,t±Δt
max 、Pb,t±Δt

min respectively represent the peak active 
power at node b near time t, and the valley power at node b near time t. 
Pess,t±Δt、Pess,t∓Δt are the energy storage operating power corresponding 
to the peak and valley active power at node b.

Current and voltage constraints are shown in Eqs. 20–21: 

il, max < il < il, min (20) 

Vi
min < |Vi| < Vi

max (21) 

Among them, il,max, il,min, Vi
max, Vi

min are the upper and lower limits of 
the injected current at port l, and the upper and lower limits of the 
voltage at node i, respectively.

The constraints on active and reactive power of nodes are as shown 
in Eqs. 22–23: 

Pi, max < Pi < Pi, min, i ∈ N (22) 

Qi, max < Qi < Qi, min, i ∈ N (23) 

Among them, Pi,max, Pi,min, Qi
max, Qi

min are the upper and lower limits 
of voltage and reactive power at node i, respectively.

2.2.2. Z layer optimization model
The establishment of a comprehensive optimal reconstruction model 

for equipment utilization costs of distributed units fhoc in the Z layer. Its 
mathematical expression is as follows: 

fhoc =
∑

k∈Ωess
g∈Ωinv

vess,kcess,k + vinv,gminv,g (24) 

The constraints in the Z layer include power constraints on the 
converters and SOC(State of Charge) constraints. Its mathematical 
expression is as follows: 

Pmin
sl,k < Psl,k < Pmax

sl,k (25) 

Pmin
ol,k < Pol,k < Pmax

ol,k , k ∈ N (26) 

where psl,k
min, psl,k

max, pol,k
min, and pol,k

max are the maximum and minimum values 
of switch and conduction losses at node k, respectively.

The fundamental control principle of the proposed model is depicted 
in Fig. 3. When solving the X-layer model, the optimal active power 
expectation is determined to achieve the optimal wind power integra
tion while minimizing converter losses, subject to constraints on netload 
fluctuations and currents at the grid connection point. The obtained 
active power expectation is then transferred to the Y-layer to update the 
reactive power constraints.In solving the Y-layer model, under voltage 
constraints,the expected reactive power that minimizes system trans
mission losses and maximizes power quality is computed. Simulta
neously,the objective function value of the Y-layer, representing the 
expected reactive power, is fed back to the X-layer to adjust the con
straints on active power generation. This process aims to refine the 
optimization results of the X-layer. Iterative steps are repeated to obtain 
the expected power values that minimize converter losses, minimize 
system transmission losses,and optimize wind power integration in the 
current network.Please note that the above translation is lengthy con
tent and minor adjustments may be required to ensure accuracy and 
professionalism based on specific context and journal requirements. The 
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X-Y layer’s active and reactive power expectations are propagated to the 
Z lay- er. In the Z layer model,under constraints on active and reactive 
power, the expected currents,voltages,and conductive branches are 
computed to minimize converter and energy storage costs. Subse
quently,the objective function values (Expected currents,Voltages,and 
Conductive branches) are returned to the X-Y layer current,voltage,and 
power flow equation constraints. By iteratively alternating between the 
top and bottom layers, the final reconstructed strategy is obtained,which 
achieves the minimum hard- ware usage costs of distributed units 
(including the converter and energy storage usage cost), the lowest 
system transmission loss, and the optimal wind power accommodation. 
Moreover, the expected power values under this reconstructed network 
are provided.

It can be observed from the previous context that the aforementioned 
constraints involve quadratic and integer terms. The solution of this 
model belongs to a nonlinear programming problem, which requires a 
considerable amount of computation time. The accuracy of traditional 
linear programming or nonlinear programming methods (Arnström 
et al., 2022; Sun and Sun, 2021) is difficult to guarantee,and they are not 
yet mature in handling inequality constraints.The DEAFSA has been 
gradually applied to distribution network optimization problems, 
exhibiting advantages such as low sensitivity to initial values and 
parameter (Sotiroudis et al., 2013; Bazi et al., 2014; Huang et al., 2015).

