
Preventive maintenance and replacement 
policies for deteriorating production systems 

subject to imperfect repairs 
Abstract 

This paper presents a special case of integration of the  preventive maintenance into the repair/replacement 
policy of a failure-prone system. The machine of the considered system exhibits increasing failure intensity and 
increasing repair times. To reduce the failure rate and subsequent repair times following a failure, there is an 
incentive to perform preventive maintenance on the machine before failure. When a failure occurs, the machine 
can be repaired or replaced by a new one. Thus the machine’s mode at any time can be classified as either 
operating, in repair, in replacement or in preventive maintenance. The decision variables of the system are the 
repair/replacement switching age or number of failures at the time of the machine’s failure and the preventive 
maintenance rate. The problem of determining the repair/replacement and preventive maintenance policies is 
formulated as a semi-Markov decision process and numerical methods are given in order to compute optimal 
policies which minimize the average cost incurred by preventive maintenance, repair and replacement over an 
infinite planning horizon. As expected, the decisions to repair or to replace the machine upon a failure are 
modified by performing preventive maintenance. A numerical example is given and a sensitivity analysis is 
performed to illustrate the proposed approach and to show the impact of various parameters on the control 
policies thus obtained. 

Index Terms — Manufacturing systems, numerical methods, optimal control, damage 
failures, replacement, repair, preventive maintenance. 

1. Introduction

Very often, parts of industrial machines are broken or highly damaged, although the 
machines still functioning. A failure can consequently involve more than one component 
and more than one kind of component. Decision maker has to find strategy that defines 
replacement policies of these obsolete equipments. Most of the time, the strategy is to 
replace gradually the old components in a corrective way, progressively with their normal 
outage, but at the risk of a larger number of failures. For such a deteriorating system, it is 
quite reasonable to assume that the successive working times of machines will become 
shorter and shorter while the consecutive repair times become longer and longer (Zhang et 
al., 2001; Leung, 2006). Due to increasing failure rate and increasing repair times, the 
machine may finally be economically non-reparable after it experiences a certain number of 
failures. Therefore, upon a failure or when certain observed condition information is higher 
than a pre-set critical level, a decision must be made: whether to continue to repair the 
machine and face the ever-increasing repair costs, or to replace the machine with a new one.  
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Several authors contributed in the sphere of systems that deteriorate due to effects of ageing. 
Among them are Nakagawa and Kijima (1989), Kenne and Gharbi (1999), Wang (2000) and 
Ansell et al. (2004). Those authors proposed maintenance models in order to face or to 
counteract ageing effects. Yuniarto and Labib (2006) suggested condition based 
maintenance in the case where the breakdown rarely occurs, but when it does occur, it will 
take a long time to repair. Wang (2002) compared and classified maintenance models with 
the aim to permit to decision maker to see which one is convenient to solve his specific 
problem. According to that classification, maintenance can be divided into two major 
classes: corrective maintenance that occurs when the system fails and preventive 
maintenance that occurs when the system is operating. Replacement is qualified as a perfect 
maintenance (corrective or preventive). In fact, in manufacturing environment, preventive 
maintenance, corrective maintenance and replacement activities take place simultaneously. 
 
Many works deal with simultaneous repair, replacement and preventive maintenance of 
production systems. Although in some cases the machine is as good as new after corrective 
or preventive maintenance (Aven and Castro, 2008), more often, maintenances are 
performed on machines to improve their condition but that do not renew them. Various 
works considered this type of improvement by using the concept of virtual age of the 
machine after maintenance (Makis and Jardine, 1991; Love et al., 2000; Doyen and 
Gaudoin, 2004). The concept of virtual age of the machine introduced by Kijima et al. 
(1988) and generalized by Kijima (1989), states that the maintenance serves to reset the age 
of the machine, which determines the revised failure intensity. The reset age is the virtual 
age of the machine. Previously in 1979, Malik introduced the concept of an age reduction 
factor (Malik, 1979). By this concept, the machine’s condition is improved through 
maintenance actions such as cleaning, lubrication and realignment. In Malik’s model, each 
imperfect preventive maintenance changes the initial hazard rate value immediately 
following the preventive maintenance, but not all the way to zero (i.e., not new).  Nguyen 
and Murthy (1981) considered a special case of imperfect maintenance in that, it could 
restore the system’s effect age back to zero with a higher failure rate. Lugtigheid et al. 
(2008) proposed replacing failed subsystems along with some non-failed parts, to take 
advantage of the fact that the system has already been uninstalled and taken out of operation. 
This sort of maintenance brings the state of the machine to somewhere between as good as 
new and the condition it was in immediately before the failure or preventive maintenance. 
Malik (1979) proposed using expert judgment to estimate the improvement factor. 
According to Doyen and Gaudoin (2004), age-reduction factors can be estimated directly 
from the data for different types of repairs. They also provided an estimation of the 
reduction factor, obtained by simulation.  
 
