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ABSTRACT 

This paper addresses the production control problem of an adjustable capacity unreliable 
manufacturing cell responding to a single product type demand. The manufacturing cell is 
composed of an unreliable machine, called the ‘central machine’. Due to availability fluctuations, 
the central machine may fall short to meet the long term demand rate. In order to quickly adjust 
the production capacity and thus meet the demand, a reserve machine is called upon in support if 
the finished product inventory level drops below a specific threshold. Such a machine involves 
higher production costs compared with the central one. This paper aims to determine the optimal 
production control policy for the involved machines in order to minimize production, inventory 
and backlog costs over an infinite horizon. The paper proposes a continuous dynamic 
programming formulation of the problem and adopted a numerical scheme to solve the optimality 
conditions equations. The optimal production policy is shown to be described by a State 
Dependent Hedging Point Policy (SDHPP). To determine the optimal control policy parameters, 
an experimental approach based on design of experiment, simulation modeling, and response 
surface methodology is proposed. Several sensitivity analyses have been carried out and have 
shown the robust behavior of the developed policy facing expected variations of the system 
parameters. The results also show that the proposed SDHPP policy outperforms classical stand-by 
and parallel machines based control policies. The usefulness of the proposed approach is outlined 
for more complex situations where the system must deal with non-exponential failure and repair 
time distributions.  
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1. Introduction

Due to its importance for manufacturers, many research studies have been devoted to optimal

production planning and control problems of stochastic manufacturing systems. Several

approaches have been carried out aiming to address the problem for different classes of systems.

Let us start with the pioneering work of Kimemia and Gershwin (1983), which modelled the 

movement of parts as a continuous flow and suggested a feedback control of the flow rates of 

parts through a Flexible Manufacturing System (FMS). They showed that the optimal control 

policy, for the considered system, has a special structure called the Hedging Point Policy (HPP). 

Within such a policy, a non negative production surplus of part types, corresponding to the 

optimal inventory levels, is maintained during times of excess capacity availability to hedge 

against future capacity shortage caused by machine failures. 

Akella and Kumar (1986) considered a single-machine, single-part-type system with linear 

holding and backlog cost. They assumed that the machine dynamic state is a birth-death process, 

i.e., the time between successive machine failures and repair times are exponentially distributed.

They showed that the optimal production policy follow the aforementioned HPP. Bielecki and

Kumar (1988) dealt with a similar problem with a long-run average cost objective. They

demonstrated as well as in Kimemia and Gershwin (1983) that the HPP remains optimal.

With the assumptions of continuous failure-prone manufacturing systems and fixed maximal 

capacity, more general problems have been studied resulting in the characterization of optimal 

and sub-optimal production policies. Among others, Liberopoulos and Hu (1995) extended the 

Akella and Kumar proposal (1986) to the case of non-Markovian machine capacity process.  

For the long-run average cost and multiple machine states, Sharifnia (1988) extended the proposal 

by Bielecki and Kumar (1988) and showed that the optimal production policy has a Multiple 

Hedging Point (MHP) structure. Liberopoulos and Caramanis (1994) demonstrated that the 

Sharifnia’s approach applies when the machine transition rates depend on the production rates. 

Within the class of MHP policy, Gharbi et al. (2008) showed that the policy guarantees better 

performance than the HPP to control production rates for remanufacturing systems subject to 

stochastic unplanned demand. In the same direction the MHP policy was employed by Kenne et 

al. (2003) to control the corrective maintenance rates in a multi-machine, multi-product, 

unreliable manufacturing system. The considered policy is governed by two hedging points 
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designed to readjust the corrective maintenance rate which depends on the available inventory 

levels. A staircase structure policy or multiple hedging point age-dependent policy has been 

shown optimal (minimizing an overall cost function, including inventory holdings, lost sales, 

preventive and corrective maintenance costs) by kenne et al. (2007). From a practical point of 

view, Pellerin et al. (2007) have shown that this class of policy can also be integrated in an ERP 

system (i.e., Enterprise Resource Planning) to control production and corrective maintenance 

rates for stochastic manufacturing systems governed by an inspection process. It is interesting to 

note that when considering a given manufacturing system within its external environment (i.e., 

supply chain) this class of policy is also very efficient. In fact, to determine a control policy for 

both the supply and remanufacturing activities that minimizes the average repair/replacement, 

acquisition and inventory/shortage total cost over an infinite horizon, Berthaut et al. (2009) have 

proposed a suboptimal joint remanufacturing and supply control policy. Such a policy is 

composed of a MHP policy for the remanufacturing stage and an (s, Q) policy for the spare parts 

supply. Within such a policy an economic lot of raw material is ordered when the upstream 

inventory level riches s. Furthermore, it has been shown that the proposed MHP policy leads to a 

significant cost reduction as compared to a combination of a HPP and an (s, Q) policy. In the 

same direction, Hajji et al. (2009) have developed a complete strategy for production and 

replenishment activities which combines a modified (s, Q) and MHP policies. For an extended 

survey in optimal control of stochastic manufacturing systems, we refer the reader to Gershwin 

(2000), Sethi et al. (2002), and Zanoni et al. (2006). 