3. Adaptive recombination-based artificial fish swarm algorithm

In response to the issue of low optimization efficiency in the later 
stages of the algorithm caused by the blind mutation process of DEAFSA, 
this section proposes the SDAFSA to optimize the utilization of branch 
energy storage, the reconstruction of corresponding branches, as well as 
the voltage and current parameters of the transformers and energy 
storage nodes. The objective is to further enhance the coordination 
optimization performance of transmission losses and equipment utili
zation costs of distributed units. The specific details are presented as 
follows.

3.1. Traditional artificial fish swarm algorithm

The artificial fish swarm algorithm (AFSA), proposed by Li Xiaolei 
et al. in 2002, is a swarm intelligence optimization algorithm based on 
the behavior of autonomous animal communities. The control approach 
originated from the four fundamental behaviors observed in fish when 
they forage in water bodies. The traditional AFSA is commonly 
employed for single-layer optimization in distribution networks, such as 
reactive power optimization (Li et al., 2021; Zhu and Gao, 2020). It 
exhibits good performance and has advantages in terms of weak sensi
tivity to initial values and parameter selection, fast convergence speed, 
and robustness. However, in the later iterations of the AFSA, fish near 
the extremum point tend to repel each other, resulting in increased blind 
exploration of the fish swarm, slower speed, and lower optimization 
accuracy.

The mathematical description of the four behaviors of artificial fish is 
as follows:

(1) Foraging behavior
For the current state Xi of an artificial fish, a new state Xi is randomly 

selected within its perceptual range. If the food concentration at Xi ex
ceeds that at the current position, the fish executes a movement oper
ation toward Xi： 

Xinext = Xi + rand()⋅Step⋅
Xj − Xi⃦
⃦Xj − Xi

⃦
⃦

(27) 

Otherwise, reselect Xi and re-evaluate the advancement condition. If 
no superior state is found within the maximum number of attempts, the 
fish moves randomly by one step: 

Xinext = Xi + rand()⋅Step (28) 

where rand denotes a random number uniformly distributed in the in
terval [0,1].

(2) Group behavior
Assuming the current state of the artificial fish is Xi, there are a 

Fig. 4. Illustration of adaptive recombination.
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number of nf partners in its visible domain (dij ≤ Visual), and the center 
positions Xj and concentrations Yj of these partners can be obtained. In 
order to further optimize the exploration efficiency of fish schools, it is 
necessary to compare the concentration at the current location with the 
concentration at the center position Yj of partners in the visible domain 
and the concentration at the current position under the crowding degree 
δ. This comparison process can be calculated using Eq. 29: 

Yc
/
nf > δ⋅Yi (29) 

If it is determined that the conditions are met, indicating that the 
partner’s center position is rich in food and relatively less crowded, then 
the artificial fish will move forward one step towards that position; On 
the contrary, artificial fish perform foraging behavior.

(3) Rear end collision behavior
Assuming the current artificial fish is in the Xj state, the next decision 

is made by exploring the number of partners nf and the partner Xj (dij ≤

Visual) with the highest food concentration in its visible domain. 
Compare the concentration Yj near its partner’s location with the current 
concentration Yj under congestion δ., as shown in the equation: 

Yj
/
nf > δ⋅Yi (30) 

If the criteria are met, it indicates that there is more food available at 
partner Yj’s location and it is not too crowded, then move forward one 
step towards the partner’s location; Otherwise, artificial fish will 
perform foraging behavior.

(4) Random behavior
Random behavior is actually a default behavior of foraging behavior, 

that is, the artificial fish randomly chooses a direction to move in the 
field of view, and the next position Xinext is represented as: 

Xinext = Xi + r⋅visual (31) 

Where r is a random number in the range of [-1,1], and visual is the 
perceived distance.

In the artificial fish swarm algorithm, the initialization of the arti
ficial fish is first performed, followed by clustering and rear end 
behavior, exploring feasible positions and selecting the optimal position 

for movement within a certain number of times. During this process, a 
bulletin board was set up to record the optimal positions of all fish and 
their corresponding food concentrations after each position update. 
After completing the predetermined number of iterations, the algorithm 
stops.

3.2. The enhanced artificial fish swarm algorithm

In this paper, an improved algorithm called the SDAFSA is proposed 
based on the differential evolution (DE) algorithm. The SDAFSA in
troduces an adoptive recombination process, which effectively enhances 
mutation efficiency when encountering local optima.