The above-cited authors concluded that the time required for the repair(s) and preventive 
maintenance is either at constant rate, negligible or not necessary to be taken into account. 
The assumption is not realistic for all production industry machines. Very often, failures 
become more severe as their number increases. The repair times thus increase with the 
number of failures (Leung, 2006). Many works have been performed to take into account 
increasing repair times of deteriorating systems. Lam (1988) considered a repair and 
replacement model where consecutive failure repair times of the system become longer and 
longer and analysed optimal replacement policies. Stanley (1993) studied a repair 
replacement model for a deteriorating system, considering that the magnitude of the shock at 
each failure and the consecutive repair times after failure constitute geometric processes and 
are stochastically non-decreasing. He proposed a replacement policy based on a random 
threshold. Zhang et al. (2001) used the concept of geometric process replacement policy of 

https://www.researchgate.net/publication/4870065_A_survey_of_maintenance_policies_of_deteriorating_systems_Eur_J_Oper_Res_139_469-489?el=1_x_8&enrichId=rgreq-09e633b7-d7ad-48ca-b4cd-d0fbb29d03c0&enrichSource=Y292ZXJQYWdlOzIzMzIwMDAyMDtBUzoxNjU2NzQ3MjI3OTk2MThAMTQxNjUxMTM0MDY5MA==
https://www.researchgate.net/publication/245331238_Fuzzy_adaptive_preventive_maintenance_in_a_manufacturing_control_system_A_step_towards_self-maintenance?el=1_x_8&enrichId=rgreq-09e633b7-d7ad-48ca-b4cd-d0fbb29d03c0&enrichSource=Y292ZXJQYWdlOzIzMzIwMDAyMDtBUzoxNjU2NzQ3MjI3OTk2MThAMTQxNjUxMTM0MDY5MA==
https://www.researchgate.net/publication/233428785_Reliable_Preventive_Maintenance_Scheduling?el=1_x_8&enrichId=rgreq-09e633b7-d7ad-48ca-b4cd-d0fbb29d03c0&enrichSource=Y292ZXJQYWdlOzIzMzIwMDAyMDtBUzoxNjU2NzQ3MjI3OTk2MThAMTQxNjUxMTM0MDY5MA==
https://www.researchgate.net/publication/233428785_Reliable_Preventive_Maintenance_Scheduling?el=1_x_8&enrichId=rgreq-09e633b7-d7ad-48ca-b4cd-d0fbb29d03c0&enrichSource=Y292ZXJQYWdlOzIzMzIwMDAyMDtBUzoxNjU2NzQ3MjI3OTk2MThAMTQxNjUxMTM0MDY5MA==
https://www.researchgate.net/publication/233278910_A_note_on_'A_bivariate_optimal_replacement_policy_for_a_repairable_system'?el=1_x_8&enrichId=rgreq-09e633b7-d7ad-48ca-b4cd-d0fbb29d03c0&enrichSource=Y292ZXJQYWdlOzIzMzIwMDAyMDtBUzoxNjU2NzQ3MjI3OTk2MThAMTQxNjUxMTM0MDY5MA==
https://www.researchgate.net/publication/263366553_Optimal_replacement_policy_for_a_deteriorating_production_system_with_preventive_maintenance?el=1_x_8&enrichId=rgreq-09e633b7-d7ad-48ca-b4cd-d0fbb29d03c0&enrichSource=Y292ZXJQYWdlOzIzMzIwMDAyMDtBUzoxNjU2NzQ3MjI3OTk2MThAMTQxNjUxMTM0MDY5MA==
https://www.researchgate.net/publication/256284705_On_geometric_processes_and_repair_replacement_problems?el=1_x_8&enrichId=rgreq-09e633b7-d7ad-48ca-b4cd-d0fbb29d03c0&enrichSource=Y292ZXJQYWdlOzIzMzIwMDAyMDtBUzoxNjU2NzQ3MjI3OTk2MThAMTQxNjUxMTM0MDY5MA==
https://www.researchgate.net/publication/226916932_Geometric_Processes_and_Replacement_Problem?el=1_x_8&enrichId=rgreq-09e633b7-d7ad-48ca-b4cd-d0fbb29d03c0&enrichSource=Y292ZXJQYWdlOzIzMzIwMDAyMDtBUzoxNjU2NzQ3MjI3OTk2MThAMTQxNjUxMTM0MDY5MA==
https://www.researchgate.net/publication/222118315_A_minimal_repair_replacement_model_with_two_types_of_failure_and_a_safety_constraint?el=1_x_8&enrichId=rgreq-09e633b7-d7ad-48ca-b4cd-d0fbb29d03c0&enrichSource=Y292ZXJQYWdlOzIzMzIwMDAyMDtBUzoxNjU2NzQ3MjI3OTk2MThAMTQxNjUxMTM0MDY5MA==


3 
 

Lam (1988), incorporated preventive maintenance and defined the objective function termed 
the “cost efficiency”. Wang and Zhang (2006) studied a case of deteriorating system in 
which preventive repair times followed a stochastically increasing geometric process and 
determined optimal replacement policy of the machine. Badia and Berrade (2009) assumed 
that the mean times of repair constituted an increasing sequence from one failure to another 
and developed a maintenance policy of a system subject to periodical inspections, aimed at 
detecting the occurrence of failures. Although those authors took into account deterioration 
in repair times, none of them considered reduction of repair times following maintenance. 
 
The proposed approach consists of integrating preventive maintenance with the 
repair/replacement policy of a deteriorating production machine. The preventive 
maintenance aims at increasing the system’s availability by reducing the system failure 
intensity and the age of the system. Moreover, the next mean repair time following a 
preventive maintenance is reduced with a time reduction factor, which has not yet been 
addressed in the literature. The approach consists of developing a semi-Markov decision 
model in order to determine optimal preventive maintenance, repair and replacement 
policies for the system. Those policies should minimize the overall incurred costs over an 
infinite planning horizon. Thus, the contribution of this paper is the integration of preventive 
maintenance to the repair/replacement determination model. We transpose the well-known 
age reduction and hazard rate increase factor methods to repair time reduction in order to 
improve the lifetime of the system.  
 