 

For the class of manufacturing systems under consideration where the existing machine capacity 

falls short to meet the demand due to failure events and reparation activities, the problem remains 

open. This class of manufacturing systems can be considered as a special case of one called the 

Reconfigurable Manufacturing System (RMS) (Koren et al. (1999)). In this case, the production 

planning problem has never been addressed from a stochastic operational point of view. A RMS 

is defined as a system designed for rapid change in its structure, as well as its hardware and 

software components, in order to quickly adjust its production capacity and functionality within a 

part family in response to sudden market changes or intrinsic system change (Koren et al. (1999); 

Koren and Ulsoy (2002)). This class of manufacturing systems can also be considered as a 

decision making problem to adjust capacity by machine replacement when the system faces 

imperfect repairs for example (Dehayem Nodem et al. (2009)). In this paper, the problem is 

addressed from an operational point of view to keep the decision for capacity adjustment 

following, in a continuous manner, the operational decisions.   

https://www.researchgate.net/publication/245441046_Developpement_d'une_politique_integree_de_controle_des_taux_de_production_et_de_maintenance_corrective_avec_diagnostic?el=1_x_8&enrichId=rgreq-a5fd40c6-0d22-4adf-b59f-35597c424389&enrichSource=Y292ZXJQYWdlOzIzMjg5Njk0MjtBUzoxNTk1OTYzMTY0NzEyOTZAMTQxNTA2MjEzNTQxNA==
https://www.researchgate.net/publication/4754110_Age-dependent_production_planning_and_maintenance_strategies_in_unreliable_manufacturing_systems_with_lost_sale?el=1_x_8&enrichId=rgreq-a5fd40c6-0d22-4adf-b59f-35597c424389&enrichSource=Y292ZXJQYWdlOzIzMjg5Njk0MjtBUzoxNTk1OTYzMTY0NzEyOTZAMTQxNTA2MjEzNTQxNA==
https://www.researchgate.net/publication/239396111_Joint_replenishment_and_manufacturing_activities_control_in_two_stages_unreliable_supply_chain_Int_J_Prod_Res?el=1_x_8&enrichId=rgreq-a5fd40c6-0d22-4adf-b59f-35597c424389&enrichSource=Y292ZXJQYWdlOzIzMjg5Njk0MjtBUzoxNTk1OTYzMTY0NzEyOTZAMTQxNTA2MjEzNTQxNA==
https://www.researchgate.net/publication/46491447_Hierarchical_decision_making_in_production_and_repairreplacement_planning_with_imperfect_repairs_under_uncertainties_Eur_J_Oper_Res?el=1_x_8&enrichId=rgreq-a5fd40c6-0d22-4adf-b59f-35597c424389&enrichSource=Y292ZXJQYWdlOzIzMjg5Njk0MjtBUzoxNTk1OTYzMTY0NzEyOTZAMTQxNTA2MjEzNTQxNA==
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The paper’s main contribution lies in the development of a production control policy for a mono-

product manufacturing cell composed of a single unreliable workstation called the ‘Central 

Machine’. This manufacturing cell is a part of a Cellular Manufacturing System (CMS) composed 

of several other cells (Askin and Standridge (1993), Wu et al. (2007)). The considered cell 

capacity can be adjustable by considering a reserve machine incurring higher production costs 

when it is used.  Usually, stand-by machines are called upon in support when the central machine 

breaks down and until reparation ends (Freiheit et al. (2004), Jardine and Tsang (2005)). 

However, the resultant control policy, called the State Dependent Hedging Point Policy 

(SDHPP), is more realistic, flexible, and useful in this context. Under the SDHPP policy, the 

reserve machine is called upon in support to production only if the finished product inventory 

level drops below a specific threshold. The SDHPP policy depends not only on the central 

machine state but also on the state of finished product inventory. The paper’s contribution is 

further illustrated by the robust behaviour of the SDHPP facing expected variations of the system 

parameters. A simulation-based experimental design approach is combined with the control 

theory to develop a systematic control approach to achieve a close approximation of the optimal 

production policy. Extensions to cover more complex systems, for which the failure and repair 

times are non-exponentially distributed, are also outlined. 

 

This paper is organized as follows: Section 2 presents the statement of the optimal production 

problem. The numerical approach and the related control policy are presented in section 3. 

Sections 4 and 5 describe the combined control approach and the simulation model. Section 6 

outlines the experimental results and the usefulness of the proposed control policy. A comparison 

study between the proposed SDHPP policy and control policies based on classical stand-by and 

parallel machines is carried out in section 7.  An Extension to manufacturing system with non-

exponential failure and repair time distributions is presented in section 8. The paper is concluded 

in section 9. 

2. Problem Statement 

The manufacturing system under study consists of an unreliable central machine 1M capable of 

producing one part type P (Figure 1). Due to randomness of its own availability (i.e., failure 

events and repair activities), 1M capacity falls short to meet the demand d. Therefore, a reserve 

machine 2M  is called to ensure a long term satisfaction of the demand. Such an action cannot be 

realised in a continuous manner due to the higher production costs of 2M compared to those 

https://www.researchgate.net/publication/228739340_Productivity_of_synchronized_serial_production_lines_with_flexible_reserve_capacity?el=1_x_8&enrichId=rgreq-a5fd40c6-0d22-4adf-b59f-35597c424389&enrichSource=Y292ZXJQYWdlOzIzMjg5Njk0MjtBUzoxNTk1OTYzMTY0NzEyOTZAMTQxNTA2MjEzNTQxNA==
https://www.researchgate.net/publication/32002566_Modeling_and_Analysis_of_Manufacturing_Systems?el=1_x_8&enrichId=rgreq-a5fd40c6-0d22-4adf-b59f-35597c424389&enrichSource=Y292ZXJQYWdlOzIzMjg5Njk0MjtBUzoxNTk1OTYzMTY0NzEyOTZAMTQxNTA2MjEzNTQxNA==
https://www.researchgate.net/publication/222299098_A_genetic_algorithm_for_cellular_manufacturing_design_and_layout_Eur_J_Oper_Res?el=1_x_8&enrichId=rgreq-a5fd40c6-0d22-4adf-b59f-35597c424389&enrichSource=Y292ZXJQYWdlOzIzMjg5Njk0MjtBUzoxNTk1OTYzMTY0NzEyOTZAMTQxNTA2MjEzNTQxNA==
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of 1M . In fact, and founded on group technology and CMS concepts (Burbidge (1992), Andrés et 

al. (2005), Yang and Yang (2008)), the central machine, which is dedicated to producing product 

P, is selected based on several performance criteria; especially, its throughput rate and production 

cost. Due to higher cost incurred by the reserve machine M2; this latest is stopped as soon as 

machine M1 is restored to operational state and a certain inventory level is reached to hedge 

against demand shortages. Figure 1 illustrates the system under study, its dynamic behaviour, and 

the associated costs to be minimized.  