After being trapped in local optima, the fish swarm undergoes 
adaptive recombination by utilizing a stagnation plate count to deter
mine the entry into variation, as shown in Fig. 4. The fish from the 
previous iteration are marked as overlapping fish, and a probability, 
denoted as P, is set as the selection range for the variation fish. P is 
adaptively reduced as the number of overlapping fish increases. After 
each reduction, the fish positions are shuffled and updated, leading to a 
repetitive recombination process until the selection of mutated fish is 
completed. The selection of mutated fish includes mutation, crossover, 
and selection stages.

For each artificial fish, a mutation overlap indicator, Ki, and a 
recombination indicator, Kimax, are assigned. Additionally, a recombi
nation probability P is defined. Random numbers denoted as rand are 
generated for all artificial fish, and each fish is associated with a cor
responding random number,ri. If ri is less than P, three distinct in
dividuals are selected from this subset for mutation using the differential 
evolution approach. After one iteration of differential evolution, the 
mutation overlap indicators are updated. 

• Part 1-The adaptive recombination function

Ki max = {K1,K2…,Ki}i ∈ (1, nf ) (32) 

P = 1 − Ki max
/
nf (33) 

Fig. 5. The optimization process of the SDAFSA.
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• Part 2-Mutation 

XiDM = Xk1 + λ⋅rand()⋅Step⋅
Xk2 − Xk3

‖Xk2 − Xk3‖
(34) 

Three distinct individuals, k1,k2,and k3, are selected from the 
artificial fish population that satisfies rand < P for mutation, ac
cording to the following (29), k1,k2,and k3 represent the indices of 
randomly selected fish, and λ denotes the mutation coefficient.

• Part 3-Crossover 

CiDM =

{
YiDM

Yi
rand(0,1) ≤ CR

otherwise

(35) 

Individual XiDM is discretely crossed with the current population 
individual Xi according to (30),resulting in the differential individual 
fitness value CiDM, where Yi represents the current individual’s food 
concentration, YiDM represents the target individual’s food concen
tration after mutation, and CR denotes the crossover probability 
threshold.

• Part 4-Selection

The new individual CiDM(t + 1) is compared with the corresponding 
fitness value of the current individual Xi(t). If it is superior, the current 
individual is replaced.

3.3. Fitness function

The fitness function is the sole indicator for evaluating the optimi
zation performance of the SDAFSA algorithm,with a higher fitness value 
indicating better optimization results.Since the coordination of trans
mission losses and hardware costs of distributed units aims to further 
reduce system economic costs, the bi-level coordinated optimization 
model can be defined as the fitness function, with the following 
expression: 

ffc =
1

F + fhoc
(36) 

where ffc is the food concentration function. As the coordinated opti
mization progresses,the food concentration function also increases. 

However,its actual value needs to be evaluated considering the practical 
application scenarios and hardware conditions.

The following is a detailed optimization process using the fitness 
function, as well as an explanation of its optimization in the distribution 
network.

3.4. Algorithm optimization process

The optimization process and schematic diagram of the SDAFSA al
gorithm are shown in Fig. 5 and Fig. 6,respectively.In Fig. 5,the 
recombination probability P is compared with the corresponding ri value 
of each artificial fish,enabling the recombination of the fish population 
and the select- ion of mutated fish.The updated fitness value Yi(t + 1) of 
the new individuals is achieved through the process of crossover 
selection.

The key steps of the SDAFSA for optimization are as follows: 

• Step 1- The fish swarm is initialized.Throughout the entire process, 
the position Xinext and food concentration Yi of artificial fish is 
updated based on the traditional artificial fish swarm position and 
food concentration function.

• Step 2- The artificial fish are encoded. The initial fitness value of the 
fish swarm is calculated,and the fittest individual is searched for and 
recorded on the bulletin board.The bulletin board is set to a stagnant 
state with Stopstep= 0, and the iteration count is gen= 1.

• Step 3- Behavior selection.Simulate four types of behaviors: clus
tering, following, foraging, and random behavior. After each itera
tion of an individual artificial fish, its own state is compared with the 
records on the bulletin board.If it is superior to the bulletin board 
records,the bulletin board is updated and the bulletin board’s stag
nation step is set to Stopstep= 0.