The paper is organized as follows. In Section 2, we present the problem statement. Repair 
time reduction approach and illustration are given in Section 3 followed by optimal control 
problem and optimality conditions in section 4.  Numerical methods are used in Section 5 to 
solve the optimality conditions obtained in Section 4. Numerical examples are presented in 
Section 6 with an example of implementation of the present results. A sensitivity analysis is 
provided to illustrate the usefulness of the proposed approach in section 7. Our conclusions 
are presented in Section 8. 
 
2. Problem statement 
 
In the following subsections, we will describe the dynamic of the system and present the 
industrial context.  
 
2.1. Dynamic of the system  
 
The machine under consideration is subject to random breakdowns. At any failure instant, 
there are two types of action to be taken: the machine can be repaired or can be replaced by 
a new identical one. The machine undergoes an imperfect repair that brings it back to the 
operating condition. The repair is imperfect in that the whole system is not replaced, but 
only some of its components. However, the machine after repair has the same failure rate as 
a brand-new one, but it takes longer repair time from one failure to another to obtain that 
operation condition. The preventive maintenance can be carried out previous to failure and 
aims at slowing down the deterioration rate, reducing breakdowns risk and repair times 
durations. We shall call mode of the machine any of the four situations: in operation, in 
repair, in replacement and in preventive maintenance. These modes are denoted by 
1, 2,3 and 4 , respectively.  
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The machine’s mode changes from ‘operation’ to ‘preventive maintenance’ with a transition 
rate denoted by  (.) (.)14q  . The rate (.)14q  is assumed to be a control variable. The 

inverse of the control variable q14 represents the expected delay between a call for the 
technician and his arrival. Thus, the preventive maintenance of the machine is triggered after 
a random delay. During that lead time, there is a request for a maintenance specialist, which 
includes information to enable the specialist to take with him the tools required for 
eliminating a specified malfunction or undesired condition. This modeling of the preventive 
maintenance has been used by authors amount which Boukas and Haurie (1990), Kenne and 
Nkeungoue (2008). In many other studies in literature, the preventive repair or replacement 
of a component is modeled as an impulsive control which triggers an immediate jump of the 
controlled process. The inclusion of a random delay between the call for a technician and his 
arrival time does not seem more unrealistic than an immediate response. The machine’s 
mode changes from ‘preventive maintenance’ to ‘operation’ with a constant transition rate 
of 41q .  Repair and replacement are two kinds of failure mode and are performed after a 

failure. The failure mode is denoted by F . Therefore, the machine’s mode changes from 
‘operation’ to ‘failure’ at rate ( ( ))1q a tF , which is an increasing function of the machine’s 

age ( )a t . If the machine is to be repaired, then the transition rate from ‘operation’ to ‘repair’ 

( ( ))12q a t  will be equal to the failure rate ( ( ))1q a tF . Otherwise, the machine will be 

replaced. The corresponding transition rate from ‘up’ to ‘replacement’,  ( ( ))13q a t , will be 

equal to the failure rate  ( ( ))1q a tF . The machine’s mode changes from ‘repair’ to 

‘operation’ with a transition rate of ( )
21

q n , which is a decreasing function of the number of 

failures  n . The transition rate from ‘replacement’ to ‘operation’ is described by
31

q . All 

other transition rates equal zero. The state-space diagram of this semi-Markov process is 
illustrated in Fig 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Machine state-space diagram  
It follows that  

  

( ( )) ( ( )) ( ( ))12 13 1

( ( )) 1 ( ( )) 0 * ( ( ))12 13 1

q a t q a t q a tF

q a t Ind q a t q a tF

  




  

        (1) 

where  
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1     if the (.) is realized 
( (.))

 0    otherwise

f
Ind f


 


 

for any function (.)f . Equation (1) states that, when a failure occurs, the machine cannot be 
sent to repair and slated for replacement at the same time.  
 

Let   ( )21T n MTTR n  be the mean repair time after the thn  failure and let us call ( )
21

mq n  

the repair rate and ( )m nMTTR  the mean repair time if preventive maintenance actions are 

triggered before the thn  failure. We assume that the machine has experienced its ( 1)thn   
failure and has been repaired.  As demonstrated in the literature, a monotone process such as 
an arithmetic-geometric approach is considered to be relevant, realistic and appropriate to 
the modelling of a deteriorating system maintenance problem, i.e., for modelling the 

survival time after the ( 1)thn   repair and the repair time after the thn  failure. For more 
details, we refer the reader to the work of Leung (2006), Zhang et al. (2001) and Badia and 
Berrade (2009), where some examples of arithmetic-geometric processes are provided.  
 
2.2. Industrial context 
 
The study presented in this paper has many applications, especially in production industry. 
As state by Badia and Berrade (2009), many engineering systems are subject to the so-called 
unrevealed failures. The unrevealed failures are constituted of those that are detected only by 
special tests, inspection or monitoring.  Seal machines, filling machines, machining centers, 
grinders, milling, and many of tools machines are among examples. They have a large 
number of components (treadmill, ball screws, spindle heads, precision gear boxes, axis 
drive components, rotary tables, saddles, pallets and short). Those components stochastically 
deteriorate over time and hence the machine. Very often, parts of such machines are broken 
or damaged, although the machine is operational. For example, worn nozzle, abrasives in 
pumped liquid, relief valve stuck, partially plugged or improperly adjusted, cavitations, 
worn bearing do not necessarily stop a liquid filling machine. A worn bearing will for 
example create knocking noise, while the machine still functioning. Thus, the failure of a 
machine is due to one or more removable and reparable components. Over time, the number 
of components to check and repair at failure increases and thus the mean repair time. A 
preventive maintenance could serve to clean and adjust valves, control stroke and flow 
injection, replace worn nozzle with properly sized nozzle. By doing that, fewer components 
are to be checked and repaired at the next failure and consequently the mean repair time is 
reduced. Preventive interventions intend to reduce breakdowns risk and to maintain the 
smooth functioning of the machine. Moreover, worn but still functional components are 
replaced so that when the next failure occurs, the number of components to check, repair or 
replace is reduced. Therefore, post-repair preventive maintenance durations are reduced. 
 