 

Figure 1: Structure of the manufacturing system under study 

 

To be processed, a part type P  requires an average processing time equal to p > 0. Also, product 

P has an average time between orders equal to d1 , assumed to be constant. For the considered 

manufacturing system,  tx ,  tu1  and  tu2  denote the inventory/backlog level of P , the 

central machine and the reserve machine production rates, respectively, at time t. 

 

For any specific time t, the state of the system has two components: a continuous component 

denoted x(t) describing the cumulative surplus level, and a discrete component denoted  t   

describing the central machine state. The central machine state  t  is a continuous time discrete 

space stochastic process taking value 0 if machine 1M is under repair and 1 if it is operational. 

Hence, the reconfigurable manufacturing system dynamic behaviour can be modeled by the state 

variables     ,x t t  where      , M 0,1x t t  R . 

The dynamic behaviour of the product surplus is given by the following differential equation:  
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      xxdtututx  )0(,, 21        (1) 

where x  denotes the initial surplus level. 

The central machine uptimes and downtimes are assumed to be exponentially distributed with 

failure and repair rates equal to 11 randp , respectively. The machine state evolves according to a 

continuous-time Markov process with states in M and with a generator matrix Q such that: 

 Q q , where q  denotes the transition rate from state   to  , 0q , and 







 qq , , M   . The transition rate matrix Q is expressed as follows: 

 

1010

0101

qq

qq
Q




  where 110 pq   and 101 rq  .   (2) 

 

The production rates at any given time must satisfy the capacity constraint of the machines given 

by equation (3); where max
1u and max

2u denote the maximum production rates of machines 

1M and 2M , respectively. 

 

 2,1,)(0 max  iutu ii     (3) 

 

Due to the random availability of the central machine, its maximum production rate falls short to 

meet the demand. Given the stochastic process governing machine 1M , its steady state 

availability can be calculated as follows: 

 

 
1

1

1 1
M

r
UTR

r p



                                                             (4) 

 

Thus, the availability constraint of machine 1M is given by the following equation: 

 

d
pr

r
u 




11

1max
1                                                             (5) 
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Considering the available capacity of machine 2M , the whole capacity of the system can meet the 

demand, and the overall capacity constraint is given by: 

 

du
pr

r
u 


 max

2
11

1max
1                                                    (6) 

 

For each M  , the feasible production rate (or capacity) set is given by: 

 

   











 du
pr

r
uiutuuu ii

max
2

11

1max
1

max
21 ,2,1,0,0,)(       (7) 

 

The decision variables of the control policy are the production rates     .,. 21 uu of the central 

machine 1M and the reserve machine 2M . Intrinsic machines properties stipulate different       

speed over which a given machine can operate the product. Machine 1M can be shut down                 

(i.e,   01 tu ), operate under the demand rate (i.e,   dtu 1 ), or operate under its               

maximum production rate (i.e,   max
11 utu  ). Concerning machine 2M , it can be shut down              

(i.e,   02 tu ), or operate under its maximum production rate (i.e,   max
22 utu  ). The decision 

made by the manager to choose which machine to operate and under which production rate is 

strongly conditioned by the involved production costs. Let 1
1MC , 2

1MC and
2MC denote the 

production cost of machine 1M under the demand production rate, the production cost of 

machine 1M under the maximum production rate and the production cost of machine 2M , 

respectively. These costs must satisfy constraint (8) stating that machine 1M production costs are 

proportional to its speed and that operating the reserve machine 2M is much more costly. 

 

211

210 MMM CCC                                                    (8) 

 

The inventory, backlog and production cost function  .g is given by the following equation: 
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          
 
 

1 21 2 1 2

1
max

1 1

, ,

1

2     

l
M Mg x t u t u t C x C x C u t C u t

if u t d
l

if u t u

        

   

      (9)  

where max(0, )x x  , max( , 0)x x   , C : backlog cost and C : inventory cost.  

 

The discounted total cost J(.) can be defined by the following expression: 

 





 
  dtuuxgeEuuxJ t ).,,(),,,( 210

.
21

                                   (10) 

 

where ρ denotes the discounted rate of the incurred cost and 0 0E[ , ]x  is the expectation 

operator conditional on initial condition. 

 

Let A denote the set of admissible decisions     .,. 21 uu . The considered production planning 

problem consists in finding an admissible decision or control policy     .,. 21 uu  that minimizes 

the discounted total cost J(.) (Eq. 10), subject to constraints (1) to (9). Such a feedback control 

policy, as illustrated in Figure 1, determines the production rates as a function of the surplus level 

x and the state of the system α. 

 

While producing the part type P , the corresponding value function (.)v can be given by: 

 

 
 1 2

1 2
,

, inf ( , , , ) ,
u u A

v x J x u u x M  


   R              (11) 

 

One can show that the value function ),( xv  is locally Lipschitz, and is the unique viscosity 

solution to the following HJB equation. 