• Step 4- Stagnation evaluation. Evaluate if Stopstep≥Stopmax 
(maximum stagnation steps). If this condition is satisfied, perform 
adaptive recombination and differential evolution on the entire 
population of artificial fish. Otherwise, proceed to Step 5.

• Step 5- Iteration limit evaluation. Evaluate if gen>MAXGEN, indi
cating the maximum number of iterations has been reached. If this 
condition is satisfied, output the optimal solution. If not, update the 
stagnation step of the bulletin board and proceed to Step 3.

The key steps of adaptive recombination are as follows: 

Fig. 6. Illustration of the optimization process of the SDAFSA.
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• Step 1- Configuration Parameters: The configuration parameters 
include the mutation overlap indicator Ki, recombination indicator 
Kimax, recombination probability P, and random number ri corre
sponding to the artificial fish. The values of Kimax and P are updated 
using (27)-(28) respectively. The mutation position XiDM and muta
tion fitness value YiDM are updated using (29)-(30) respectively.

• Step 2- Adaptive Recombination: The process involves evaluating the 
indices of the mutated fish and the indices of the previously mutated 
fish to determine the overlap indicator, Ki. The extreme value is 
recorded as Kimax and an artificial fish with a random number ri less 
than the recombination probability P is selected as the mutated fish.

• Step 3- Mutation Operation: Select artificial fish that meet the given 
criteria and subject them to the mutation process to obtain individual 
XiDM.

• Step 4- Crossover Operation: The individual XiDM is subjected to 
discrete crossover with the current individual Xi in the population. 
By comparing the cross-over rate CR with a random number rand 
(0,1),the fitness value CiDM of the differential individual is updated.

• Step 5- Selection Operation: The new individual CiDM(t + 1) is 
compared with the fitness value of the current individual Xi(t). If it is 
superior, the current individual is replaced.

As shown in Fig. 6, the input signals of the fitness function are 
composed of the output signals from each converter, as well as the load 
output signals and the power flow control signals of the system. The 
fitness value is obtained through the fitness function. The improved 
Artificial Fish Swarm Algorithm searches for the optimal parameters P, 
Q, V, I,and N by evaluating the fitness function value at each iteration 
until the end of the iteration.

3.5. Cost comparison calculation

Compared to DEAFSA, SDAFSA incorporates an additional step of 
adaptive recombination, which requires consideration of the computa
tional cost associated with this step. The cost calculation mainly includes 
resource utilization and computational time,with the total computa
tional time denoted as ta.

Adaptive Recombination: The computational time ts can be divided 
into two components: the time for adaptive narrowing of the fish se
lection range,ts1, and the time for random updating of fish positions, ts2. 
Differential Evolution: The computational time td can be divided into 
three components: the time for mutation td1, the time for crossover td2, 
and the time for selection td3.

For the simulation hardware,a 64-bit PC with a Windows 7 operating 
system is utilized. The CPU is an i5–11300H with a clock frequency of 
3.0 GHz. The system has 16 GB of RAM and a hard disk capacity of 
500 GB.

As shown in Tables 2 and 3,in the SDAFSA algorithm,the 

computational time for the mutation step after adaptive recombination, 
denoted as td, is reduced by approximately 54.55 % compared to the 
computational time for the mutation step in the DEAFSA,denoted as td. 
Additionally, resource utilization is reduced by 40 %. The combined 
resource utilization of adaptive recombination and differential evolu
tion is reduced by 25 %. This indicates that adaptive recombination 
improves the effectiveness of repetitive mutation.

The total computation time ta of SDAFSA differs by 5.812 % and 
1.142 %compared to AFSA and DEAFSA, respectively. The difference in 
total resources is below 1 % for both cases and slightly lower than the 
total resource usage of DEAFSA. It can be observed that the inclusion of 
adaptive recombination has no significant impact on the computational 
speed and provides some optimization in terms of resource utilization 
compared to DEAFSA.

4. Experimental comparative verification

To validate the superior optimization performance of SDAFSA and 
the bi-level coordinated optimization method compared to the tradi
tional method under load impact, a simulation model was established 
for conducting experimental analysis. The simulation model consists of 
two parts: the distribution network structure and the transformer 
structure.