3. Repair time reduction and illustration of reduction 
 
When operating electromechanical equipment, Patton (1995) advised to invest at least half 
of the corrective maintenance budget in preventive maintenance. Doing this will stop the 
large number of failures and redirect attention toward doing the job right once. Moreover, 
detection of failure patterns helps to stop failure modes before they spread to all pieces of 
equipment. When cracks are detected, they should be eliminated. Thus preventive 
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maintenance before failure increases ease of repair.  We describe repair times reduction in 
subsection 3.1 and illustrate examples of reduction in subsection 3.2. 
 
3.1. Repair times reduction by preventive maintenance 
 

Let ( )mMTTR n  be the post-preventive maintenance mean repair time after the thn  failure. 
We consider that the effect of preventive maintenance is to reduce the next repair time such 

that, if there is some preventive maintenance before the thn  failure, the mean repair time at 

the thn  failure will be of the form ( ) ( ( ))mMTTR n MTTR n , with 
0 ( ( )) ( )MTTR n MTTR n  .  
 
If the determination of the mean repair time depends on the complete history, we then lose 
the Markovian property of the system. Hence, ( )mMTTR n  depends only on the mean repair 

time at the thn  failure.  
 
From a practical point of view, when the machine is sent for preventive maintenance, non-
failed but used subsystems are repaired. Hence, at the next failure, fewer subsystems are 
evaluated and repaired compared to the situation where no preventive maintenance had been 
performed before failure. Estimation of the repair time reduction factor can be based on 
preventive maintenance and the repair time’s history data or on industrial expert judgment 
estimation where applicable.  
 
In addition, there are numerous studies of age reduction factor and hazard rate increase 
factor methods in the literature (Love et al., 2000; Doyen and Gaudoin, 2004; Hariga et al., 
2006). Considering that the effect of those methods can result in reduced repair times, one 
could consider one of the following three reduction models Redf1, Redf2 and Redf3: 
 
Redf1  ( ) ( ) 0

mMTTR n MTTR n    where 0  is a given constant  

Redf2  ( ) ( )mMTTR n MTTR nn  with 0 n   after the thn  preventive maintenance  

Redf3  ( ) ( )( )
mMTTR n MTTR ng n  with 

( )
 and  0( ) ( )

g n
g n g n
 


  


 after the thn  

preventive maintenance. (.)g  is a given function (see (Hariga et al., 2006) for more 

details). 
 
The measurement of reduction factors can be obtained by the maximum likelihood method 
based on historical operating data. We used above models for illustrative purpose. Although 
all the three models suggested in this paper are analytical, in reality since we are usually 
talking about hundreds of components and subsystems with very complex interactions and 
interdependencies, the reduction factors would be very dependent on what kind of 
preventive maintenance is conducted and what repair time is being affected by that 
preventive maintenance. For a specific manufacturing system, the typical reduction factors 
could be determined from post-preventive maintenance activities and repair time’s historical 
data. If a look up table based on engineering design and operator experience is available, it 
could also serve to measure the post-preventive maintenance effect on repair time. 

https://www.researchgate.net/publication/230332962_A_discounted_integrated_inspection-maintenance_model_for_a_single_deteriorating_production_facility?el=1_x_8&enrichId=rgreq-09e633b7-d7ad-48ca-b4cd-d0fbb29d03c0&enrichSource=Y292ZXJQYWdlOzIzMzIwMDAyMDtBUzoxNjU2NzQ3MjI3OTk2MThAMTQxNjUxMTM0MDY5MA==
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3.2. llustrative reduction factor example  
 

Let us consider a manufacturing system in which the repair rate following an thn  failure is 
given by: 

   1
121 0 1

r
n

q n q q
N

         
  where ,1 0q q  and r  are given constants. The values used in 

this example are presented in section 5. For a given manufacturing system, they can be 
determined from the repair time’s history data.  
 
The above-mentioned models Redf1, Redf2 and Redf3 will have the effect of improving the 
availability of the equipment. For the purpose of illustration, we consider that repair times 
after the preventive maintenance is performed follow the reduction model Redf2. Let 

n   for all n . 

 
The effect of Redf2 is to reduce the next repair time with a reduction factor   such that, if 

preventive maintenance is performed before the thn  failure then, the mean repair time at the 
thn  failure will be ( ) ( )mMTTR n MTTR n  , with  0,1  . Thus, there is a one-to-one 

correspondence between repair time without preventive maintenance (or no reduction) and 
the post-preventive maintenance repair time. 
 