 

 
  0),(),.)((.),,(),()()(min 2121

)(, 21







xvxvQuuxgxvduu x
uu

      (12) 

 

where    .xv denotes the gradients of (.)v  with respect to x. 
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The production policy that we are seeking is obtained when the value function is known. While 

it’s very complex if not impossible to analytically solve the HJB equations (12), the next section 

proposes a numerical method to obtain the approximation of the value function and the associated 

control policy. 

3. Numerical Approach and Optimal Control Policy 

In order to approximate the solution of the HJB equations (12) corresponding to the stochastic 

optimal control problem, and to solve the corresponding optimality conditions, a numerical 

method based on Kushner and Dupuis (1992) approach is proposed. The basic idea consists in 

using an approximation scheme for the gradient of the value function    .xv .  

 

3.1. Numerical optimality conditions  

Let h denotes the length of the finite difference interval of the variable x . Using the finite 

difference approximation, ),( xv could be given by ),( xvh
, and the gradient ),()( xv x by:  

 














0))()((
1

0))()((
1

),()(

21

21

duuifhxvxv
h

duuifxvhxv
hxv

hh

h
i

h

x     (13) 

 

Also, we could see that: 

 

 

 

)(

0)(

0)(),())((

21

21
21

21
21

21

xv
h

duu

duuIndhxv
h

duu

duuIndhxv
h

duu
xvduu

h

h

h
x












 

  (14) 

 

Using this approximation, the HJB equations (12) can be expressed in terms of ),( xvh , as 

shown in equation (15).  
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 
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





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




















































),(.),,(

)0()(

)0()(

)(

min),(

21

21
21

21
21

121

)(, 21














xvquuxg

duuIndhxv
h

duu

duuIndhxv
h

duu

h

duu
q

xv

h

h

h

uu

h                    (15) 

The solution of the numerical approximation of ),( xv  may be obtained by either successive 

approximation or policy improvement techniques (Kushner and Dupuis (1992)).  

 

3.2. Numerical results  

The implementation of the approximation technique requires the use of a finite grid denoted 

by hG . The considered computation domain D is given by: 

 
D = 1.0,55:  hxx . 

 
The numerical results used to characterize the optimal production policy are analyzed in this 

section within a basic case. Table 1, shows the operational and cost parameters of the considered 

system.   

 
Table 1: Data parameters 

Parameters ( C ; C ) (
211

;; 21
MMM CCC ) (p1; r1)  max

2
max
1 ;uu d   

Values (5 ; 50) (3 ; 10 ; 60) (0.04 ; 0.15) (0.25 ; 0.05) 0.21 0.01

 

It follows from numerical results that the optimal production policy has a multiple hedging point 

structure, which we call the ‘State Dependent Hedging Point Policy’ (SDHPP) (Fig. 2); where 

1Z  and 2Z  define the two thresholds governing the policy.  

 

https://www.researchgate.net/publication/46958144_Numerical_Methods_for_Stochastic_Control_Problems_in_Continuous_Time?el=1_x_8&enrichId=rgreq-a5fd40c6-0d22-4adf-b59f-35597c424389&enrichSource=Y292ZXJQYWdlOzIzMjg5Njk0MjtBUzoxNTk1OTYzMTY0NzEyOTZAMTQxNTA2MjEzNTQxNA==
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 .1u

x

max
1u

d

8.21 Z  
 

 .2u

max
2u

x
9.12 Z  

 

Figure 2: Production control policy 

 

The results obtained show that the production control policy for the two machines is defined by 

two hedging levels. According to a HPP policy, the central machine 1M must produce at its 

maximum production rate as long as the stock level  tx  is lower than the hedging level Z1 = 2.8. 

When  tx  reaches 1Z , the production rate must be fixed to the demand rate. Above 1Z the 

machine is shut down and the production rate is fixed to zero. The reserve machine 2M is also 

governed by a class of a HPP policy called bang-bang policy but according to a different hedging 

level denoted 2Z . Thus 2M  must produce at its maximum production rate as long as the stock 

level  tx  is lower or equal to the hedging level 9.12 Z . Above 2Z  the machine is shut down 

and its production rate is fixed to zero.  

 

The obtained policy makes sense since the production cost of the reserve machine is higher than 

that of the central machine. Therefore, in the negative area of the stock (i.e., shortage of stock) the 

random availability of the central machine makes it impossible for the system to reach a safety 

stock level to hedge against future breakdowns and the support of 2M  is necessary to achieve 

such a goal. This support cannot be maintained continuously and is kept only for a given thresh of 

the stock space. In this case, the considered data parameters have led to a positive hedging 

level 2Z which is lower than 1Z . This result also makes sense since the lower production cost of 

the central machine makes it the one to be used most often in reaching the security stock level. 
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However, the thresh limit under which the reserve machine must be called in support is obviously 

fluctuating and is defined according to a compromise of the production costs and rates. This issue 

is detailed in the next section.  

 

Figure 3 illustrates the dynamic behaviour of the production control policy over time. As 

explained previously, three areas can be defined: 

 

- Area 1: under the hedging level 2Z , the two machines must produce according to their 

maximum production rates  max
2

max
1 uu  . 

- Area2: between the hedging levels 1Z and 2Z , the central machine 1M must produce 

according to its maximum production rate. Machine 2M is shut down. 