The application scenario for the distribution network is set as a port 
distribution network, and the distribution network model selected is the 
IEEE 33-node model. The IEEE 33 node system is a recognized bench
mark testing system in distribution network research, and its topology 
and load characteristics are representative, which can fully verify the 
effectiveness and generalization ability of the method proposed in this 
paper. The load section is set as the port load, and actual parameters of 
port impact load, distributed energy sources, SVC, energy storage, etc., 
are incorporated into the model. The transformer connection is imple
mented using an energy router structure (Liu et al., 2021; Wang et al., 
2022), connecting nodes 22, 33, 18,and 25, which provides flexibility 
and enables basic reconstruction strategies.The input parameters are 
obtained from the partial model parameters of the IEEE 33-node system 
and the operational parameters of the actual port shore power project 
over a 24-hour period. The input parameters are shown in Table 4, and 
the basic strategies for reactive power compensation are shown in 
Table 5. CB1, CB2, and CB3 represent reactive power compensators.

4.1. Performance experiment comparison

The parameter settings of SDAFSA algorithm are as follows: visu
al= 1, step= 0.1, λ= 0.86. By comparing the computation time spent 
iterating to the optimal solution under different parameters in Table 6, 

Table 2 
Computational time cost.

AFSA SDAFSA DEAFSA

Algorithm execution time
ts × 7.49352 s ×

td × 3.50592 s 7.71336 s
ta 147.7932 s 156.38263 s 154.61752 s

Table 3 
Resource utilization cost (memory usage).

AFSA SDAFSA DEAFSA

Algorithm execution time
Algorithm execution time × × 6 K
Differential Evolution × 40 K 24 K
Differential Evolution 25120 K 25144 K 25138 K

Table 4 
Grid connection parameters.

Node Type Parameters Quantity

8 Wind power 150KW 1
26 CB1 150KVA 5
18 CB2 150KVA 5
30 CB3 150KVA 5
20 SVC 0–500KVA 1
25 Energy storage 1 MW 1
25 Impulsive load 0–800KW 1

Table 5 
Basic reactive power compensation strategies.

Node Type Parameters

26 CB1 0–5
18 CB2 0–5
30 CB3 0–5
20 SVC 0–500KVA
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this parameter is determined to be the optimal parameter. The artificial 
fish numbers for the three fish swarm algorithms are all 12, while the 
particle swarm algorithm (PSO) has 12 particles, inertia weight w= 0.7, 
cognitive factor c1 = 1.5, social factor c2 = 1.5. The genetic algorithm 
(GA) has a population size of 12, crossover probability Pc= 0.8, muta
tion probability Pm= 0.02, and elite retention ratio of 0.1.The grey wolf 
optimization (GWO) algorithm involves 12 wolves. The convergence 
factor a decreases linearly from 2 to 0 as the number of iterations in
creases, and the moduli of the coefficient vectors r1 and r2 are randomly 
selected from the interval [0,1] (Mirjalili et al., 2014). The maximum 
number of iterations is set to 20, and the number of attempts is set to 10. 
The performance of six algorithms was compared, and the 

corresponding convergence characteristic curves are shown in Figs. 7 
and 8. The fitness and other indicators are shown in Table 7. The pa
rameters of the energy storage part of the algorithm are shown in 
Table 6.

Compared with traditional AFSA, PSO, GA, and GWO algorithms, 
PSO has the fastest convergence speed but a lower fitness value, while 
GA algorithm has the highest fitness value but a slower convergence 
speed, while AFSA balances both convergence speed and fitness value.

The following table shows the maximum, minimum, and average 
fitness values of the objective function for twenty independent runs of 
AFSA, DEAFSA, PSO, GA, GWO, and SDAFSA algorithms. The 
maximum, minimum, mean, and standard deviation of SDAFSA are all 
greater than those of traditional AFSA, PSO, GA, GWO, and DEAFSA 
algorithms. Therefore, the SDAFSA algorithm is superior to traditional 
AFSA, PSO, GA, GWO, and DEAFSA algorithms. Compared to traditional 
AFSA, PSO, GA, GWO, and DEAFSA, it exhibits outstanding global 
search capabilities.