Figure 2 presents sample paths of the mean repair time for an increasing number of failures. 
The repair time is a function of the number of failures n . Each additional failure requires a 
longer repair time. Sample paths for different values of  are shown in Fig. 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Mean repair time after preventive  
maintenance  

 
Figure 2 presents the path of the mean repair time for an increasing number of failures if 
preventive maintenance is performed before failures, for four   values. Note that 1 T is also 
the post-preventive maintenance repairs time, with 1  . This corresponds to the case 
where there is preventive maintenance before failure, but the mean repair time at failure 
remains unchanged. This situation arises when preventive maintenance serves to reduce the 
probability of failures, with no effect on the severity of failures. 2T , 3T  and 4T  are the paths 
for 0.5  , 0.25   and 0.1   respectively, and show that the repair time is divided by 2, 
4 and 10, respectively.  
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We can observe from Fig. 2 that the effect of the reduction factor on repair times is more 
noticeable when the machine experiences a greater number of failures. For the first few 
failures, curves 2T , 3T  and 4T  are almost the same.  But for a large number of failures (18, 
for example), they are very distinctive. This can make a significant difference on the impact 
of performing preventive maintenance on a manufacturing system’s availability and/or on 
overall costs.  
 
Since we know that the other forms of reduction have the same effect of increasing 
equipment availability, in the remainder of this work, we will consider repair time reduction 
factor Redf2. We will also consider n   for all n , and call the corresponding model 

arithmetic repair time reduction. 
 
4. Optimal control problem and optimality conditions 
 
The following subsections present the optimal control problem and optimality conditions. 
 
4.1. Optimal control problem 
 
The state of the system is described by the machine mode  ( ) 1,2,3,4t   with the 

transitions shown in Fig. 1, the number of failures ( )n t  and the age of the machine  ( )a t .  

 
The age of the machine ( )a t  is an increasing function of chronological time and is described 

by the following differential equation: 
( )

;   ( ) 0
da t

a T
dt

          (2) 

where 0 1   is a given constant and T  the time of the last restart of the machine. If 
1  , then the age of the machine is the cumulative working time since the last restart of the 

machine. 
 
Recall that the failure rate (.)1q F  is an increasing function of a machine’s age ( )a t . It is 

reset to its initial value after a repair or preventive maintenance, but that does not mean that 
the machine is new. 
 
We assume that the following constraint holds for the preventive maintenance transition 
rate: 

 0 . max             (3) 

where max  is the maximum rate of preventive maintenance. The inverse of (.) represents 

the expected delay between the decision to perform preventive maintenance actions and the 
effective switch from operation mode to preventive maintenance mode.  
 
We define      1212

sq a q a Ind a s    and      1313
sq a q a Ind a s    if, after a failure 

occurs, the machine is replaced after age s . The parameter s  is the repair/replacement 

switching threshold age. That is, on the thn  failure, if the age of the machine is above the 
threshold value s , the machine is replaced; if it is not, corrective maintenance is conducted.  
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We shall refer to   :  0t t   as the stochastic process with value in    and 

   .s sQ q
 
 
 

   as the 4 4  matrix such that   0sq a   if   ,    . .11 11
sq q ; 

   . .31 31
sq q ;    . .14 14

sq q ;    . .41 41
sq q ; and    . .s sq q

 
 


   .   sQ   is the 

transition matrix of the semi-Markov chain     

 
Let us define   , ,G a n  as the running cost of being in state , at age a  of a machine that 

has already had its thn  failure. 
 
The expected discounted cost is given by:  

         , , , , /  0 ,  0 ,  0
0

tJ a n s E e G dt a a n n   
 
 
  

        (4) 

where    is the discounted rate used to make the costs incurred at future dates less 

important than the cost incurred today. 
 
Let   (.), (.) :0 (.)  and 0 (.) maxs s M          . Any plan ( , )s    is called 

an admissible plan, and our problem is to minimize the expected discounted cost, given by 
equation (4), for any admissible plan. 
 
The control variables are the threshold age s  after which the machine should automatically 
be replaced at the next failure and the preventive maintenance rate  .  
 
Optimal policies are obtained by searching:  

 
  

 , , , , , ,min
,

V a n J a n s
s

  



 

          (5) 

We define Sn  as the optimal replacement policy before the thn  failure. That is, for each n , 

there exists an age Sn  such that if ( )a t Sn , the optimal action is to replace the machine at 

the thn  failure.  
 
Let mN  be the minimum number of failures that occur before a systematic replacement at 

the next failure, regardless the machine’s age. Note that when  mn N , then  0Sn  ; it is 

therefore sufficient to determine Sn  instead of both variables. 

 
Our objective is then to determine the age Sn  before systematic replacement at the next 

failure and the preventive maintenance control     that will minimize   J  . 

 
As established in the literature (Makis and Jardine, 1993; Love et al., 2000), we can choose 
an upper bound on the age, M  to be very large compared to 1S , beyond which the system is 

automatically replaced. 
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The value function  , ,V a n  satisfies specific properties called optimality conditions, 

which are presented in the next section.   
 
4.2. Optimality conditions 
 
The value function ( , , )V a n  satisfies a set of coupled partial derivative equations derived 

from the application of the dynamic programming approach called the Hamilton-Jacobi-
Bellman (HJB) equations given by equations. (6): 

 
           ( )( , , ) . ( , , ) 1 , , , , , ( ) ( , , )

,

da t sV a n G V a n Ind t q a n V a n n V a nMin a dts
        

  
      

 (6) 

where   ; 

     
 

           if  =1 and 2, 3 or 4  
, ,   

    otherwise

 0
a n

a

   
 



  
 





and

    
    
    

               if  =1 and 3  

         if  =2,3 and 1

                  or =1 and 2

  otherwise

 0

 1( )

            

nn

n

   

   

   


  

  
  



 




;  , ,V a n
a




 is the gradient of the value 

function  , ,V a n . 