- Area 3: when the stock level reaches 1Z , the central machine 1M must produce according 

to the demand rate. 

t

2Z

1Z

x

0

du max
1

0

  duu  max
2

max
1

Area2

Area3

Area1

du max
1

d d

  duu  max
2

max
1

du max
2

 
Figure 3: dynamic behaviour of the stock over time 

 

In the next section, sensitivity analysis and several experimentations are conducted to ensure that 

the structure of the obtained policy is maintained and can be considered as a generalized policy 

for the general problem under study. 
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3.3. Sensitivity analysis: Parameterized control policy 

To illustrate the effect of system parameters changing on the proposed SDHPP policy, a 

sensitivity analysis has been performed (Table 2). Five sets of parameter variations have been 

conducted: 

 

- Set I consists in 3 cases with backlog cost variation. 

- Set II consists in 3 cases with inventory cost variation 

- Set III and IV consist in 6 cases with machine 2M  production cost variation. 

- Set V consists in 3 cases with machine 2M  production rate variation. 

 
Sets I and II results show that when the backlog cost rises, the value of the hedging thresholds 

increase accordingly to ensure the availability of enough stocks to hedge against future backlogs. 

Moreover, when the inventory cost increases, the values of the hedging thresholds decrease to 

confine the stock accumulation. 

 

 
Table 2: Data parameters for the sensitivity analysis cases 

 Cases C  C  2MC  max
2u  ( ** Z,Z 21 ) 

 

Set I 

Basic 5 50 60 0.05 (2.8 ; 1.9) 

1 5 60 60 0.05 (3 ; 2.2) 

2 5 70 60 0.05 (3.3 ; 2.4) 

 

Set II 

Basic 5 50 60 0.05 (2.8 ; 1.9) 

1 6 50 60 0.05 (2.4 ; 1.7) 

2 7 50 60 0.05 (2.2 ; 1.5) 

 

Set III 

Basic 5 50 60 0.05 (2.8 ; 1.9) 

1 5 50 80 0.05 (2.9 ; 1.7) 

2 5 50 100 0.05 (3.1 ; 1.5) 

 

Set IV 

Basic 5 50 60 0.05 (2.8 ; 1.9) 

1 5 50 55 0.02 (2.7 ; 2) 

2 5 50 50 0.02 (2.7 ; 2.2) 

 

Set V 

 

Basic 5 50 60 0.05 (2.8 ; 1.9) 

1 5 50 60 0.06 (2.4 ; 1.5) 

2 5 50 60 0.07 (2.2 ; 1.1) 
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Set III results show that when the production cost of the reserve machine increases the hedging 

level 2Z  decreases. Additional experimentations have been conducted with a higher 
2MC and 

showed that the level of 2Z  still decreasing to reach zero. This result makes sense since a very 

costly reserve machine should be called in support only for critical situations (i.e., negative stock 

level).  Set IV results confirm this observation and show that when the production cost of the 

reserve machine decreases the hedging level 2Z increases and the machine is called to support the 

central one more often.  

 

It is interesting also to observe the results of Set V showing that with a higher production rate of 

the reserve machine the two hedging levels decrease. This observation show that since the 

available capacity can ensure a rapid return to normal after machine failures, the need for high 

safety stock levels is lower. 

 

From the above analysis, it clearly appears that the results obtained make sense, and that the 

structure of the policy defined by the 2 parameters ( 21 ZandZ ) is always maintained. This 

allows the development of a parameterized production control policy defined by the following 

equations: 

 














1

1

1
max
1

1

0

.

Zxif

Zxifd

Zxifu

u                                       (16) 

 








2

2
max
2

2
0

.
Zxif

Zxifu
u                                                (17) 

with the following constraint:  

                           12 ZZ   and 10 Z                                    (18) 

The state dependent hedging point policy presented by equations (16) to (18) is completely 

defined for given values of iZ  (i=1,2), called here design factors.  

 

The numerical methods provide the near-optimal structure of the control policy. However, 

implementation difficulties and irregularities in the regions boundaries make the approximation 

of the control parameters challenging. Furthermore, the accuracy of the values of the minimum 

value function and of the control parameters obtained with the numerical methods depends on 

how fine the step of the grid is (Kenne et al. 2003). A satisfactory approximation would be too 
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time-consuming to be applied to the operational level, which is one of our objectives. 

Consequently, we propose an alternative approach based on simulation in order to approximate 

the optimal control parameters and the associated cost. The simulation based approach is more 

flexible and more suited to thoroughly compare and extend the control policies in a wide range of 

time and cost configurations. The next sections are aimed at developing a systematic approach for 

determining optimal values of iZ (i=1,2) and to outline possible extensions to cover more realistic 

systems where the central machine is facing non-exponential failure and repair time distributions.  

4.  Resolution approach  

In control theory, the results of traditional optimization methods are sometimes insufficient to 

reach a comfortable level of performance. Optimal solutions are difficult to calculate and are 

often approximated by numerical methods under strict conditions. This fact limits the usefulness 

of the obtained solution for more realistic cases.  

To improve these methods, we have proposed an approach combining the analytical models with 

the descriptive capacities of simulation models, with experimental design, and response surface 

methodology techniques (Gharbi et al. (2006)). To quantify the policy, which structure is given 

by analytical model, simulation model are combined with experimental design and response 

surface methodology to estimate the optimal values of the policy’s parameters. In the case of non-

exponential failure rate and repair time distributions, the quantification parameters is also 

possible with the help of the simulation model, which can easily take into account the nature of 

any probability distributions. The corresponding output is then given by the simulation model 

(i.e., cost) which affects the response surface model. 

This approach, applied to the problem presented in this paper, consists on the following 

sequential steps: 

 

Step 1. The Structure of near-optimal control policy given by equations (16) to (18) is obtained, 

based on the numerical approach developed in section 3. The Control factors iZ (i=1,2) 

fully describe the control policy to be applied to the manufacturing system. 