According to Fig. 8, DEASFA and AFSA fell into local optima in the 
5th and 14th iterations, PSO, GA, and GWO fell into local optima in the 

Table 6 
SDAFSA computation time under different parameters.

group 1 2 3 4 5 6 7 8 9 10

visual 0.4 0.67 0.78 0.88 0.94 0.98 1 1.1 1.2 1.5
step 0.8 0.56 0.32 0.18 0.14 0.12 0.1 0.08 0.06 0.03
λ 2 1.6 1.2 1 0.95 0.9 0.86 0.84 0.82 0.74
Time(s) 249.9021 233.8633 213.1426 192.2057 179.5354 170.6098 167.3821 181.7582 224.0994 257.4234

Fig. 7. 33-node distribution network diagram.

Fig. 8. Algorithm convergence characteristics comparison chart.

Table 7 
Algorithm optimization comparison.

Algorithm Maximum Fitness Average Fitness Average Fitness

SDAFSA 1.58161 1.55181 1.52139
AFSA 1.47324 1.45175 1.39704
DEAFSA 1.53419 1.51286 1.48315
PSO 1.45832 1.41323 1.36672
GA 1.48661 1.46892 1.44774
GWO 1.46326 1.43717 1.38331
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5th, 18th, and 12th iterations, respectively. SDAFSA (an improved 
artificial fish swarm algorithm based on adaptive recombination) found 
the optimal fitness value in the 14th iteration after falling into local 
optima in the 7th iteration. As evidenced by Table 7 across 20 inde
pendent trials, the optimal fitness values demonstrate the hierarchy: 
SDAFSA > DEAFSA > GA > AFSA > GWO > PSO. The proposed im
provements yield a 6.89 % increase in optimal fitness performance.

4.2. Experimental comparison of optimization methods

A comparative experiment evaluates the proposed bi-level coordi
nated optimization method against a traditional optimal power flow 
method (minimizing transmission loss) under two distinct shore power 
load variation scenarios. Both scenarios share the same total connected 
shore power capacity but differ in the rate of change and capacities of 
individual units. The experiment aims to validate the superior optimi
zation performance of the proposed method under both high-impact and 
lower-impact load conditions. The proposed method employs both 
SDAFSA and DEAFSA algorithms, with results averaged over twenty 
iterations. Key metrics include branch currents, voltage fluctuations, 
dynamic transmission losses, the equipment utilization costs of distrib
uted units, and overall economic loss. The modes are presented in 
Table 8 and the specific optimization indicators before and after 
improvement for the bi-level coordinated optimization method are 
provided in Table 9.

Under the proposed coordinated optimization, the port’s integrated 
power supply system dynamically executes combinations of six basic 
reconfiguration strategies across 24 time intervals (Fig. 11 and Fig. 12). 
Energy storage operates within an SOC range of (0.1, 0.9), with charge 
strategies depicted in Fig. 13 and Fig. 14. The most frequently utilized 
grid operating diagrams from the reconfiguration strategies are pre
sented in Fig. 9 and Fig. 10. Dynamic transmission losses, voltage fluc
tuations, branch power flows, and wind power integration are compared 
against the traditional method in Figs. 11–15.

Mode 1:With the variation of shore power load, the maximum rate of 
change within a 2–3 h period reaches 0.975.From Table 8 and Fig. 15(a) 
and Fig. 16(a), it can be observed that compared to the traditional 
method, the bi-level coordinated optimization method using the 
DEAFSA and SDAFSA algorithms increases the total transmission losses 
by approximately 6.81 % and 2.29 % respectively.

The average minimum voltage at each time interval is increased by 
approximately 5.68 % and 6.81 % respectively. The branch power flow 
losses are increased by approximately 4.09 % and 1.63 % respectively. 
The wind power integration is improved by approximately 8.61 % and 
12.42 % respectively.Under high-impact loads, the system’s economic 
performance is significantly improved with a minor impact on trans
mission losses. The overall economic losses are reduced by approxi
mately 4.93 % and 7.97 % respectively.

Mode 2: With the variation of shore power load, the maximum rate of 
change reaches 0.51 during hours 8–9.According to Table 8, Mode 2, 

Table 8 
Modes.

Conditions Conditions Maximum rate of change of shore 
power

Number of 
accesses

1 800KW 0.975 1
2 200KW 0.51 4

Table 9 
Grid connection parameters.