 

The HJB equations (6) are solve by approximating  , ,V a n  with a function  , ,haV a n  

and the first-order partial derivatives of the value function   , ,V a n
a




 by: 

     1, , , , , ,h ha aV a n V a h n V a naa ha
   

 
 

   


 

where ha  is a discrete increment associated with state variable a . 

Let us define sQ qha
  ;  

   if =1
( )

0              otherwise

h QaPa ha

 






 and ( )

sq
P

Qha

    

The HJB equations can be rewritten as follows: 

 
   

. 1( , , ) ( ( ) ( , , ) ( ) ( , , )
, (1 ) (1 )

Gh h ha a aV a n P V a h n P V a na aMin
s Qha Q Qh ha a

         
    

  
  (7) 

The step ha  is chosen such that  

    , , , ,lim
0

haV a n V a n
ha

 


       (8) 

We use the policy improvement technique to obtain a solution of the approximating 
optimization problem. We refer the reader to (Kushner and Dupuis, 1992) for the algorithm 
of this technique. In the next section, we illustrate the approach developed in this paper, 
using a numerical example. 
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5. Numerical example 
 

We consider the computational domain D  defined by:   , : 0 100;0 20D a n a n     . 

The costs of preventive maintenance ( Cm = 100) and replacement ( Crem = 20 000) are 

assumed to be constant. Costs are in dollars. 
 
Let Crep be the cost of repair per unit of mean time. Thus the mean repair cost is 

* ( )21C T nrep . Recall that ( )21 nT  is the mean repair time before the thn  failure. Hence, the 

cost function G(.) is given by: 
 

          *, , ( ) 3 2 421G a n C T n Ind t C Ind t C Ind trep rem m            .  

 
Given the frequent utilization of the Weibull distribution in reliability engineering (Love et 
al., 2000), we assume that the lifetime of a new machine follows a Weibull distribution. The 
parameter scale is 0.03   and the shape parameter 2  .  
 
Table 1 summarizes other parameters used in this paper.  
 

Parameter N  
0q  1q  31q r    

Value 20 0.01 0.14 10 2 1 

Parameter repc  ha   41q max    
Value 100 0.2 0.05 0.2 0.1 0.1 

 
Table 1. Parameters of the numerical example 

 
For 1  , as in Table 1, the age of the machine is the chronological working time since the 
last restart of the machine.  Recall that the lifetime distribution of a new machine follows a 

Weibull distribution with the density function 1( ) exp( ( ) )f a a a      . Its 

cumulative distribution function is ( ) 1 exp( ( ) )F a a    .  
 

At any time, we consider that the system has experienced its  ( 1)thn   failure, 1,2,3,...n   
and has been repaired. Since the repair restores the age of the machine to zero (but the 

machine is not new), the mean time to failure ( MTTF ) of the machine before the thn failure 

is equal to the mean time to first failure and is given by 
1

(1/ ) (1 )MTTF 


   , where 

(.) is the gamma function.  
 
Using the previous parameters, 29.5MTTF   units of time. Thus, our selection of the upper 
bound for the control limits on age is 100M  .  The probability that the machine will have 
its first failure before 100M   is almost equal to 1, as illustrated by the graph of the 
distribution function in Fig. 3. 
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Fig. 3  Distribution function of failures 

 over time for a given failure number n  
 
This ensures that if the replacement threshold age at first failure of the machine is greater 
than 100M  , that machine will never be replaced after a first failure. In these 
circumstances, it is not necessary to have 1M S , as is the case in (Love et al., 2000), 

because M  and 1S  appear to be infinity for the machine. 

 
For 0.1  , there is a strong incentive to perform preventive maintenance because it will 
reduce the next repair time by a factor of 10. Moreover, if no preventive maintenance is 
carried out before a large number of failures, the mean time to repair for each failure will 
follow the path P1 of Fig. 4 below. When preventive maintenance is triggered once before 
each failure, then the path of the mean repair time follows P2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Mean repair time and  
its possible reduction 

 
Note that in reality, preventive maintenance may not be performed before every failure. 
Thus, the real path P3 of the mean repair time could be composed of P1 and P2, as presented 
in Fig. 4. For relatively small reduction factors, preventive maintenance may be done more 
than once between failures. The corresponding reduced repair time follows P4.  
 
The policy improvement technique is used to solve equation (7). The results obtained for the 
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values given in Table 1 are presented in Figs. 5 to 7. 
 
The repair/replacement policy Sn presented in Fig.5 divides the plan  (.),a n into two zones: 

Zone 1 below Sn  and Zone 2 above Sn . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Repair/replacement policy 
 
If a failure occurs when the system is located in Zone 1 of Fig.5, the optimal action is to 
repair the machine. Otherwise, the optimal action is to replace the machine. Since the 
decisions to repair or to replace the machine are limited to instances of machine failure, Fig. 
5 indentifies the action to be undertaken if the location of the system at failure is known.  
 
The machine would have at least 14Nm   failures before systematic replacement, 

regardless of its age, will occur at the next failure. Recall that the age 100a  appears to be 
infinity for the machine. We can conclude from Fig. 5 that the machine will never be 
replaced before it has experienced at least 10 failures.  
 
Let ( ( ))R a tn denote a function with a value of 1 if a repair action is undertaken after the 

thn failure occurs at age ( )a t , and 0 if it does not. The above results enable us to illustrate 

the repair/replacement policy as: upon the thn  failure of the machine at age ( )a t , 

 1    if   (.)    
(.)