Step 2. The Simulation model uses the control policy structure defined in the previous step as 

input for conducting experiments in order to evaluate the manufacturing system’s 

performance. Hence, for given values of the control factors, the cost incurred is obtained. 

Step 3. The Experimental design approach defines how the control factors can be varied in order 

to determine the effects of the main factors and their interactions (i.e., analysis of 

variance or ANOVA) on the cost through a minimal set of simulation experiments. 
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Step 4. The Response surface methodology is then used to obtain the relationship between the 

cost incurred and significant main factors and interactions given in the previous step. The 

model obtained is then optimized in order to determine the best values of the factors 

known here as *
iZ  for production. The Near-optimal control policy  *

iZu  is an 

improved hedging point policy to be applied to the system. The application of the 

proposed control approach gives the production rates described by the equations by 

equations (16) to (18) for best values of factors *
iZ . 

5. Simulation model 

The essence of the resolution approach is the simulation model developed using the Visual 

SLAM language (Pritsker and O’Reilly (1999)) and combines discrete-continuous changes 

describing the dynamics of the system presented in Figure 1 and governed by the production 

control policy developed in previous sections. This model consists of several networks and user C 

sub-routines, each of which describes a specific task in the system (i.e., control policy, states of 

the system, inventory control, etc.). The diagram of the simulation model is shown in Figure 4 

with the following block descriptions: 

1. The INITIALIZATION block sets the values of iZ  (i=1,2), the demand rate (d), and the 

machine parameters ( max
1u ,  max

2u , p1, r1), etc.).  The maximum and minimum time step 

specifications for integration of the cumulative variables and allowable errors are also 

assigned at this step as well as the simulation time T_fin and the time for the warm up 

period after which statistics are cleared. 

2. The DEMAND RATE  block performs the arrival of the demand for the production system 

at each 1/d unit of time. Verification is then performed on the inventory values. The 

inventory or the backlog level is then updated.  

3. The M1 block represents the central machine of the manufacturing cell. Due to its random 

availability (i.e., failure events and repair activities), 1M capacity falls short to meet the 

demand d.  

4. The M2 block represents the reserve machine which is called to ensure a long term 

satisfaction of the demand.  
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Figure 4. Diagram of simulation model 

 

5. The CONTROL POLICY block is defined in the section 3 (see equations (16) to (18)) for 

the system production rates. The control policy is called by the output of the FLAG block. 

This block is used to permanently verify the variation in the surplus level  tx . The 

production rate of M1 is set to a zero value if   1Ztx  , otherwise it is either set to the 

demand rate ( du 1 ) if   1Ztx   or to the maximum  rate  max
1u if    1Ztx   . The 

machine 2M must produce at its maximum production rate  max
2u as long as the stock 

level  tx  is lower or equal to the hedging level 2Z . Above 2Z  the machine is shut down 

and its production rate is fixed to zero. 

6. The FAILURE & REPAIR block samples the time to failure ( 1
1p ) and time to repair         

( 1
1r
 ) of machine M1 using probability distributions. When a failure arrives, M1 is pre-

empted until reparation is performed. The operational states of the machine M1 is 

incorporated in the state equations by the means of logical variables multiplying the 
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production rates. Demands are therefore not satisfied during that period unless the 

inventory is positive. 

7. The STATE EQUATION is equation (1), defined as a C language insert. It describe the 

inventory and backlog variables using the production rates set by the control policy and 

the binary variables from the failure and repair of machine M1. 

8. The TIME ADVANCE block uses an algorithm provided by simulation software. It is a 

combination of discrete event scheduling (failures and repair), continuous variable 

threshold crossing events and time step specifications.   

9. The UPDATE INVENTORY block traces the variation of the surplus level as          

machines produce or as demand arrival occurs (i.e. production either increases surplus, if 

there is no backorder, or it satisfies the cumulative demand, and hence decreases the 

backorder level).  

10. The UPDATES INCURRED COST block calculates the incurred cost according to the 

levels of the inventory and backlog variables ( x and x ), the unit costs ( C and C ), 

which machine is producing (M1 and/or M2) and their production costs ( 1
1MC , 2

1MC ,       

and 
2MC ). 

6.  Experimental design and response surface methodology 

Given that an optimal solution of the stochastic control problem described in sections 2 exists and 

given the convexity property of the cost function, we define three levels for each factor 

1Z and 2Z   to obtain a convex estimated cost function. These observations give rise to a complete 

32 experimental design (Montgomery (2005)). 

6.1 Numerical example 

The following values of the operational and cost parameters, caracterizing the central and the 

reserve machines, are considered:  

d = 100 units/TU, max
1u = 125 units/TU, max

2u  = 25 units/TU; 1
1p  = 0.25 TU  and  1

1r
  = 0.1 TU ; 

c+ = 10 $ /unit/TU  and c- = 100 $ /unit/TU ; 

1
1MC =20 $ /unit, 2

1MC =40 $ /unit, and 
2MC =150 $ /unit. 
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The minimum and the maximum values of Z1 were first observed using simulation experiments. 

The independent variable levels were then chosen as presented in Table 3. 

Table 3. Level of independent variables 

Factor Low Level Center High Level 

Z1 40 60 80 

k (Z2/ Z1)  0.05 0.5 0.95 

Five replications were conducted for each combination of the factors and a variance reduction 

technique called common random numbers (Law and Kelton (2000)) was used.  

6.2 Result Analysis 

The statistical analysis of the simulation data consists of the multifactor analysis of variance 

(ANOVA). This is done using a statistical software application (STATGRAPHICS) to provide 

the effects of the two independent variables ( 1Z , and k) on the dependant variable (Total cost). 