Power 
loss 
(MW)

Voltage 
mean 
(per unit 
value)

Converter 
utilization cost 
(in million 
RMB)

Energy storage 
utilization cost 
(in million 
RMB)

mode 1
Conventional 

methods
0.131 0.88 542.11 66.23

Bi-level 
coordinated 
optimization 
(DEAFSA)

0.140 0.93 519.53 58.74

Bi-level 
coordinated 
optimization 
(SDAFSA)

0.134 0.94 507.04 52.73

mode 2
Conventional 

methods
0.123 0.89 531.05 64.41

Bi-level 
coordinated 
optimization 
(DEAFSA)

0.132 0.95 498.53 56.89

Bi-level 
coordinated 
optimization 
(SDAFSA)

0.125 0.97 486.42 49.06

Fig. 9. Typical operating node diagram under bi-level coordinated optimization(DEAFSA).
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and Fig. 15(b) and Fig. 16(b), it can be observed that compared to the 
traditional method, the bi-level coordinated optimization method using 
the DEAFSA and SDAFSA algorithms increases the total transmission 
losses by approximately 7.31 % and 1.63 %, respectively.

The average voltage at each time interval is increased by approxi
mately 6.74 % and 8.98 %, respectively. The branch power flow losses 
are increased by approximately 6.09 % and 2.81 %, respectively.The 
wind power integration is improved by approximately 2.95 % and 
2.80 %, respectively. The overall economic losses are reduced by 
approximately 6.71 % and 9.98 %, respectively.

These findings demonstrate that the method exhibits favorable eco
nomic performance and control effectiveness under high-impact loads. 
In conclusion, the proposed bi-level coordinated optimization method 

outperforms the traditional optimization method under both Modes. 
Additionally, when comparing the SDAFSA algorithm to the DEAFSA 
algorithm, it shows good optimization effects for dynamic transmission 
losses, voltage fluctuations, branch power flows, wind power integra
tion,and overall economic costs.

5. Conclusion

A dual layer coordinated optimization method integrating improved 
artificial fish swarm algorithm and hardware cost model is proposed. 
The proposed dual layer coordinated optimization method incorporates 
the converter loss model and hardware cost model into the dual layer 
optimization framework, and adopts an improved artificial fish swarm 

Fig. 10. Typical operating node diagram under Bi-level coordinated optimization(SDAFSA).

Fig. 11. Transient load and routing strategy (DEAFSA).
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algorithm based on adaptive recombination behavior. This leads to 
higher accuracy in optimizing the transmission loss and hardware cost 
parameters of distributed units, while reducing computational costs, 

effectively reducing the overall economic cost of the system.
Comparative experiments on optimization methods show that the 

proposed method achieves a 7.97 % − 9.98 % reduction in economic 

Fig. 12. Transient load and routing strategy (SDAFSA).

Fig. 13. Energy storage strategy (DEAFSA).

Fig. 14. Energy storage strategy (SDAFSA).
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Fig. 15. Comparison before and after improvement (DEAFSA).
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costs by coordinating network losses and hardware costs, while main
taining a slight increase in network losses. Under the same total capacity 
of shore power, SDAFSA improves voltage stability by 1.11 % − 2.22 % 
compared to DEAFSA, reduces branch flow losses by about 3.1 % 
− 3.7 %, and increases wind power consumption by about 6.91 % 
− 8.81 % before and after improvement. The introduction of the hard
ware cost model has indeed achieved the coordinated optimization of 
distributed unit network loss and hardware cost. Cost comparison cal
culations and algorithm performance experiments show that the adap
tive recombination behavior adopted by this method improves 
optimization accuracy without significantly increasing resource con
sumption. As a result, the optimization performance of the double-layer 
coordinated optimization method in terms of transmission loss, power 
quality, and hardware usage cost has been further improved.

The method proposed in this paper has been validated on a medium- 
scale IEEE 33-node system. Future work will focus on extending the 
approach to larger-scale systems such as the IEEE 118-node network or 
practical urban distribution grids with multiple interconnected micro
grids. Further efforts will also be dedicated to developing simplified 
models and distributed computing strategies, as well as introducing 
reinforcement learning-based parameter auto-tuning mechanisms. 
These enhancements are expected to strengthen the applicability of the 
method in smart grids and electric vehicle integrated energy systems, 
supporting more dynamic and high-dimensional operational scenarios.
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