 0    otherwise   

a SnRn







       (9)  

with Sn  given in Fig. 5. 

 
The preventive maintenance policy is presented in Fig.6 below. 
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Fig. 6 Preventive maintenance policy 
 
The preventive maintenance policy given by Fig. 6 will be represented in the remainder of 
the paper by its boundary, as shown in Fig. 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Boundary of the preventive maintenance policy 
Figure 7 identifies two zones delimited by the boundary ( )T n . The preventive maintenance 

actions at each failure number are triggered according to the age limit policy described in 
Fig. 7. Decisions to send the machine to preventive maintenance are undertaken when the 
machine is operational. If the machine’s state is located in Zone 3, that is, the age and 
number of failures are below the boundary ( )T n , there is no need to call a maintenance 

specialist. Conversely, if the machine’s state is in Zone 4, which is above the 
boundary ( )T n , the optimal response is to trigger preventive maintenance actions. When 

there is a decision to perform a preventive maintenance, if for example w(.)=0.3, the 
machine is shutdown for preventive maintenance after 1/0.3 units of times, corresponding to 
the delay between the call of a technician and its arrival. If there is no preventive 
maintenance scheduled at a given time, w(.)=0 and the machine continue to produce. The 
proposed preventive maintenance policy is a feedback control policy based on machine’s 
age and number of failures. 
 
According to the results provided by Fig. 7, the trend is to send old machines (determined by 
age and the number of breakdowns that have occurred) to preventive maintenance, which is 
the reality in manufacturing systems. 
 
The preventive maintenance actions are triggered according to the age limit policy described 
in Fig. 7, which indicates that preventive maintenance should be performed at rate  (.)  , 
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with 
 0         if   (.)  (.)  

 (.) = 
    otherwise   max

a T






      (10) 

 
where (.)T  is the age limit for preventive maintenance before the next machine failure. For 

a given failure number n , ( )T n is provided by Fig.7.   

 
It can be observed that when the number of failures increases, the age limit 

( )T T nn  decreases, meaning that the machine is sent to preventive maintenance more 

often. 
 
On the basis of the previous results, we can illustrate the repair/replacement and preventive 

maintenance policies by the vector  , ,S N Tn m n , where T n corresponds to the value of 

(.)T for each n value in Fig. 7, and  min  0 such that 0nN n Sm    . 

 
6. Model implementation 
 
For the implementation of the obtained results, Fig.5 and Fig.7 are used. At initial time, a 
new machine is installed. Its age is 0 and the number of failure already occurred is 0. As 
soon as the machine is put into use, its age starts increasing. While waiting the first failure of 
the machine, if its age reaches 

1
T (in this example 

1
100)T   ), send the machine to 

preventive maintenance. When the first failure occurs, if the age of the machine is below 

1S (here 1 100S  ), repair the machine; otherwise, replace the machine by a new identical 

one. Recall that the age 100 appears to be infinite for the machine, it is certain that the first 
failure will occur below 100. That means that the machine won’t be sent to preventive 
maintenance before the first failure nor be replaced after the first failure. Thus, after the first 
failure, the machine is repaired and no repair time reduction is considered.    
 
Now, suppose that the machine has already had its 10th failure and has been repaired. Upon 
the restart of the machine, and while waiting the 11th failure, actions to be taken are 
illustrated in Fig.13. 
 
While waiting the 11th failure, actions to be taken are function of the age of the machine as 
shown in Fig. 13. When operating the machine, if no failure occurs before age 36, continue 
operating the machine. When the age of the machine reaches 36 without failure, send the 
machine to preventive maintenance. The aim of performing preventive maintenance is to 
reduce the need for corrective maintenance and keep the machine in its operating state. If a 
failure occurs after preventive maintenance has been done, the mean repair time will 
systematically be reduced compare to the case where no preventive maintenance has been 
done. At the 11th failure, if the age of the machine is less than 12, repair the machine, 
otherwise replace the machine. Replacement restores the machine to its brand-new condition 
at time zero. Conversely, after repair the machine is not new and will certainly experience a 
12th failure. The maximum number of failures the machine could experience is 15. Thus, the 
machine is systematically replaced after the 15th failure regardless of its age. Although not 
specified in the diagram, one should remember that repair time following preventive 
maintenance is reduced.  
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Fig. 13 Model implementation diagram 

 
 
To see how these results are influenced by some of the parameters used in this paper, in the 
next section we present a sensitivity analysis performed according to the previous results. 
 
7. Results and sensitivity analysis  
 
The previous section provided the repair/replacement and preventive maintenance 

policies ( , , )S N Tn m n , which recommend replacing the machine at the thNm  failure or at 

failure after age nS , whichever comes first, and not performing preventive maintenance 

before age T n  is reached. The decisions to repair, to replace or to trigger preventive 

maintenance are based on the overall incurred cost. We analyze the sensitivity of those 
policies according to repair cost per unit of time, replacement cost and preventive 
maintenance cost in the first subsection. In the second subsection, we examine the sensitivity 
of the optimal policies to the reduction of the repair time when preventive maintenance is 
carried out. 
 

7.1. Sensitivity analysis of repair, replacement and preventive maintenance costs 
 
In this subsection, we will perform sensitivity analysis on the repair cost per unit of time, the 
replacement cost and the cost of preventive maintenance. 
 
 
When the repair cost per unit of time takes the four values 50, 100, 150 and 200, we obtain 
the results presented in Figs. 8a. and 8b. On the basis of Fig. 8a., we conclude that when 
repair costs increase, the machine is replaced earlier. According to Fig. 8b., preventive 
maintenance actions are also triggered earlier. 
 