The ANOVA table corresponding to the generated data is illustrated in Table 4. All p-values are 

less than 5%.  Consequently, we conclude that the main factors 1Z , and k, their quadratic effects, 

as well as their interactions are significant at the 0.05 level. The 2
adjustedR value of  0.9744 from 

the ANOVA table states that more than 97% of the total variability is explained by the model 

(Montgomery (2005)). 

 

Table 4. ANOVA table  

 Sum of squares d.f. Mean square F-ratio P-value 

1Z  7977.89 1 7977.89 15.71 0.0003 

k  63809.9 1 63809.9 125.65 0.0000 
2
1Z  7860.27 1 7860.27 15.48 0.0004 

kZ 1  106221. 1 106221. 209.17 0.0000 

2k  577373. 1 577373. 1136.95 0.0000 

blocks 4100.3 4 1025.07 2.02 0.1132 
Total Error 17773.9 35 507.826   
Total (corr) 785117. 44   2

adjustedR =0.9744 

 

The residual analysis was used to verify the adequacy of the model. A residual versus predicted 

value plot and normal probability plot were used to test the homogeneity of the variances and the 

residual normality respectively. We conclude that the model is satisfactory. The second order 

model of the total cost is given by:  
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2
1

2
11 6,118609745,80700904,093,17746442,1177,6461 kkZZkZCost        (19) 

The near-optimal control policy to be applied to the considered manufacturing system is defined 

by the minimum of the cost function (19) located at 66.49*
1 Z ,  72.28578.0 *

2
*  Zk  as 

shown in Figure 5. Cost*= 5659.31 results from this control policy.  *
1Z and *

2Z define the best-

State Dependent Hedging Point Policy to be applied to the manufacturing system considered. 

20 30 40 50 60 70 80 90 100

Z1

0

0.2

0.4

0.6

0.8

1
k

 

Figure 5. Contours of estimated Response Surface 

6.3 Sensitivity analysis 

A set of numerical examples are considered to measure the sensitivity of the obtained control 

policy with respect to inventory, backlog and production costs (i.e., C and C , 1
1MC , 

2
1MC and

2MC ). The following variations, illustrated in Table 5, are explored and compared to 

the basic case (experience No.1):  

 Varying C : decreasing C (experience No.2) results in a tendency to increase the stock 

level in order to avoid further backlog costs (Z1
* increases). Consequently, M1 needs 

more support from M2, which has to work more to guaranty the increasing of the stock 

level (k* increases). Increasing C gives the opposite results (experience No.3). 

 Varying C : decreasing C (experience No.4) results in a tendency to decrease the stock 

level in order to avoid further inventory costs (Z1
* decreases). Consequently, M1 needs 

less support from M2, which has to work less to decrease its working cost (k* decreases). 

Increasing C gives the opposite results (experience No.5). 
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Table 5. Sensitivity analysis table for the control Point policy  

No. C  C  
1

1MC  2
1MC  2MC  Z1

* 
Z2

*

(k*) 
Cost*

 Remark 

1 10 100 20 40 200 64.12 
27.88 

(0.434) 
6235.59 Basic case 

2 5 100 20 40 200 76.91 
37.84 

(0.492) 
6070.48 

Z1
* increases 

k* increases 

3 15 100 20 40 200 52.15 
21.38 

(0.410) 
6363.14 

Z1
* decreases  

k* decreases 

4 10 50 20 40 200 60.90 
16.73 

(0.275) 
6097.22 

Z1
* decreases  

k* decreases 

5 10 150 20 40 200 68.45 
35.78 

(0.523) 
6317.78 

Z1
*increases 

k* increases 

6 10 100 10 40 200 53.77 
28.87 

(0.537) 
6206.95 

Z1
*decreases 

k* increases 

7 10 100 30 40 200 69.70 
26.63 

(0.382) 
6244.92 

Z1
* increases 

k* decreases 

8 10 100 20 30 200 70.69 
36.34 

(0.373) 
5352.56 

Z1
*increases 

k* decreases 

9 10 100 20 50 200 49.65 
26.70 

(0.579) 
7086.52 

Z1
*decreases 

k* decreases 

10 10 100 20 40 150 49.66 
28.72 

(0.578) 
5659.31 

Z1
* decreases 

k* increases 

11 10 100 20 40 250 70.69 
26.30 

(0.373) 
6779.77 

Z1
* increases 

k* decreases 

 

 Varying 1
1MC : decreasing 1

1MC  (experience No.6) results in a tendency to work more at 

the demand rate (system spends more time in area 3 (fig.3); stock level = Z1).  

Consequently, Z1
* should decreases and M1 should get more support from M2 (k* 

increases). Increasing 1
1MC gives the opposite results (experience No.7). 

 Varying 2
1MC : decreasing 2

1MC  (experience No.8) results in a tendency to make machine 

M1 work more at the maximum rate  max
1u (system spends more time in area 2 (fig.3)).  

Consequently, M1 should get less support from M2 (k
* decreases) and in order to avoid 

further backlog costs Z1
* should increases. Increasing 2

1MC gives the opposite results 

(experience No.9). 

 Varying
2MC : decreasing 

2MC  (experience No.10) results in a tendency to make 

machine M2 work more (system spends more time in area 1 (fig.3)). Consequently, k* 
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increases and the system is more feasible and this results in a tendency to decrease the 

stock level in order to avoid further inventory costs (Z1
* decreases). Increasing 

2MC gives the opposite results (experience No.11). 

 

It clearly appears that the results obtained make sense and confirm the numerical observation in 

the sense that when a cost decreases (resp. increases), the area where this costs is incurred 

increases (resp. decreases). 

 

7. Comparison between SDHPP policy and the classical redundant structure policies  

 

In this section, the SDHPP policy is compared first to a control policy based on classical stand-by 

operational structure (passive redundancy) where the manufacturing cell is composed of a central 

machine and a stand-by one called upon in support if the central machine breaks down and until 

reparation ends. If we consider the classical stand-by based control policy, we notice that it is not 

feasible. In fact, after transforming equation (6), the manufacturing cell production capacity 

equals 96.43 units/TU (Eq. 20), which is less than the demand rate of 100 units/TU. 

Consequently, and under the classical stand-by based control policy, the demand will never be 

satisfied. Using our system’s data, we obtain:  

max max1 1
1 2

1 1 1 1

(1 ) 96.43
r r

u u
r p r p

    
 

       (20) 

The SDHPP policy has also been compared to a control policy based on parallel operational 

structure (active redundancy) where the manufacturing cell is composed of two parallel machines. 

This policy has been considered by Gharbi and Kenne (2003). Using the data as the basic case of 

table 5, the estimated second-order model of the total cost incurred by such a policy is given by: 

 

Cost- parallel = 7028.9 - 15.7547*Z1 + 0.200683* 2
1Z              (21) 

 

The near-optimal control policy to be applied to the considered manufacturing cell is defined by 

the minimum of the cost function (21) located at *
1 39.25Z  . The Cost-pallel*= 6719.70 

resulting from this control policy is significantly greater than that obtained by our proposed 

policy (Cost*= 6235.59) involving a relative cost reduction of 7.76 %.  
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8. Extension to manufacturing system with non-exponential failure and repair time 

distributions 

In the literature of control theory, no satisfactory method has been devised for the stochastic 

optimal control of manufacturing systems subject to non-exponential machine up and down 

times. In fact, the exponential distribution is used to develop optimality conditions, as shown in 

section 2. With non-exponential failure and repair time distributions, optimality conditions are 

very difficult to develop. However, such a situation is usually encountered in real manufacturing 

systems. We refer the reader to Law and Kelton (2000), for details on commonly used failure and 

repair time probability distributions. 

 

Despite the types of failure and repair time distributions, a near-optimal control policy could be 

determined in a much more complex situation (with non-exponential up and down distribution 

times for machines). Using the same illustrative example presented in section 6.1, we will show 

that the proposed approach is efficient and robust when considering general time to failure and 

time to repair distributions of machine M1. To deal with extensions involving the manufacturing 

system size and its stochastic processes, we refer the reader to Gharbi et al. (2006) where optimal 

control theory is combined to simulation modelling to find the best production strategy for 

multiple-machine multiple-product systems with setups. Note that, in this context, Gharbi et al. 

(2006) have shown that the developed production and setup policy and which is based on the 

class of MHP policy guarantees better and more realistic results. 

 

Without loss of generality, we use a lognormal time distribution as it is often encountered in real 

maintenance of manufacturing systems (Law and Kelton (2000)). For purposes of homogeneity 

with the exponential distribution, we assume that the mean and standard deviation are the same. 

Our experimental results show that the total cost function can also be represented by a convex 

function under non-exponential time to failure and time to repair distributions. Using the same 

data as in section 6.1, the estimated second-order model for lognormal distribution is given by: 

 

2
1

2
11 52,11117475,70594,06,1640023,1078,6386_ kkZZkZLNCost       (22) 

 

The R2
adjusted value of 0.9792 from the ANOVA table states that more than 97% of the total 

variability is explained by the model. The near-optimal control policy to be applied to the 

manufacturing system considered is defined by the minimum of the cost function (22) located at 

*
1Z =46.94, k*=0.574 ( *

2Z =26.94). The Cost_LN*=  5680.32 resulting from this control policy 
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is very close to the one obtained under exponential time to failure and time to repair distributions 

of machine M1 (Cost_Expon*=  5659.31 ).  

9. Conclusions 

In this paper, we studied the production control problem for a mono-product manufacturing cell 

comprising an unreliable central machine with adjustable capacity. In order to respond to the 

demand, a reserve machine is called upon in support by allowing capacity adjustment. The 

production control problem was formulated as a continuous time dynamic programming problem 

and HJB equations were derived. Numerical approach was also proposed to solve the HJB 

equations of the problem and to obtain near-optimal production control policy. 

 

The optimal control policy has been shown to be described by a State Dependent Hedging Point 

Policy (SDHPP) with two hedging inventory levels. The SDHPP policy consists at operating the 

two machines at their maximum production rates until they reach the first hedging level. At this 

threshold, the reserve machine is stopped and the central one continues producing until reaching a 

second hedging level. At the second threshold, the central machine reduces its production rate to 

that of the demand, and maintaining the inventory at its maximum level. If a breakdown occurs, 

and the inventory level decreases below the first hedging level, the reserve machine starts 

producing at its maximum production rate. 

 

Based on the obtained numerical solution, a parameterized near-optimal control policy was 

derived. Such a policy depends on the stock threshold levels. To determine the parameters of the 

control policy, and hence, to achieve a close approximation of the optimal production policy, an 

experimental approach based on design of experiment, simulation modeling and response surface 

methodology has been proposed. To outline the robustness of the developed policy facing 

expected variations of the system parameters several sensitivity analysis were conducted. 

 

The proposed SDHPP policy has also been compared to production control policies based on 

classical redundant structure (stand-by and parallel machines). The results show that the proposed 

policy outperforms classical ones. 

 

The proposed approach offers an easily applied procedure to tackle realistic manufacturing 

systems situations. This issue is outlined by extending the study to cover manufacturing systems 

facing non-exponential failure and repair time distributions. 
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