No Yes 

Restart of the machine 
after the 10th failure and 

repair 

a ≥ 
11

T = 36 

Preventively maintain 
the machine  

a ≥ 11 12S   

Replace the 
machine  

a < 11 12S    

Repair the 
machine  

11th failure? 
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a.     Sn       b.     
n

T  

Fig. 8 Sensitivity of policies to the variation of 
 repair cost per unit of time  

 
The trend is to reduce the repair time by recommending sending a machine to preventive 
maintenance earlier (Zones 2 and 4 increase).  
 
As we can see from Fig. 9a., Zone 1 increases as the machine replacement costs increase. 
That is, the higher the replacement cost, the higher the threshold age and the number of 
failures expected before systematic replacement.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a.     Sn         b.     
n

T  

Fig. 9 Sensitivity of policies to the variation of  
repair cost per unit of time  

 
The corresponding preventive maintenance policies given by Fig. 9b. show that as 
replacement cost increases, preventive maintenance is triggered earlier. The size of Zone 4, 
where preventive maintenance is recommended, increases. However, it can be observed 
from both Fig. 9a. and Fig. 9b. that increasing the replacement cost over the range [15 000, 
55 000] does not have a significant effect on the policies when the number of failures is less 
than 9, at least for the numerical examples considered in this study. Increasing replacement 
costs decrease Zones 2 and 3: replacement is postponed while preventive maintenance is 
triggered more often.  
 
Since there is an incentive to perform preventive maintenance, we made a variation of 
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preventive maintenance costs from low to moderate values as illustrated by the graphs in 
Figs. 10a. and 10b.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a.     Sn       b.     
n

T  

Fig. 10   Variation of preventive maintenance cost per unit of time  
 
Decreasing preventive maintenance costs keeps Zone 1 virtually the same until the machine 
experiences its 10th failure. Conversely, it practically eliminates Zone 3. Figure 10a. shows 
that the repair and replacement policy is less sensitive to preventive maintenance cost 
variations. As indicated in Fig. 10b., decreasing preventive maintenance cost triggers more 
frequent preventive maintenance. These results are realistic because preventive maintenance 
costs are very small compared to replacement costs. 
 

7.2. Sensitivity analysis of the variation of the reduction factor  
 
In Fig. 11, the reduction factor ( ) takes four values: 0.1,  0.25, 0.5, 1 . When 1  , the mean 
repair time remains unchanged after preventive maintenance. From Fig. 11, the machine 
experiences only 4 failures before systematic replacement at failure. In this case, 1M S . 
Recall that the mean time to failure is 29.5 units of time and 1  S 29.5  units of time. Such a 
machine could be replaced after a first failure if its age is greater than 20units of time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11   Repair/replacement policy for several  
values of the reduction factor 
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When 0.1  , the mean repair time after a failure occurs is divided by 10 if preventive 
maintenance had been performed before failure.  The machine experiences many more 
failures ( 14Nm  ) before systematic replacement after a failure. On the other hand, with 
such a system, the machine could never be replaced before it experiences 10 failures. The   
values between 0.1 and 1 confirm the trend that the smaller the  , the more the machine 
experiences failures, and that performing preventive maintenance really increases the 
lifetime of the machine. 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. 0.25       b.  0.5   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c. 1   
 

Fig. 12  Preventive maintenance policy for several  values of the reduction factor 
 
The preventive maintenance policies for 0.25;  0.5;   and 1   are illustrated in Figs. 12 
a-c. They show that although the machine is replaced early, preventive maintenance is 
somewhat recommended if the machine has reached a certain age. 
 
The above sensitivity analysis confirms that the general repair/replacement and preventive 
maintenance policies ( , , )S N Tn m n  are threshold-type, and they recommend replacing the 

machine at the thNm  failure or at failure after age Sn , whichever comes first, and to not 

perform preventive maintenance before age T n . If at the thn  failure, the age of the 
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machine is greater than nS  or the failure number is above Nm , then undertake a repair. 

 
The obtained results indicate that the optimal repair/replacement and preventive 
maintenance policy for the considered manufacturing system is characterized by the 
aforementioned three parameters (i.e. , ,S N Tn m n ). Two of those parameters characterize 

the repair/replacement switching policy (i.e. Sn ; Nm ) and one parameter characterizes the 

preventive maintenance policy (i.e.,  T n ). The overall control policy is given by equations 

(9-10) and figures 6-7, and is completely defined by the parameter values ( Sn ; Nm ) for 

repair/replacement switching and T n  for preventive maintenance policy.  

 
8. Conclusions 
 
In this paper, we investigate the integration of preventive maintenance with the 
repair/replacement policy for a machine subject to random breakdowns. In addition, failures 
intensity and repair times increase with the number of failures. We introduce a reduction 
factor approach to decrease the repair times if preventive maintenance is performed before 
failures. Such a stochastic control problem is quite complex due to the machine’s failure 
repair and preventive maintenance history. Modeling the system with a semi-Markov 
process allowed us to take into account the stochastic failure history, thereby adding a new 
dimension to the repair/replacement theory. We showed that implementing this type of 
preventive maintenance increases the lifetime of the machine. We illustrated the proposed 
approach using a numerical example and perform sensitivity analysis to show that the 
structure of the obtained policies is maintained when parameters change. The obtained 
results are particularly useful for industrial systems that experience losses due to increasing 
repair times. 
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